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Abstract

Spectral-Domain Optical Coherence Tomography (SD-OCT) is a widely used method to observe retinal layers and follow
pathological events in human. Recently, this technique has been adapted for animal imaging. This non-invasive technology
brings a cross-sectional visualization of the retina, which permits to observe precisely each layer. There is a clear expansion
of the use of this imaging modality in rodents, thus, a precise characterization of the different outer retinal layers observed
by SD-OCT is now necessary to make the most of this technology. The identification of the inner strata until the outer
nuclear layer has already been clearly established, while the attribution of the layers observed by SD-OCT to the structures
corresponding to photoreceptors segments and retinal pigment epithelium is much more questionable. To progress in the
understanding of experimental SD-OCT imaging, we developed a method for averaging SD-OCT data to generate a mean
image allowing to better delineate layers in the retina of pigmented and albino strains of mice and rats. It allowed us to
locate precisely the interface between photoreceptors and retinal pigment epithelium and to identify unambiguously four
layers corresponding to the inner and outer parts of photoreceptors segments. We show that the thickness of the various
layers can be measured as accurately in vivo on SD-OCT images, than post-mortem by a morphometric analysis of
histological sections. We applied SD-OCT to different models and demonstrated that it allows analysis of focal or diffuse
retinal pathological processes such as mutation-dependant damages or light-driven modification of photoreceptors.
Moreover, we report a new method of combined use of SD-OCT and integration to quantify laser-induced choroidal
neovascularization. In conclusion, we clearly demonstrated that SD-OCT represents a valuable tool for imaging the rodent
retina that is at least as accurate as histology, non-invasive and allows longitudinal follow-up of the same animal.
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Introduction

Rodents are widely used animal models for the study of the

retina, both physiologically and during degenerative diseases. The

mouse and rat retinal anatomy is indeed similar in many aspects to

that of humans. In addition there is a wide variety of mouse strains

that reproduce many inherited retinal degeneration observed in

humans. In vivo, retinal function is usually evaluated by electro-

retinography [1]. This technique, although providing a reliable

functional index, does not allow assessing the actual degeneration

of the different neuronal layers in the retina. The most widely used

morphological approach in animal experimentation is histology on

transverse sections of the retina, on which it is possible to achieve

different quantifications and especially the thickness of retinal

layers. However, this technique has several drawbacks. First, it is a

rather tedious technique. Second, the fixation process can induce

artifacts causing contractions and/or expansions of tissue, which

then lead to significant measurement variability [2,3]. Third, this

technique is terminal by its nature, so it does not allow longitudinal

monitoring of animals. Transparency of ocular tissues has made

possible to develop alternative techniques, to directly visualize the

retina and longitudinally monitor the degeneration, such as

fundoscopy, confocal scanning laser ophthalmoscopy (cSLO) and

angiography [4,5]. Although these techniques allow visualizing the

posterior pole of the eye and identifying morphological abnor-

malities, they do not provide similar data to those obtained by

histology on cross-sections of the retina. The only technique that

can provide very similar images to transverse histological sections

of the retina is spectral-domain optical coherence tomography

(SD-OCT) [6]. This method is non-invasive, fast and produces

high-resolution cross-sectional images, which are generated by the

interference between a reference optical path and another one that
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is reflected back from the eye [7,8]. In humans, this technique is

currently the gold standard for longitudinal monitoring of retinal

degeneration in a large number of pathologies such as age-related

macular degeneration [9,10] and diabetic retinopathy [9,11]

among others. This technique has logically been applied to animal

species used in ophthalmic research, and equipments suitable for

the rodents’ eye examination have been developed. The Bioptigen

840 nm HHP is one of the most used. It provides ‘‘en face’’ views of

the posterior segment of the eye and scans of transverse sections

[12]. These scans are used to measure the various nuclear layers of

the retina: inner nuclear layer (INL), outer nuclear layer (ONL)

and ganglion cell layer (GCL). However, there are still uncertain-

ties about the histological correspondence of the outermost layers

of the retina, i.e. the inner and outer segments of the

photoreceptors (PR), the retinal pigment epithelium (RPE) and

the choriocapillaris.

