Haemostatic Issues in Cancer Development and Progression:

“The Role of Coagulation and Haemostatic Factors in cancer Development and Metastasis”

Ph.D. thesis

(Summary)

Hussain Alizadeh M.D.

Head of the Doctoral (PhD) School: Balázs Sümeği M.D. D.Sc.

Supervisor: Hajna Losonczy M.D. D.Sc.

University of Pécs, Medical Faculty
1st Department of Medicine
Pécs, 2007
Introduction: Thrombosis is a well-recognized and common complication in patients with malignant disease and can contribute significantly to the morbidity and mortality of this disease. The occurrence of thrombosis is heightened by therapeutic interventions such as operations or the use of radio-chemotherapy. It occurs both spontaneously, after surgery, after radiation therapy and in medical cancer patients receiving anti-cancer treatment. It may also be the first manifestation of underlying malignant disease. The magnitude of the risk for venous thromboembolism is well established for cancer surgery where rates twice that for abdominal surgery in non-cancer patients are described. Venous thromboembolism is the most common complication of cancer and the second most common cause of death in cancer patients. Up to 60% of patients with cancer develop venous thromboembolism, depending on the type of cancer and the treatment given. Although the close relationship between tumour growth and the activation of blood coagulation has been known since 1865, when Professor Armand Trousseau first described the clinical association between primary or idiopathic venous thromboembolism and occult malignancy, only in the last two decade have significant advances in this field been achieved.

It is now well known that the clinical manifestation of thrombosis in patients with cancer can be very different and vary from localized venous thromboembolism to disseminated intravascular coagulation. In addition, a sub-clinical activation of blood coagulation or “hypercoagulable state” is present in almost all cancer patients, even without symptoms of thrombosis. A number of pathogenetic factors have been identified, showing that activation of coagulation in cancer is a complex phenomenon, involving many different pathways of the haemostatic system and numerous interactions of the tumour cells with other blood cells, including platelets, monocytes and endothelial cells.

In this thesis, the pathogenetic mechanisms of thrombosis in malignancy, thrombophilic state in cancer patients, changes in haemostatic parameters and their relation to cancer prognosis and also the thromboprophylaxis in the cancer patients are discussed and analyzed.
Aim of Study: The aim of this prospective study is to evaluate the changes in haemostatic-clotting parameters in patients with different types of non-haematological malignancies (solid tumours) and to assess the correlation between changes in coagulation parameters and the stage of tumour, imaging findings and also with changes in characteristic tumour markers. In our prospective study, we mainly focused on specific abnormalities of haemostasis in these groups of patients, the changes in haemostatic parameters and their relation to cancer prognosis. In addition, the thromboprophylaxis in the cancer patients are discussed and analyzed.

This study also provides a rationale for the use anticoagulants for the prevention of thromboembolic complications and may change the course of tumour progression.

Inclusion in the study required tissue diagnosis for histopathology classification, detailed imaging techniques for exact staging, and absence of any medications that might interfere with the results of hypercoagulation markers. The study design and outcomes evaluations mirrored those used in prior studies, except that our study used more than one coagulation parameter for a more detailed assessment of the changes in haemostatic system in cancer patients.

Except for a slight difference in the gender ratio, the analysis of patients who met the pre-specified criteria for evaluation, the hypercoagulable parameters were directly correlated with tumour progression and rise in characteristic tumour markers.

Parallel with the haemostatic parameters, the characteristic tumour markers were also measured. In all studied cases, there was a direct correlation between changes in the haemostatic parameters, tumour markers and radiological-imaging findings, e.g.: rise in D-dimer, F 1+2 was associated with a drop in AT, PS, PC, which was directly correlated with a rise in tumour markers and a progression of the malignant diseases in imaging findings.

The study design and evaluations mirrored those used in prior studies, except that in our study we used more than one coagulation parameter for a more detailed assessment of the changes in haemostatic system in this group of cancer patients. The patients were enrolled in this study prior to any type of treatment. Additional criteria for enrolment were absence of previous thromboembolic event in the past 12 months, absence of any heparin derivatives, oral anticoagulant agents and also anti-platelet drugs. Patients with
suspected distant metastasis were excluded. Patients who received any type of anticoagulant or hormonal treatment in the past 6 months were also excluded. Patients having abnormal kidney and liver function tests were also not enrolled.

