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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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ABSTRACT 

As in other species, exogenous administration of ghrelin, an endogenous ligand for 

the GH secretagogue receptors can stimulates feeding behaviour and GH secretion in 

the sheep. However the importance of endogenous ghrelin for these two functions as 

well as its central or peripheral origin remained to be established. In this study, CSF 

ghrelin concentrations were measured in five anoestrous ewes and found to be more 

than 1000-fold lower than circulating plasma levels, in keeping with the even lower 

concentration in hypothalamic as compared to abomasum tissue extracts. CSF and 

plasma ghrelin levels were measured every 10 minutes over a 6 hours sampling period 

in 5 unanesthetised ovariectomised-estradiol implanted ewes. Mean CSF ghrelin 

concentrations were 1400-fold lower than circulating plasma levels. Cluster analysis 

indicated that CSF ghrelin levels were markedly pulsatile with a greater number of 

peaks than plasma ghrelin.  Pulsatility parameters were closer for GH and CSF ghrelin 

than between GH and plasma ghrelin. Plasma ghrelin and GH levels were 

significantly correlated in three out of five ewes but CSF ghrelin and GH in one ewe 

only.  Half of the CSF ghrelin episodes were preceded by a ghrelin peak in plasma 

with a 22 min delay. Cross-correlations between plasma GH and plasma or CSF 

ghrelin did not reach significance but a trend towards cross-correlation was observed 

from 20 to 0 min between plasma and CSF ghrelin. At 09h00, when food was returned 

to ewes, voluntary food intake did not elicit a consistent change in plasma or CSF 

ghrelin levels. In contrast, a peripheral ghrelin injection (1 mg, i.v.) immediately 

stimulated food intake, feeding behaviour, and GH secretion. These effects were 

concomitant with a more than ten-fold increase in plasma ghrelin levels while CSF 

ghrelin values  only doubled 40 to 50 minutes after the injection. This suggests that 

peripherally-injected ghrelin crosses the blood brain barrier but only in low amount 
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and with relatively slow kinetics when compared to its effects on GH release  and 

food intake. Taken together, these results support the notion that, in the 

ovariectomised-oestradiol implanted sheep model, peripheral ghrelin injection rapidly 

induces GH secretion, food intake and feeding behaviour, probably by acting on 

GHS-R1 receptors located in brain regions in which the blood brain barrier is not 

complete  such as, for instance,  the arcuate nucleus. 
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INTRODUCTION 

Ghrelin, originally characterised from rat stomach as an endogenous ligand of the 

Growth-Hormone-Secretagogue Receptor subtype 1a (GHS-R1a) (1), rapidly attracted 

an enormous interest as the first peripheral orexigenic hormone (2,3). Ghrelin and 

GHSR receptors are expressed in many peripheral tissues and areas of the central 

nervous system and ghrelin can exert several neuroendocrine, metabolic and non 

endocrine functions in addition to the stimulation of GH secretion and appetite (4). 

These include stimulation of energy metabolism and adipogenesis, of gastric motility 

and acid secretion, influence of pancreatic and other endocrine secretions, modulation 

of anxiety and sleep patterns, hemodynamic and cardiovascular actions.     Circulating 

ghrelin is likely to be mostly derived from stomach and gastrointestinal tract 

enteroendocrine cells but different intrahypothalamic neuronal networks have been 

recently described in mouse (5) rat (6, 7) and sheep (8). Thus, the central or peripheral 

origin of the ghrelin involved in the release of GH and initiation of food intake 

remained to be established. The aim of this work was to study the dynamic 

concentration of plasma and CSF ghrelin in relation to spontaneous GH secretion and 

food intake, and after peripherally administration of ghrelin. We took advantage of the 

oestradiol-replaced ovariectomised sheep model on which serial sampling of blood 

and cerebrospinal fluid (CSF) can be obtained for several hours in conscious animals 

without any interfering effects due to blood loss, immobilization stress or steroid 

variations (9). Ghrelin concentrations in central and peripheral tissues of ewes were 

first defined. Thereafter, the patterns of endogenous ghrelin secretion were measured 

in CSF in the third ventricle and plasma either on the endogenous hormone or after 

administration of the exogenous peptide, in relation with GH secretion profiles, food 

intake and feeding behaviour. 
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MATERIAL &METHODS 

