POTENTIAL ESTIMATES AND QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA
Quoc Hung Nguyen

To cite this version:
Quoc Hung Nguyen. POTENTIAL ESTIMATES AND QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA. 120p. 2014. <hal-00989464v2>

HAL Id: hal-00989464
https://hal.archives-ouvertes.fr/hal-00989464v2
Submitted on 10 Sep 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
POTENTIAL ESTIMATES AND QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA

Quoc-Hung Nguyen

Laboratoire de Mathématiques et Physique Théorique,
Université François Rabelais, Tours, FRANCE

September 10, 2014

Abstract

In this paper, we study the existence and regularity of the quasilinear parabolic equations:
\[u_t - \text{div}(A(x, t, \nabla u)) = B(u, \nabla u) + \mu \]
in \(\mathbb{R}^{N+1}, \mathbb{R}^N \times (0, \infty) \) and a bounded domain \(\Omega \times (0, T) \subset \mathbb{R}^{N+1} \). Here \(N \geq 2 \), the nonlinearity \(A \) fulfills standard growth conditions and \(B \) term is a continuous function and \(\mu \) is a Radon measure. Our first task is to establish the existence results with \(B(u, \nabla u) = \pm |u|^{q-1}u \), for \(q > 1 \). We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with \(B \equiv 0 \), under minimal conditions on the boundary of domain and on nonlinearity \(A \). Finally, due to these estimates, we solve the existence problems with \(B(u, \nabla u) = |\nabla u|^q \) for \(q > 1 \).

MSC: primary 35K55, 35K58, 35K59, 35E05; secondary 35K67, 42B37

Keywords: quasilinear parabolic equations; renormalized solutions; Wolff parabolic potential; Riesz parabolic potential; Bessel parabolic potential; maximal potential; heat kernel; Radon measures; uniformly thick domain; Reifenberg flat domain; decay estimates; Lorentz spaces; Riccati type equations; capacity

Contents

1 Introduction 2
2 Main Results 8
3 The notion of solutions and some properties 23
4 Estimates on Potential 29
5 Global point wise estimates of solutions to the parabolic equations 55
6 Quasilinear Lane-Emden Type Parabolic Equations 62
 6.1 Quasilinear Lane-Emden Parabolic Equations in \(\Omega_T \) 62
 6.2 Quasilinear Lane-Emden Parabolic Equations in \(\mathbb{R}^N \times (0, \infty) \) and \(\mathbb{R}^{N+1} \) 67

*E-mail address: Hung.Nguyen-Quoc@lmpt.univ-tours.fr
In this article, we study a class of quasilinear parabolic equations:

$$u_t - \text{div}(A(x, t, \nabla u)) = B(x, t, u, \nabla u) + \mu$$

(1.1)

in \mathbb{R}^{N+1} or $\mathbb{R}^N \times (0, \infty)$ or a bounded domain $\Omega_T := \Omega \times (0, T) \subset \mathbb{R}^{N+1}$. Where $N \geq 2$, $A : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function which satisfies

$$|A(x, t, \zeta)| \leq A_1|\zeta| \quad \text{and}$$

$$\langle A(x, t, \zeta) - A(x, t, \lambda), \zeta - \lambda \rangle \geq A_2 |\zeta - \lambda|^2,$$

(1.2)

(1.3)

for every $(\lambda, \zeta) \in \mathbb{R}^N \times \mathbb{R}^N$ and a.e. $(x, t) \in \mathbb{R}^N \times \mathbb{R}$, here A_1 and A_2 are positive constants, $B : \mathbb{R}^{N+1} \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is also a Carathéodory function and μ is a Radon measure.

The existence and regularity theory, the Wiener criteria and Harnack inequalities, Blow-up at a finite time associated with above parabolic quasilinear operator was studied and developed intensely over the past 50 years, one can found in [58, 44, 30, 48, 49, 25, 50, 60, 83, 75, 73]. Moreover, we also refer to [19]-[22] for L^p-gradient estimates theory in non-smooth domains and [63] Wiener criteria for existence of large solutions of nonlinear parabolic equations with absorption in a non-cylindrical domain.