Fifty-four patients were initially enrolled in this study; 2 had oesophageal adenocarcinoma, 6 had gastric cancer, 16 had colorectal cancer, 4 had exocrine pancreatic carcinoma, 2 had adenocarcinoma of gallbladder, 6 had adenocarcinomatous type of non-small cell lung cancer, and 2 had small cell lung cancer, 12 had infiltrating breast carcinoma, and 2 had ovarian cancer. Four patients were excluded because they developed VTE during the period of study. Detailed monitoring upon admission and prior to any cancer-related intervention and on a weekly basis post-intervention (chemotherapy, radiation or surgery) for up 18 weeks were carried out. The most important natural inhibitors of abnormal coagulation (PC, PS, and AT), and D-dimer and prothrombin activation peptide F1 +2 as markers of the status of fibrinolytic and coagulation systems were studied in these group of patients prior to any form of therapy. These markers were repeatedly measured with each treatment course and their results were correlated with other markers of tumour prognosis.

Statistical Analysis: The statistical analysis was performed by two-way analysis of variance (ANOVA) comparing the markers of haemostasis activation at admission to post-admission for each subject and with respect to average control values; differences were considered significant at p value of 0.05 or less. The Cox proportional hazards regression model was used to adjust the treatment effect on survival for baseline factors in all patients with solid tumours, and for the subgroups with and without metastasis. The variables identified as potentially important predictors, and recorded at the time of enrolment, included age, gender, ECOG performance status, smoking status (ever vs. never), type of cancer treatment (radiation vs. none, chemotherapy vs. none), and major primary site (breast, lung, colorectal, pancreas, and gynaecologic). D-dimer, prothrombin fragment 1 + 2 (F1 + 2), antithrombin, protein C, and protein S activities were also measured at the onset of diagnosis, pre- and post surgery, and after the completion of each chemotherapy course. Their levels were correlated with the levels of tumour markers.
Findings and Discussion: The changes in clotting parameters in patients with different types of solid tumours were evaluated, and the correlation between these parameters and tumour stage, changes in known characteristic tumour markers, imaging findings, and the changes in haemostatic parameters which occur with different types of therapeutic intervention were assessed. The markers of hypercoagulability were monitored from the time of initial presentation and during each planned visit when the patients received the due cycle of treatment. Our main focus was on specific abnormalities or changes of the haemostatic parameters in this group of patients with different types of solid malignancies. And, because it is not possible to accurately predict those with cancer who will develop thrombosis, the results of this prospective study can be used as additional clinical evidence to recommend routine thrombo-prophylaxis is cancer patients. It is very important to mention that the magnitude of risk for development of venous thromboembolic complication for a given anti-tumour therapy is sufficiently great, and the thromboprophylaxis method is safe and effective.

We studied the prognostic values of F1+2, D-dimer, and natural inhibitors of abnormal coagulation in this group of patients with solid tumours, however, no convincing data have thus far identified one of these hypercoagulability markers as a reliable prognostic marker, except F1+2 which has been shown to correlate with advancing disease and tumour burden. Parallel with the haemostatic parameters, we also measured the characteristic tumour markers; in all cases, there was a direct correlation between changes in the haemostatic parameters, radiological imaging findings, and tumour markers (e.g., rise in D-dimer or F1+2 was associated with a drop in AT, PC, and PS, which was directly correlated with a rise in characteristic tumour markers and a progression of the malignant diseases in radiological imaging findings).