Animals  

   Experiments were conducted using mature Ile de France ewes during the anestrous 

season. Animals were maintained under normal husbandry conditions at the INRA 

(Nouzilly, France) and all experimental procedures were performed in accordance 

with local animal regulation (Authorization N° A 37801 at the French Ministry of 

Agriculture). Animal protocols were submitted to ethical approval of a local 

committee. 

Experiment I 

In a preliminary experiment, performed in anoestrus (March) ewes, ghrelin 

concentrations were measured in the brain and gut tissues of four adult ewes (Ile de 

France breed 5-9 years old, 40-60 kg weight). They were killed by exsanguination, 

between 9h00 and 11h00 am, by a licensed butcher in an official slaughterhouse, 

located close to the building (less than 100 meters) where the animals were kept 

during the experiment. Gut and brain tissues were rapidly dissected [between 5 

minutes (brain) and 15 minutes (gut) after the death of the animals]. The 

hypothalamus was divided into three parts, according to the sheep brain atlas (10): 

rostral (frontal planes, A33-A30), medial (A29-A26) and caudal (A25-A22), each 

tissue sample was 10 mm wide (5 mm each side of the sagittal plane) and 8 mm high 

from the ventral edge of the brain. Ghrelin was immediately extracted in boiling 

acetic acid 2M with P-hydroxymercuri-benzoic acid (PHMB, 1mM Sigma St Louis 

USA) for 10 min and homogenised. Proteins were assayed on the homogenate. 

Supernatants were lyophilised and stored at –80°C until used. 
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Experiment II 

Five Ile de France ewes (2-3 years old, 50-60 kg weight) were used. Two months 

before the experiment, animals were ovariectomised, under deep anaesthesia (induced 

by pentobarbital 12,5mg/kg and maintained by3% isoflurane) and a silastic tubing, 

packed with 10 mm crystalline 17 ß-oestradiol, was inserted under the skin to produce 

a plasma level of the steroid of 1-2pg/ml (11) to suppress endogenous steroid 

variations which could interfere with GH secretion.  Simultaneously a third ventricle 

cannula was also implanted in the vicinity of the hypothalamic structures involved in 

energy metabolism regulation to collect cerebrospinal fluid (CSF) as previously 

reported (9, 12).  Briefly, the head was positioned in a stereotaxic frame (la precision 

cinematographique , Paris, France) and a radio-opaque liquid was injected in the 

lateral ventricle. Frontal and lateral X-rays were then taken which gave specific 

landmarks of the ventricular system. From the X-rays, the cannula (made with a 

stainless steel luer-lock needle, od 1.2mm; id, 0.86 mm, length 55mm, Elite, Paris, 

France) was aimed approximately 2mm above the infundibular recess of the third 

ventricle.  When the tip of the cannula entered the third ventricle, cerebrospinal fluid 

flowed freely back up the tube. After confirmation of the position of the cannula by a 

lateral X-ray, it was then fixed to the skull of the ewe with dental acrylic cement and 

closed by a plastic stopper.  

On the day before sampling, a catheter (od, 2.1 mm, Intraflon 2, Biotrol, Paris, 

France) was rapidly inserted into the jugular vein of the ewes. Animals were then 

placed in contiguous pens that prevented them from turning around, but allowed them 

to lie down and freely move forward or backward. Animals were also able to see and 

smell each other in order to avoid isolation stress.  On the next day, a polyethylene 

catheter (od, 0.7 mm; id, 0.3 mm; Biotrol, Paris, France) was inserted inside the 
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cannula and blocked with a stopper so that the tip (distal end) projected 0.5 mm 

beyond the end of the cannula.  The proximal end of the same catheter  was connected 

to a peristaltic pump (Minipuls 2, Gilson, Villier-le-Bel, France) and CSF was 

continuously withdrawn from the third ventricle (flow rate 3µl min) and collected.  

