

Two-stage partial melting during the Variscan extensional tectonics (Montagne Noire, France)

Marc Poujol, Pavel Pitra, Jean Van den Driessche, Gilles Ruffet, Romain

Tartèse, Jean-Louis Paquette, Jean-Charles Poilvet

► To cite this version:

Marc Poujol, Pavel Pitra, Jean Van den Driessche, Gilles Ruffet, Romain Tartèse, et al.. Twostage partial melting during the Variscan extensional tectonics (Montagne Noire, France). International Journal of Earth Sciences, Springer Verlag, 2016, Accepté. <10.1007/s00531-016-1369-1>. <insu-01341984>

HAL Id: insu-01341984 https://hal-insu.archives-ouvertes.fr/insu-01341984

Submitted on 11 Jul2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Two-stage partial melting during the Variscan extensional tectonics

2 (Montagne Noire, France)

3 Marc Poujol^{a,*}, Pavel Pitra^a, Jean Van Den Driessche^a, Romain Tartèse^{b,c}, Gilles Ruffet^a, Jean-

4 Louis Paquette^d, Jean-Charles Poilvet^a

^a Géosciences Rennes, UMR CNRS 6118, OSUR, Université Rennes 1, 35042 Rennes CEDEX, France

6 ^b Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle,

7 Sorbonne Universités, CNRS, UMPC & IRD, 75005 Paris, France–France

8 ^c Planetary and Space Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom

9 ^d UMR CNRS 6524, Laboratoire Magmas et Volcans, Université Blaise Pascal, 63038 Clermont-Ferrand CEDEX,

10 France

11 * Corresponding author. Tel.: +33-223236208. *Email address*: <u>marc.poujol@univ-rennes1.fr</u> (M. POUJOL)

12

13 ABSTRACT

14 One of the striking features that characterise the late stages of the Variscan orogeny is the

15 development of gneiss and migmatite domes, as well as extensional Late Carboniferous and

16 Permian sedimentary basins. It remains a matter of debate whether the formation of domes

17 was related to the well documented late orogenic extension or to the contractional tectonics

18 that preceded. Migmatization and magmatism are expected to predate extension if the domes

19 are compression-related regional anticlines, but they must both precede and be

20 contemporaneous with extension if they are extensional core complexes.

21 In the Montagne Noire area (southern French Massif Central), where migmatization,

22 magmatism and the deformation framework are well documented, the age of the extensional

23 event was unequivocally constrained to 300-290 Ma. Therefore, dating migmatization in this

24 area is a key point for discriminating between the two hypotheses and understanding the Late

25 Palaeozoic evolution of this part of the Variscan belt. For this purpose, a migmatite and an

26 associated anatectic granite from the Montagne Noire dome were dated by LA-ICP-MS (U-

Th/Pb on zircon and monazite) and laser probe ⁴⁰Ar-³⁹Ar (K-Ar on muscovite). Although 27 zircon did not record any Variscan age unequivocally related to compression (380-330Ma), 28 29 two age groups were identified from the monazite crystals. A first event, at ca. 319 Ma (U-30 Th/Pb on monazite), is interpreted as a first stage of migmatization and as the emplacement 31 age of the granite, respectively. A second event at ca. 298-295 Ma, recorded by monazite (U-Th/Pb) and by the muscovite ⁴⁰Ar-³⁹Ar system in the migmatite and in the granite, could be 32 33 interpreted as a fluid-induced event, probably related to a second melting event identified 34 through the syn-extensional emplacement of the nearby Montalet leucogranite ca. 295 Ma 35 ago. The ages of these two events post-date the Variscan compression and agree with an 36 overall extensional context for the development of the Montagne Noire dome-shaped massif. 37 Comparison of these results with published chemical (EPMA) dating of monazite from the 38 same rocks demonstrates that the type of statistical treatment applied to EPMA data is crucial 39 in order to resolve different monazite age populations.

40

41 Keywords: monazite, LA-ICP-MS, U-Th-Pb dating, muscovite, ⁴⁰Ar-³⁹Ar dating, Variscan,
42 Montagne Noire

43

44 **1. Introduction**

Until the late 1980s, wrench tectonics was considered to control the late Palaeozoic tectonic evolution of the Variscan orogen (Arthaud and Matte, 1977). It was interpreted as corresponding to an ultimate phase of N-S compression during the Late Carboniferous, and marked the end of the Variscan continental collision. In such compressive context, the commonly coal-bearing continental sedimentary basins that developed during the very late Carboniferous (305 -295 Ma) were interpreted as pull-apart basins or as related to horsetail splay faults at the termination of strike-slip systems faults (e.g. Arthaud and Matte, 1977, Blès

et al. 1989). The development of widespread continental sedimentary basins during the
Permian was attributed to a subsequent pervasive N-S extension that occurred throughout the
Variscan domain and was considered to result from a plate kinematics re-arrangement without
any causal relation with the previous Variscan continental collision (e.g. Arthaud and Matte,
1977, Blès et al. 1989).

57 More recently, the late Palaeozoic tectonic evolution has been compared to extensional 58 tectonics of both the Tibetan plateau and the North American Cordillera during the Cenozoic 59 (e.g. Ménard and Molnar 1988; Burg et al. 1994). E-W extension, nearly parallel to the belt 60 took place between 330-305 Ma during escape tectonics driven by still active N-S 61 compression forces. It was followed by a NE-SW to N-S extension between 300 Ma and 260 62 Ma, which started during the waning shortening, and implies a radical change in extension 63 direction induced by the modification of the boundary conditions and the collapse of the 64 entire chain after continental convergence (e.g. Burg et al. 1994). Both episodes of extension 65 are viewed as a consequence of the previous N-S shortening, extension being induced by the 66 collapse of the crust, considerably thickened during the continental collision, after thermal 67 relaxation. In this interpretation, and contrary to older "compressive" interpretations, the late 68 Carboniferous basins are extensional in origin as well as the Permian basins (Becq-Giraudon 69 and Van Den Driessche 1993).

In both interpretations, the pervasive high-temperature low-pressure (HT-LP) metamorphism and magmatism that occurred throughout the Variscan chain during the late Carboniferous resulted from crustal thickening. A striking feature of this period was the development of gneiss and migmatite domes, such as those found in the Montagne Noire and the Velay areas in the southern part of the French Massif Central. However, the two interpretations disagree on the cause of their development. In the compressive scenario these structures are interpreted as regional anticlines that developed in response to the N-S

77 shortening (Arthaud et al. 1966; Burg and Matte 1978; Matte et al., 1998), whereas they are 78 interpreted as extensional gneiss domes, similar to the Cenozoic metamorphic core complexes 79 of the Basin and Range province, in the extensional scenario (Van Den Driessche and Brun 80 1989, 1991; Echtler and Malavieille 1990; Brun and Van Den Driessche 1994). In the first 81 case migmatization and magmatism predate extension. The second interpretation requires 82 thermal relaxation and related rheological softening, and change in boundary conditions in 83 order for the crust to collapse. Consequently, migmatization both precedes and is 84 contemporaneous with the onset of extension, especially because extension can enhance 85 partial melting by adiabatic decompression. In the Montagne Noire gneiss dome, the age of 86 the extensional event was unequivocally constrained to ca. 295 Ma by dating a syntectonic 87 leucogranite emplaced within the northward-dipping normal fault that bounds the gneiss 88 dome to the north and controlled the development of Upper Carboniferous - Lower Permian 89 sedimentary basins (Poilvet et al., 2011).

90 The Montagne Noire gneiss dome is a typical case where geochronology can yield 91 critical constraints on tectonic models, and where the precision obtained on each individual 92 age is crucial. This becomes even more important in a region that underwent a complex 93 polyphased metamorphic/magmatic history possibly characterised by several phases of 94 mineral growth (involving datable minerals such as zircon, monazite and muscovite) in a 95 relatively short period of time. For the purpose of this study, two samples (a migmatite and an 96 associated granite) from the Montagne Noire dome were selected for geochronological 97 investigations (U-Th-Pb on monazite and zircon and K-Ar on muscovite), in order to 98 discriminate between the two contradictory tectonic interpretations.

99

100 **2. Geological setting**

The Montagne Noire gneiss-migmatite massif is located in the southern French Massif 102 103 Central (Fig. 1). It is composed of a high-grade gneissic core surrounded by mostly low-grade 104 metasediments. The gneissic core is composed of migmatites and augen orthogneisses, with 105 some fine-grained gneissic intercalations that have been interpreted as either metasediments 106 or mylonitic zones (Bogdanoff et al. 1984; Van Den Driessche and Brun 1992, and references 107 therein). Some of these intercalations contain HP/HT mafic and ultramafic metamorphic 108 rocks, suggesting possible major early tectonic contacts (Bogdanoff et al. 1984; Allabouvette 109 and Demange 1993; Demange et al. 1995). The migmatites resulted mostly from partial 110 melting of sediments, but also of felsic augen orthogneisses (e.g. Bogdanoff et al. 1984; 111 Demange, 1982). Weakly deformed to undeformed anatectic granites intrude both the 112 orthogneisses and the migmatites. The gneissic core is surrounded by weakly metamorphosed 113 or unmetamorphosed lower to middle Palaeozoic sediments that are intensely deformed by 114 southward verging folds and thrust faults (e.g. Arthaud 1970; Bogdanoff et al. 1984; Echtler 115 1990). Late Carboniferous to Early Permian detrital sediments uncomformably overlie these 116 tectonic units to the South. In contrast, to the North, the EW-trending north-dipping normal 117 fault zone (Espinouse detachment) marks the tectonic contact between these sediments and 118 the core units, and controls the development of the Lodève-Graissessac and Saint-Affrique 119 basins (Fig. 1; Van Den Driessche and Brun 1989, 1992; Burg et al. 1994). 120 The foliation of the gneissic core developed within the lower crust during the thrusting event 121 responsible for the deformation of the lower to middle Palaeozoic sedimentary cover. Its 122 dome-shaped structure and tectonic evolution is a matter of debate since long. Three types of 123 models have been proposed ranging from a diapir (e.g. Schuilling 1960; Faure and Cottereau 124 1988) a double megafold (Arthaud 1970; Burg and Matte 1978; Bogdanoff et al. 1984) or a 125 core complex (Van den Driessche and Brun 1989, Echtler and Malavielle 1990). Many recent 126 models combine in a more or less complex way the processes responsible for theses three

127	types of structures to explain the final structure of the Montagne Noire: diapirism coeval with
128	compression (Faure et al. 2010), compression and subsequent extension (e.g. Cassard et al.,
129	1993; Franke et al. 2011, Doublier et al. 2015, Rabin et al. 2015), compression during
130	extension (Rey et al. 2011), or compression, diapirim and extension (e.g. Soula et al. 2001,
131	Charles et al. 2009). The precise structure of the Montagne Noire dome-shaped massif is
132	beyond the scope of the present paper. We just note that structural and metamorphic analyses
133	have not allowed to reach a consensus, although these different models are built from mostly
134	similar (especially structural) data (e.g. Rey et al. 2011, Van Den Driessche and Pitra 2012).
135	We conclude that until now, discriminating data are lacking to arbitrate between these
136	models.
137	On the scale of the Variscan belt, the tectonic origin of the Montagne Noire massif is
138	emblematic of the two end-member interpretations discussed before (i.e. compressive or
139	extensive). Eventually, the two main questions are the timing of (1) the development of the
140	HT-LP metamorphism, including partial melting, and (2) the initiation of the extensional
141	tectonics, which predominates during Permian times.
142	
143	Previous geochronological works on the protolith of the augen orthogneisses yielded
144	Ordovician U-Pb zircon ages (456 ± 3 for Pont-de-Larn, 450 ± 6 Ma for the Gorges d'Héric,
145	Roger et al. 2004, 2015; 455 ± 2 Ma for the Saint-Eutrope gneiss, Pitra et al. 2012).
146	According to Faure et al. (2010), migmatization took place between 333 and 326 Ma (EPMA
147	dating on monazite) while the emplacement of late anatectic granitoids took place between
148	325 and 316 Ma (including the Vialais granite at 320±3 Ma and Montalet leugranite at ca. 330
149	Ma, Fig. 1). However, a recent study by Roger et al. (2015) documented an emplacement age
150	of ca 303 Ma (U-Th-Pb on monazite) for the Vialais granite, while the Montalet leucogranite
151	yielded monazite and zircon U-Th-Pb emplacement ages of ca 294 Ma (Poilvet et al. 2011).

Three monazite grains from the Gorges d'Héric orthogneiss yielded ²⁰⁶Pb/²³⁸U ID-TIMS dates 152 153 around 310 Ma interpreted as a metamorphic age (Roger et al. 2015). Franke et al. (2011) 154 reported a similar age of 313 Ma for monazite extracted from a foliated aplite dyke from the 155 Gorges d'Héric, while Maluski et al. (1991) reported a biotite K-Ar plateau age of 316 ± 4 Ma 156 for the Caroux massif. The undeformed garnet-bearing leucogranite of Ourtigas yielded a U-157 Th-Pb age of ca 298 Ma (Roger et al. 2015). Finally, a monazite Th-Pb age of 294.4 ± 4 Ma (Pitra et al. 2012) as well as ⁴⁰Ar-³⁹Ar ages on muscovite and biotite of ca. 297 Ma (Maluski 158 159 et al. 1991) have been obtained for orthogneiss samples sheared along the Espinouse 160 detachment.

161

162 **3. Sampling and petrography**

163

Two samples were selected for this study (Fig. 1): 1) a cordierite-bearing granite located in 164 165 the central part of the dome (sample ES7), and a migmatite (sample ES8), spatially associated 166 with the cordierite-bearing granite. Both rocks were sampled at the same locations as their 167 equivalent dated by Faure et al. (2010). One of the main reasons for this sampling strategy is 168 linked to the fact that previous dating (EPMA on monazite) by Faure et al. (2010) on the 169 Montalet granite returned an age $(327 \pm 7 \text{ Ma})$ that is very different from the age $(294 \pm 1 \text{ Ma})$; 170 U-Th-Pb on monazite) obtained by Poilvet et al. (2011) on the same granite. This age 171 difference was also noticed by Roger et al. (2015) for the Vialais granite. Therefore, the age 172 discrepancies cast some doubts on the EPMA ages obtained by Faure et al. (2010) on the 173 Laouzas cordierite-bearing granite and the spatially associated migmatite. They have also 174 been chosen because of the potentially complex history that these rocks underwent between 175 340 and 290 Ma.

176

177 *3.1 Laouzas granite, sample ES7*

178

179 The Laouzas granite (Fig. 1) crops out in the west-central part of the axial zone of the Montagne Noire dome. It was sampled near the Laouzas dam (43°38'7.35"N, 2°45'10.00"E). 180 181 The rock is an undeformed heterogeneous coarse-grained (1-5 mm in average, locally up to 182 3 cm) biotite-bearing granite containing numerous large clusters of cordierite (up to 5 cm), 183 biotite-rich schlieren, tourmaline nodules and dark, foliated mica-rich enclaves (Fig. 2a). 184 Although the schlieren and enclaves locally display a preferred orientation, no solid-state 185 deformation is observed at the grain-scale in the granite, with the exception of a weak 186 undulose extinction of quartz crystals.

187 The sample is dominated by plagioclase, K-feldspar and quartz, and contains 188 subordinate amounts of biotite, cordierite and muscovite (Fig. 2b). Dumortierite, tourmaline, 189 andalusite and sillimanite are present locally. Plagioclase forms euhedral to subhedral stubby 190 prismatic crystals, 1-3 mm long. Plagioclase cores are generally altered (saussuritised) and 191 surrounded by a clear rim (Fig. 2c). The rims are similar to feldspar that also fills fractures in 192 the plagioclase cores. Some plagioclase rims are intergrown with tiny crystals of quartz in a 193 granophyric, myrmekite-like texture, in particular at the contact with K-feldspar. K-feldspar 194 and quartz are anhedral, 1-5 mm in size. Cordierite forms anhedral crystals (up to 2 mm) that 195 are slightly pinitised or replaced by fine-grained muscovite around the rims (Fig. 2b). Biotite 196 crystals (0.1-3 mm) are subhedral and locally partly altered to chlorite in association with 197 needles of rutile (sagenite). Rare minute needles of sillimanite are locally present in large 198 quartz crystals. Although euhedral muscovite crystals (~1 mm) are locally present, muscovite 199 mostly forms large subhedral poikiloblasts (up to 2 mm) or develops tiny crystals at the 200 expense of K-feldspar, plagioclase or cordierite. Needles of dumortierite (pink to violet, 201 strongly pleochroic acicular crystals, ~ 0.5 mm) or tourmaline (pale green, ~ 0.3 mm) are

202 commonly associated with clear plagioclase overgrowths, anhedral pink andalusite (~0.5 mm)
203 and muscovite (Fig. 2c).