In cases of breast and ovarian cancers (12+2 patients), data on the plasma levels of D-dimer, F1+2, PC, PS, and AT illustrated excellent correlation with the tumour volumes, and tumour markers CA15.3, CA125, respectively. The correlation between haemostatic parameters, radiological findings, tumour stage, and the characteristic tumour markers were analyzed. It was clearly demonstrated that consumption of natural inhibitors of abnormal coagulation (AT, PC, PS) was significantly reduced (their levels were improved or normalized after start of treatment) with commencement of different
therapeutic interventions. In parallel, the level of D-dimer and F1+2 as markers of activated clotting cascade was markedly decreased. These changes in haemostatic system were associated with regression of tumour volume and size which were assessed by characteristic tumour markers and imaging studies, respectively. In 14 patients with breast and ovarian cancer, the improvement in haemostatic abnormalities and regression of tumour size were durable in more than 90% of cases with a follow-up period reaching 55 months.

In 16 patients with colorectal carcinoma (CRC), similar findings were observed. The levels of naturally occurring anticoagulants were almost normalized in all cases shortly after surgical resection and start of systemic chemotherapy and subsequently the values of hypercoagulable parameters were significantly reduced as a result of different therapeutic interventions. And, all the 16 patients with CRC are alive 45-50 months after the end of their treatments.

In case of patients with gastric and lung cancer, similar response was documented at the initial presentation and start of therapy both in term of improvement of haemostatic abnormalities and that of tumor size (regression of tumour size), but all those responses were of short duration. Our explanation for this short response is that; patients with gastric and lung cancer usually present and diagnosed when the primary tumour is of large size, and it had already disseminated. The improvement of haemostatic parameters was more prominent in patients with non-small-cell lung cancer compare to those with small-cell lung.

The results of changes in haemostatic parameters from this small cohort of patients in our study are in agreement with the results of previously published multiple clinical trials. It is worth mentioning, that this direct correlation between changes in haemostatic system and response of tumour to different therapeutic interventions is mostly observed in patients with adenocarcinomatous type of cancer. The tumour markers which were used in assessment of response in our study were those which are recommended by different guidelines of assessment of clinical response in patients with solid tumours. These tumour markers are not tumour-specific with exception of those in ovarian, breast, and prostate cancers and to a lesser extent in colorectal carcinoma where they can be (are) used as a useful tool for both diagnosis and follow up of these patients and also to assess
the efficacy of the treatment. Additionally, the extent of hypercoagulability parameters which were evaluated in this cohort of patients reflect a broad spectrum combination of known markers of coagulation cascade activation and each of these markers was used separately in previous studies and reports.

To the best of our knowledge, so far there has not been any report or study in which such a broad combinations of different hypercoagulable parameters have been used. In addition, the frequency of measurements of haemostatic parameters was very high and all these values were closely monitored and correlated with those of imaging findings and characteristic tumour markers plus the very long duration of follow-up.

Finally, we attempted to describe the current theory about the pathophysiology of the hypercoagulable status in cancer patients, and we also tried to discuss whether or not to screen elder patients (patients above age of 45 years) with idiopathic deep venous thrombosis for an underlying malignancy, and whether this would be potentially beneficial to patients and to the ongoing arguments regarding economic background for prophylactic and therapeutic strategies in cancer patients.

We hope that a better and more scientific understanding of these mechanisms (to be explored by further randomized clinical trials) will ultimately lead to the development of more targeted treatments to prevent and to treat thromboembolic complications in cancer patients. Effective and safe antithrombotic therapy- the mainstream in prophylaxis and treatment of thromboembolism- remains very challenging clinical task in cancer patients- a population with high rate of treatment failure, haemorrhagic and thromboembolic complications recurrences and relapses. We also hope that guidelines for antithrombotic treatment in cancer patients may also have a positive effect on the process of tumour growth and metastasis. Based on the findings from this small cohort of patients, we may conclude that antithrombotic therapy might interfere with various processes involved in cancer development, growth and dissemination.

These results might be useful as basis for future larger scale trials in which additional markers of hypercoagulable status will be evaluated in order to identify the most sensitive marker with highest prognostic impact on patients’ survival. The significant finding of the
study in which a direct correlation between hypercoagulability markers and tumour stage was confirmed, can be further assessed in future trials to compare the efficacy of different doses of low molecular weight heparins and to determine the effect of LMWHs on tumour progression. In cancer patients with good prognosis and longer life expectancy, the treatment with LMWHs could result in survival benefit.