Integrated CSF samples were collected manually at ten minutes interval for six hours 

(8h30–14h30). Using the jugular catheter, blood samples were collected remotely 

without disturbing the animals, simultaneously to each CSF samples.  

 One hour after initiation of the collection, animals received their usual daily food 

intake, ie a condensed meal (300g of corn maize barley mixture) and 15 min later 

straw was given ad libitum. This diet provides 1800 kcal of metabolisable energy, 

corresponding to 100% estimated maintenance energy requirements (INRA, 1989). In 

basal conditions, the condensed meal is totally eaten in 5 min or even less, then 

animals eat straw during the first 2 hours, drink water and then lie down and eat very 

little during the 4-5 following hours for rumination. On the consecutive day, an 

injection of ghrelin (Neomps, Strasbourg, France,1mg/ml, iv) was given at 14h30, 

during the rumination period, and blood and CSF samples were collected 30 min 

before the injection and one hour after the injection. Feeding behavior was roughly 

recorded before and after ghrelin administration by counting the percentage of 

animals eating between two blood/CSF sampling period (i.e. 30 min before ghrelin 

administration and one hour after ghrelin administration). Blood samples were 

collected in glass tubes containing EDTA (1mg/ml) and PHMB (1mM, final 

concentration) and centrifuged 20 min at 3000 rpm. Plasma were stored at –80° C 

until assays. CSF were collected in glass tubes containing PHMB (1mM final) and 

frozen  at –80° C until use.   
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Experiment III 

In experiment II, ghrelin appeared to increase food intake in all animals but as CSF 

and blood samples were simultaneously collected feeding behavior could not be 

clearly recorded. In order to get a better description of ghrelin effect on food intact, an 

additional experiment was performed a year later during the anoestrous season. Two 

days before the experiment, seven ovariectomised oestradiol-treated ewes (similar to 

animals used in Exp. II) were placed in contiguous pens in which they received their 

usual daily meal at 8:30 am (300g corn maize barley mixture) with free access to 

water and straw (placed in a plastic container). On the day of the experiment, the same 

feeding procedure was applied (daily meal at 8:30 am) and at 1:00 pm, the ewes 

received an injection of ghrelin (1mg/ml, iv) or saline (NaCl, 9%) in a random order. 

Immediately after, the quantity of straw in each plastic container was weighted. On 

the following day, the same experiment was performed, ghrelin or saline injections 

being switched so that each animal could be its own control. Ewes were continuously 

filmed, without the presence of any observer, using a digital camera (Sony, Paris, 

France). After fifty minutes of recording, the camera was stopped and the remaining 

quantity of straw weighted. Three parameters were used to evaluate feeding 

behaviour:  the time the animals spent the head in the straw container with mastication 

activity, the latency of this behaviour, and the number of times it was observed. In the 

same manner, the number of vocalizations and water intakes, and the time spent lying 

down were recorded. The duration of each behaviour was expressed as percentage of 

time by 5-min periods. 