204 These observations suggest a two-stage evolution. The crystallisation of the relatively 205 coarse-grained granite (plagioclase cores, K-feldspar, quartz, biotite, cordierite, ± muscovite 206 \pm sillimanite) was followed by a second event resulting in the crystallisation of the plagioclase 207 rims, dumortierite, tournaline, and alusite and muscovite. The second stage was possibly 208 associated with the alteration of the plagioclase cores and biotite. It could be either magmatic 209 or, more probably, hydrothermal in origin. The hydrothermal origin is supported by the 210 textures and in particular the position of the boron-bearing minerals. Indeed, tourmaline and 211 dumortierite are known to be related to hydrothermal alteration (e.g. Taner and Martin, 1993), 212 but are liquidus rather than late-stage phases in leucogranitic magmatic systems (Benard et 213 al., 1985).

214

215 *3.2 La Salvetat migmatite, sample ES8*

216

217 The La Salvetat migmatite crops out in the central part of the axial zone of the Montagne 218 Noire gneiss dome, generally to the south of the Laouzas granite (Fig. 1). It was sampled ca. 219 2 km south of the Laouzas dam, close to the summit of a hill called Al Rec del Bosc (43°37'1.65"N, 2°45'23.70"E). The rock is a banded stromatic migmatite (Fig. 2d) and is 220 221 locally garnet-bearing. The foliation is defined by a weak preferred orientation of biotite that is parallel to alternating layers of leucosome, mesosome and biotite-dominated melanosome. 222 223 Leucosomes are relatively coarse-grained (0.5-3 mm), up to 1 cm thick, and are composed of 224 subhedral plagioclase, quartz and subordinate K-feldspar, and locally contain cordierite, 225 muscovite, biotite and tourmaline (Fig. 2e). Tourmaline commonly forms anhedral to 226 subhedral interstitial, optically zoned grains. Plagioclase and K-feldspar have a dusty

appearance and plagioclase is partly replaced by zoisite/clinozoisite and white mica (Fig. 2f).
Cordierite is subhedral and partly altered to pinite. Biotite is locally partly replaced by
chlorite and contains lenses of minute prehnite (?) or clay minerals that are parallel to the
(001) cleavage (Fig. 2f), in particular in the leucosome and in the adjacent melanosome.
Euhedral muscovite is locally present in the leucosome. Subhedral muscovite, forming either
fine-grained clusters or larger poikilitic crystals, commonly develops at the expense of biotite,
cordierite and feldspars in the leucosomes.

These observations suggest at least two stages of evolution, where the migmatite textures, attributable to partial melting, are partly overprinted by hydrothermal alteration. The geographic proximity and the common petrographic character of the leucosomes and the Laouzas granite suggest a genetic relation between the two. Therefore, the La Salvetat migmatite is interpreted to be a likely source for the anatectic Laouzas granite.

240 **4. U-Th-Pb LA-ICP-MS and ⁴⁰Ar-³⁹Ar dating**

241

242 *4.1 Analytical techniques*

243 4.1.1 NanoSIMS analytical protocol

The distribution of selected species was imaged in some monazite grains using the NanoSIMS 50 ion probe at the University of Rennes 1. Secondary ion images of ⁸⁹Y, ¹³⁹La, ¹⁴⁰Ce, ¹⁴⁹Sm, ²⁰⁶Pb, ²⁰⁸Pb, ²³²Th and ²³⁸U¹⁶O were collected using the same primary O- beam of ~170 pA over 90 μ m × 90 μ m areas. The mass resolving power was set to ~3500, sufficient to readily resolve isobaric interferences such as ^{143,145}NdPO₂ on ^{206,208}Pb. A single plane of image data, divided in 128 px × 128 pixels, was collected using a dwell time of 40 ms/pixel, representing an acquisition time of ~11 min for each area. The raw image data were processed using the

- 251 L'image (Larry Nittler, Carnegie Institute of Washington, USA;
- 252 http://home.dtm.ciw.edu/users/nittler/limage/limage_manual.pdf) and ImageJ softwares.
- 253
- 254 *4.1.2 U-Th-Pb dating technique*

255 A classic mineral separation procedure has been applied to concentrate minerals suitable for 256 U-Th-Pb dating using the facilities available at Géosciences Rennes (see Poilvet et al., 2011). 257 Zircon and monazite grains were carefully handpicked under a binocular microscope and 258 embedded in epoxy mounts. The grains were then polished on a lap wheel with a 6 µm and 1 259 µm diamond suspension successively. Zircon grains were imaged by cathodoluminescence 260 (CL) using a Reliotron CL system equipped with a digital colour camera available in 261 Géosciences Rennes and monazite grains by backscattered electron imaging on a JEOL JSM 262 6400 as well as by NanoSIMS. In addition, monazite grains have also been identified in thin 263 sections in order to date them in context.

264 U-Th-Pb geochronology of zircon and monazite was conducted by in situ laser 265 ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Laboratoire 266 Magmas et Volcans in Clermont-Ferrand, France. Ablation spot diameters of 26 µm and 7 µm 267 with repetition rates of 3 Hz and 1 Hz were used for zircon and monazite, respectively. Data 268 were corrected for U–Pb and Th–Pb fractionation and for the mass bias by standard 269 bracketing with repeated measurements of the 91500 zircon (Wiedenbeck et al. 1995) or the 270 Moacyr monazite standards (Gasquet et al. 2010). Repeated analyses of GJ-1 zircon (607 ± 15 271 Ma, N=6; Jackson et al. 2004) or Manangoutry monazite (554 ± 23 Ma, N=6; Paquette and 272 Tiepolo 2007) standards treated as unknowns were used to control the reproducibility and 273 accuracy of the corrections. Data reduction was carried out with the GLITTER® software 274 package developed by the Macquarie Research Ltd. (Jackson et al. 2004). Concordia ages and 275 diagrams were generated using Isoplot/Ex (Ludwig 2001). All errors given in Table 1 and 2

are listed at one sigma, but where data are combined for regression analysis or to calculate
weighted means, the final results are provided with 95% confidence limits. Further
information on the instrumentation and the analytical technique is detailed in Hurai et al.

279 (2010).

For each grain analyzed (zircon and monazite) we also estimated the concentrations of U, Th and Pb as follows. First, the drift factor was calculated using the parameter a and b of a linear regression of the average ²⁰⁶Pb counts per second (cps) for all the standards measured during the course of the analyses as a function of their position during the acquisition.

284 (1)
$${}^{206}Pb_{cps} = a \times N + b$$

with ${}^{206}\text{Pb}_{cps}$ = average measured values for the standard in cps corrected from the blank, a = slope of the regression, b = ordinate at origin and N = analysis number.

287 The drift factor for each analysis (DF^N) is then calculated as follows:

288 (2)
$$DF^N = \frac{b}{(a \times N + b)}$$

Then the Pb, Th and U concentrations are calculated using the known concentrations of theseelements in the standards following:

291 (3)
$$Csample_{ppm}^{N} = Csample_{meas}^{N} \times DF^{N} \times \frac{Cstd_{read}}{Cstd_{aver}}$$

292 with N = analysis number, $Csample_{ppm}^{N}$ = calculated concentration of the element in ppm,

293 $Csample_{meas}^{N}$ = measured values of the element in cps, DF^{N} = drift factor calculated for this 294 analysis, $Cstd_{real}$ = known concentration of the standard and $Cstd_{aver}$ = drift-corrected average 295 value for all the standards measured during the course of the analyses.

296

297 *4.1.3 Ar-Ar dating technique*

298 Single grains of muscovite used for the experiments were handpicked under a binocular

299 microscope from 0.25–1.00 mm fractions of crushed rock samples. Care was taken to select

inclusion-free crystals of about 1 mm in size, in order to avoid large poikilitic crystals as wellas fine-grained clusters.

The samples were wrapped in Al foil to form small packets (11×11 mm) that were stacked up to form a pile within which packets of fluence monitors were inserted every 10 samples. Irradiation was performed at the HFR Petten reactor (Petten, the Netherlands) in the Cd-shielded Rodeo P3 facility and lasted 72h ($J/h \approx 2.54 \times 10^{-4} h^{-1}$). The irradiation standard was amphibole Hb3gr (Turner et al. 1971; Roddick 1983, Jourdan et al. 2006; Jourdan and Renne 2007), with an age of 1081.0 ± 1.2 Ma (Renne et al. 2010, 2011).

Step-heating analyses of single grains were performed with a CO₂ laser probe coupled 308 309 to a Map215® mass spectrometer. The experimental procedure is described in Ruffet et al. 310 (1991) and Ruffet et al. (1995). The five argon isotopes and the background baselines were 311 measured in eleven cycles, in peak-jumping mode. Blanks were performed routinely each first 312 or third/fourth run, and subtracted from the subsequent sample gas fractions. All isotopic 313 measurements are corrected for K, Ca and Cl isotopic interferences, mass discrimination and 314 atmospheric argon contamination. Apparent age errors are plotted at the 1_o level and do not include the errors on the ${}^{40}\text{Ar}*/{}^{39}\text{Ar}_{\text{K}}$ ratio and age of the monitor and decay constant. The 315 errors on the ${}^{40}\text{Ar}*/{}^{39}\text{Ar}_{K}$ ratio and age of the monitor and decay constant are included in the 316 317 final calculation of the (pseudo-)plateau age error margins or for apparent ages individually cited. Details on the method and 40 Ar/ 39 Ar analytical data are given in the Supporting 318 319 Information.

320 It is commonly considered that a plateau is obtained when calculated ${}^{40}\text{Ar}*/{}^{39}\text{Ar}_{K}$ 321 ratios of at least three consecutive steps, containing a minimum of 70% of the ${}^{39}\text{Ar}$ released, 322 agree with the weighted mean calculated ${}^{40}\text{Ar}*/{}^{39}\text{Ar}_{K}$ ratio of the plateau segment. Pseudo-323 plateau ages can be defined with less than 70% of the ${}^{39}\text{Ar}$ released. All ages are displayed at 324 the 1 σ level. Analytical data, parameters used for calculations (isotopic ratios measured on K,

325 Ca and Cl pure salts; mass discrimination; atmospheric argon ratios; J parameter; decay
326 constants...) and reference sources are available in a complementary data repository.

327

328 4.2 U-Th-Pb LA-ICP-MS and ⁴⁰Ar-³⁹Ar results

329 *4.2.1 Sample ES7 – Laouzas granite*

330 Zircon and monazite grains were both recovered from this sample. Most of the zircon grains331 were pink in colour, euhedral, with very variable shapes from elongated to oval.

332 Cathodoluminescence imaging revealed a rather heterogeneous population with anything

from homogeneous low luminescent to heterogeneous (core + rim) grains (Fig. 3A). Thirty-

334 seven analyses out of twenty-six zircon grains were made (Table 1). The heterogeneity of the

335 grains is confirmed in a Tera-Wasserburg diagram (Fig. 4A) where data points plot in a

336 concordant to very discordant position with apparent ²⁰⁷Pb/²⁰⁶Pb ages ranging from 1010 Ma

down to 370 Ma. Because of this heterogeneity, which is probably caused by a complex

338 mixing of heterogeneous inheritance, plus variable degree of common Pb content and Pb loss,

it is not possible to calculate any relevant ages. We therefore favoured plotting the data in a

relative probability plot diagram (Fig. 4E) where only the 207 Pb/ 206 Pb apparent ages for the

341 more than 90% concordant points were considered. One main peak can be defined at ca. 500

342 Ma, with minor peaks around 700 and 800 Ma.

Two types of monazite grains were found in this sample. Type 1 monazite comprises euhedral dark brown grains with sharp concentric zoning (Fig. 5) and type 2 monazite comprises euhedral to subhedral yellowish to orange grains characterised by complex patchy zoning (Fig. 6), as revealed by backscattered electron (BSE) imaging. Elemental imaging carried out using the NanoSIMS ion probe reveals that the concentric zoning for type 1 monazite (Fig. 5) is visible with all the elements imaged (Y, La, Ce, Sm, U, Th and Pb) with cores that are LREE-rich and poor in Y, U, Th and Pb. More importantly, the distributions of

U and Th in this monazite type perfectly match each other. For type 2 monazite (Fig. 6), the complex zoning noticed in BSE images is well mimicked by the distribution of Y, REE, U and ²⁰⁶Pb while the distribution of Th and ²⁰⁸Pb is less disturbed.

These two types of monazite grains were therefore analyzed separately. In addition, 19 353 354 analyses (11 grains) were performed directly in a thin section. In total, 50 analyses were carried out (Table 2). Plotted in a ²⁰⁶Pb/²³⁸U versus ²⁰⁸Pb/²³²Th concordia diagram (Fig. 4B), 355 356 the two types plot in two distinct groups. For the monazite grains dated in context in the thin 357 sections, there is no evident correlation between the mineral hosting the monazite grains and 358 their apparent ages. Therefore, the location of type 1 and type 2 monazite is not related to any 359 specific host mineral. Type 1 monazite (N = 26; grains with sharp concentric zoning) plots in 360 a concordant to slightly discordant position. A cluster of 14 concordant analyses (Fig. 4B) 361 yields a concordia age (Ludwig 1998) of 318.0 ± 1.4 Ma (MSWD=0.87). This concordia age is equivalent within error to the average 206 Pb/ 238 U date of 318.8 ± 1.5 Ma (N = 26; MSWD = 362 0.95) obtained for the 26 analyses defining this first group. Interestingly, the 208 Pb/ 232 Th 363 364 apparent ages for this group display a bimodal distribution (see Fig. 4G), with one peak at 365 331.5 ± 2 Ma and a second one at 319.1 ± 2.0 Ma.

Data obtained on type 2 monazite (grains with complex patchy zoning; N = 20) exhibits a slight reverse discordance (Fig. 4B). The mean ${}^{206}Pb/{}^{238}U$ date obtained for these twenty analyses is consistent with a value of 293.5 ± 1.7 Ma (MSWD = 0.78) while the ${}^{208}Pb/{}^{232}$ Th apparent dates yield average dates of 285.2 ± 2.2 Ma (MSWD = 0.66; N = 8) for the grains analysed in the epoxy puck and of 296.5 ± 2.8 Ma (MSWD = 0.42; N = 7) for the grains dated in the thin section (Fig. 4G).

372 Muscovite single grain from sample ES7 yielded a flat 40 Ar- 39 Ar age spectrum (Fig. 373 4H) over most of 39 Ar_K degassing (ca. 95%), corresponding to a calculated plateau age of 374 298.2 ± 0.8 Ma (2 σ level). 375

376 *4.2.2 Sample ES8 – La Salvetat migmatite*

377 Both monazite and zircon grains were extracted from this sample. Two types of zircon grains 378 were found. The first type is characterized by elongate pinkish grains (Fig. 3B), while the 379 second type is constituted by squat prismatic grains (Fig. 3C). Both types display complex 380 zoning with core and rims apparent for most (Fig. 3B and C). Thirty-two analyses were 381 performed on twenty-eight grains (Table 1). Plotted in a Tera-Wasserburg diagram (Fig. 4C), they plot in a concordant to discordant position, with apparent ²⁰⁷Pb/²⁰⁶Pb ages ranging from 382 383 ca. 2650 down to 300 Ma. Once again, it is difficult to get any valuable geochronological 384 constraint with this set of data. Plotted in a relative probability plot (Fig. 4E), two main peaks 385 arise at ca. 610 Ma and 875 Ma, with minor peaks at 690, 1000, 1310 and 2450 Ma.

386 From a morphological point of view, all monazite crystals were yellow and euhedral to 387 subhedral. Forty-six analyses were performed (38 on separated grains and 8 directly in context in thin sections). Plotted in a ²⁰⁶Pb/²³⁸U versus ²⁰⁸Pb/²³²Th concordia diagram (Fig. 388 389 4D), they all plot in a concordant to slightly discordant position. A first group of 14 analyses 390 defines a concordia ages of 318.5 ± 0.7 Ma (MSWD = 1.3; Fig. 4D). A second cluster of 15 391 analyses yields a concordia age of 298.8 ± 1.3 Ma (MSWD = 0.68; Fig. 4D). The remaining 392 17 analyses plot in a slightly reverse discordant position either between the two previous 393 calculated concordia dates or are apparently younger than 299 Ma (Fig. 4D). The two 394 analyses performed in monazite grains hosted by quartz yielded dates close to 290 Ma while 395 the monazite grains hosted by biotite plot in a scattered position.

When looking at the BSE imaging, the first group (ca. 318.5 Ma) is characterized by fairly homogeneous monazite grains (Fig. 7), while monazite in the second group (ca. 299 Ma) is characterized by more patchy zoning (Fig. 8). The NanoSIMS imaging of the first group confirms the rather homogeneous distribution of the imaged elements with the

400 exception of U and 206Pb that appear to be poorer in the core of the grain (Fig. 7). For the
401 second group, the elemental distributions are not as simple. The REE distribution seems to be
402 homogeneous throughout the grain whereas the Y, U, Th and Pb distributions are patchier
403 (Fig. 8).