In this report, we describe a method for averaging SD-OCT

images of the rodent retina that allows a better analysis of fine

structures in the outer layers. The higher signal-to-noise ratio of

these images allowed us to define in rats and mice interfaces

generated by the outer limiting membrane (OLM), the inner

segment, the outer segment, the RPE and Bruch’s membrane, the

choriocapillaris and the large choroidal vessels. In addition, the

comparison of pigmented and albino animals underlined the effect

of melanin pigment on SD-OCT imaging. The comparison of

these results with histological data demonstrates that averaging of

SD-OCT images allows thickness quantification of the various

retinal layers with greater precision. Finally, we show that the SD-

OCT acquisition method we have developed allows to identify

discrete events or retinal lesions induced by different types of light

insults.

Material and Methods

Animals
Six to 12 weeks-old C57BL/6JRj or C57BL/6NRj (with rd8

mutation) or BALB/cJ mice were purchased from Janvier SA (Le

Genest-Saint-Isle, France). Rhodopsin2/2 (rho2/2) mice were

provided by Dr Janis Lem (Tufts University, Boston, MA, USA).

Mice were maintained at the Institut de la Vision animal facility

under pathogen-free conditions. All animals were housed in a

12 h/12 h light/dark cycle with food and water available ad

libitum.

Ethics statement
All manipulations were performed in accordance with the

association for research in vision and ophthalmology (ARVO)

Statement for the Use of Animals in Ophthalmic and Vision

Research. In addition, all the experimental procedures were

permitted by the Institutional Animal Care and Use Committee,

‘‘Comité d’éthique pour l’expérimentation animale Charles

Darwin’’ (ID Ce5/2010/044), which also specifically approved

the study reported in the present manuscript.

SD-OCT imaging
Pupils were dilated with tropicamide (Mydriaticum, Théa,

France) and phenylephrin (Néosynephrine, Europhta, France).

Animals were then anesthetized by inhalation of Isoflurane

(Axience, France) and placed in front of the SD-OCT imaging

device (Bioptigen 840 nm HHP; Bioptigen, North Carolina,

USA). Eyes were kept moisturized with 9% NaCl during the

whole procedure. Image acquisitions were performed using the

following parameters: Rectangular scan/1000 A-scan per B-scan/

100B-scan 1 frame or 4B-scans 16 frames. Acquired images were

saved as .avi files and processed with Fiji software (available at

http://fiji.sc/Fiji). Firstly, image artifacts due to breathing

movements were eliminated by using the StackReg Plugin. Then,

using ‘‘Z project’’ function set to ‘‘Sum Slices’’, each movie was

converted into a single image by compiling a Z-projection of all

images of the movie. Thus, the final image results from the

maximum projection of sixteen or one hundred images sampled

every micron, which means 16 or 100 microns retinal width

depending on the selected parameter. This manipulation elimi-

nates most of the noise observed on individual images, which

helped to show very clearly the reflectance differences present at

the level of the outer retina (Fig. S1, Supporting Information S1

and S2). Thickness of retinal layers were manually measured on

this maximum projection image in an axis perpendicular to the

individual layers and 500 mm from the centre of the optic nerve

using Fiji software [13].

Subretinal injections. Animals were anesthetized by intra-

peritoneal injection of ketamine (50 mg/kg, Virbac, France) and

xylazine (10 mg/kg, Bayer HealthCare, Germany), and their

pupils were dilated as described previously. Subretinal injections

were performed with a 33-gauge blunt needle mounted on a 10 ml

syringe (Hamilton, USA). Briefly, a hole was created through the

sclera/choroid/retina layers using the sharp tip of a 32-gauge

needle, and the blunt needle of the Hamilton syringe was then

gently inserted into the vitreous through this hole. The needle was

then pushed further into the vitreous until crossing the retina to

the opposite side of its entry site into the eye. After injection, the

needle was left in place for an additional 10 seconds to prevent

leakage of the injected fluid. A successful subretinal injection was

checked by visualization of subretinal bleb. Mineral oil (Sigma-

Aldrich, France) was injected in the subretinal space to visualize

boundary between PR and RPE.