I would like to take this opportunity to thank all those who helped me completing this work over the past 5-6 years and in particular my family, Professor Shaker A. Mousa, Professor Hajna Losonczy, friends and colleagues. I sincerely thank them all and I wish them all the success they richly deserve. I also thank my family for being there for me whenever I needed them and in all circumstances.
List of publications

3. H Losonczy, M David, **H Alizadeh**. Longitudinal analysis of fibrinolysis in healthy volunteers, Perfusion 7 (Suppl.2): 19-24, 1994 **IF : 0.173**

4. M David, H Losonczy, **H Alizadeh**. "Good and Bad" responders to stimulation of fibrinolysis in healthy volunteers, Thrombos. Haemostasis 73 (Suppl.), 1147-1147, 1995 (abstract) **IF : 1.684**

22. M Ellis, B Al-Ramadi, U Hedstrom, **H Alizadeh**, V Shammas, J Kristensen. Invasive fungal infections are associated with severe depletion of circulating RANTES, *Journal of Medical Microbiology* (2005), 54, 1017-1022 *IF: 2.484*

25. M Ellis, U Hedstrom, B Al-amadi, **H Alizadeh**, J Kristensen, S Kshirsagar, T Blaschke, D A Stevens, L Klingspor, L Poughias. Pharmacokinetics and efficacy of 3 mg/kg/day versus 10 mg/kg on day 1 followed by 5 mg/kg on days 3 and 6 of liposomal amphotericin B (Ambisome) in febrile neutropenia. Abstract for the 8th Congress of the European Association for Clinical Pharmacology and Therapeutics. In press (In *European Journal of Clinical Pharmacology*) *IF: 2.298*
Bevezetés: A trombózis jól ismert és gyakori komplikáció a daganatos betegeknél, és jelentősen hozzájárul e betegségek morbiditáshoz és mortalitáshoz. A trombózis előfordulása szaporodik terápiás beavatkozások - műtétek és radiokemoterápia - során. Előfordul spontán, műtétek után, sugárkezelés után és gyógyszeres daganatellenes kezelések során. Első jele lehet egy malignus betegségnek. A vénás tromboembólia kockázatának mértéke jól ismert a daganatsebészethez, ahol előfordulása kétszer gyakoribb, mint a nem daganat miatt operáltak betegek esetében. A vénás tromboembólia a leggyakoribb szövődmény a daganatos betegségekben, és a második leggyakoribb halálak a daganatos betegek körében (1, 2). A daganatos betegség típusától, valamint a kezeléstől függően a betegek akár 60 százalékában lép fel vénás tromboembólia. Bár a daganatnövekedés és a véralvadás aktiválása közötti szoros kapcsolat Armand Troussseau professzornak az idopátiás vénás tromboembólia és a rejtett daganatokról szóló klinikai összefüggés első leírásaiból 1865 óta ismert, csak az utolsó két évtized hozott jelentős előrelépést e területen. Ma jól ismert, hogy a daganatos betegeknél a trombózis klinikai megjelenése nagyon sokrétű lehet, a lokalizált trombózistól a disszeminált intravaszkuláris koagulációig. Ezen túl szinte minden daganatos betegben jelen van a véralvadás szubklinikai aktivációja, úgynevezett hiperalvadási állapot, akár a trombózis tünetei nélkül. Számos patogenetikai faktort azonosítottak, ezzel jeleztve, hogy a daganatos betegségekben a véralvadás aktiválása egy komplex jelenség, mely a véralvadási rendszer több különböző útvonalát érinti, emellett daganatsejtek és vér alakos elemek, vérlemezkék, monociták és endotélségek közötti interakcióit is.

Tézisemben a daganatos betegségek során fellépő trombózis patogenézisét, a daganatos betegek trombózishajlamát, a véralvadási paraméterek változásait, ezek viszonyát a betegség prognózisához, valamint a trombózis megelőzésének lehetőségeit vizsgálom és tárgyalom.