404 Similar to monazite in ES7, monazite data in ES8 are characterized by evident 405 differences between the 206Pb/238U and the 208Pb/232Th dates (Fig. 4F and G). The 406 208Pb/232Th dates fall into 3 distinct populations (Fig. 4G) at 319.8 ± 1.8 Ma (MSWD = 1.3; 407 N = 15), 298.2 ± 1.5 Ma (MSWD = 0.89; N = 19) and 284.7 ± 2.1 Ma (MSWD = 0.98; N = 408 8), respectively. 206Pb/238U dates define two different peaks at 316.2 ± 1.9 Ma (MSWD = 409 0.68; N = 15) and 296.1 ± 1.3 Ma (MSWD = 2.8; N=26), respectively (Fig. 4F). 410 Muscovite single grain from sample ES8 yielded a flat 40Ar-39Ar age spectrum (Fig. 411 4H) over most of 39ArK degassing (ca. 98%) that correspond to a calculated plateau age of 412 298 ± 1 Ma (2σ level). This age is similar to the ES7 plateau age.

- 413
- 414

415 **5. Geological significance of the geochronological data**

416 5.1 Zircon dating

217 Zircon data from both the Laouzas granite and the La Salvetat migmatite show a considerable 418 spread (Fig. 4E) and cannot be used to either date the emplacement of the granite or the age of 419 migmatization. They rather demonstrate the existence of a complex polygenic history in the 420 region, with dates ranging from the late Archean to the Ordovician. They are consistent with 421 the data published by Faure et al. (2010), although more date populations were found in our 422 study. In the La Salvetat migmatite, the youngest point (grain 1.1d) that plots close to the 423 concordia gives a 207 Pb/ 206 Pb date of 337 ± 27 Ma (1 sigma). This grain might have grown 424 during the migmatization, but because of its large error, it does not help to constrain this event425 precisely.

426 *5.2 Monazite dating*

427 *5.2.1 The Laouzas granite*

In the ²⁰⁶Pb/²³⁸U versus ²⁰⁸Pb/²³²Th concordia diagram (Fig. 4B), the monazite grains from the Laouzas granite plot in two clusters although the geochronological information brought, for each cluster, by the monazite grains ²⁰⁶Pb/²³⁸U and ²⁰⁸Pb/²³²Th respective dates is different. Indeed, within each cluster, the ²⁰⁶Pb/²³⁸U dates are comparable, while they are more scattered in the case of the ²⁰⁸Pb/²³²Th ones.

To first order, four dates can be defined for the Laouzas granite. The oldest date at ca.

434 330 Ma can be calculated using the older apparent 208 Pb/ 232 Th dates (Fig. 4G). The second

435 one around 319 Ma is given by a concordia age of 318.0 ± 1.4 Ma (Fig. 4B), the mean

436 206 Pb/ 238 U date of 318.8 ± 1.5 Ma obtained for all the analyses from the older cluster (Fig. 4B)

437 and from one of the peaks defined by the 208 Pb/ 232 Th dates at 319.1 ± 2.0 Ma (Fig. 4G). The

third date of around 298-292 Ma is defined by one peak in the 208 Pb/ 232 Th dates distribution at

439 298.2 ± 1.5 Ma (Fig. 4G) and the mean 206 Pb/ 238 U date of 293.5 ± 1.7 Ma calculated for the

440 second group (Fig. 4B). This third date is in a good agreement with the 40 Ar- 39 Ar age of 298.2

441 ± 0.8 Ma (2 σ level) obtained on muscovite from the same sample (Fig. 4H). Finally, the

442 youngest date around 285 Ma is defined by the youngest ²⁰⁸Pb/²³²Th dates (Fig. 4G).

It seems evident that the dates of ca. 319 Ma and ca. 298 Ma are representative of specific events as they are common to both chronometers (U/Pb and Th/Pb) and because the second one is also defined by ⁴⁰Ar-³⁹Ar dating. Therefore, two scenarios can be suggested. Either the date of ca. 319 Ma yields the emplacement age of the Laouzas granite and the date of ca. 298 Ma is related to a post emplacement event, or the granite was emplaced ca. 298 Ma ago, in which case the date of ca. 319 Ma should be regarded as "inherited". Three

449 observations are helpful to discriminate between these two scenarios. (i) The backscattered 450 imaging shows that the ca. 319 Ma monazite population (Type 1) is characterized by a rather 451 simple concentric zoning, whereas the ca. 298 Ma old population (Type 2) systematically 452 displays a complex patchy zoning. Concentric zoning is consistent with a magmatic origin, 453 whereas patchy zoning suggests the involvement of a post-crystallization perturbing event, 454 such as fluid-related dissolution/recrystallization (Williams et al. 2011; Tartèse et al. 2011; 455 Didier et al. 2013). (ii) As noticed on the NanoSIMS imaging (Fig. 5 and 6), the elemental 456 distributions perfectly match for the Type 1 monazite while they differ for Type 2. (iii) 457 Finally, petrographic observations suggest an overprint of the primary magmatic assemblage 458 associated with a later circulation of hydrothermal fluids. In the light of these observations, 459 we propose that the Laouzas granite was emplaced ca. 319 Ma ago and was affected by a post-emplacement, fluid-related event, ca. 298 Ma ago. In this case, the ⁴⁰Ar-³⁹Ar age at 298.2 460 461 \pm 0.8 Ma yielded by muscovite from the same sample would also characterize this late 462 hydrothermal event, since it has been shown that the K-Ar geochronometer in muscovite can 463 be highly sensitive to fluid circulations in granites in a similar context (Questembert 464 leucogranite, Armorican massif, France) by Tartèse et al. (2011). The oldest date at ca. 330 Ma is only evidenced by the ²⁰⁸Pb/²³²Th dates. A similar 465 466 phenomenon has also been noticed by Tartèse et al. (2012) for monazite grains from a mylonitized granite from the South Armorican Shear Zone, in which the ²⁰⁸Pb/²³²Th dates 467 (defining an average date of 313 ± 3 Ma) were systematically older than the U-Pb dates 468 469 (defining an average date of 299 ± 4 Ma). A recent study by Didier et al. (2013) has 470 demonstrated that F-rich fluids can be responsible for the disturbance of the Th/Pb ratios in monazite and the incorporation of excess Pb, leading to a large spread of the 208 Pb/ 232 Th 471 dates. Disturbed ²⁰⁸Pb/²³²Th and ²⁰⁶Pb/²³⁸U data were also obtained by Poitrasson et al. (2000) 472 473 and were attributed to variable inputs and/or depletions in U. Th and Pb in the monazite

474 crystals during hydrothermal alteration. As detailed earlier, the Laouzas anatectic granite
475 bears petrographic evidence of hydrothermal fluid circulation. We therefore believe that this
476 date of ca. 330 Ma is meaningless and is attributed to fluid perturbation of some of the
477 monazite grains leading to a fractionation of their Th/Pb ratios (cf. Didier et al. 2013).

The other date at ca. 285 Ma is also obtained with only the ²⁰⁸Pb/²³²Th dates. Once again, either this date is related to a fluid-induced perturbation of the monazite Th-Pb isotope system, and is, therefore, meaningless, or it reflects the age of a yet unknown event in the region.

482 *5.2.2 La Salvetat migmatite*

483 Monazite from the La Salvetat migmatite also yields different ²⁰⁸Pb/²³²Th and 484 206 Pb/²³⁸U dates but here again two main dates can be proposed. A first one at ca. 319 Ma is 485 given by a concordia age of 318.5 ± 0.7 Ma (Fig. 4D), a mean ²⁰⁸Pb/²³²Th date of 319.8 ± 1.8 486 Ma (Fig. 4G) and a mean ²⁰⁶Pb/²³⁸U date of 316.2 ± 1.9 Ma (Fig. 4F). The second one, around 487 298 Ma, is given by a concordia age of 298.8 ± 1.3 Ma (Fig. 4D), a mean ²⁰⁸Pb/²³²Th date of 488 298.2 ± 1.5 Ma (Fig. 4G), a mean ²⁰⁶Pb/²³⁸U date of 296.1 ± 1.3 Ma (Fig. 4F) and a muscovite 489 ⁴⁰Ar-³⁹Ar plateau age of 298 ± 1 Ma (Fig. 4H).

Lastly, the youngest 208 Pb/ 232 Th dates define a mean date of 284.7 ± 2.1 Ma. Monazite 490 491 is known to be very resistant to diffusional reequilibration (e.g. Seydoux-Guillaume et al. 492 2002; Gardés et al. 2007), preserving the age of their crystallisation. On the other hand, they 493 recrystallize readily by dissolution/precipitation processes, when fluids or magmas are 494 involved (Williams et al. 2011; Tartèse et al. 2011; Didier et al. 2013). As a general rule, two 495 major "pulses" of monazite growth are predicted in metapelitic rocks: subsolidus growth in 496 the upper amphibolite facies and growth during the cooling of leucosomes (rather than partial 497 melting) following migmatization (e.g. Foster et al. 2000; Rubatto et al. 2001; Kelsey et al. 498 2008; Spear and Pyle 2010). Furthermore, it is now well established that monazite may

499 (re)crystallise due to fluid-rock interactions relatively late in the metamorphic history (e.g. 500

Bosse et al. 2009; Tartèse et al. 2011, 2012; Didier et al. 2013).

501 Consequently, the three dates of ca. 319, ca. 298 and ca. 284 Ma obtained for the 502 monazite grains from the La Salvetat migmatite, may represent the ages of: (1) crystallisation 503 during the prograde metamorphism in the upper amphibolite facies conditions; (2) 504 crystallisation of the leucosomes following partial melting and (3) recrystallisation due to late 505 fluid circulations, respectively. On the other hand, the close spatial and inferred genetic 506 association of the migmatites with the Laouzas granite suggests that monazite grains of the 507 same age should be found in both rock types. The crystallisation of the Laouzas granite is 508 inferred to have taken place at ca. 319 Ma (see earlier), suggesting that the date of 319 Ma in 509 the La Salvetat migmatite should be interpreted as the age of the crystallisation of the 510 leucosomes, rather than that of the prograde amphibolite-facies metamorphism. The second 511 date of ca. 298 Ma found in the migmatite is identical within error to the date of ca. 298 Ma 512 found in the Laouzas granite, but also to the emplacement age of 294 ± 3 Ma (U-Pb on zircon) 513 obtained for the syntectonic Montalet leucogranite (Poilvet et al. 2011), situated about 20 km 514 to the NW (Fig. 1). It is conceivable that a second phase of partial melting of the La Salvetat 515 migmatite was the source of this leucogranite but the poor outcrop conditions do not allow to 516 validate such hypothesis. Alternatively and more probably, partial melting of other deeper 517 formations formed the Montalet magmas, which percolated with associated fluids through the 518 crust, resulting in the recrystallization of some monazite grains in the migmatite-granite 519 dome, as suggested by the late fluid circulations inferred from the petrographic observations 520 of the La Salvetat migmatite. A detailed study of the geochemical affinities between the 521 migmatites and the various granites would be necessary to answer this question. 522 Finally, the 284 Ma date, identical within uncertainty to the date of ca. 285 Ma

523 obtained in the Laouzas granite is, as argued above, either an artefact due to fluid-enhanced

modification of some of the monazite crystals, or, an evidence of a younger, although 524 525 unidentified, event in the region. Similar Permian ages are known elsewhere in the European 526 Variscan belt. Mougeot et al. (1997) reported an U-Pb apatite age ca. 289 Ma for the Velay 527 granite. Cathelineau et al. (1990) obtained Permian ages on vein-type deposits from the 528 Mortagne district in the South Armorican Massif and the French Massif Central, with a major 529 stage of uranium mobilization between 290 and 260 Ma. In the Erzgebirge (Germany), the 530 emplacement of vein-type deposits is also Permian in age and postdates the emplacement of 531 the youngest Variscan granites by no less than 20-25 Ma (e.g. Velichkin and Vlasov, 2011 532 and references therein). More recently, Boutin et al. (2015) reported some Permian U-Pb ages 533 obtained on titanite associated with chlorite-talc mineralization in the Pyrenees. This non-534 exhaustive list demonstrates that this date of ca. 285 Ma is not unique at the scale of the 535 Variscan belt as numerous ore deposits linked to fluid circulations are contemporaneous, and 536 could, therefore, be considered as meaningful for the Montagne Noire. Finally, the remaining 537 data that plot in a scattered position (Fig. 4D) could be attributed to an incomplete resetting of 538 their U-Th-Pb system during the subsequent fluid circulation events.

539

5.3 Partial melting and regional correlations

540 In summary, the Laouzas granite and the La Salvetat migmatite are spatially close and 541 petrographically similar. The Laouzas granite is therefore interpreted as a product of the 542 partial melting recorded in the La Salvetat migmatite. Monazite grains from both rocks 543 recorded a date of ca. 319 Ma, which is interpreted as the emplacement age of the Laouzas 544 granite, and hence also that of a first stage of migmatization (or rather the crystallisation of 545 the leucosomes resulting from this partial melting). The date of ca. 298 Ma is tentatively 546 attributed either to a second stage of migmatization, or more probably to a pervasive 547 percolation of magmas and associated fluids coming from a deeper source and resulting in the 548 syntectonic crystallisation of the more superficial Montalet leucogranite.

It is interesting to draw a parallel with the scenario described for the Velay gneiss dome, located some 150 km ENE of the Montagne Noire. In this area, Montel et al. (1992) described two successive stages of migmatization that have been dated at 314 ± 5 Ma and 301 ± 5 Ma (U-Pb ID-TIMS on monazite, Mougeot et al., 1997). Barbey et al. (2015) suggest three melting events, estimated to have occurred at 325-315 Ma, ca. 305 Ma, and 305-295 Ma. In addition, Roger et al. (2015) bracketed the high temperature deformation and metamorphism both in the Gorges d'Héric and the Vialais granite between 310-300 Ma.

6. Tectonic implications for the formation of the Montagne Noire dome

558 Two major hypotheses are proposed at present to explain the origin of the Montagne Noire 559 dome. Both agree on the presence of compressional and extensional features, but disagree on 560 their timing and their relative importance. The first hypothesis considers that the domal 561 structure developed as a regional anticline during the collisional stage of the Variscan 562 orogeny (e.g. Arthaud et al. 1966; Burg and Matte 1978, Charles et al. 2009) and interpret the 563 extensional features as second-order and late with respect to the formation of the dome. For 564 the second hypothesis, dome-like exhumation of the lower continental crust beneath a major 565 crustal-scale extensional detachment is at the origin of the Montagne Noire dome (Van Den 566 Driessche and Brun 1989; Echtler and Malavieille 1990; Van Den Driessche and Brun 1992). 567 Beyond the structural record, this second hypothesis is supported and constrained in time by 568 the syntectonic emplacement of a leucogranite at ca. 295 Ma (Poilvet et al. 2011) and by 569 monazite and mica ages of ca. 295 Ma in sheared metasediments and orthogneisses (Maluski 570 et al. 1991; Pitra et al. 2012) along the detachment that is contemporaneous with and controls 571 the development of the Stephanian to Permian Graissessac and Lodève basins (Fig. 1; Van 572 Den Driessche and Brun 1989; Bruguier et al. 2003). In contrast, the advocates of the compressional origin of the dome either associate the extensional structures exclusively with 573

the compressional phase (Brunel and Lansigu 1997), or relegate it to a secondary role in the brittle domain (Matte et al. 1998; Charles et al. 2009). The principal argument was the age of the late- to post-kinematic Vialais granite, supposedly dated at 327 ± 5 Ma (TIMS on zircon and monazite fractions; Matte et al. 1998), emplaced in the central-eastern part of the dome (Fig. 1), and the ca. 330 Ma dates obtained by electron probe micro-analysis (EPMA) monazite dating from migmatites and anatectic granites summarised in Charles et al. (2009) and Faure et al. (2010).

In the "compressional" interpretation, migmatization and magmatism predate extension. In the "extensional" interpretation, which requires thermal relaxation and related rheological softening in order for the crust to collapse, migmatization is also contemporaneous with the onset of extension, especially because extension can enhance partial melting by adiabatic decompression (e.g. Hollister 1993; Holtz and Johannes 1994; Holtz et al. 2001; Thompson 2001). Clearly, the clue is to be sought in the absolute timing of regional migmatization and related granite emplacement.