 

Assays.  
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Tissue extracts, plasma and CSF were assayed by a competitive solid phase enzyme 

immunoassay using a rabbit polyclonal antibody raised against the 1-11 N-terminus 

N-acylated fragment for acylated ghrelin (1). Sheep N-acylated ghrelin was used as 

standard and human N-acylated ghrelin (Neomps Strasbourg, France) coupled to 

acetyl-cholinesterase as tracer (Spibio, Montigny le Bretonneux, France). Antibodies 

were used at a final dilution of 10-7 and mixed with standard ghrelin or samples 24h 

before adding the enzymatic tracer in order to optimize their binding capacity; 

detection range was between 10 & 400 pg/ml. Non-acylated rodent and human 

ghrelin,  rodent  preproghrelin 37-21, 80-97 and 102-117 and human, rat and sheep 

obestatin (Neomps Strasbourg, France) did not cross-react significantly in the assay 

(% cross reactivity <0.1%). Serial dilutions of sheep plasma and tissues in assay 

buffer paralleled the standard curve (Figure 1). Out of ten consecutive assays, intra 

and inter-assay variabilities were 5 and 6%.  

Plasma were assayed for Ovine GH using NIDDK-oGH-I-5 as standard and NIDDK-

anti--oGH-3 antiserum. NIDDK-oGH-I-5 was iodinated with Chloramine T and 

purified on G 50 Sephadex column (20 x 0,9) just before the radioimmunoassay. 

Sensitivity was 4 –150 ng/ml. All samples were assayed in the same assay. Intra-assay 

variability was 2.1%. 

Tissues proteins were assayed by the method of Bradford (Bio-Rad, München, 

Germany). 

 

-Statistical analysis: 

Ghrelin and GH pulse analysis was performed using the Cluster 8 program (9: Cluster 

analysis: a simple, versatile, and robust algorithm for endocrine pulse detection.) with 

the t value set to 2 to maintain false positive rates under 1%. Number of points for a 
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nadir were set to 1 and 2 respectively. This method (13) is largely insensitive to 

unstable baseline hormone variations and is not adversely affected by modifying pulse 

amplitude widths, or configurations within the endocrine series. Moreover, its simple 

statistical basis renders it minimally dependent on assumptions about rates of 

hormone secretion or debradation Approximative entropy (ApEn), a quantification of 

serial irregularity (14), was calculated using the MC-ApEn program using R-value set 

to 0.2 and number of MC cycle set to 1000. These programs are available from : 

http://mljohnson.pharm.virginia.edu/home.html. 

Cross-correlations between plasma GH and plasma ghrelin or CSF ghrelin or between 

plasma and CSF ghrelin were performed according to Mulligan et al (13). Briefly, 

paired serial data were correlated at each of various time lag of interest ranging from –

100 to +100 min. Cross correlation r values were calculated in each subject at each of 

multiple time lags. Statistically significance were determined by converting individual 

r values to standard deviate scores (z scores) by dividing each original r value by its 

corresponding standard deviation. The latter was determined by Monte Carlo 

estimations, in which the order of each values in each paired was shuffled 500 times 

and the corresponding r values was used to compute a corresponding z score. 

Correlations between plasma GH and plasma ghrelin or CSF ghrelin or between 

plasma and CSF ghrelin were evaluated statistically by the Kolmogorov-Smirnov test 

under the null hypothesis that z scores matching the individual r values at any given 

lag are randomly and normally distributed about a zero mean with unit standard 

deviation. 

Values are given as means ± SEM, and statistical analysis was performed by ANOVA 

and paired t test using the JMP IN 5.1 software (SAS Institute Inc., Cary, NC). 
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RESULTS 

Tissue and biological fluid ghrelin levels. As shown on table 1, abomasum ghrelin 

contents were the highest, being almost thirty fold higher than in small intestine and 

more than five thousand fold higher than in adeno- or neuro-hypophysis, the anterior 

and medial hypothalamus, the caudal hypothalamus, mamillary bodies and above, 

being even lower. Ghrelin levels were not detectable in olfactory bulb, cortex, 

hippocampus and cerebellum. 

Ghrelin levels were measurable in CSF while a control peptide, somatostatin, was not 

detectable (Grouselle et al, unpublished results). Ghrelin levels in CSF (mean daily 

average values ± sem, 22 ± 4 pg/ml, n= 5) were more than a thousand times lower 

than in plasma (30,646 ± 3,476 pg/ml).  