First, we are specially interested in the existence of solutions to quasilinear parabolic equations with absorption, source terms and data measure:

$$u_t - \text{div}(A(x, t, \nabla u)) + |u|^{q-1}u = \mu,$$

(1.4)

$$u_t - \text{div}(A(x, t, \nabla u)) = |u|^{q-1}u + \mu,$$

(1.5)

in \mathbb{R}^{N+1} and

$$u_t - \text{div}(A(x, t, \nabla u)) + |u|^{q-1}u = \mu, \quad u(0) = \sigma,$$

(1.6)

$$u_t - \text{div}(A(x, t, \nabla u)) = |u|^{q-1}u + \mu, \quad u(0) = \sigma,$$

(1.7)

in $\mathbb{R}^N \times (0, \infty)$ or a bounded domain $\Omega_T \subset \mathbb{R}^{N+1}$, where $q > 1$ and μ, σ are Radon measures.

The linear case $A(x, t, \nabla u) = \nabla u$ was studied in detail by Fujita, Brezis and Friedman, Baras and Pierre.

In [18], showed that if $\mu = 0$ and σ is a Dirac mass in Ω, the problem (1.6) in Ω_T (with Dirichlet boundary condition) admits a (unique) solution if and only if $g < (N+2)/N$. Then, optimal results had been considered in [5], for any $\mu \in \mathbb{M}_b(\Omega_T)$ and $\sigma \in \mathbb{M}_b(\Omega)$:
there exists a (unique) solution of (1.6) in \(\Omega_T \) if and only if \(\mu, \sigma \) are absolutely continuous with respect to the capacity \(\text{Cap}_{2, q'} \), \(\text{Cap}_{G_{q'/q'}, q'} \) (in \(\Omega, \Omega_T \)) respectively, for simplicity we write \(\mu \ll \text{Cap}_{2, q'} \) and \(\sigma \ll \text{Cap}_{G_{q'/q'}, q'} \), with \(q' \) is the conjugate exponent of \(q \), i.e \(q^\prime = \frac{q}{q-1} \). Where these two capacities will be defined in section 2.

For source case, in \([6]\), showed that for any \(\mu \in \mathfrak{M}^+_b(\Omega_T) \) and \(\sigma \in \mathfrak{M}^+_b(\Omega) \), the problem (1.7) in bounded domain \(\Omega_T \) has a nonnegative solution if

\[
\mu(E) \leq C \text{Cap}_{2, q'}(E) \quad \text{and} \quad \sigma(O) \leq C \text{Cap}_{G_{q'/q'}, q'}(O)
\]

hold for every compact sets \(E \subset \mathbb{R}^{N+1}, O \subset \mathbb{R}^N \) here \(C = C(N, \text{diam}(\Omega), T) \) is small enough. Conversely, the existence holds then for compact subset \(K \subset \Omega \), one find \(C_K > 0 \) such that

\[
\mu(E \cap (K \times [0, T])) \leq C_K \text{Cap}_{2, q'}(E) \quad \text{and} \quad \sigma(O \cap K) \leq C_K \text{Cap}_{G_{q'/q'}, q'}(O)
\]

hold for every compact sets \(E \subset \mathbb{R}^{N+1}, O \subset \mathbb{R}^N \). In unbounded domain \(\mathbb{R}^N \times (0, \infty) \), in [30] asserted that an inequality

\[
u_t - \Delta u \geq u^q, u \geq 0 \quad \text{in} \quad \mathbb{R}^N \times (0, \infty), \tag{1.8}
\]

i. if \(q < (N + 2)/N \) then the only nonnegative global (in time) solution of above inequality is \(u \equiv 0 \).

ii. if \(q > (N + 2)/N \) there then exists global positive solution of above inequality.