Light-challenge model
This protocol was adapted from our previous study [14]. Briefly,

3-month-old C57BL/6JRj mice were adapted to complete

darkness for 12 hours and pupils were daily dilated with 1%

Atropin (Novartis, France). Animals were then exposed to green

LED light (4500 Lux, JP Vezon équipements, France) for 4 days

and subsequently kept in cyclic 12 h/12 h normal animal facility

conditions. SD-OCT was performed 3, 7, 14 and 21 days after

light exposure.

Laser-photocoagulation and choroidal
neovascularization (CNV) scar quantification

Three-month-old male C57BL/6JRj mice were anesthetized by

intraperitoneal injection of ketamine (50 mg/kg) and xylazine

(10 mg/kg). Pupils were fully dilated with 1% tropicamide.

Coverslips positioned on the mouse cornea were used as a contact

lens. Laser-photocoagulations (400 mW, 50 ms, 100 mm spot size)

were performed 1 to 2 disc diameters away from the papillae with

a Laser Yag 532 Eyelite (Alcon, USA) mounted on a slit lamp (BQ

900, Hagg-Streitt, France). Laser photocoagulation and rupture of

Bruch’s membrane were confirmed by immediate observation of a

bubble. Choroidal neovascularization (CNV) was quantified 7

days after Laser impact and reported as volume units (mm3).

Volumetric data obtained from SD-OCT sequences, viewed and

analyzed with Imaris software (Bitplane, CT, USA) were

compared to data obtained by direct measures of oblate spheroid

CNV from the same SD-OCT sequences treated by FIJI software

as described before. Extrapolated volume was calculated with the

following formula (4/3p*a*b2)/2 (in which a is the polar radius

and corresponds to the measure along the vertical axis and b is the

equator radius and corresponds to the horizontal axis). To
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determine the power of the extrapolation method compared to 3D

rendering method, a linear regression was performed with

GraphPad software (San Diego, USA).

Histology. Animals were euthanized by CO2 inhalation.

Before enucleation, a mark with an ophthalmic cautery was made

at the nasal quadrant of the cornea, so as to subsequently

differentiate upper, lower, nasal and temporal quadrants. For

Historesin-sections processing, eyes were fixed by immersion in

0.5% glutaraldehyde and 4% paraformaldehyde in PBS for

2 hours, dehydrated by successive ethanol baths, and included in

Historesin (Leica Microsystems, Germany). Oriented sections

(5 mm thickness) were cut with a microtome (Microm HM 355S,

Thermoscientific, USA) and stained with toluidin blue. Slides were

scanned with a Nanozoomer 2.0 HT (Hamamatsu, Japan). Each

retinal layer was measured manually. For cryostat-sections

processing, eyes were fixed in 4% paraformaldehyde in PBS

overnight, cryoprotected at 4uC in successive solutions of PBS

containing 10, 20 and 30% of sucrose and embedded in a 10%

gelatine/30% sucrose solution, before rapid freezing in an

isopentane bath cooled to 240uC. Retinal sections (16 mm

thickness) were cut with a cryostat (Microm HM560, Thermo

Scientific, USA) and stored at 220uC until further use. For

nuclear labelling, sections were incubated 5 min with 4,6-

diamidino-2-phenylindole (DAPI, Sigma-Aldrich, France), rinsed

and mounted under coverslips with Mowiol reagent. ONL

thickness was then automatically quantified by a program specially

developed on Metamorph software package (Roper Scientific,

France), coupled to Nikon Eclipse Ti inverted microscope.