Individual pulsatile profiles of ghrelin and GH secretion are illustrated on figure 2. 

Parameters of ghrelin secretion in CSF were compared by cluster analysis with those 

of ghrelin and GH in plasma (Table 2). The number of peak episodes, duration and the 

interval between peaks varied considerably amongst individual sheeps. They were 

different for plasma and CSF ghrelin, the latter being closer to GH values. ApEn 

values were similar for the three parameters. Eleven out of the 23 Ghrelin secretory 

episodes in plasma (48%) were followed by a peak in CSF ghrelin (delay 21.8±5.9 

min) but the reverse was true for only 8 out of 24 peaks (33%). 

At the individual level, plasma and CSF ghrelin or plasma GH and CSF ghrelin 

concentrations were significantly correlated in one ewe out of 5 while plasma ghrelin 

and GH levels were significantly correlated in three out of five ewes. When all data 

from the 5 ewes were pooled,  the highest correlation was found for plasma ghrelin 

and GH (r2= 0.281, p<0.0001), followed by plasma and CSF ghrelin (r2= 0.173, 

p<0,0001) and CSF ghrelin and plasma GH (r2= 0.123, p<0.0001) (figure 3). 
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However, cross-correlations between plasma GH and plasma or CSF ghrelin did not 

reach significance (figure 4A et B). A trend towards cross-correlation was observed 

from 20 to 0 min between plasma and CSF ghrelin (figure 4C). 

 

Kinetics of ghrelin injection effects on plasma GH and ghrelin levels, CSF 

ghrelin levels and food intake.  

No consistent change in plasma or CSF ghrelin occurred when food was reinstalled in 

the morning (ie 18h after former removal of food from the animals) prior to ghrelin or 

saline injections.  

Following i.v. injection of 1 mg ovine ghrelin, plasma GH levels immediately 

increased and remained elevated until the end of the sampling period (figure 5A). 

Plasma ghrelin also increased immediately after the injection, up to 200 ng/ml, and 

returned to baseline in 45 minutes. In contrast, CSF levels were only increased two-

fold, reaching a maximum 55 minutes after the injection (figure 5B). Administration 

of ghrelin induced also a rapid food intake and GH stimulation, beginning 5 to 10 min 

following the injection, and lasting for 30-40 minutes (figure 5A and 5C). Food intake 

at this time of the day is unusual because it is the period of rumination as observed for 

the same animals the day before.  A small increase in food intake was also observed 

40 to 50 minutes after ghrelin injection when the peptide concentration reached its 

highest level into the CSF  but GH concentrations had not returned to baseline levels 

(figure 5C). 

 

Effects of ghrelin injection on feeding behaviour.  

Fifty-five min after ghrelin administration, the cumulative food intake (Fig. 6a) was 

greater (p<0.001) (60.7 ± 2.9 g) than after saline injection (4.2 ± 2.97 g). Ewes put 
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their heads in the straw with a mastication activity significantly (p<0.01, Fig. 6b) 

quicker after ghrelin (3.86 ± 1.96 min) than saline (10.83 ± 1.88 min) injections. 

Moreover, ewes spent more than twenty percent of the time masticating, with their 

head in the straw, during the 55-min following ghrelin administration (Fig. 6c). The 

percentage of time spent lying down (Fig. 6d) or the number of vocalizations and 

water intakes (data not shown) were the same in the ghrelin- or saline-injected 

animals. 

 

DISCUSSION 

The main findings of the present study is that, in ovariectomised oestradiol-implanted 

ewes, 1) endogenous CSF ghrelin levels display pulsatile variations 2) plasma ghrelin 

and GH seem more significantly correlated than CSF ghrelin and GH, 3) Voluntary 

food intake is not strictly related to spontaneous changes in ghrelin levels either in the 

CSF or in the plasma, and 4)  peripherally injected ghrelin does cross the blood brain 

barrier but only in small amount (< 1/1,000 of the injected dose) and relatively slow 

kinetics when compared to its effects on GH release, food intake and feeding 

behaviour.  