More general, see [6], for \(\mu \in \mathfrak{M}^+(\mathbb{R}^N \times (0, \infty)) \) and \(\sigma \in \mathfrak{M}^+(\mathbb{R}^N) \), (1.7) has a nonnegative solution in \(\mathbb{R}^N \times (0, \infty) \) (with \(A(x, t, \nabla u) = \nabla u \)) if and only if

\[
\mu(E) \leq C \text{Cap}_{H_{q'/q'}, q'}(E) \quad \text{and} \quad \sigma(O) \leq C \text{Cap}_{G_{q'/q'}, q'}(O) \tag{1.9}
\]

hold for every compact sets \(E \subset \mathbb{R}^{N+1}, O \subset \mathbb{R}^N \), here \(C = C(N, q) \) is small enough, two capacities \(\text{Cap}_{H_{q'/q'}, q'}, \text{Cap}_{G_{q'/q'}, q'} \) will be defined in section 2. Note that a necessary and sufficient condition for (1.9) holding with \(\mu \in \mathfrak{M}^+(\mathbb{R}^N \times (0, \infty)) \setminus \{0\} \) or \(\sigma \in \mathfrak{M}^+(\mathbb{R}^N) \setminus \{0\} \) is \(q \geq (N + 2)/N \). In particular, (1.8) has a (global) positive solution if and only if \(q \geq (N + 2)/N \). It is known that conditions for data \(\mu, \sigma \) in problems with absorption are softer than source. Recently, in exponential case, i.e \(|u|^q u \) is replaced by \(P(u) \sim \exp(a u^q) \), for \(a > 0 \) and \(q \geq 1 \) was established in [61].

We consider (1.6) and (1.7) in \(\Omega_T \) with Dirichlet boundary conditions when \(\text{div}(A(x, t, \nabla u)) \) is replaced by \(\Delta_p u := \text{div}(|\nabla u|^{p-2} \nabla u) \) for \(p \in (2 - 1/N, N) \). In [66], showed that for any \(q > p - 1 \), (1.6) admits a (unique renormalized) solution provided \(\sigma \in L^q(\Omega) \) and \(\mu \in \mathfrak{M}_b(\Omega_T) \) is diffuse measure i.e absolutely continuous with respect to \(C_p \)-parabolic capacity in \(\Omega_T \) defined on a compact set \(K \subset \Omega_T:\n
\[
C_p(K, \Omega_T) = \inf \{ ||\varphi||_X : \varphi \geq \chi_K, \varphi \in C^\infty(\Omega_T) \},
\]

where \(X = \{ \varphi : \varphi \in L^p(0, T; W_0^{1,p}(\Omega)), \varphi_t \in L^p(0, T; W^{-1,p'}(\Omega)) \} \) endowed with norm \(||\varphi||_X = ||\varphi||_{L^p(0, T; W_0^{1,p}(\Omega))} + ||\varphi_t||_{L^{p'}(0, T; W^{-1,p'}(\Omega))} \) and \(\chi_K \) is the characteristic function of \(K \). An improving result was presented in [14] for measures that have good behavior in time, it is based on results of [16] relative to the elliptic case. That is, (1.6) has a (renormalized) solution for \(q > p - 1 \) if \(\mu \in L^q(\Omega) \) and \(|\mu| \leq f + \omega \otimes F \), where \(f \in L^1_1(\Omega_T), F \in L^1_{2,q}(0, T) \) and \(\omega \in \mathfrak{M}^+_b(\Omega) \) is absolutely continuous with respect to \(\text{Cap}_{G_{q'/q'}, q'} \) in \(\Omega \). Also, (1.7) has a (renormalized) nonnegative solution if \(\sigma \in L^2_\infty(\Omega), 0 \leq \mu \leq \omega \otimes \chi_{(0, T)} \) with \(\omega \in \mathfrak{M}^+_b(\Omega) \) and

\[
\omega(E) \leq C_1 \text{Cap}_{G_{p/(q'-1)}, q'}(E) \forall \text{compact} \ E \subset \mathbb{R}^N, \quad ||\sigma||_{L^\infty(\Omega)} \leq C_2
\]
for some C_1, C_2 small enough. Another improving results are also stated in [15], especially if $q > p - 1$, $p > 2$, $\mu \in \mathcal{M}_b(\Omega_T)$ and $\sigma \in \mathcal{M}_b(\Omega)$ are absolutely continuous with respect to $\text{Cap}_{2,1,q'}$ in Ω_T and $\text{Cap}_{\mathcal{G},q'}$ in Ω then (1.6) has a distribution solution.