Statistics
GraphPad Prism 5 (GraphPad Software, San Diego, USA) was

used for data analysis and graphic representation. All values are

reported as medians. Statistical analysis is described in legend

of each figure. All statistic tests have been implemented with an

a-risk of 0.05. Parametric tests have been used after assessment of

normal data distribution with the d’Agostino and Pearson

omnibus normality test. Statistical significance has been indicated

in each figure as following: * = p-value,0.05, ** = p-value,0.01,

*** = p-value,0.001, **** = p-value,0.0001.

Results

Accuracy and reliability of SD-OCT imaging
At first, we wanted to verify that the averaging technique that

we used to remove most of the noise from SD-OCT images

allowed us to obtain a data quantification that was at least as

informative as the one obtained through histological sections. We

compared SD-OCT and histological morphometric measures

obtained pre- and post-mortem in the same animals. All measures

were done at identical locations in SD-OCT images and in

corresponding histological sections. As illustrated in Fig. 1A and B,

while SD-OCT data showed very similar thicknesses in temporal

and nasal sides, more important variations could be observed in

histology for the same sample. Moreover, significant differences

have been observed between SD-OCT measures and histological

ones for the entire retina and some individual layers (Fig. 1C). This

could be explained by the treatment of samples for histology.

Indeed, we tried to keep our histological samples in good

conditions, but it is clear that the extraction and treatments of

samples can be responsible of a variation that cannot be excluded

in histology and which is preventable with SD-OCT. This

phenomenon could also be responsible of the lower reproducibility

observed here by histology compared to SD-OCT (Fig. 1D). This

highlights that SD-OCT allows a great confidence in data

reproducibility simply because in vivo measurements avoid

potential variations due to sample treatments necessary for ex vivo

measurements.

Figure 1. Retinal layer thickness measures in C57BL/6JRj wild-type mice by SD-OCT and histology. Retinal thickness in nasal and
temporal sides in SD-OCT image (A) and in corresponding histological section (B). (C) Measures of retinal layers thickness by SD-OCT and histology in
C57BL/6JRj mice, n = 11, Mann Whitney test. (D) Retinal thickness evaluated by SD-OCT and histology in C57BL/6JRj mice. Each pair of point
represents the whole retina thickness of the same eye measured with SD-OCT (blue dots) and histology (orange dots). IPL: inner plexiform layer, INL:
inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer, OLM: outer limiting membrane, RPE: retinal pigmented epithelium. SD:
Standard Deviation. Scale bars: 50 mm.
doi:10.1371/journal.pone.0096494.g001
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Retinal outer layers characterization in rodents
Although SD-OCT allows observation of all retina layers, the

outer part of the sensory retina remains less precisely described

than the inner one. In order to delimit these outer layers, we

compared SD-OCT images to histological sections in pigmented

and albino animals. Firstly, we improved the quality of images

generated by SD-OCT (Fig. S1) to align layers detected on SD-

OCT images and histological sections of the retina (Fig. 2A–D).

Comparison of histology and SD-OCT images in pigmented and

albino mice revealed the localization of the RPE and showed also

notable differences in the SD-OCT imaging of the choriocapillaris

(Fig. 2A–D). While in pigmented mice RPE and Bruch’s

membrane resulted in a white line and a black one from the

inner to the outer part of the retina, we observed the opposite in

albino mice (Fig. 2B and D), indicating that melanin is a major

factor of RPE reflectivity. Also, choroid and sclera appeared

clearly defined in albino mice, mainly because of a better light

penetration than in pigmented animals in which most of the light is

arrested by choroidal pigmentation. To confirm RPE localization,

we induced a retinal detachment by subretinal injection of 0.5 mL

of oil just before SD-OCT imaging. As expected, detachment

occured immediately internal of these above-mentioned retinal

layers in pigmented and albino mice (Fig. 2E and F). This line of

fractionation induced by the retinal detachment allowed us to

precisely define the outer boundary of the PR segments layer,

while the inner boundary was itself clearly defined by the outer

limiting membrane (OLM), which appeared as a thin hyper-

reflective line on the outer edge of the ONL. This allowed us to

conclude that the segments of the PR appear as four successive

bands of different reflectivity. The first two layers immediately

below the OLM presumably correspond to the PR inner segments

and the following two layers to the PR outer segments. As

expected, no difference could be evidenced at this level between

pigmented and albino mice. Based on these results, we can

therefore precisely locate the interface between the PR layer and

the RPE, and the bands corresponding to the inner and outer

portions of the segments (Fig. 2G–J). Analysis of pigmented and

albino strains of rats showed similar results (Fig. S2).