 

In intact anoestrous ewes, the highest levels of ghrelin were found in the abomasum 

and, to a lesser extent, small intestine while lower amounts were present in other parts 

of the digestive tract. Such observations are in agreement with previous 

immunohistochemical studies in sheep tissues indicating that ghrelin-immunoreactive 

cells are abundant in the oxyntic glands in the abomasum (16, 8), a structure from 

which digestive enzymes are released, corresponding to the stomach of monogastric 

animals. This is also in agreement with data obtained in monogastric species like rats 
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or human in which ghrelin immunoreactive cells were described in the stomach (17). 

The main difference between sheep and rat or human tissues is found in the upper 

small intestine because only few immunoreactive cells were found in the two later 

species compared to the relatively high level measured in the sheep. 

 

Ghrelin immunoreactivity was also visualised in hypothalamic regions such as the 

median eminence, arcuate and ventromedial nuclei as well as the ependymal lining of 

the third ventricle (8). Such immunohistochemical data only provide evidence of the 

presence of the peptide, not its secretion. Thus, CSF ghrelin concentrations are more 

than a thousand time lower than in the plasma. The difference is even higher for 

hypothalamic and gut ghrelin tissue concentrations. Moreover, it should be noted that 

the Ile de France breed has a fat phenotype and, in Corriedale ovariectomised ewes, 

plasma ghrelin concentrations is significantly greater in fat than in lean animals (18). 

Thus, the effects of adiposity remains to be tested on CSF ghrelin levels as yet.  

 

In the ovariectomised oestradiol-treated ewe model (which may not be representative 

of the intact female or castrate or intact male animal), both CSF and plasma ghrelin 

secretions are pulsatile but the frequency of the episodes is higher in the CSF. Forty-

eight % of CSF ghrelin episodes are preceded by 22 min by an episode in the plasma 

and there is an overall correlation between CSF and plasma ghrelin levels. Also, CSF 

ghrelin increased around 30 minutes after an iv ghrelin injection as confirmed by the 

cross-correlation measurements. Taken together, this indicates that peripheral ghrelin 

can either cross the blood brain barrier and enter the CSF or that it triggers some 

unknown mechanisms  which induce local release in the CSF. Thus, the question of 

the origin of CSF ghrelin remains an open one. Thus, the comparison between 
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iterative ghrelin measurements in plasma and CSF and GH in plasma is not sufficient 

to clearly assign a peripheral rather than a central origin for the peptide involved in 

the stimulation GH secretion. Concerning GH, The pulsatile pattern of secretion as 

observed herein, is closely reminiscent of the one previously reported in 5 

ovariectomised ewes for which the GH pulse interval was 62 min. (19). In this 

previous study, a significant association occurred between GHRH in hypothalamic 

portal plasma and GH secretory pattern though not between GHRH and somatostatin 

or GH and somatostatin. Another study, conducted on 7 unanesthesised ewes, 

reported 33% of peak coincidence between somatostatin in hypothalamic portal 

plasma and GH secretory profiles (20). In the present work, we observed a significant 

cross-correlation between plasma ghrelin and GH in three out of five ovariectomised 

oestradiol-treated ewes but a correlation between plasma GH and CSF ghrelin was 

recorded in one ewe only. Moreover, delays of 35 minutes were observed between 

half of GH secretory episodes and plasma ghrelin peaks. This delay is compatible 

with the ghrelin kinetics to enter the CSF after intravenous injection. This may 

indicate that, in addition to GHRH/somatostatin interactions, endogenous peripheral 

ghrelin has to enter the brain, possibly at the level of the arcuate nucleus, to act on 

hypophysiotropic neurones involved in the pulsatile pattern of GH secretion. 