588 First, the Vialais granite and an associated post-kinematic leucogranite have been 589 recently re-dated at 303 ± 4 Ma and 298 ± 2 Ma, respectively (U-Pb monazite ICP-MS ages, 590 Roger et al. 2015). Second, our data support a genetic link between the migmatites and 591 granites in the "axial zone" of the Montagne Noire gneiss dome. Three age groups were 592 identified from the monazite U-Th/Pb data. A first event, at ca. 319 Ma, is recorded in both 593 the La Salvetat migmatite and the Laouzas granite, and is interpreted as the end of a first stage 594 of migmatization and as the emplacement age of the Laouzas granite, respectively. A second 595 event, at ca. 298 Ma, is recorded in the migmatite and in the Laouzas granite, and could be 596 interpreted as a fluid-induced event, probably related to a second melting event identified 597 through the emplacement of the Montalet and Vialais leucogranites. The third event, dated 598 around 285 Ma, although not clear, could be linked to Permian fluid circulations. The

599 presence of two stages of partial melting at ca. 320 Ma and ca. 300 Ma confirms (i) the

600 interpretation of the Late Carboniferous-Early Permian evolution of the Variscan belt

601 dominated by the extensional collapse, which predicts migmatization both preceding and

602 contemporaneous of the onset of extension, and (ii) the interpretation of the Montagne Noire

603 604

605 7. EPMA versus LA-ICP-MS dating

dome as an extensional gneiss dome.

In recent years, some studies comparing monazite ages obtained by the LA-ICP-MS and
EPMA techniques encountered discrepancies between both sets of ages (Paquette and Tiepolo
2007; Poilvet et al. 2011 and references therein). Other studies also pointed out that EPMA
dating should be acquired with caution as, for example, incorrect determination of
background intensities could result in artificially older ages (Jercinovic and Williams 2005;
Spear et al. 2009).

This study offers, therefore, the opportunity to compare the results obtained through EPMA chemical dating and those obtained by LA-ICP-MS. Indeed, two aspects differ between our data and those of Faure et al. (2010) - (i) a minimum of two generations of monazite are distinguished in our data set whereas only one was identified in Faure et al (2010), and (ii) there is a significant difference in the absolute ages obtained by both approaches.

Although Faure et al. (2010) identified "three groups of composition according to the Th/U ratio" (p. 660) for monazite grains from the La Salvetat migmatite, they interpreted them in terms of only one chemical date of 327 ± 7 Ma, reflecting the crystallization age of these monazite grains. This age is barely within error of the oldest age of 319.8 ± 1.8 Ma found in this study, although the latter is more precise. However, one more age at 298 Ma was obtained by LA-ICP-MS (with another possible event at ca. 285 Ma). In the case of the

monazite from the Laouzas granite, EPMA dating yielded only one date at 336 ± 6 Ma,
whereas at least two (potentially four) were obtained by LA-ICP-MS. In this case, Faure et al.
(2010) describe their monazite as patchy zoned, a feature encountered only in our younger
monazite population dated at ca. 298 Ma. The fact that they did not find two age populations
in their data set could be explained if they did not encounter the concentrically zoned
monazite in their samples.

These differences could also be linked to the statistical treatment applied to EPMA dating. Indeed, each individual analysis bares fairly high error, but once they are all combined to calculate a total U-Th-Pb date, the resulting error becomes relatively small ($\leq 2\%$). One could therefore argue that this statistic treatment is not able to resolve different populations that are relatively close in age.

635 In order to test this hypothesis, we took the U, Th and Pb contents calculated for three 636 of our samples (ES7 and ES8, this study Table 2; ES5 of Poilvet et al. 2011), and ran them 637 into the EPMA dating add-in developed by Pommier et al. (2002) following the data 638 treatment described in Cocherie et al. (1998) and Cocherie and Albarède (2001). In order to 639 test the viability of our approach, we first took the data from the Montalet granite in Poilvet et 640 al. (2011). The monazite grains in this sample yielded a single concordia age of 294 ± 1 Ma, 641 identical to the concordia age of 294 ± 3 Ma obtained on zircon. Plotted in a Th/Pb versus 642 U/Pb diagram (Fig. 9A), they define a similar U-Th-Pb age of 295 ± 10 Ma. This 643 demonstrates that when dating a simple (i.e. single age) population of monazite, the results 644 obtained by both the LA-ICP-MS and EPMA dating techniques are comparable. We then 645 tested this approach with two other samples from this study, which gave several age 646 populations. For sample ES7, the resulting Th/Pb versus U/Pb isochron diagram (Fig. 9B) 647 allows to calculate a single U-Th-Pb date of 297 ± 15 Ma (MSWD = 0.28) at the centroid of 648 the population. In this diagram, the regression line lies fairly close to the theoretical isochron,

649 therefore this age of ca. 297 Ma would have been considered as reliable and, therefore, 650 unique. Yet, we know that in fact at least two ages can be calculated using the LA-ICP-MS 651 data (ca. 319 Ma and ca. 298 Ma respectively). Although these two ages are ~ 20 Ma apart, 652 the Th/Pb versus U/Pb isochron diagram is not able to distinguish them. If we do the same 653 operation with monazite data from sample ES8, we also end up with a U-Th-Pb chemical age 654 of 291 ± 8 Ma (MSWD = 0.18) at the centroid of the population (Fig. 9C) although three ages 655 can be calculated in a conventional concordia diagram (ca. 319 Ma, 298 Ma and, maybe, 284 656 Ma). In this case we reached the limits of the technique as the theoretical isochron fits just 657 within the limits of the error envelope. This does not explain however why the EPMA ages 658 found by Faure et al. (2010) are significantly older than the ages found by LA-ICP-MS. 659 It is interesting to note that, with the same data set, but using the procedure described 660 in Montel et al. (1996) where, for each individual age, the 95% confidence interval is 661 estimated by a Monte Carlo procedure assuming U, Th and Pb content to obey a Gaussian 662 distribution, we end up with completely different results, as the age distributions for sample 663 ES7 yield three different date peaks at ca. 318 Ma, 302 Ma and 270 Ma (Fig. 10), which is in 664 a good agreement with the ages found in this study.

665

666 **7. Conclusion**

The presence of two stages of partial melting, at ca. 320 Ma and ca. 300 Ma, confirms (i) the interpretation of the Late Carboniferous-Early Permian evolution of the Variscan belt dominated by extensional collapse, which predicts migmatization both preceding, and contemporaneous with, the onset of extension, and (ii) the interpretation of the Montagne Noire dome as an extensional gneiss dome.

We also demonstrate that EPMA dating of monazite in this type of complex polyphased environment should be used with extreme caution. Indeed, as illustrated here, the Pb/U

674	and Th/U isochron statistical data treatment (Pommier et al. 2002) can sometimes fail to
675	resolve different age populations and can, therefore, produce erroneous results.
676	
677	
678	Acknowledgments
679	Xavier Le Coz is acknowledged for making promptly the thin sections required for our study,
680	Yann Lepagnot for the efficient rock crushing. Thomas Delhaye for help with NanoSIMS
681	analysis. Jean-Marc Montel and an anonymous reviewer are thanked for their constructive
682	remarks of a previous version of this manuscript. The reviews of P. Rey and E. Oliot are
683	acknowledged.
684	
685	
686	
687 688	References
687 688 689	References Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille
688	
688 689	Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille
688 689 690 691 692	Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). Orléans, BRGM, 123 pp Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l'anticlinorium de l'Igliesente (Sardaigne), Thesis, Universiy of
688 689 690 691	Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). Orléans, BRGM, 123 pp Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens : les nappes de la
688 689 690 691 692 693 694	Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). Orléans, BRGM, 123 pp Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l'anticlinorium de l'Igliesente (Sardaigne), Thesis, Universiy of Montpellier, Publications USTELA Géol. Struct., 175 pp Arthaud F, Mattauer M, Proust F (1966) La structure et la microtectonique des nappes
688 689 690 691 692 693 694 695	Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). Orléans, BRGM, 123 pp Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l'anticlinorium de l'Igliesente (Sardaigne), Thesis, Universiy of Montpellier, Publications USTELA Géol. Struct., 175 pp Arthaud F, Mattauer M, Proust F (1966) La structure et la microtectonique des nappes hercyniennes de la Montagne Noire. In: Etages tectoniques : Colloque de Neuchâtel, 18-19
688 689 690 691 692 693 694 695 696	Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). Orléans, BRGM, 123 pp Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l'anticlinorium de l'Igliesente (Sardaigne), Thesis, Universiy of Montpellier, Publications USTELA Géol. Struct., 175 pp Arthaud F, Mattauer M, Proust F (1966) La structure et la microtectonique des nappes hercyniennes de la Montagne Noire. In: Etages tectoniques : Colloque de Neuchâtel, 18-19 avril 1966, Université de Neuchâtel, 231-243.
688 689 690 691 692 693 694 695 696 697	Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). Orléans, BRGM, 123 pp Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l'anticlinorium de l'Igliesente (Sardaigne), Thesis, Universiy of Montpellier, Publications USTELA Géol. Struct., 175 pp Arthaud F, Mattauer M, Proust F (1966) La structure et la microtectonique des nappes hercyniennes de la Montagne Noire. In: Etages tectoniques : Colloque de Neuchâtel, 18-19 avril 1966, Université de Neuchâtel, 231-243. Arthaud F, Matte P (1977) Late Paleozoic strike slip faulting in southern Europe and northern
688 689 690 691 692 693 694 695 696 697 698	 Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). Orléans, BRGM, 123 pp Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l'anticlinorium de l'Igliesente (Sardaigne), Thesis, Universiy of Montpellier, Publications USTELA Géol. Struct., 175 pp Arthaud F, Mattauer M, Proust F (1966) La structure et la microtectonique des nappes hercyniennes de la Montagne Noire. In: Etages tectoniques : Colloque de Neuchâtel, 18-19 avril 1966, Université de Neuchâtel, 231-243. Arthaud F, Matte P (1977) Late Paleozoic strike slip faulting in southern Europe and northern Africa: Result of a right-lateral shear zone between the Appalachians and the Urals.
688 689 690 691 692 693 694 695 696 697 698 699	 Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). Orléans, BRGM, 123 pp Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l'anticlinorium de l'Igliesente (Sardaigne), Thesis, Universiy of Montpellier, Publications USTELA Géol. Struct., 175 pp Arthaud F, Mattauer M, Proust F (1966) La structure et la microtectonique des nappes hercyniennes de la Montagne Noire. In: Etages tectoniques : Colloque de Neuchâtel, 18-19 avril 1966, Université de Neuchâtel, 231-243. Arthaud F, Matte P (1977) Late Paleozoic strike slip faulting in southern Europe and northern Africa: Result of a right-lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin 88:1305-1320.
688 689 690 691 692 693 694 695 696 697 698 699 700	 Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). Orléans, BRGM, 123 pp Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l'anticlinorium de l'Igliesente (Sardaigne), Thesis, Universiy of Montpellier, Publications USTELA Géol. Struct., 175 pp Arthaud F, Mattauer M, Proust F (1966) La structure et la microtectonique des nappes hercyniennes de la Montagne Noire. In: Etages tectoniques : Colloque de Neuchâtel, 18-19 avril 1966, Université de Neuchâtel, 231-243. Arthaud F, Matte P (1977) Late Paleozoic strike slip faulting in southern Europe and northern Africa: Result of a right-lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin 88:1305-1320. Barbey P, Villaros A, Marignac C, Montel J-M (2015) Multiphase melting, magma
688 689 690 691 692 693 694 695 696 697 698 699	 Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). Orléans, BRGM, 123 pp Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l'anticlinorium de l'Igliesente (Sardaigne), Thesis, Universiy of Montpellier, Publications USTELA Géol. Struct., 175 pp Arthaud F, Mattauer M, Proust F (1966) La structure et la microtectonique des nappes hercyniennes de la Montagne Noire. In: Etages tectoniques : Colloque de Neuchâtel, 18-19 avril 1966, Université de Neuchâtel, 231-243. Arthaud F, Matte P (1977) Late Paleozoic strike slip faulting in southern Europe and northern Africa: Result of a right-lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin 88:1305-1320.

- 703 Becq-Giraudon JF, Van Den Driessche J (1993) Continuité de la sédimentation entre le
- 704 Stéphanien et l'Autunien dans le bassin de Graissessac-Lodève (sud du Massif Central) :
- 705 implications tectoniques. Comptes Rendus de l'Académie des Sciences série 2, 317:939-945.
- 706 Benard F, Moutou P, Pichavant M (1985) Phase Relations of Tourmaline Leucogranites and
- the Significance of Tourmaline in Silicic Magmas. Journal of Geology 93:271-291.
- 708 Blès J-L, Bonijoly C, Castaing C, Gros Y (1989) Sucessive post-Varican stress fields in the
- 709 French Massif Central and its borders (Western European plate): comparison with
- 710 geodynamica data. Tectonophysics 169: 79-111.
- 711 Bogdanoff S, Donnot F, Ellenberger F (1984) Note explicative, Carte géol. France (1/50 000),
- 712 feuille Bédarieux (988),. Orléans, BRGM, 105 pp
- 713 Bosse V, Boulvais P, Gautier P, Tiepolo M, Ruffet G, Devidal J-L, Cherneva Z, Gerdjikov I,
- 714 Paquette J-L (2009) Fluid-induced disturbance of the monazite Th-Pb chronometer: In situ
- 715 dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chemical
- 716 Geology 261:286-302.
- 717 Boutin A, de Saint Blanquat M, Poujol M, Boulvais P, de Parseval P, Rouleau C, Robert JF
- 718 (2015). Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with
- 719 emphasis on the Trimouns talc-chlorite deposit. International Journal of Earth Sciences,
- 720 doi:10.1007/s00531-015-1223-x.
- 721 Brun J-P, Van Den Driessche J (1994) Extensional gneiss domes and detachment fault
- systems: structures and kinematics. Bulletin de la Société Géologique de France 165:519-530.
- 723 Bruguier O, Becq-Giraudon JF, Champenois M, Deloule E, Ludden J, Mangin D (2003)
- Application of in situ zircon geochronology and accessory phase chemistry to constraining
- basin development during post-collisional extension: a case study from the French Massif
- 726 Central. Chemical Geology 201:319-336.
- 727 Brunel M, Lansigu C (1997) Déformation et cinématique de mise en place du dôme de la
- 728 zone axiale de la Montagne Noire: signification des nodules à quartz-sillimanite (Massif
- central français) [Deformation and kinematics of emplacement of the axial dome of the
- 730 Montagne Noire: implications of quartz-sillimanite nodule attitudes (French Massif Central)].
- 731 Comptes Rendus de l'Académie des Sciences Paris Series IIA Earth and Planetary Sciences
- 732 325:517-523.

- 733 Burg J-P, Matte PJ (1978) A Cross Section through the French Massif Central and the Scope
- of its Variscan Geodynamic Evolution. Zeitschrift der Deutschen Geologischen Gesellschaft,
 129:429-460.
- 736 Burg J-P, Van Den Driessche J, Brun J-P (1994) Syn- to post-thickening extension in the
- 737 Variscan Belt of Western Europe: Modes and structural consequences. Géologie de la France738 3:33-51.
- 739 Cassard D, Feybesse J-L, Lescuyer J-L (1993) Variscan crustal thickening, extension and late
- 740 overstacking during the Naumrian-Westphalian in the western Montagne Noire.
- 741 Tectonophycics 222: 33-53
- 742 Cathelineau M, Boiron M-C, Holliger P, Poty B (1990). Metallogenesis of the French part of
- the Variscan orogen. Part II: Time-space relationships between U, Au and Sn-W ore
- 744 deposition and geodynamic events mineralogical and U-Pb data. Tectonophysics 177:59–
- 745 79.
- 746 Charles N, Faure M, Chen Y (2009) The Montagne Noire migmatitic dome emplacement
- 747 (French Massif Central): new insights from petrofabric and AMS studies. Journal of
- 748 Structural Geology 31:1423-1440.
- 749 Cocherie A, Legendre O, Peucat J-J, Kouamelan AN (1998) Geochronology of polygenetic
- 750 monazites constrained by in situ electron microprobe Th–U–total lead determination;
- 751 implications for lead behaviour in monazite. Geochimica Cosmochimica Acta 62:2475 –
- 752 2497.
- 753 Cocherie A, Albarède F (2001) An improved U–Th–Pb age calculation for electron
- microprobe dating of monazite. Geochimica et Cosmochimica Acta 65:4509-4522.
- 755 Didier A, Bosse V, Boulvais P, Bouloton J, Paquette J-L, Montel J-M, Devidal J-L (2013)
- 756 Disturbance versus preservation of U-Th-Pb ages in monazite during fluid-rock interaction:
- 757 textural, chemical and isotopic in situ study in microgranites (Velay Dome, France).
- 758 Contributions to Mineralogy and Petrology 165:1051-1072
- 759 Demange M (1982) Etude géologique du massif de l'Agout, Montagne Noire, France, Thèse
- 760 d'Etat, University Paris 6, 1050 pp
- 761 Demange M, Guérangé-Lozes J, Guérangé B (1995) Notice explicative, Carte géol. France
- 762 (1/50 000), feuille Lacaune (987). Orléans, BRGM, 153 pp