A tanulmány célja: E prospektív tanulmány célja a különböző nem hematológiai daganatok (szolid tumorok) során létrejövő véralvadási paraméterváltozások értékelése, valamint e paraméterek változása és a daganatstádium, a képalkotási leletek és jellemző tumor markerek közötti összefüggés vizsgálata. Vizsgálatunkban főként e betegcsoportok
véralvadási rendellenességeire, valamint ezek és a betegség prognózisának összefüggéseire összpontosítottunk. Ezen túl vizsgáltuk és tárgyaluk a daganatos betegek trombózis profilaxisát.

A tanulmány indoklást szolgáltat a véralvadásgátlók alkalmazására a tromboembóliás szövődmények prevenciójában, mely a daganat progresszióját is megváltoztathatja. A beválasztási kritériumok szövettani diagnózist, részletes képalkotáson alapuló pontos staging-et, és a fokozott véralvadási markerekkel interferáló gyógyszerek szedésének mellőzését foglalták magában. A tanulmány felépítése és az eredmények értékelése tükrözte korábbi tanulmányok megállapításait, azonban ezen tanulmány egynél több véralvadási paramétert vizsgált, a korábbiaknál részletesebb értékelést lehetővé téve a daganatos betegek véralvadási rendszerét tekintve.

A nemek arányában mutatkozó mérsékelt különbségen kívül az előre meghatározott beválasztási kritériumoknak megfelelő betegek vizsgálatakor a kóros alvadékonysági paraméterek szorosan korreláltak a daganat progressziójával és a jellemző tumormarkerek emelkedésével. A véralvadási paraméterekkel párhuzamosan a jellemző tumormarkereket is mértük. Mindegyik vizsgált esetben direkt korreláció állt fenn a véralvadási paraméterek változása, a tumormarkerek és a képalkotási leletek változása között. Például emelkedett D-dimer, F 1 + 2, valamint csökkenő AT, PS, PC egyenesen korrelált a tumormarkerek emelkedésével, és a progressziót mutató képalkotási leletekkel. A vizsgálatba bevont betegek korábban semmilyen kezelést nem kaptak. Ezen kívül nem lehetett tromboembóliás eseményük az előző 12 hónap során, nem szedtek semmilyen heparin származékot, orális véralvadásgátlót, vagy trombocita aggregáció gátlót.

Távoli áttétek gyanúja kizáró okként szerepelt. Az elmúlt hat hónap során alkalmazott hormonkezelés ugyancsak kizáró ok volt. Kóros vese- és májfunkciók esetén a beteget nem választottuk be. A kritériumoknak 54 beteg felelt meg. Két esetben nyelőcső adenocarcinoma, 6 esetben gyomorrák, 16 esetben vastag- és végbélrák, 4 esetben exocrin hasnyálmirigydaganat, 2 esetben epehólyag adenocarcinoma, 6 esetben nem-kissejtes tüdőrák adenocarcinomája, 2 esetben kissejtes tüdőrák, 12 esetben invazív emlőrák, valamint 2 esetben petefészekdaganat. Négy beteg kizárásra került a tanulmány során fellépő vénás tromboembólia miatt. Részletes monitorizálás történt felvételkor, az
összes, a kezeléssel összefüggő intervenció előtt, és heti gyakorisággal az intervenció után (kemoterápia, radioterápia, műtét) 18 héten keresztül. A kezelés minden formáját megelőzően ebben a betegcsoportban tanulmányoztuk a kóros véralvadás legfontosabb természetes inhibitorait (PC, PS és AT), valamint a fibrinolitikus és véralvadási rendszer állapotának markereként a D-dimert és az F 1+2 protombin aktiváló peptidet. E markereket ismételten mértük minden kezelés során, majd ezeket a daganat prognózisának egyéb markereivel összevetettük.

Statisztikai analízis: A statisztikai analízist két utas variáció analízissel (ANOVA) végeztük, összehasonlítva a véralvadási markereket a felvétel és ezt követő időszak során az összes szempont szerint átlagos kontrollértékeket alapul véve. Az eltéréseket szignifikánsként értékeltük 0,05, vagy ennél alacsonyabb p-érték esetén.