However, since 37% of plasma ghrelin episodes are not followed by a GH secretory 

peak, the stimulatory action of ghrelin on GH in sheep may depend on particular 

conditions, ie the neurohormonal tonus at a given time point (12, 21). However, cross-

correlation between plasma GH levels and plasma or CSF ghrelin concentrations did 

not reach significance. Thus, if endogenous peaks of ghrelin are unrelated to GH 

pulses but the overall concentrations is, this could indicate that ghrelin is supportive 

for GHRH and/or GH release in a tonic endogenous role. One way to verify that the 
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apparent relationship between ghrelin and GH secretion is causal would be by central 

blockade of ghrelin receptors.  

 

Concerning food intake, probably because of the food regimen of the animals, we did 

not observe in ovariectomised oestradiol-treated Ile de France ewes on their regular 

feeding schedule the transient ghrelin surge occuring just before feeding previously 

described in Suffolk rams on programmed feeding (22,23). However, 1 mg ghrelin i.v. 

quickly stimulated food intake and feeding behaviour. The positive effect of ghrelin 

injections on feeding behaviour likely implies motivational processes that may depend 

on GHSR1A located not only in the hypothalamus but also in brain reward circuits 

(24). Peripheral ghrelin passage though the blood brain barrier has been demonstrated 

in mice, from blood to brain but also from brain to blood for human ghrelin (25). In 

this last study, mouse ghrelin, which differs from human ghrelin by two amino-acids 

only, was a much better substrate for the brain-to-blood than for the blood to brain 

transporter. According to the limited changes in CSF ghrelin as observed in our 

experiment, the passage from blood to brain of ovine ghrelin, which differs from 

human or mouse ghrelin by eight amino-acids mostly located in its C-terminal 

portion, also appears minimal. Nevertheless, the apparent cross-correlation between 

plasma and CSF ghrelin is not incompatible with the hypothesis that CSF levels are 

derived from the periphery. It should also be mentioned that the blood brain barrier 

comprises both a blood-CSF barrier (mainly choroids plexus) and a blood-brain 

barrier composed of endothelial cells of cerebral blood vessels in the mediobasal 

hypothalamus. Thus, ghrelin could enter MBH neurones and act before appearing in 

the CSF. At any rate, in ovariectomised Corriedale ewes, whether administered 

intracerebroventricularly or iv, ghrelin up to 100 µg did not affect voluntary food 
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intake (26). In contrast, even lower concentrations were readily effective on GH 

secretion. Taken together with our data and those of Sugino et al (17), these findings 

may indicate that ghrelin is more potent to stimulate GH secretion than food intake in 

ovariectomised oestradiol-treated female ewes but that a different situation occur in 

rams. Such a sex-difference has recently been reported in rats (27) At any rate, the 

present results confirm, for the ovariectomized oestradiol-implanted sheep model,, 

that peripheral ghrelin injection rapidly induces GH secretion, food intake and feeding 

behaviour, probably by acting first on GHS-R1 receptors located in brain regions in 

which the blood brain barrier is not complete  such as, for instance, the arcuate 

nucleus. 
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FIGURE LEGENDS 

Table 1: Comparison of gut and brain ghrelin contents.  

Concentrations are expressed in pg of acylated ir-ghrelin / mg protein (means ± sem, 

n=4). 

 

Table 2: Parameters of ghrelin secretion in CSF and plasma and GH in plasma by 

cluster and ApEn analysis.  

Data are derived from 5 ovariectomised ewes sampled every 10 minutes for 6 hours. 

They are given in ng/ml for GH and plasma ghrelin and in pg/ml for CSF ghrelin. 

a, aa, p<0.05 and 0.01 vs CSF ghrelin; b p<0.05 vs GH. 

 

Figure 1: Representative  Ghrelin ELISA binding curves and sample parallelism. 