In vivo follow-up in the retina
After having established reliability of SD-OCT for imaging of

healthy retina, we wanted to show the usefulness of this technology

to characterize the occurrence of physiological or pathological

events in the rodent retina. Firstly, we studied degeneration of PR

in a retinitis pigmentosa mouse model. Rho2/2 mice are a retinal

degeneration model [15] that presents a loss of almost all

photoreceptors at post-natal day 90 (P90). We followed this

degeneration by SD-OCT from P21 to P180, and compared

quantification of INL and ONL thickness to those of C57BL/6JRj

control mice (Fig. 3A–D). While INL thickness variation was

equivalent between rho2/2 and control mice (Fig. 3E), ONL

thickness dramatically decreased until complete vanishing at P180

in rho2/2 mice (Fig. 3F). As expected, the same observation was

done by histology after DAPI labeling and automated measure-

ments (Fig. 3G). Nevertheless, values’ dispersion was far more

important with histological measures than with SD-OCT imaging.

This highlights that SD-OCT is a valuable tool for in vivo

monitoring of retinal degeneration in the same animal.

After improving SD-OCT image quality, and following in vivo

processes, we then questioned whether SD-OCT imaging might

also be useful to visualize discrete physiological or pathological

events. For example, we wondered if ‘‘rosettes’’ described in

C57BL/6NRj carrying the rd8 mutation in the crb1 gene [16],

were observable by SD-OCT imaging. As shown on Fig. 4A, we

Figure 2. Characterization of pigmented and albino retina
layers by SD-OCT. Histological sections of C57BL/6JRj pigmented
mouse retina (A) and BALB/cJ albino mouse retina (C). SD-OCT images
of pigmented mouse retina (B) and albino mouse retina (D). Retinal
detachment induced by subretinal oil injection in C57BL/6JRj pigment-
ed mouse (E) and BALB/cJ albino mouse (F). Schematic representations
of pigmented mouse outer retina (G) and albino mouse outer retina (I).
Zoom on pigmented mouse outer retina (H) and albino mouse outer
retina (J). GCL: ganglion cell layer, IPL: inner plexiform layer, INL: inner
nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer, OLM:
outer limiting membrane, IS: inner segments, OS: outer segments, RPE:
retinal pigmented epithelium, BM: Bruch’s membrane. Scale bar: 50 mm.
doi:10.1371/journal.pone.0096494.g002
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indeed easily evidenced these features on rd8 genotyped mice.

Another example is the light-challenge model, a type of light

exposition that we developed to study the relationship between

oxidative stress, neuroinflammation and photoreceptor apoptosis

in different mouse strains [14]. We thus monitored the changes

occurring in outer retinal structures during and after exposition to

toxic levels of light for 4 days, performed on C57BL/6Rj animals.

In albino animals, this type of exposition leads to a massive death

of the photoreceptors occurring through an apoptotic mechanism

[17]. However, this light regimen, which we call ‘‘light-challenge’’

instead of ‘‘light-damage’’, does not lead to such PR degeneration

in the pigmented animals used here. After 3 days of continuous

illumination (Fig. 4C panel D3), SD-OCT imaging showed layers

very similar to those of the control non-illuminated (Fig. 4B) even

if the white layer of outer segments seemed to disappear. At day 7

(i.e. 3 days after stopping continuous illumination) the two

different layers defining the outer segments were no longer

distinguishable (Fig. 4C panel D7 and Fig. S3). This phenomenon

was just temporary, because at D14 and D21, inner and outer

segments had regained their original appearance. One of the

hypotheses to explain this variation is a possible link with

inflammatory processes already described [14]. This observation

further confirmed the usefulness of SD-OCT imaging to monitor

in vivo the occurrence of discrete events in the rodent retina.