- 763 Doublier M P, Potel S, Wemmer K (2015) The tectono-metamorphic evolution of the very
- 764 low-grade hanging wall constrains two-stage gneiss dome formation in the Montagne Noire
- 765 (Southern France). Journal of metamorphic Geology 33: 71-89
- Echtler H (1990) Geometry and kinematics of recumbent folding and low-angle detachment
- 767 in the Pardailhan nappe (Montagne Noire, Southern French Massif Central). Tectonophysics
- 768 177: 109-123
- 769 Echtler H, Malavieille M (1990) Extensional tectonics, basement uplift and Stephano-Permian
- collapse basin in a late Variscan metamorphic core complex (Montagne Noire, Southern
- 771 Massif Central). Tectonophysics 177: 125-138
- Faure M, Cottereau N (1988) Données cinématiques sur la mise en place du dôme
- 773 migmatitique carbonifère moyen de la zone axiale de la Montagne noire (Massif central
- français). Comptes rendus de l'Académie des Sciences 307: 1787-1794
- Faure M, Cocherie A, Bé Mézème E, Charles N, Rossi P (2010) Middle Carboniferous crustal
- 776 melting in the Variscan Belt: New insights from U-Th-Pb_{tot} monazite and U-Pb zircon ages of
- the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Research
- 778 18:653-673.
- 779 Foster G, Kinny P, Vance D, Prince C, Harris N (2000) The significance of monazite U–Th–
- 780 Pb age data in metamorphic assemblages; a combined study of monazite and garnet
- 781 chronometry. Earth and Planetary Science Letters 181:327-340.
- 782 Franke W, Doublier MP, Klama K, Potel S, Wemmer K (2011) Hot metamorphic core
- 783 complex in a cold foreland. International Journal of Earth Sciences 100: 753-785
- 784 Gardés E, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2007) Pb diffusion in monazite:
- 785 New constraints from the experimental study of $Pb^{2+} \Leftrightarrow Ca^{2+}$ interdiffusion. Geochimica et
- 786 Cosmochimica Acta 71:4036-4043.
- 787 Gasquet D, Bertrand J-M, Paquette J-L, Lehmann J, Ratzov G, De Ascenção Guedes R,
- 788 Tiepolo M, Boullier AM, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and
- 789 hydrothermalism in the Lauzière Massif (French Western Alps): New U–Th–Pb and Argon
- ages. Bulletin de la Société Géologique de France 181:227–241.
- Hollister LS (1993) The role of melt in the uplift and exhumation of orogenic belts. Chem.
- 792 Geol. 108:31-48

- 793 Holtz F, Johannes W (1994) Maximum and minimum water contents of granitic melts:
- implications for chemical and physical properties of ascending magmas. Lithos 32:149-159
- Holtz F, Johannes W, Tamic N, Behrens H (2001) Maximum and minimum water contents of
- 796 granitic melts generated in the crust: reevaluation and implications. Lithos 56:1-14
- 797 Hurai V, Paquette J-L, Huraiová M, Konečný P (2010) U-Th-Pb geochronology of zircon and
- 798 monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-
- 799 Carpathian back-arc basin. Journal of Volcanology and Geothermal Research 198:275-287.
- 800 Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-
- 801 inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology.
- 802 Chemical Geology 211:47–69.
- 803 Jercinovic MJ, Williams ML (2005) Analytical perils (and progress) in electron microprobe
- 804 trace elements analysis applied to geochronology: Background, interferences and beam
- 805 irradiation effects. American Mineralogist 90:526-546.
- 806 Jourdan F, Renne PR (2007) Age calibration of the Fish Canyon sanidine ⁴⁰Ar/³⁹Ar dating
- standard using primary K–Ar standards. Geochimimica Cosmochimica Acta 71:387–402.
- 808 Jourdan F, Verati C, Féraud G (2006) Intercalibration of the Hb3gr ⁴⁰Ar/³⁹Ar dating standard.
- 809 Chemical Geology 231:77–189.
- 810 Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite
- 811 growth in melt-bearing systems: examples using model metapelitic and metapsammitic
- granulites. Journal of Metamorphic Geology 26:199-212.
- 813 Ludwig KR (1998) On the treatment of concordant uranium-lead ages. Geochimica et
- 814 Cosmochimica Acta 62:665-676.
- 815 Ludwig KR (2001) User's manual for Isoplot/Ex Version 2.49, a geochronological toolkit for
- 816 Microsoft Excel. Spec Publ., 1a. Berkeley Geochronological Center, Berkeley, USA.
- 817 Maluski H, Costa S, Echtler H (1991) Late Variscan tectonic evolution by thinning of earlier
- 818 thickened crust. An ⁴⁰Ar-³⁹Ar study of the Montagne Noire, southern Massif Central, France.
- 819 Lithos 26:287-304.
- 820 Matte P, Lancelot J, Mattauer (1998) The Montagne Noire Axial Zone is not an extensional
- 821 metamorphic core complex but a compressional post-nappe anticline with an anatectic core.
- 822 Geodinamica Acta 11: 3-22

- 823 Ménard G, Molnar P (1988) Collapse of a Hercynian Tibetan Plateau into a late Paleozoic
- European Basin and Range province. Nature 334:235-237.
- 825 Montel J-M, Marignac C, Barbey P, Pichavant M (1992) Thermobarometry and granite
- 826 genesis: the Hercynian low-P high-T Velay anactectic Dome (French Massif Central). Journal
- 827 of Metamorphic Geology 10:1-15.
- Montel J, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating
 of monazite. Chemical Geology 131:37–53.
- 830 Mougeot R, Respaut J-P, Ledru P, Marignac C (1997) U-Pb geochronology on accessory
- 831 minerals of the Velay anatectic Dome (French Massif Central). European Journal of
- 832 Mineralogy 9:141-156.
- 833 Paquette J-L, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotopes dating of monazite
- 834 with excimer laser ablation (ELA)-ICPMS. Chemical Geology 240:222–237.
- 835 Pitra P, Ballèvre M, Ruffet G (2010) Inverted metamorphic field gradient towards a Variscan
- 836 suture zone (Champtoceaux Complex, Armorican Massif, France). Journal of Metamorphic
- 837 Geology 28:183-208.
- 838 Pitra P, Poujol M, Van Den Driessche J, Poilvet J-C, Paquette J-L (2012) Early Permian
- 839 extensional shearing of an Ordovician granite: The Saint-Eutrope ,"C/S-like" orthogneiss
- 840 (Montagne Noire, French Massif Central). Comptes Rendus Geoscience 344:377-384.
- 841 Pochat S, Van Den Driessche J (2011) Filling sequence in Late Paleozoic continental basins;
- 842 A chimera of climate change. A new light shed given by the Graissessac-Lodève basin (SE
- 843 France). Palaeogeography, Palaeoclimatology, Palaeoecology 302:170-186.
- Poilvet J-C, Poujol M, Pitra P, Van Den Driessche J, Paquett, J-L (2011) The Montalet
- granite, Montagne Noire, France: An early Permian syn-extensional pluton as evidenced by
- new U-Th-Pb data on zircon and monazite. Comptes Rendus Geoscience 343:454-461.
- 847 Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of
- 848 monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear
- 849 ceramics. Geochimica and Cosmochimica Acta 64:3283-3297.
- 850 Pommier A, Cocherie A, Legendre O (2002) EPMA Dating User's manual: Age calculation
- 851 from electron probe microanalyser measurements of U–Th–Pb. BRGM, 9 pp.

- 852 Rabin M, Trap P, Carry N., Fréville K., Centi-Tok B, Lobjoie C, Goncalves P, Marquer D
- 853 (2015) Strain partitioning along the anatectic front in the Variscan Montagne Noire massif
- 854 (southern French Massif Central). Tectonics:34 :doi:10.1002/2014TC003790.
- 855 Renne PR, Balco G, Ludwig RL, Mundil R, Min K (2011) Response to the comment by W.H.
- 856 Schwarz et al. on "Joint determination of (40)K decay constants and (40)Ar*/(40)K for the Fish
- 857 Canyon sanidine standard, and improved accuracy for (40)Ar/(39)Ar geochronology" by PR
- 858 Renne et al. (2010). Geochimica et Cosmochimica Acta 75:5097–5100.
- 859 Renne PR, Mundil R, Balco G, Min K, Ludwig RL (2010) Joint determination of 40 K decay 860 constants and 40 Ar $*/{}^{40}$ K for the Fish Canyon sanidine standard, and improved accuracy for 861 40 Ar/ 39 Ar geochronology. Geochimica et Cosmochimica Acta 74:5349–5367.
- 862 Rey PF, Teyssier C, Whitney DL (2011) Viscous collision in channel explains double domes
- 863 in metamorphic core complexes. Geology 39: 387-390
- Roddick JC (1983) High precision intercalibration of ⁴⁰Ar/³⁹Ar standards. Geochimica et
 Cosmochimica Acta 47:887–898.
- 866 Roger F, Respaut J-P, Brunel M, Matte P, Paquette J-L (2004) U-Pb dating of Augen
- 867 orthogneisses from the Axial Zone of the Montagne Noire (Southern Massif Central): new
- 868 witness of Ordovician magmatism into the Variscan Belt. Comptes Rendus Geoscience
- 869 336:19-28.
- 870 Roger F, Teyssier C, Respaut J-P, Rey PF, Jolivet M, Whitney DL, Paquette J-L, Brunel M
- 871 (2015) Timing of formation and exhumation of the Montagne Noire double dome, French
- 872 Massif Central. Tectonophysics 640-641:53-69
- 873 Rubatto D, Williams IS, Buick IS (2001 Zircon and monazite response to prograde
- 874 metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and
- 875 Petrology 140:458-468.
- 876 Ruffet G, Féraud G, Amouric M (1991) Comparison of ⁴⁰Ar/³⁹Ar conventional and laser dating
- of biotites fram the North Trégor Batholith. Geochimica et Cosmochimica Acta 55:1675–1688.
- 878 Ruffet G, Féraud G, Ballèvre M, Kiénast JR (1995) Plateau ages and excess argon on phengites:
- a^{40} Ar/³⁹Ar laser probe study of alpine micas (Sesia zone). Chemical Geology 121:327–343.
- 880 Seydoux-Guillaume A-M, Paquette J-L, Wiedenbeck M, Montel J-M, Heinrich W (2002)
- 881 Experimental resetting of the U-Th-Pb systems in monazite. Chemical Geology 191:165-181.

- 882 Soula JC, Debat P, Brusset S, Bessière G, Christophoul F, Déramond J (2001) Thrust-related,
- diapiric, and extensional doming in a frontal orogenic wedge: exemple of the Montagne noire,
- 884 Southern French Hercynian Belts. Journal of Structural Geology 23: 1677-1699
- Spear FS, Pyle JM (2010) Theoretical modeling of monazite growth in a low-Ca metapelite.
- 886 Chemical Geology 273:111-119.
- Spear FS, Pyle JM, Cherniak D (2009) Limitations of chemical dating of monazite, Chemical
 Geology 266:218-230.
- 889 Taner MF, Martin RF (1993) Significance of dumortierite in an aluminosilicate-rich alteration
- zone, Louvicourt, Quebec. Canadian Mineralogist 31:137-146.
- 891 Tartèse R, Ruffet G, Poujol M, Boulvais P, Ireland TR (2011) Simultaneous resetting of the
- muscovite K-Ar and monazite U-Pb geochronometers: a story of fluids. Terra Nova 23:390-398.
- 894 Tartèse R, Boulvais P, Poujol M, Chevalier T, Paquette J-L, Ireland TR, Deloule E (2012)
- Mylonites of the South Armorican Shear Zone: Insights for crustal-scale fluid flow and waterrock interaction processes. Journal of Geodynamics 56-57:86–107.
- Thompson AB (2001) Clockwise P-T paths for crustal melting and H₂O recycling in granite
 source regions and migmatite terrains. Lithos 56:33-45
- Turner G, Huneke JC, Podosek FA, Wasserburg GJ (1971) ⁴⁰Ar/³⁹Ar ages and cosmic ray exposure age of Apollo 14 samples. Earth and Planetary Science Letters 12:19–35.
- 901 Van Den Driessche J, Brun J-P (1989) Un modèle cinématique de l'extension paléozoïque
- 902 supérieur dans le sud du Massif Central. Comptes Rendus de l'Académie des Sciences série 2
 903 309:1607-1613.
- 904 Van Den Driessche J, Brun J-P (1992) Tectonic evolution of the Montagne Noire (French
- 905 Massif Central): a model of extensional dome. Geodinamica Acta 5:85-99.
- 906 Van Den Driessche J, Pitra P (2012) Viscous collision channel explains double dome in
- 907 metamorphic core complexes: Comment. Geology 40: e279
- 908 Velichkin VI, Vlasov BP (2011) Domal structures and hydrothermal uranium deposits of the
- 909 Erzgebirge, Saxony, Germany. Geol. Ore Depos. 53:74–83.

- 910 Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC,
- 911 Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and
- 912 REE analyses. Geostandard Newsletter 19:1–23.
- 913 Williams ML, Jercinovic MJ, Harlov DE, Budzyn Hetherington CJ (2011) Resetting monazite
- 914 ages during fluid-related alteration. Chemical Geology 283:218-225.
- 915

- 916 **Table and Figure captions:**
- 917
- 918 Figure 1. Structural map of the southern French Massif Central (MC) showing the
- 919 relationships between the Montagne Noire gneiss dome, the Stephanian-Permian basins, and
- 920 the Variscan thrusts and nappes (modified after Brun and Van Den Driessche, 1994). 7, 8:
- 921 locations of the samples ES7 and ES8, respectively, Af: St. Affrique basin, G: Graissessac
- 922 basin, L: Laouzas granite, Lo: Lodève basin P: Col de Picotalen (location of the sample of the
- 923 Montalet syntectonic leucogranite, ES5, Poilvet et al. 2011), V: Vialais granite.
- 924 Inset shows the location of the study area within the European Variscan belt (modified from
- 925 Pitra et al. 2010). A Alps, AM Armorican Massif, BM Bohemian Massif, MC Massif
- 926 Central. B Teplá-Barrandian, Mo Moldanubian, ST Saxothuringian, RH -
- 927 Rhenohercynian. L: Lyon; M: Montpellier; R: Rennes.
- 928
- 929 Figure 2. (a) Outcrop photograph of the Laouzas granite (ES7). Dark spots are clusters of
- 930 cordierite, the elongated object in the lower central part is a biotite-rich schliere. (b-c)
- 931 Microphotographs of the granite. Note the presence of subhedral, partly altered crystals of
- 932 plagioclase (pl) and K-feldspar (kfs), partly pinitised crystals of cordierite (cd), and late
- 933 crystals of dumoritierite (dum), and alusite (and) and muscovite (mu), and the clear rim around
- 934 altered plagioclase core. (d) Outcrop photograph of the banded La Salvetat migmatite (ES8).
- 935 Rare garnet crystals are shown by arrows. (e-f) Microphotographs of the migmatite
- 936 leucosome. Interstitial brown-blue tourmaline is located between subhedral, partly altered
- 937 crystals of feldspars and anhedral quartz (e). Plagioclase crystals are partly replaced by
- 938 clinozoisite (tiny high-relief crystals), biotite contains prehnite (prh) and/or clay minerals
- parallel to the (001) cleavage; late muscovite is also present (f).
- 940

Figure 3: Cathodoluminescence images of some of the zircon grains dated in this study: A:
Laouzas granite; B and C: La Salvetat migmatite. The white circle represents the spot analysis
and the number corresponds to the ²⁰⁷Pb/²⁰⁶Pb age obtained. Zr number corresponds to the
grain number in Table 1.