A Cox arányos kockázat regresszió-modellt használtuk a szolid tumoros betegek túlélésére gyakorolt hatás vonatkoztatásában áttétes és nem áttétes alcsoportonként. A besorolás során potenciálisan fontos prediktorként azonosított és feljegyzett változók: életkor, nem, ECOG teljesítménystátusz, dohányzás (valaha vs. soha), daganatkezelés fajtája (besugárzás történt vs. nem történt, kemoterápia történt vs. nem történt), és a kiindulási hely (emlő, tüdő, vastag- és végbél, hasnyálmirigy, nögyőgyászati). A diagnózis felállításakor, műtét előtt és után és minden kemoterápiás ciklus után mértük a D-dimer, protrombinfragment 1 + 2 (F 1+2), antitrombin, protein C és protein S aktivitásokat. Ezek szintjét összevetettük a tumormarkerek szintjével.

Eredmények és megbeszélés: Megvizsgáltuk különböző szolid daganatos betegeknél a véralvadási paraméterek változásait, ezen paraméterek és a betegség stádiumának összefüggéseit, az ismert jellemző tumormarkerek változásait, képalkotási leleteket és a különböző terápiás beavatkozások során fellépő véralvadási paramétereket. Ellenőriztük a fokozott alvadékonyság markereit az első és minden további tervezett vizit során, miután a betegek aktuális kezelésüket megkapták. Főként a különböző szolid tumoros betegek véralvadási paramétereinek specifikus változásairól, vagy rendellenességeire összpontosítottunk. És mivel pontosan nem lehet megjósolni, hogy mely daganatos betegben fog trombózis fellépni, e prospektív vizsgálat járulékos klinikai
evidenciaként szolgálhat a daganatos betegek rutin trombózis-profilaxisának javaslatában. Szükséges megemlíteni, hogy a daganat ellenes kezelés során fellépő vénás tromboemboliás szövődmények kockázatának nagyságrendje kellően magas, a trombózis megelőző módszer pedig biztonságos és hatékony. Megvizsgáltuk az F 1+2, a D-dimer és a kóros vérálvadás természetes gátlóinak prognosztikai értékét a szolid daganatos betegek e csoportjában. Mindazonáltal ez időben nem áll rendelkezésre meggyőző adat ezen kóros alvadékonysági markerek, mint megbízható prognosztikai faktorok tekintetében (144), kivétel az F 1+2, mely kimutatottan korrelál a súlyosbodó betegséggel és a daganatmennyisséggel. A vérálvadási paraméterekkel párhuzamosan a jellemző tumormarkereket is mértük. Minden esetben direkt összefüggés mutatkozott a vérálvadási paraméterek, a képalkotói eredmények és a tumormarkerek változásában (pl.: emelkedő D-dimer vagy F 1+2, csökkenő AT, PC és PS értékekkel járt együtt, mely direkt összefüggést mutatott a jellemző tumormarkerek emelkedésével, valamint a daganatos betegség progressziójával és annak radiológiai jeleinek változásával). Az emlő és petefészek daganatok esetében (12+2 beteg) a plazma D-dimer, F 1+2, PC, PS és AT szintjeinek adatai kitűnő korrelációban álltak a daganat tömegével, és a TA 15.3, valamint a CA 125 tumormarkerrel.

Analizáltuk a vérálvadási paraméterek, radiológiai leletek, tumorstádium és a jellemző tumormarkerek összefüggéseit. Egyértelműen kimutattuk, hogy a kóros vérálvadás természetes gátlóinak (AT, TC, TS) kimerülése szignifikánsan csökken (szintjük emelkedett, vagy normalizálódott a kezelés megkezdése után) a különböző terápiás beavatkozások alkalmazásával. Ezzel párhuzamosan az aktivált vérálvadási lánc markereként a D-dimer és az F 1+2 szintje jelzetten csökkent. A vérálvadási rendszer ezen változásai összefüggést mutattak a daganatmértéfogat és méret csökkenésével, melyeket a jellemző tumormarkerek és képalkotó vizsgálatok segítségével vizsgáltunk. A 14 emlő- és petefészekdaganatos beteg vérálvadási rendellenességeinek javulása és a daganatméret csökkenése összevethető volt az esetek több mint 90 százalékában az 55 hónapot felölelő követési időszak felett. 16 vastag- és végbéldaganatos beteg (CRC) esetén az eredmények hasonlóan bizonyultak. A természetesen előforduló vérálvadásgátlók szintjei a mütétet követően, a szisztémás kemoterápia megkezdésével csaknem normalizálódtak minden esetben, miközben a kezelések eredményeként a kóros
alvadékonyság paraméterei szignifikánsan csökkentek. 45-50 hónappal kezelésük befeljezése után mind a 16 vastag- és végbélvagyonos beteg életben van.