Finally, SD-OCT imaging can also provide detailed structure of

choroidal neovascularization (CNV) occurring above the RPE

(Fig. 5A) after laser photocoagulation. Laser-induced CNV indeed

mimics some major aspects of wet age-related macular degener-

ation [18]. We wondered whether extrapolated CNV volumes

obtained by direct quantification of SD-OCT images (after signal

integration as described in the methods section) were comparable

with volumetric data obtained from the same SD-OCT sequences

viewed and analyzed with Imaris software (Fig. 5C–F). Here we

showed that direct measures on SD-OCT sequences represented a

faster and reliable alternative to CNV analysis using a dedicated

3D rendering software (Fig. 5B). We sought here to provide a new

Figure 3. Characterization of a retinal degeneration mouse model by SD-OCT. SD-OCT images of control mice retina (A) and rho2/2 mice
retina (B) from post-natal day 21 (P21) to 180 (P180). Magnification (X2.4) of P21 and P180 control mice outer retina (C) and rho2/2 mice (D). (E)
Measures of INL thickness obtained from SD-OCT data in control and rho2/2 mice (P21: p = 0.0123; P180: p = 0.7125). (F) Measures of ONL thickness
obtained from SD-OCT data in control and rho2/2 mice (P21 and P180: p,0.0001). (G) Measures of ONL thickness obtained from morphometric
measurements on cryostat sections in control and rho2/2 mice (P15 and P180: p = 0.0022). Statistical significance of the difference between groups
was analyzed at the initial time-point (P15 or P21) and the latest time-point (P180) studied by Student’s T-test for E and F (n = 23 per group) and by
Mann Whitney test for G (n = 6 per group). IPL: inner plexiform layer, INL: inner nuclear layer, ONL: outer nuclear layer, OLM: outer limiting membrane,
RPE: retinal pigmented epithelium. SD: Standard Deviation. Scale bars: 50 mm.
doi:10.1371/journal.pone.0096494.g003
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procedure to optimize SD-OCT imaging and CNV quantification.

All together these data show that SD-OCT imaging is a powerful

tool to describe different phenomena affecting the retina and not

only reduction of layers thickness.

Discussion

During the last decade, SD-OCT imaging has taken a

prominent place in the clinic for the follow-up of patients with

retinal degeneration [19]. Application of this technology to rodents

has been developed more recently, in part probably because in first

intention histological tissue analysis seems more informative and

versatile. In this study, we aimed at investigating the specific

interest of SD-OCT for the study of rodent models of retinal

degeneration. We first developed a method for acquisition and

averaging of images that allowed to increase the signal to noise

ratio. With this method we could analyze on SD-OCT images the

nature of the different reflectance layers of the outer retina of

pigmented and albino strains of rodents. Comparison of the results

obtained after histological analysis or quantification of SD-OCT

imaging finally clearly demonstrated the accuracy and reproduc-

ibility of the latter for the quantification of retinal degeneration in

rodents. This was certainly due to tissue shrinkage or expansion

occurring during histological processing that was not consistent

from one sample to another or even within a given sample.

Fixation itself is the source of artifacts [3]. Thus, in our study, we

observed a tendency to tissue retraction with Historesin embed-

ding and microtome sectioning (Fig. 1), and rather a trend to

dilation following gelatin/sucrose embedding and cryostat sec-

tioning (Fig. 3). Similarly, Jiao and colleagues showed in a recent

study on rats that retinas processed by paraffin embedding

displayed a significant tissue retraction compared with those

treated by cryostat sectioning [20]. This clearly highlights one of

the advantages of SD-OCT imaging, which is to collect in vivo

data, allowing to monitor over time the same animal, and avoiding

potential variations due to sample treatments.