945

Figure 4: Summary of the geochronological results. In all diagram, N refers to the number of

- 947 analyses. Grey ellipses correspond to the data used to calculate the concordia ages. A and C:
- 948 Tera-Wasserburg ²⁰⁷Pb/²⁰⁶Pb versus ²³⁸U/²⁰⁶Pb concordia diagram for the zircon grains
- analyzed in the Laouzas granite (A) and the La Salvetat migmatite (C). B and D: ²⁰⁶Pb/²³⁸U

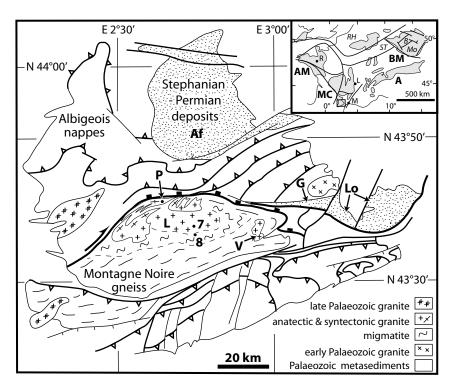
- 950 versus 208 Pb/ 232 Th diagram for the monazite analyzed in the Laouzas granite (B) and the La
- 951 Salvetat migmatite (D). E: Relative probability plot of ²⁰⁷Pb/²⁰⁶Pb dates for all the more than
- 952 90% concordant zircon grains obtained in this study. F: Relative probability plots for all the
- 953 monazite ²⁰⁶Pb/²³⁸U dates obtained in this study. G: Relative probability plots for all the
- 954 monazite 208 Pb/ 232 Th dates obtained in this study. H: 40 Ar- 39 Ar spectra of muscovite from
- 955 samples ES5, ES7 and ES8. The error bars for each temperature steps are at the 1σ level. The
- 956 errors in the J-values are not included. Plateau age error is at the 2σ level.
- 957
- 958 Figure 5: Top picture: Backscattered electron image of the Type 1 monazite from sample ES7
- 959 (i.e. ca. 318 Ma). White circle represents the spot analysis and has a diameter of 7 microns.
- 960 Date refers to the 208 Pb/ 232 Th individual date. M number refers to the grain number in Table 2.
- 961 White square corresponds to the location of the NanoSIMS elemental images (8 bottom
- 962 pictures).
- 963

Figure 6: Top picture: Backscattered electron image of the Type 2 monazite from sample ES7

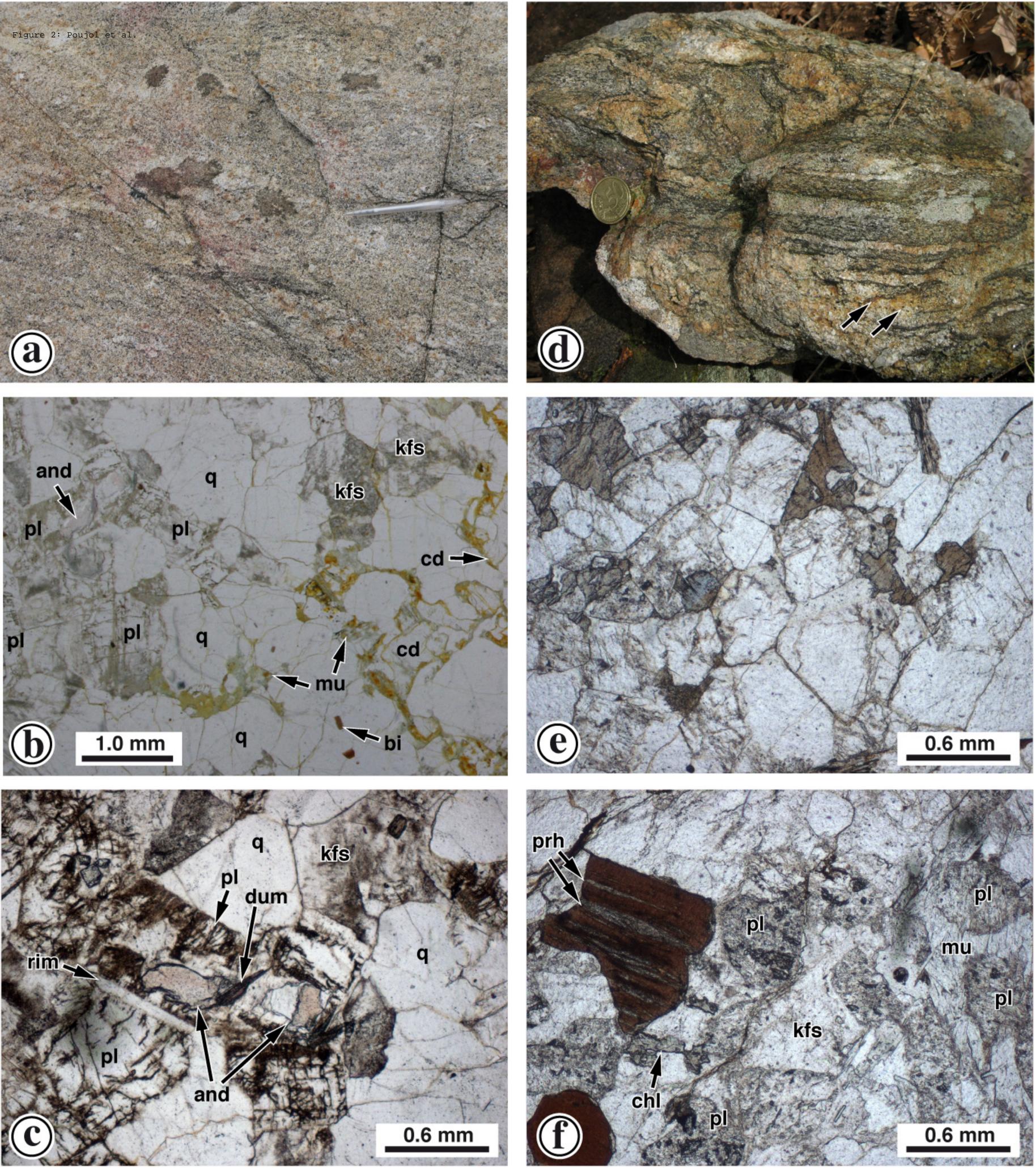
- 965 (i.e. ca. 294 Ma). White circle represents the spot analysis and has a diameter of 7 microns.
- 966 Date refers to the 208 Pb/ 232 Th individual date. M number refers to the grain number in Table 2.
- 967 White square corresponds to the location of the NanoSIMS elemental images (8 bottom968 pictures).
- 969

Figure 7: Top picture: Backscattered electron image of the first group of monazite grains (i.e.
ca. 319 Ma) from sample ES8. White circle represents the spot analysis and has a diameter of
7 microns. Date refers to the ²⁰⁸Pb/²³²Th date. M number refers to the grain number in Table
2. White square corresponds to the location of the NanoSIMS elemental images (8 bottom
pictures).

975


Figure 8: Top picture: Backscattered electron image of the second group of monazite grains
(i.e. ca. 298 Ma) from sample ES8. White circle represents the spot analysis and has a
diameter of 7 microns. Date refers to the ²⁰⁸Pb/²³²Th date. M number refers to the grain
number in Table 2. White square corresponds to the location of the NanoSIMS elemental
images (8 bottom pictures).

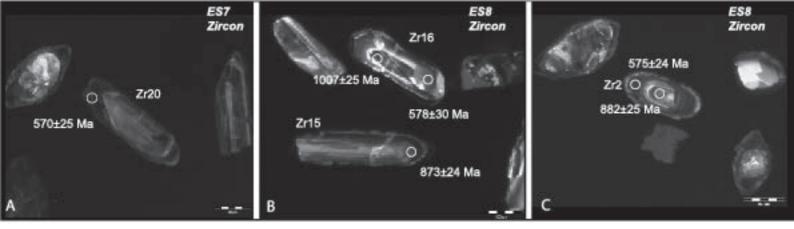
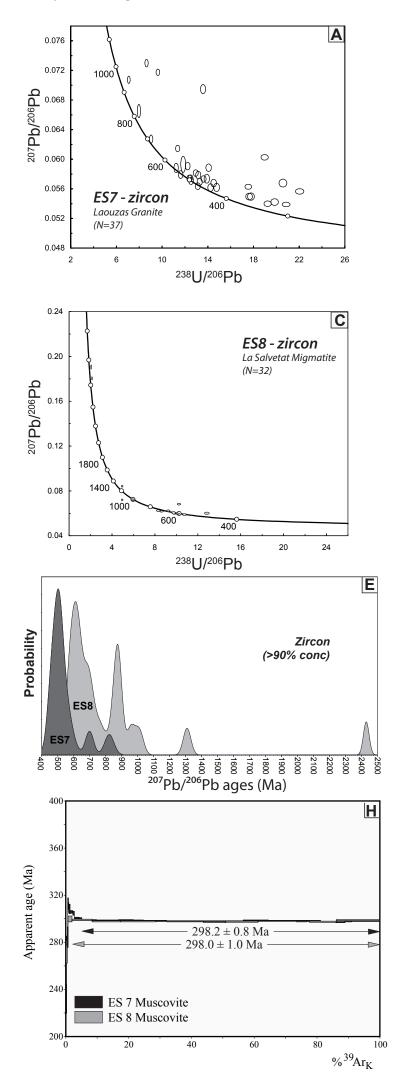
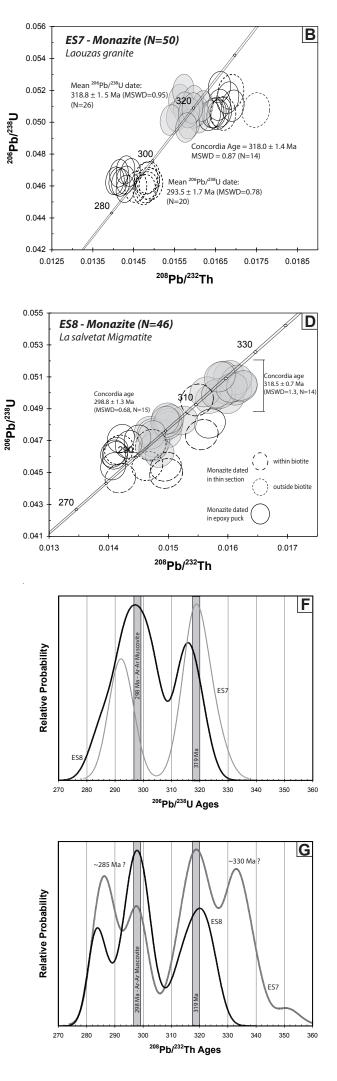
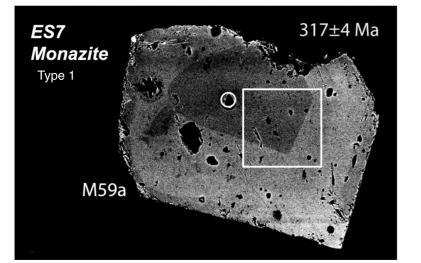
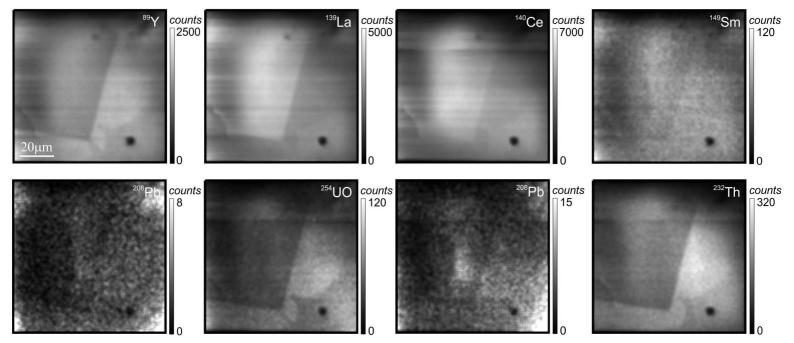
981

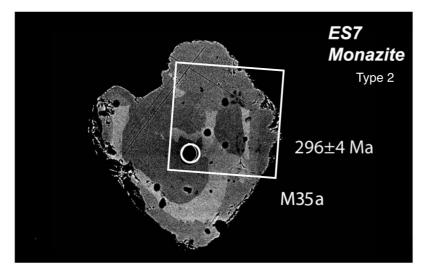

Figure 9: Th/Pb versus U/Pb plots using data for the monazite grains from the Montalet
granite (A; from Poilvet et al. 2011), the Laouzas granite (B) and the La Salvetat migmatite

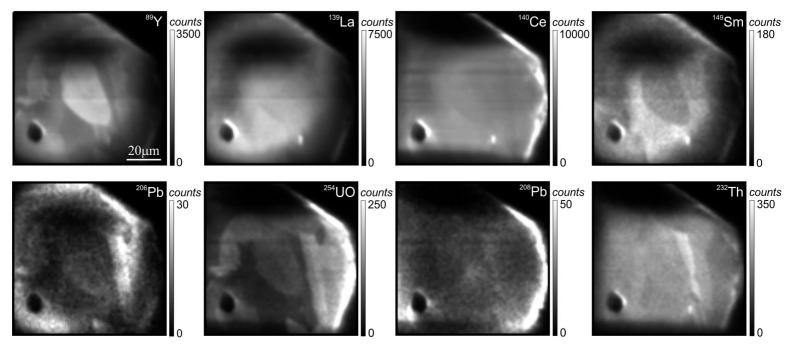
38

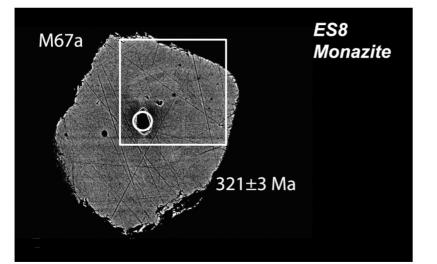
- 984 (C). For all the diagrams, ages obtained by LA-ICP-MS (this study) are given for comparison.
- *n* refers to the number of analyses plotted in the diagrams. For more explanation on these
 plots see Cocherie and Albarède (2001).
- 987
- 988 Figure 10: Weighted-histogram representation of the data acquired in this study for sample
- 989 ES7 following the statistical 1D data treatment of Montel et al (1996) for EPMA dating. For
- 990 more explanation on this plot see Montel et al. (1996).
- 991
- 992Table 1: U-Th-Pb LA-ICP-MS data for the zircon grains from sample ES7 and ES8. Errors
- are reported at 1 sigma.
- 994
- Table 2: U-Th-Pb LA-ICP-MS data for the monazite grains from sample ES7 and ES8. Errors
- are reported at 1 sigma.

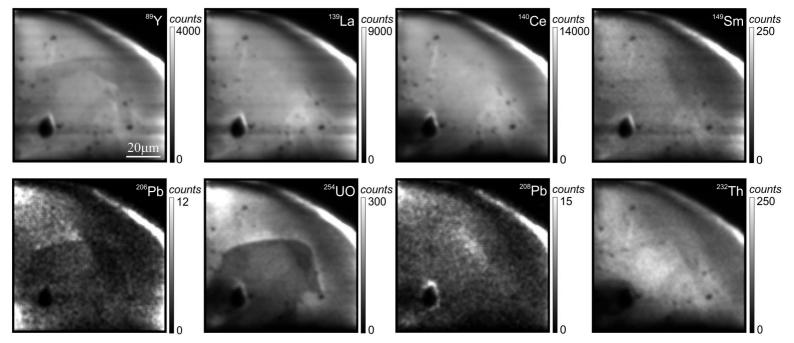
Poujol et al.: Fig. 1

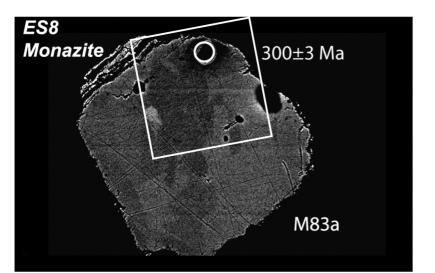







Figure 3: Poujol et al.









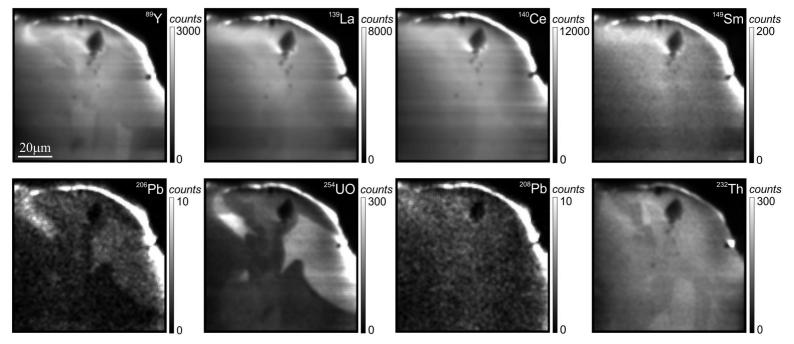


Figure 9: Poujol et al.