A gyomor- és tüdőrákos betegek esetében hasonló változásokat észleltünk az első megjelenéskor, és a kezelés megkezdésekor. Mind a vérvalvadási rendellenességek, mind a daganatméret változása (csökkenése) tekintetében, de ezek rövid ideig tartottak. Ezt azzal magyarázzuk, hogy a gyomor- és tüdőrákos betegek esetében a diagnózis felállításakor a daganat mérete nagy, és már szoródott a szervezetben. A vérvalvadási paraméterek javulása a nem kisbetes tüdőrákos betegekben szembetűnőbb volt, mint kisbetes tüdőrákos esetében. A vérvalvadási paraméterek változásának eredményei e kis betegcsoportban egyeznek a korábban közölt számos klinikai tanulmányéval. Érdemes megemlíteni, hogy a vérvalvadási rendszer változásai és a különböző kezelések daganatokra gyakorolt hatása közti összefüggéseket leggyakrabban adenocarcinoma típusú daganatok esetében figyelhetjük meg. Tanulmányunkban azokat a tumormarkereket használtuk a terápiás válás vizsgálatára, melyeket a különböző ajánlások javasolnak a szolid daganatok kezelése során fellépő nyomonkövetésére.

E tumormarkerek nem tumorspecifikusak. Ez alól kivétel a petefészek-, emlő- és prosztatákrá, valamint kisebb mértékben a vastag- és végbélrák, ahol használható úgy a diagnózis, mint a kezelés hatékonyságának lemérése során. Az e betegcsoportban vizsgált kóros alvadékonysági paraméterek a vérvalvadási lánc aktivációjának ismert széles spektrumának kombinációja, melyek egyenként voltak korábbi vizsgálatok és beszámolók tárgyai.

Legjobb tudomásunk szerint ez ideig nem készült vizsgálat vagy jelentés, melyben a különböző kóros alvadékonysági paramétereket ilyen széles kombinációban vizsgálták. Ezen kívül a vérvalvadási paramétereket különösen nagy gyakorisággal mértük, értéküket szorosan monitoroztunk és összevetettük a képalkotói leletekkel és jellemző tumormarkerekkel, mindezt nagyon hosszú utánkövetéssel. Végül megkíséreltünk a daganatos betegek kóros vérvalvadási állapotának körélettantánát a jelenlegi teoriából leírni. Tárgyaluk az idősebb (45 év feletti) betegek idiopatiás mélyvéns trombózisának szűrését, esetleges malignitás irányában, vizsgálva ennek potenciális hasznát a betegekre nézve. Megvitattuk a profilaktikus és terápiás stratégiák gazdasági vonatkozásait a daganatos betegek esetében.
Az eredmények hasznosak lehetnek nagyobb mértékű jövőbeli vizsgálatok alapjaként, melyekben a kóros alvadékonysági állapot további markereit kutatják a legérzékenyebb marker fellépése érdekében, melynek a legmagasabb impaktja van a betegek túlélésére. A vizsgálat szignifikáns eredménye, mely bizonyítja a kóros véralvadási markerek és a tumorstádium közötti direkt korrelációt, további tanulmányok során vizsgálható a különböző dózisú alacsony molekulású heparinok hatékonyságának összehasonlítására és ezek daganatprogresszióra gyakorolt hatásának megállapítására. A jó prognózisú, jó életkilátású daganatos betegeknél a LMWH kezelés túlélésjavulást eredményezhet.