In [15], we also obtain the existence of solutions for porous medium equation with absorption and data measure: for $q > m > \frac{N-2}{N}$, a sufficient condition for existence solution to the problem

$$u_t - \Delta(|u|^{m-1}u) + |u|^{q-1}u = \mu \quad \text{in} \quad \Omega_T, \quad u = 0 \quad \text{on} \quad \partial \Omega \times (0,T), \quad \text{and} \quad u(0) = \sigma \quad \text{in} \quad \Omega,$$

is $\mu << \text{Cap}_{2,1,q'}$, $\sigma << \text{Cap}_{\mathcal{G},q'}$ if $m \geq 1$ and $\mu << \text{Cap}_{\mathcal{G},q'}$, $\sigma << \text{Cap}_{\mathcal{G},q'}$, and $\sigma << \text{Cap}_{\mathcal{G},q'}$. Moreover, if $\mu = \mu_1 \chi_{[0,T]}$ with $\mu_1 \in \mathcal{M}_b(\Omega)$ and $\sigma \equiv 0$ then a condition $\mu_1 << \text{Cap}_{\mathcal{G},q'}$ is not only a sufficient but also a necessary for existence of solutions to above problem.

We would like to make a brief survey of quasilinear elliptic equations with absorption, source terms and data measure:

$$-\Delta_p u + |u|^{q-1}u = \omega,$$

$$-\Delta_p u = |u|^{q-1}u + \omega, u \geq 0,$$

in Ω with Dirichlet boundary conditions where $1 < p < N$, $q > p - 1$. In [16], we proved that the existence solution of equation (1.10) holds if $\omega \in \mathcal{M}_b(\Omega)$ is absolutely continuous with respect to $\text{Cap}_{\mathcal{G},q'}$. Moreover, a necessary condition for existence was also showed in [10, 11]. For problem with source term, it was solved in [68] (also see [69]). Exactly, if $\omega \in \mathcal{M}^+_b(\Omega)$ has compact support in Ω, then a sufficient and necessary condition for the existence of solutions of problem (1.11) is

$$\omega(E) \leq C\text{Cap}_{\mathcal{G},q'}(E)$$

for all compact set $E \subset \Omega$, where C is a constant only depending on N, p, q and $d(\text{supp}(\omega), \partial \Omega)$. Their construction is based upon sharp estimates of solutions of the problem

$$-\Delta_p u = \omega \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial \Omega,$$

for nonnegative Radon measures ω in Ω and a deep analysis of the Wolff potential. Corresponding results in case that u^θ term is changed by $P(u) \approx \exp(au^\lambda)$ for $a > 0, \lambda > 0$, was given in [16, 62].

In [27], Duzaar and Mingione gave a local pointwise estimate from above of solutions to equation

$$u_t - \text{div}(A(x,t,\nabla u)) = \mu,$$

in Ω_T involving the Wolff parabolic potential $\mathbb{I}_2[|\mu|]$ defined by

$$\mathbb{I}_2[|\mu|](x,t) = \int_0^\infty |\mu|(|\tilde{Q}_p(x,t)| \frac{dp}{p}) \quad \text{for all} \quad (x,t) \in \mathbb{R}^{N+1},$$

here $\tilde{Q}_p(x,t) := B_p(x) \times (t - \rho^2/2, t + \rho^2/2)$. Specifically if $u \in L^2(0,T; H^1(\Omega)) \cap C(\Omega_T)$ is a weak solution to above equation with data $\mu \in L^2(\Omega_T)$, then

$$|u(x,t)| \leq C \int_{\tilde{Q}_R(x,t)} |u| \, dy \, ds + C \int_0^{2R} \frac{|\mu|(|\tilde{Q}_p(x,t)| \frac{dp}{p})}{\rho},$$

(1.13)
for any $Q_{2R}(x,t) := B_{2R}(x) \times (t-(2R)^2,t) \subset \Omega_T$, where a constant C only depends on N and the structure of operator A. Moreover, in this paper we show that if $u \geq 0, \mu \geq 0$ we also have local pointwise estimate from below:

$$u(y,s) \geq C^{-1} \sum_{k=0}^{\infty} \mu(Q_{r_k)/s(y,s - \frac{35}{72}r_k^2)),$$ \hfill (1.14)

for any $Q_r(y,s) \subset \Omega_T$, see section 5, where $r_k = 4^{-k}r$.