Interpretation of reflectance variations of the outermost retinal

and choroidal layers remains debated [21,22]. This is due to the

uncertainty that exists as to the exact boundary between the RPE

and PR and also the relatively noisy appearance of SD-OCT

images in rodents. In addition, the number of layers detected

between OLM and RPE through SD-OCT imaging (4 according

to our interpretation described below) do not match the number of

layers observed in histology (2, corresponding to the inner and

outer part of PR segments). We circumvented the first hurdle by

implementing an averaging of the acquisitions, which significantly

increased the signal-to-noise ratio compared to conventional

rodent SD-OCT images obtained with the Bioptigen 840 nm

HHP [23,24]. We then used an experimental artifice consisting in

detaching the neuroretina from the RPE by subretinal injection of

oil, to precisely locate the interface between the RPE and PR. This

allowed us to confirm the location of the inner segment and outer

segment (Fig. 2G and H) each corresponding to two bands of

different reflectance. This interpretation is consistent with that

recently proposed by Spaide and Curcio for the human peripheral

retina, obtained after comparison of histological findings from

dozens of publications with SD-OCT data [25]. For the inner

segment, the two bands most likely match to myeloid and ellipsoid

[26]. For the outer segment, the presence of two bands can be

explained by the microvilli of the RPE ensheathing only the most

peripheral part of the outer segment of the PR. In humans, these

microvilli can indeed extend for as long as half of the outer

segment [27]. The RPE and the PR layers are thus entangled into

one another, which may explain at least partly the poor contrast

observed by SD-OCT between these two layers. In contrast, the

basal pole of the RPE and the Bruch’s membrane appear perfectly

delineated. External to this structure, the presence of three layers

of different reflectance most likely corresponds to the choriocap-

illaris, choroid and sclera layers (Fig. 2G–J), although there is no

definitive clue allowing to clearly establish the boundaries of these

structures. Finally, the comparison between albino and pigmented

animals shows as expected that no reflectance difference is

observed in these two genetic backgrounds for the non-pigmented

cells layers. However, peripheral from the RPE, we observed a

greater light penetration and less defined boundaries in albino

animals (Fig. 2 and Fig. S2). In particular, the OCT imaging of the

choroid showed notable variations linked to the presence of

melanin: while whole choroidal thickness was better imaged in

Figure 4. SD-OCT imaging in other pathological models: rd8
mutation and light-challenge. (A) Typical ocular lesions of rd8
mutation in crb1 gene (C57BL/6NRj mice in which presence of the rd8
mutation was confirmed by genotyping). (B–C) SD-OCT follow-up of the
outer retina during a light-challenge in C57BL/6JRj mice. Control
unexposed three month-old mouse has a normal appearance with 4
bands of different reflectance corresponding to the PR segments (B).
Mice were then exposed to light during 4 days as described in the
‘‘methods’’ section and the retina was imaged by SD-OCT at day 3 (D3),
7, 14 and 21 after starting the illumination (C). The light-challenge leads
to a temporary abolition of the distinction between the two bands
forming the outer segment, with a peak at D7 (right panels:
enlargement of the area enclosed by a white box on the left view).
INL: Inner Nuclear Layer, ONL: Outer Nuclear Layer, IS: Inner Segments,
OS: Outer Segments. Scale bars: 50 mm.
doi:10.1371/journal.pone.0096494.g004
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albino eyes, the choroicapillaris was distinguishable only in

pigmented eyes.

Finally, a significant advantage of SD-OCT imaging compared

to conventional histological techniques when considering ethical

issues, is the ability to perform more easily longitudinal follow-up

of animal models. For example, for the study of the time-course of

retinal degeneration in rho2/2 mice, a total of only 12 animals is

in theory necessary for acquisition of SD-OCT data (n = 6 per

group), whereas 48 animals are needed for histology data (n = 6

per group). Thus, the use of SD-OCT imaging allows a very

significant gain in the amount of work needed to achieve a more

reliable result. Moreover, this technique is applicable to a large

number of pathological situations. It allows not only to detect

subtle variations in retinal layers thickness, reflecting a possible

degeneration, but also to highlight other phenomena, such as the

change in reflectance of the segments layers observed after

exposure of the animals to light-challenge, even with moderate

levels of light. Presumably an acceleration of phagocytosis of

photoreceptors discs and/or a phenomenon of photostasis

associated with inflammatory processes are causing these changes

in reflectance. In the CNV model, our goal was not to compare

benefits obtained from histological findings or SD-OCT images,

which have been previously discussed. Previous studies [20,28,29]