Rostral hypothalamus (dotted line) and CSF (blue line) samples were diluted from 1/1 

to 1/8 fold. Plasma samples (red dots) were diluted from 1/50 to 1/800 fold. Small 

intestine (open black dots)  samples were diluted from 1/800 to 1/12,800. 

 

Figure 2: Individual profiles of CSF and plasma acylated ir-ghrelin secretion as 

compared to GH secretory profiles in oestradiol-treated ovariectomised ewes.  

Peaks as identified by cluster analysis, are indicated by an asterisk. Broken line 

indicates the time (09h00) when a daily meal was provided to the animals. This meal 

is usually totally eaten in the first thirty minutes thereafter. No consistent change in 
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the five ewes was observed  for GH and plasma ghrelin or CSF ghrelin levels 

following this voluntary food intake. 

 

Figure 3: Correlations between CSF and plasma acylated ir-ghrelin and plasma GH in 

individual samples from 5 oestradiol-treated ovariectomised ewes. 

 

Figure 4: Median cross-correlation coefficient (r values) between plasma GH and 

plasma ghrelin (A) or CSF ghrelin (B), or between plasma and CSF ghrelin (C).  

+ : Kolmogorov-Smirnov one sample test using normal (0.00, 1.00) distribution : 

P<0.01. 

 

Figure 5: Effects of peripheral sheep acylated-ghrelin injections on the kinetics of 

plasma GH (A), plasma and CSF ghrelin (B) levels, and feeding behavior expressed 

as the percentage of animals spent the head in the straw container with mastication 

activity by 10 min. periods (C).  

Data are mean ±sem of 6 ovariectomised oestradiol-treated ewes. Acylated-ghrelin (1 

mg) was injected at 14h30. 

 

Figure 6: Effects of sheep acylated ghrelin peripheral injections on feeding behaviour 

of 7 ovariectomised oestradiol-treated ewes. Data (mean + SEM) are given as the 

quantity of straw eaten during the 55 minute period in saline (black bar) or ghrelin 

(white bar) treated animals (a), the latency to start to eat (b) and the percentage of  

time spent the head in the straw container (c) or spent lying down (d) by 5-minute 

periods. 
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Figure 6 
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Table 1: Tissue ghrelin concentrations 

Data are mean ± sem of 4 ewes. 

Tissues  

(n=4) 

Ghrelin concentrations 

(pg/mg protein) 

 

Rostral hypothalamus 

Median hypothalamus 

Caudal hypothalamus 

 

Neurohypophysis 

adenohypophysis 

 

Rumen 

Reticulum 

Omasum 

Abomasum 

Small intestine 

 

4±1 

3±1 

3±1 

 

13±5 

23±2 

 

10±1 

19±1 

13±5 

112,030±8,870 

4,226±919 

 

 

Table 2: Parameters of ghrelin secretion in CSF and plasma and GH in plasma by 

cluster and ApEn analysis.  

Data are derived from 5 ovariectomised oestradiol-treated ewes sampled every 10 

minutes for 6 hours. They are given in ng/ml for GH and plasma ghrelin and in pg/ml 

for CSF ghrelin. 

a, aa, p<0.05 and 0.01 vs CSF ghrelin; b p<0.05 vs GH. 

N=5 Peak 
number 

Peak 
Interval 
(min) 

Peak 
Duration 

(min) 

Peak 
amplitude 

Peak 
nadir 

ApEn 

Ghrelin 
CSF 

(pg/ml) 

4.6±0.5 58.0± 5.6 34.2±3.3 38.2±8.5 12.4±2.8 1.150±0.014 

Ghrelin 
Plasma 
(ng/ml) 

3.2±0.2 
a, b 

102.6± 7.6 
aa 

63.6±5.3 
aa 

37.3±3.8 26.5±3.1 1.097±0.040 

GH 
plasma 
(ng/ml) 

4.6±0.5  76.0±13.7 46.0±9.6 38.4±8.0 17.2±3.5 1.022±0.099 
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