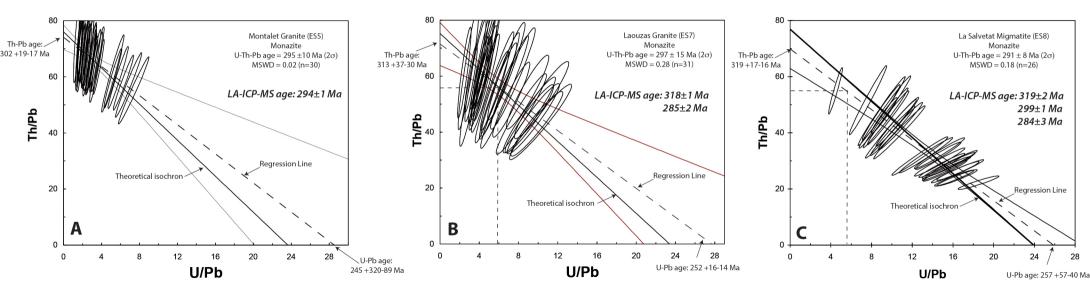
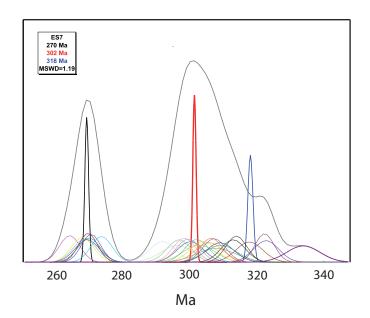



Figure 10: Poujol et al.

grain	[Pb]	[U]	Th/U	²⁰⁷ Pb/	±	²⁰⁶ Pb/	±	²⁰⁷ Pb/	±	Rho		Ages			Conc.
(zircon)	(ppm)	(ppm)		²³⁵ U	1σ	²³⁸ U	1σ	²⁰⁶ Pb	1σ		²⁰⁷ Pb/	²⁰⁶ Pb/	²⁰⁷ Pb/	±	(%)
											²³⁵ U	²³⁸ U	²⁰⁶ Pb	1 σ	
ES 7 Laouz	zas Granite														
1.2c	31	509	0.19	0.705	0.009	0.0736	0.0008	0.0695	0.0008	0.88	542	458	913	25	50
2.1c	39	376	0.43	1.166	0.014	0.1158	0.0013	0.0730	0.0008	0.92	785	707	1014	23	70
2.2c 3c	104 110	2810 2469	0.01 0.03	0.356 0.443	0.004 0.005	0.0480 0.0570	0.0005 0.0006	0.0539 0.0563	0.0006 0.0006	0.95 0.94	310 372	302 358	367 463	25 24	82 77
4.1c	102	988	0.85	1.028	0.005	0.1039	0.0000	0.0718	0.0008	0.94	718	637	979	22	65
4.2c	99	2374	0.02	0.438	0.005	0.0527	0.0006	0.0603	0.0007	0.94	369	331	613	24	54
6.1c	10	90	0.50	1.151	0.017	0.1255	0.0014	0.0665	0.0009	0.78	778	762	823	29	93
6.2c	15	212	0.17	0.723	0.010	0.0891	0.0010	0.0588	0.0008	0.84	552	550	561 371	27	98
7.2c 8.1c	73 62	1834 501	0.02 0.44	0.387 1.378	0.005 0.016	0.0520 0.1413	0.0006 0.0016	0.0540 0.0708	0.0006 0.0008	0.92 0.92	332 880	327 852	950	25 23	88 90
8.2c	29	317	0.20	0.958	0.012	0.1107	0.0012	0.0627	0.0008	0.88	682	677	699	25	97
10c	61	834	0.22	0.746	0.009	0.0880	0.0010	0.0615	0.0007	0.92	566	544	655	24	83
11.1c	7	87	0.78	0.691	0.012	0.0845	0.0010	0.0593	0.0010	0.69	533	523	579	36	90
11.2c	98 10	1572	0.05	0.635	0.008	0.0801	0.0009	0.0575	0.0006	0.93	499	497	511	24 28	97
12.1c 12.2c	19 157	325 4467	0.19 0.11	0.569 0.348	0.008 0.004	0.0719 0.0454	0.0008 0.0005	0.0574 0.0557	0.0007 0.0006	0.85 0.93	457 303	448 286	506 439	28 24	89 65
13c	46	1043	0.03	0.430	0.005	0.0568	0.0006	0.0550	0.0006	0.90	364	356	411	26	87
14.2c	87	2249	0.02	0.377	0.005	0.0504	0.0006	0.0542	0.0006	0.90	325	317	380	26	83
15c	67	1133	0.07	0.607	0.008	0.0760	0.0009	0.0579	0.0007	0.89	481	472	525	26	90
16.2c	86	1453	0.04	0.592	0.007	0.0762	0.0009	0.0564	0.0007	0.90	472	474	466	26	102
17c 18c	106 75	1769 1739	0.05 0.02	0.620 0.427	0.008 0.005	0.0773 0.0563	0.0009 0.0006	0.0582 0.0550	0.0007 0.0007	0.91 0.88	490 361	480 353	535 411	26 27	90 86
19c	117	2052	0.02	0.427	0.003	0.0734	0.0008	0.0550	0.0007	0.88	465	457	504	25	91
20c	72	1135	0.05	0.666	0.008	0.0817	0.0009	0.0591	0.0007	0.89	518	506	570	25	89
22c	74	1972	0.03	0.381	0.005	0.0486	0.0005	0.0568	0.0007	0.87	328	306	483	27	63
23c	99	1573	0.07	0.639	0.008	0.0808	0.0009	0.0574	0.0007	0.90	502	501	507	26	99
24c 25c	102 112	1656 2013	0.05 0.05	0.628 0.577	0.008 0.007	0.0798 0.0711	0.0009 0.0008	0.0571 0.0589	0.0007 0.0007	0.90 0.89	495 463	495 443	495 562	26 26	100 79
250 260	94	1728	0.03	0.544	0.007	0.0711	0.0008	0.0562	0.0007	0.89	403	443	459	20	95
27c	133	2301	0.04	0.591	0.007	0.0753	0.0009	0.0570	0.0007	0.89	472	468	490	27	96
28c	114	1701	0.08	0.687	0.009	0.0861	0.0010	0.0579	0.0007	0.88	531	532	527	27	101
29c	96	1801	0.06	0.540	0.007	0.0689	0.0008	0.0568	0.0007	0.88	438	430	482	27	89
30c	95	1818	0.06	0.525	0.007	0.0677	0.0008	0.0562	0.0007	0.87	428	422	460	28	92
FC 0 1 C															
	alvetat Migma														
1.1d	33	892	0.01	0.351	0.004	0.0478	0.0005	0.0532	0.0006	0.88	305	301	337	27	89
1.2d 2.1d	18 27	156 184	2.20 0.80	0.766 1.447	0.011 0.018	0.0932 0.1533	0.0011 0.0017	0.0596 0.0685	0.0008 0.0008	0.79 0.88	578 909	575 919	590 882	30 25	97 104
2.2d	82	828	1.03	0.812	0.010	0.0995	0.0011	0.0592	0.0007	0.93	604	611	575	24	104
3d	44	497	0.33	0.867	0.011	0.1047	0.0012	0.0601	0.0007	0.91	634	642	607	25	106
4d	25	631	0.01	0.389	0.006	0.0504	0.0006	0.0560	0.0009	0.69	334	317	451	36	70
5d	52	353	0.93	1.480	0.019	0.1512	0.0017	0.0710	0.0009	0.88	922	908	957	25	95
6d 7d	26 67	341 635	0.29 1.41	0.753 0.839	0.010 0.011	0.0886 0.0983	0.0010 0.0011	0.0616 0.0619	0.0008 0.0008	0.86 0.86	570 619	547 605	661 670	27 27	83 90
8d	61	644	0.72	0.817	0.011	0.1014	0.0011	0.0585	0.0007	0.90	607	623	547	26	114
9d	25	194	0.99	1.141	0.016	0.1276	0.0014	0.0648	0.0009	0.83	773	774	768	28	101
10d	55	429	0.36	1.413	0.017	0.1496	0.0017	0.0685	0.0008	0.91	894	899	884	24	102
11d	10	81	0.52	1.306	0.020	0.1414	0.0016	0.0670	0.0010	0.74	848	853	838	32	102
12d 13d	116 201	764 2497	0.11 0.17	2.616 0.830	0.032 0.010	0.1827 0.0990	0.0020 0.0011	0.1039 0.0608	0.0012 0.0007	0.91 0.93	1305 614	1082 608	1694 633	21 24	64 96
130 14d	71	605	0.17	1.370	0.010	0.1463	0.0011	0.0679	0.0007	0.95	876	880	866	24 25	102
15d	89	752	0.16	1.366	0.017	0.1454	0.0016	0.0681	0.0008	0.89	875	875	873	24	100
16.1d	29	413	0.09	0.713	0.010	0.0872	0.0010	0.0593	0.0008	0.78	547	539	578	30	93
16.2d	43	172	2.04	2.044	0.027	0.2038	0.0023	0.0728	0.0009	0.86	1130	1195	1007	25	119
17d 18d	40 50	255	0.73	1.693 1.002	0.023	0.1685	0.0019	0.0729 0.0625	0.0010 0.0008	0.83 0.87	1006 705	1004 709	1010	26 26	99 102
18d 19d	59 36	627 516	0.18 0.53	0.653	0.013 0.010	0.1162 0.0779	0.0013 0.0009	0.0625	0.0008	0.87	705 511	709 484	692 632	26 33	102 77
20d	94	1132	0.29	0.824	0.011	0.0990	0.0005	0.0604	0.0007	0.87	611	608	619	26	98
21d	53	597	0.50	0.852	0.011	0.1020	0.0012	0.0606	0.0008	0.87	626	626	627	27	100
22d	295	653	0.48	11.792	0.149	0.4746	0.0053	0.1802	0.0022	0.89	2588	2504	2655	20	94
23.1d	10	98	0.26	1.049	0.016	0.1205	0.0014	0.0631	0.0010	0.75	728	734	713	32	103
23.2d 24d	19 93	215 1001	0.22 0.69	0.942 0.927	0.014 0.012	0.1084 0.0977	0.0012 0.0011	0.0630 0.0688	0.0009 0.0009	0.78 0.84	674 666	663 601	709 894	30 26	94 67
240 25d	93 31	352	0.69	0.927	0.012	0.0977	0.0011	0.0596	0.0009	0.84	576	573	894 588	20 29	98
26d	113	653	0.28	2.378	0.031	0.2036	0.0023	0.0847	0.0011	0.86	1236	1195	1309	24	91
27d	176	360	0.63	13.005	0.171	0.4959	0.0056	0.1902	0.0024	0.86	2680	2596	2744	20	95
28d	13	138	0.53	0.867	0.014	0.1026	0.0012	0.0613	0.0010	0.73	634	630	649	33	97

rain	[Pb]	[U]	[Th]	Th/U	206 Pb/	±	207 Pb/	±	208 Pb/	±	Ages			
	(ppm)	(ppm)	(ppm)		238 U	(1σ)	235 U	(1σ)	232 Th	(1σ)	206 Pb/ 238 U	207 Pb/ 235 U	208 Pb/ 232 Th	± (1σ)
S7 Laouza	as Granite										200 0	200 0	202 111	(10)
3a	1405	14522	72329	5	0.0459	0.0006	0.3167	0.0045	0.0143	0.0002	289	279	287	3
4a	1331	8983	82279	9	0.0463	0.0006	0.3171	0.0046	0.0142	0.0002	292	280	284	3
5a	1561	13906	84806	6	0.0469	0.0006	0.3241	0.0046	0.0144	0.0002	296	285	289	3
6a	1255	5650	86272	15	0.0464	0.0006	0.3174	0.0050	0.0140	0.0002	292	280	282	3
7a	1526	7457	102172	14	0.0469	0.0006	0.3195	0.0048	0.0141	0.0002	295	282	284	3
8a	1422	6446	95482	15	0.0471	0.0006	0.3250	0.0050	0.0143	0.0002	296	286	287	3
9a	1223	9071	72384	8	0.0464	0.0006	0.3141	0.0046	0.0143	0.0002	293	277	287	3
0a	1316	6291	88790	14	0.0464	0.0006	0.3234	0.0050	0.0141	0.0002	292	285	283	3
1a	1869	5871	110726	19	0.0510	0.0006	0.3636	0.0064	0.0169	0.0002	321	315	339	4
2a	1664	7306	95010	13	0.0511	0.0006	0.3540	0.0056	0.0166	0.0002	321	308	332	4
3a	1427	5587	83966	15	0.0506	0.0006	0.3511	0.0057	0.0165	0.0002	318	306	330	4
4a	1505	6351	89387	14	0.0503	0.0006	0.3457	0.0056	0.0161	0.0002	316	302	323	3
ā	1421	3511	87118	25	0.0515	0.0007	0.3737	0.0068	0.0168	0.0002	324	322	337	4
Sa	1467	8153	80517	10	0.0504	0.0006	0.3488	0.0053	0.0163	0.0002	317	304	328	4
7a	1385	12594	62010	5	0.0505	0.0006	0.3437	0.0050	0.0166	0.0002	317	300	332	4
la	1402	13808	60267	4	0.0506	0.0006	0.3464	0.0050	0.0164	0.0002	318	302	330	4
)a	1343	12757	60159	5	0.0507	0.0006	0.3468	0.0051	0.0161	0.0002	319	302	322	3
a	1254	5577	75446	14	0.0514	0.0006	0.3570	0.0058	0.0156	0.0002	323	310	313	3
2a	1210	10014	56262	6	0.0506	0.0006	0.3483	0.0051	0.0166	0.0002	319	304	333	4
a	1279	11628	59034	5	0.0506	0.0006	0.3470	0.0051	0.0160	0.0002	318	302	320	3
a	1275	4595	79000	17	0.0520	0.0006	0.3656	0.0063	0.0157	0.0002	327	316	315	3
ia	864	3086	52825	17	0.0513	0.0006	0.3551	0.0065	0.0160	0.0002	323	309	320	3
a	1224	5645	70387	12	0.0510	0.0006	0.3458	0.0053	0.0162	0.0002	320	302	324	3
a	1224	7421	68419	9	0.0510	0.0006	0.3418	0.0054	0.0157	0.0002	320	299	315	3
a	1200	5427	74832	14	0.0522	0.0006	0.3527	0.0056	0.0166	0.0002	328	307	333	4
a	1003	6587	54512	8	0.0504	0.0006	0.3473	0.0057	0.0156	0.0002	320	303	312	3
a	1005	6681	62592	9	0.0502	0.0006	0.3376	0.0057	0.0154	0.0002	316	295	309	3
a	1453	10545	74983	7	0.0499	0.0006	0.3476	0.0053	0.0158	0.0002	314	303	318	3
2a	1455	5823	58804	, 10	0.0506	0.0006	0.3544	0.0057	0.0158	0.0002	314	308	318	3
a	1050	3078	66792	22	0.0500	0.0006	0.3549	0.0065	0.0158	0.0002	320	308	319	3
	1212	12417	52947		0.0497	0.0006				0.0002		299	316	3
a z1.1 (fsp)	346	3072	52947 14349	4 5	0.0497	0.0008	0.3419 0.5039	0.0050 0.0078	0.0158 0.0167	0.0002	313 318	299 414	335	3 4
z1.1 (Isp) z1.2 (fsp)	1015	7710	50744	5	0.0506	0.0007	0.3374	0.0078	0.0167	0.0002	298	414 295	309	4
	1015	8419			0.0473	0.0008	0.3815		0.0154			295 328		4
2.1 (crd)			51320	6				0.0055		0.0002	308		315	
z2.2 (crd)	1218	7907 10036	57072 73005	7	0.0519	0.0007	0.3798	0.0054	0.0169	0.0002 0.0002	326	327 280	338 296	4
23.1 (qtz)	1372		73905	7	0.0458	0.0006	0.3173	0.0045	0.0148		289			4
z3.2 (qtz)	1444	10503	79124	8	0.0460	0.0006	0.3171	0.0045	0.0145	0.0002	290	280	292	4
z4.1 (fsp)	1373	1157	55048	48	0.0460	0.0006	0.3170	0.0046	0.0148	0.0002	290 201	280	297	4
24.2 (fsp)	1423	1206	56888 25695	47	0.0462	0.0006	0.3264	0.0049	0.0149	0.0002	291	287	299	4
z5 (qtz)	880	732	35685	49	0.0576	0.0008	0.4697	0.0089	0.0195	0.0003	361	391	390	5
26 (qtz)	1247	1045	50170	48	0.0508	0.0007	0.3525	0.0053	0.0175	0.0002	319	307	350	4
7 (qtz)	1396	10994	73918	7	0.0474	0.0007	0.3261	0.0050	0.0157	0.0002	298	287	314	4
3 (qtz)	713	5795	37073	6	0.0462	0.0007	0.3156	0.0049	0.0148	0.0002	291	279	298	4
:9.1 (fsp)	667	7610	33851	4	0.0478	0.0007	0.3389	0.0054	0.0152	0.0002	301	296	305	4
9.2 (fsp)	136	1285	4509	4	0.0565	0.0008	0.3988	0.0065	0.0198	0.0003	354	341	396	5
10.1 (qtz)	1305	6046	81834	14	0.0465	0.0007	0.4293	0.0069	0.0148	0.0002	293	363	297	4
:10.2 (qtz)	1318	8843	61053	7	0.0469	0.0007	0.3484	0.0057	0.0151	0.0002	295	304	303	4
10.3 (qtz)	1344	10119	76298	8	0.0491	0.0007	0.3752	0.0062	0.0153	0.0002	309	324	306	4
	1121	8693	56704	7	0.0466	0.0007	0.3239	0.0054	0.0148	0.0002	294	285	298	4