showed that CNV size or thickness follow-up using SD-OCT was

comparable with data obtained from histological sections. Here we

sought to provide a non-invasive and optimized tool to quantify

CNV. Based on integrated SD-OCT images, we propose a simple

method of calculation that allows a fast and reliable CNV

quantification comparable with 3D rendering. Thus, SD-OCT

imaging can not only accurately quantify retinal layers thickness,

but also highlight more subtle phenomena reflecting metabolic

changes in the tissue. However, the histology remains an

indispensable complement to the study of animal models due to

the versatility of the techniques that can be implemented

(histochemical staining, immunolabeling, in situ hybridization,

etc.) and the fact that histology gives access to a cellular resolution

allowing for example to quantify the number of rows of PR’s

nuclei in the ONL. In addition histology is useful when the

Figure 5. Quantification of laser-induced choroidal neovascularization (CNV) in C57BL6/JRj. (A) Laser-induced CNV (Yag 532 Eyelite
parameters: 100 mm, 50 ms, 400 mW) was visualized immediately after laser impact using SD-OCT imaging as described in the ‘‘materials and
methods’’ section. Based on this image, a CNV volume is extrapolated using the following formula (4/3p*a*b2)/2, in which a is the polar radius and
corresponds to the measure along the vertical axis and b is the equator radius and corresponds to the horizontal axis. (B) Linear regression showing
that data obtained from extrapolation or Imaris 3D reconstruction (described step by step hereafter) are statistically equivalent (r2 = 0,94, n = 8). (C)
Imaris software allows a 3D rendering of SD-OCT imaging. Data shown here arise from the same SD-OCT sequence than shown in panel A. (D) The
neovascularization volume, just above the RPE cell layer, was delimitating manually (representative white dotted line in one slice) in about 20 slices
(over 100) along z-axis to create a 3D mask. Based on this manual delimitation the Imaris software computed a 3D mask shown in yellow (E). The final
visualization, that allowed CNV volume quantification, was obtained after automated mask thresholding (F). OPL: Outer Plexiform Layer, RPE: Retinal
Pigmented Epithelium, CHO: Choroid. Scale bar: 50 mm.
doi:10.1371/journal.pone.0096494.g005
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peripheral retina is particularly affected, because this part of the

retina is barely accessible to SD-OCT imaging.

In conclusion, signal averaging of SD-OCT scans in rodent

increases its capacity to quantify the thickness of retinal layers with

a strong reproducibility. Moreover, it allows a better determina-

tion of reflectance’s correlation with anatomical structures of the

outer retina layers. All these features make of SD-OCT an ideal

tool for the exploration of various rodent pathological models that

can be followed-up longitudinally in the same eye.

Supporting Information

Figure S1 Enhancement of SD-OCT resolution by image
averaging. The fundus of a C57BL/6JRj mouse was imaged by

SD-OCT using the Bioptigen 840 nm HHP device. Individual

scans are relatively noisy and do not allow to precisely delineate

the different layers of the outer retina located peripheral to the

outer limiting membrane (A). After acquisition and averaging by

the ImageJ software of 16 images separated from each other by

1 mm, these layers appear much more clearly (B). Scale bar =

50 mm.

(TIF)

Figure S2 Comparison of SD-OCT images and histo-
logical sections of pigmented and albino rat retina.
Histological sections of Long Evans pigmented rat retina (A) and

Wistar albino rat retina (D). SD-OCT images of pigmented rat

retina (B) and albino rat retina (C). Zoom on pigmented rat outer

retina (E) and albino rat outer retina (F). GCL = Ganglion Cell

Layer, IPL = Inner Plexiform Layer, INL = Inner Nuclear Layer,

OPL = Outer Plexiform Layer, ONL = Outer Nuclear Layer,

OLM = Outer Limiting Membrane, IS = Inner Segments,

OS = Outer Segments, RPE = Retinal Pigmented Epithelium,

Bruch M = Bruch Membrane. Scale bar = 50 mm.

(TIF)

Figure S3 Eyes of 3 animals at day 7 of light-challenge.
Right and left panels represent respectively right and left eyes of 3

C57BL/6JRj mice at day 7 after starting of light-challenge (i.e. 3

days after stopping continuous illumination). Scale bar = 50 mm.

(TIF)

Supporting Information S1 SD-OCT.avi files before
processing with ImageJ.

(AVI)

Supporting Information S2 SD-OCT.avi files after pro-
cessing with ImageJ.

(AVI)
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