	[Pb]	[U]	[Th]	Th/U	206 Pb/	±	207 Pb/	±	208 Pb/	±		Ages		
	(ppm)	(ppm)	(ppm)		238 U	(1σ)	235 U	(1σ)	232 Th	(1σ)	206 Pb/	207 Pb/	208 Pb/	±
											238 U	235 U	232 Th	(1σ)
ES8 La Salve	etat Migma	atite												
65a	1230	5483	67669	12	0.0518	0.0006	0.3603	0.0058	0.0163	0.0002	326	312	327	3
66a	1189	18268	32530	2	0.0496	0.0006	0.3407	0.0050	0.0160	0.0002	312	298	321	3
67a	853	8595	34736	4	0.0511	0.0006	0.3507	0.0054	0.0160	0.0002	321	305	321	3
68a	942	12580	30216	2	0.0502	0.0006	0.3479	0.0052	0.0161	0.0002	316	303	324	3
69a	730	7226	30260	4	0.0510	0.0006	0.3552	0.0055	0.0159	0.0002	321	309	319	3
70a	1097	16108	32500	2	0.0496	0.0006	0.3411	0.0051	0.0157	0.0002	312	298	315	3
71a	854	10883	27100	2	0.0522	0.0006	0.3715	0.0056	0.0164	0.0002	328	321	328	3
72a	1543	25307	37012	1	0.0502	0.0006	0.3449	0.0050	0.0160	0.0002	316	301	321	3
73a	1307	19895	34723	2	0.0504	0.0006	0.3497	0.0052	0.0162	0.0002	317	305	325	3
74a	1229	18313	34893	2	0.0499	0.0006	0.3445	0.0051	0.0159	0.0002	314	301	318	3
75a	1571	25306	37535	1	0.0508	0.0006	0.3528	0.0052	0.0161	0.0002	319	307	324	3
76a	781	8381	31410	4	0.0501	0.0006	0.3488	0.0055	0.0156	0.0002	315	304	313	3
77a					0.0500	0.0006	0.3426	0.0052	0.0158	0.0002	314	299	317	3
78.1a					0.0503	0.0006	0.3496	0.0052	0.0161	0.0002	317	304	322	3
78.2a					0.0505	0.0006	0.3483	0.0052	0.0162	0.0002	317	303	325	3
78.3a					0.0510	0.0006	0.3529	0.0055	0.0159	0.0002	321	307	318	3
79a					0.0485	0.0006	0.3352	0.0053	0.0150	0.0002	305	294	300	3
80.1a	No da	ata due	to a « bi	iu »	0.0405	0.0006	0.3316	0.0055	0.0130	0.0002	299	294 291	295	3
		with G		'' ''										3
80.2a					0.0475	0.0006	0.3375	0.0053	0.0149	0.0002	299	295	298	
81.1a					0.0474	0.0006	0.3294	0.0050	0.0150	0.0002	299	289	300	3
81.2a					0.0467	0.0006	0.3245	0.0049	0.0148	0.0002	294	285	296	3
82a					0.0466	0.0006	0.3221	0.0049	0.0147	0.0002	294	284	296	3
83a					0.0477	0.0006	0.3292	0.0052	0.0147	0.0002	300	289	294	3
84a					0.0469	0.0006	0.3236	0.0049	0.0148	0.0002	295	285	297	3
2b	713	6409	34056	5	0.0483	0.0006	0.3501	0.0062	0.0152	0.0002	304	305	306	3
0.46										0 0000				
3.1b	929	9780	40809	4	0.0480	0.0006	0.3415	0.0059	0.0150	0.0002	302	298	301	3
3.1b 3.2b	929 772	9780 5903	40809 39878	4 7	0.0480 0.0481	0.0006 0.0006	0.3415 0.3461	0.0059 0.0063	0.0150 0.0150	0.0002	302 303	298 302	301 301	3 3
3.2b	772	5903	39878	7	0.0481	0.0006	0.3461	0.0063	0.0150	0.0002	303	302	301	3
3.2b 3.3b	772 890	5903 7957	39878 42165	7 5	0.0481 0.0484	0.0006 0.0006	0.3461 0.3458	0.0063 0.0061	0.0150 0.0150	0.0002 0.0002	303 305	302 302	301 301	3 3
3.2b 3.3b 4b	772 890 869	5903 7957 8361	39878 42165 39428	7 5 5	0.0481 0.0484 0.0483	0.0006 0.0006 0.0006	0.3461 0.3458 0.3421	0.0063 0.0061 0.0062	0.0150 0.0150 0.0149	0.0002 0.0002 0.0002	303 305 304	302 302 299	301 301 300	3 3 3
3.2b 3.3b 4b 5.2b	772 890 869 924	5903 7957 8361 10015	39878 42165 39428 39179	7 5 5 4	0.0481 0.0484 0.0483 0.0474	0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393	0.0063 0.0061 0.0062 0.0062	0.0150 0.0150 0.0149 0.0147	0.0002 0.0002 0.0002 0.0002	303 305 304 299	302 302 299 297	301 301 300 295	3 3 3 3
3.2b 3.3b 4b 5.2b 6b	772 890 869 924 676	5903 7957 8361 10015 6290	39878 42165 39428 39179 32046	7 5 5 4 5	0.0481 0.0484 0.0483 0.0474 0.0472	0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230	0.0063 0.0061 0.0062 0.0062 0.0063	0.0150 0.0150 0.0149 0.0147 0.0142	0.0002 0.0002 0.0002 0.0002 0.0002	303 305 304 299 297	302 302 299 297 284	301 301 300 295 285	3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b	772 890 869 924 676 1186	5903 7957 8361 10015 6290 19504	39878 42165 39428 39179 32046 31251	7 5 4 5 2	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296	0.0063 0.0061 0.0062 0.0062 0.0063 0.0062	0.0150 0.0150 0.0149 0.0147 0.0142 0.0145	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	303 305 304 299 297 297	302 302 299 297 284 289	301 301 300 295 285 291	3 3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b 8.1b	772 890 869 924 676 1186 1213	5903 7957 8361 10015 6290 19504 17656	39878 42165 39428 39179 32046 31251 38626	7 5 4 5 2 2	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330	0.0063 0.0061 0.0062 0.0063 0.0063 0.0062	0.0150 0.0150 0.0149 0.0147 0.0142 0.0145 0.0143	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	303 305 304 299 297 297 295	302 302 299 297 284 289 292	301 301 300 295 285 291 288	3 3 3 3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b 8.1b 8.2b	772 890 869 924 676 1186 1213 1300	5903 7957 8361 10015 6290 19504 17656 20670	39878 42165 39428 39179 32046 31251 38626 37530	7 5 4 5 2 2 2	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468 0.0468	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330 0.3263	0.0063 0.0061 0.0062 0.0063 0.0063 0.0062 0.0064 0.0063	0.0150 0.0150 0.0149 0.0147 0.0142 0.0145 0.0143 0.0141	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	303 305 304 299 297 297 295 291	302 302 299 297 284 289 292 287	301 301 300 295 285 291 288 288 283	3 3 3 3 3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b 8.1b 8.2b 9b 10b	772 890 869 924 676 1186 1213 1300 1738 1074	5903 7957 8361 10015 6290 19504 17656 20670 32151 16844	39878 42165 39428 39179 32046 31251 38626 37530 38690 30899	7 5 4 5 2 2 2 1 2	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468 0.0462 0.0455 0.0464	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330 0.3263 0.3196 0.3196	0.0063 0.0061 0.0062 0.0063 0.0063 0.0064 0.0063 0.0063 0.0065	0.0150 0.0150 0.0149 0.0147 0.0142 0.0145 0.0143 0.0141 0.0141	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001	303 305 304 299 297 297 295 291 287 292	302 302 299 297 284 289 292 287 282 282	301 301 295 285 291 288 283 282 283	3 3 3 3 3 3 3 3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b 8.1b 8.2b 9b 10b	772 890 869 924 676 1186 1213 1300 1738 1074 1481	5903 7957 8361 10015 6290 19504 17656 20670 32151 16844 24419	39878 42165 39428 39179 32046 31251 38626 37530 38690 30899 39221	7 5 4 5 2 2 2 1 2 2 3	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468 0.0468 0.0462 0.0455 0.0464	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330 0.3263 0.3196 0.3196 0.3241	0.0063 0.0061 0.0062 0.0063 0.0063 0.0064 0.0063 0.0063 0.0065 0.0066	0.0150 0.0149 0.0147 0.0142 0.0145 0.0143 0.0141 0.0141 0.0141	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001	 303 305 304 299 297 295 291 287 292 291 	302 302 299 297 284 289 292 287 282 282 282	301 301 295 285 291 288 283 283 282 283 283	3 3 3 3 3 3 3 3 3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b 8.1b 8.2b 9b 10b 11b 12b	772 890 869 924 676 1186 1213 1300 1738 1074 1481 784	5903 7957 8361 10015 6290 19504 17656 20670 32151 16844 24419 7353	39878 42165 39428 39179 32046 31251 38626 37530 38690 30899 39221 35558	7 5 4 5 2 2 2 2 1 2 2 5	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468 0.0462 0.0455 0.0464 0.0461 0.0474	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330 0.3263 0.3196 0.3196 0.3241 0.3314	0.0063 0.0061 0.0062 0.0063 0.0063 0.0064 0.0063 0.0063 0.0065 0.0066 0.0073	0.0150 0.0149 0.0147 0.0142 0.0145 0.0143 0.0141 0.0141 0.0141 0.0141	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001	 303 305 304 299 297 295 291 287 292 291 291 291 292 291 299 	302 302 299 297 284 289 292 287 282 282 282 285 291	301 301 295 285 291 288 283 283 282 283 283 283 283	3 3 3 3 3 3 3 3 3 3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b 8.1b 8.2b 9b 10b 11b 12b Mz12 (qtz)	772 890 869 924 676 1186 1213 1300 1738 1074 1481 784 731	5903 7957 8361 10015 6290 19504 17656 20670 32151 16844 24419 7353 9662	39878 42165 39428 39179 32046 31251 38626 37530 38690 30899 39221 35558 27745	7 5 4 5 2 2 2 2 1 2 2 5 3	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468 0.0462 0.0455 0.0464 0.0461 0.0474 0.0465	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330 0.3263 0.3196 0.3241 0.3314 0.3554	0.0063 0.0061 0.0062 0.0063 0.0063 0.0063 0.0063 0.0065 0.0066 0.0073 0.0054	0.0150 0.0149 0.0147 0.0142 0.0145 0.0143 0.0141 0.0141 0.0141 0.0141 0.0140 0.0142	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001	 303 305 304 299 297 297 295 291 287 292 291 299 293 	302 302 299 297 284 289 292 287 282 282 282 285 291 309	301 301 300 295 285 291 288 283 283 282 283 283 280 285	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b 8.1b 8.2b 9b 10b 11b 12b Mz12 (qtz) Mz13 (qtz)	772 890 869 924 676 1186 1213 1300 1738 1074 1481 784 731 973	5903 7957 8361 10015 6290 19504 17656 20670 32151 16844 24419 7353 9662 11793	39878 42165 39428 39179 32046 31251 38626 37530 38690 30899 39221 35558 27745 39613	7 5 4 5 2 2 2 1 2 5 3 3 3	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468 0.0462 0.0455 0.0464 0.0461 0.0474 0.0465 0.0455	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330 0.3263 0.3196 0.3196 0.3241 0.3314 0.3554 0.3248	0.0063 0.0061 0.0062 0.0063 0.0063 0.0063 0.0063 0.0065 0.0066 0.0073 0.0054 0.0054 0.0047	0.0150 0.0149 0.0147 0.0142 0.0145 0.0143 0.0141 0.0141 0.0141 0.0141 0.0140 0.0142 0.0146	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002	 303 305 304 299 297 295 291 287 292 291 299 293 287 	302 302 299 297 284 289 292 287 282 282 282 285 291 309 286	301 301 300 295 285 291 288 283 282 283 283 283 283 280 285 294	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b 8.1b 8.2b 9b 10b 11b 12b Mz12 (qtz) Mz13 (qtz)	772 890 869 924 676 1186 1213 1300 1738 1074 1481 784 731 973 137	5903 7957 8361 10015 6290 19504 17656 20670 32151 16844 24419 7353 9662 11793 1909	39878 42165 39428 39179 32046 31251 38626 37530 38690 30899 39221 35558 27745 39613 5184	7 5 4 5 2 2 2 2 1 2 5 3 3 3 3 3	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468 0.0462 0.0455 0.0461 0.0474 0.0465 0.0455 0.0447	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330 0.3263 0.3196 0.3241 0.3241 0.3314 0.3554 0.3248 0.3248	0.0063 0.0061 0.0062 0.0063 0.0063 0.0064 0.0063 0.0065 0.0066 0.0073 0.0054 0.0047 0.0067	0.0150 0.0149 0.0147 0.0142 0.0143 0.0143 0.0141 0.0141 0.0141 0.0141 0.0140 0.0142 0.0146 0.0142	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002	 303 305 304 299 297 295 291 287 292 291 299 293 287 282 	302 302 299 297 284 289 292 287 282 285 291 309 286 300	301 301 295 285 291 288 283 283 283 283 283 283 283 283 283	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b 8.1b 8.2b 9b 10b 11b 12b Mz12 (qtz) Mz12 (qtz) Mz13 (qtz) Mz15 (bt)	772 890 869 924 676 1186 1213 1300 1738 1074 1481 784 731 973 137 838	5903 7957 8361 10015 6290 19504 17656 20670 32151 16844 24419 7353 9662 11793 1909 11024	39878 42165 39428 39179 32046 31251 38626 37530 38690 30899 39221 35558 27745 39613 5184 30254	7 5 4 5 2 2 2 2 1 2 2 5 3 3 3 3 3 3 3 3	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468 0.0462 0.0455 0.0464 0.0461 0.0474 0.0465 0.0455 0.0455	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330 0.3263 0.3196 0.3241 0.3314 0.3254 0.3248 0.3430 0.3430	0.0063 0.0061 0.0062 0.0063 0.0063 0.0063 0.0063 0.0065 0.0066 0.0073 0.0054 0.0054 0.0067 0.0067 0.0067	0.0150 0.0149 0.0147 0.0142 0.0145 0.0143 0.0141 0.0141 0.0141 0.0140 0.0142 0.0142 0.0142 0.0142	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002	 303 305 304 299 297 297 295 291 287 299 293 287 282 286 	302 302 299 297 284 289 292 287 282 282 285 291 309 286 300 280	301 301 300 295 285 291 288 283 283 283 283 283 280 285 294 285 300	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3.2b 3.3b 4b 5.2b 6b 7b 8.1b 8.2b 9b 10b 11b 12b Mz12 (qtz) Mz12 (qtz) Mz13 (qtz) Mz15 (bt) Mz17 (bt)	772 890 869 924 676 1186 1213 1300 1738 1074 1481 784 731 973 137 838 735	5903 7957 8361 10015 6290 19504 17656 20670 32151 16844 24419 7353 9662 11793 1909 11024 8040	39878 42165 39428 39179 32046 31251 38626 37530 38690 30899 39221 35558 27745 39613 5184 30254 29039	7 5 4 5 2 2 2 2 1 2 2 5 3 3 3 3 3 3 4	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468 0.0462 0.0455 0.0464 0.0461 0.0474 0.0465 0.0455 0.0447 0.0454 0.0474	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330 0.3263 0.3196 0.3241 0.3314 0.3554 0.3248 0.3430 0.3177 0.3310	0.0063 0.0061 0.0062 0.0063 0.0063 0.0063 0.0063 0.0065 0.0066 0.0073 0.0054 0.0054 0.0047 0.0048 0.0053	0.0150 0.0149 0.0147 0.0142 0.0145 0.0143 0.0141 0.0141 0.0141 0.0141 0.0142 0.0142 0.0146 0.0142 0.0149 0.0156	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002	 303 305 304 299 297 297 295 291 287 292 291 299 293 287 282 286 299 	302 302 299 297 284 289 292 287 282 282 285 291 309 286 300 280 290	301 301 300 295 285 291 288 283 283 283 283 283 280 285 294 285 300 312	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4
3.2b 3.3b 4b 5.2b 6b 7b 8.1b 8.2b 9b 10b 11b 12b Mz12 (qtz) Mz12 (qtz) Mz13 (qtz) Mz15 (bt)	772 890 869 924 676 1186 1213 1300 1738 1074 1481 784 731 973 137 838	5903 7957 8361 10015 6290 19504 17656 20670 32151 16844 24419 7353 9662 11793 1909 11024	39878 42165 39428 39179 32046 31251 38626 37530 38690 30899 39221 35558 27745 39613 5184 30254	7 5 4 5 2 2 2 2 1 2 2 5 3 3 3 3 3 3 3 3	0.0481 0.0484 0.0483 0.0474 0.0472 0.0472 0.0468 0.0462 0.0455 0.0464 0.0461 0.0474 0.0465 0.0455 0.0455	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.3461 0.3458 0.3421 0.3393 0.3230 0.3296 0.3330 0.3263 0.3196 0.3241 0.3314 0.3254 0.3248 0.3430 0.3430	0.0063 0.0061 0.0062 0.0063 0.0063 0.0063 0.0063 0.0065 0.0066 0.0073 0.0054 0.0054 0.0067 0.0067 0.0067	0.0150 0.0149 0.0147 0.0142 0.0145 0.0143 0.0141 0.0141 0.0141 0.0140 0.0142 0.0142 0.0142 0.0142	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002	 303 305 304 299 297 297 295 291 287 299 293 287 282 286 	302 302 299 297 284 289 292 287 282 282 285 291 309 286 300 280	301 301 300 295 285 291 288 283 283 283 283 283 280 285 294 285 300	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3