From preceding two inequalities, we obtain global pointwise estimates of solution to (1.12). For example, if $\mu \in \mathfrak{M}(\mathbb{R}^{N+1})$ with $I_2[|\mu|(x_0,t_0) < \infty$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$ then there exists a distribution solution to (1.12) in \mathbb{R}^{N+1} such that

$$-K[\mu^-](x,t) \leq u(x,t) \leq K[\mu^+](x,t) \text{ for a.e } (x,t) \in \mathbb{R}^{N+1},$$ \hfill (1.15)

and we emphasize that if $u \geq 0, \mu \geq 0$ then

$$u(x,t) \geq K^{-1} \sum_{k=-\infty}^{\infty} \mu(Q_{2^{-2k-3}}(x,t - \frac{35}{72}2^{-4k-7}))$$ \hfill (1.16)

for a.e $(x,t) \in \mathbb{R}^{N+1}$, and for $q > 1$,

$$\|u\|_{L_q(\mathbb{R}^{N+1})} \approx \|I_2[\mu]\|_{L_q(\mathbb{R}^{N+1})}.$$ \hfill (1.17)

Where a constant K only depends on N and the structure of operator A.

Our first aim is to verify that

i. problems (1.4) and (1.6) have solutions if μ, σ are absolutely continuous with respect to the capacity $\text{Cap}_{2,1,q'}, \text{Cap}_{G,\frac{1}{2},q'}$ respectively,

ii. problems (1.5) in \mathbb{R}^{N+1} and (1.7) in $\mathbb{R}^N \times (0, \infty)$ with data signed measure μ, σ admit a solution if

$$|\mu|(E) \leq C\text{Cap}_{H_{2,q'}}(E) \text{ and } |\sigma|(O) \leq C\text{Cap}_{1,\frac{1}{2},q'}(O)$$ \hfill (1.18)

hold for every compact sets $E \subset \mathbb{R}^{N+1}, O \subset \mathbb{R}^N$. Also, the equation (1.7) in a bounded domain Ω_T has a solution if (1.16) holds where capacities $\text{Cap}_{2,1,q'}, \text{Cap}_{G,\frac{1}{2},q'}$ are exploited instead of $\text{Cap}_{H_{2,q'}}, \text{Cap}_{1,\frac{1}{2},q'}$.

It is worth mention that solutions obtained of (1.5) in \mathbb{R}^{N+1} and (1.7) in $\mathbb{R}^N \times (0, \infty)$ obey

$$\int_E |u|^q dx dt \leq C\text{Cap}_{H_{2,q'}}(E) \text{ for all compact } E \subset \mathbb{R}^{N+1},$$

and we also have an analogous estimate for a solution of (1.7) in Ω_T;

$$\int_E |u|^q dx dt \leq C\text{Cap}_{2,1,q'}(E) \text{ for all compact } E \subset \mathbb{R}^{N+1},$$

for some a constant $C > 0$.

In case $\mu \equiv 0$, solutions (1.7) in $\mathbb{R}^N \times (0, \infty)$ and Ω_T are accepted the decay estimate

$$-Ct^{-\frac{1}{\gamma-1}} \leq \inf_x u(x,t) \leq \sup_x u(x,t) \leq C t^{-\frac{1}{\gamma-1}} \text{ for any } t > 0.$$ \hfill (1.19)

The strategy for establishment above results that is, we rely upon the combination some techniques of quasilinear elliptic equations in two articles [16, 68] with the global pointwise
estimate (1.15), delicate estimates on Wolff parabolic potential and the stability theorem see [13], Proposition 3.17 of this paper. They will be demonstrated in section 6.

We next are interested in global regularity of solutions to quasilinear parabolic equations

\[u_t - \text{div} (A(x,t,\nabla u)) = \mu \quad \text{in} \quad \Omega_T, \quad u = 0 \quad \text{on} \quad \partial \Omega \times (0,T) \quad \text{and} \quad u(0) = \sigma \quad \text{in} \quad \Omega, \]

where domain \(\Omega_T \) and nonlinearity \(A \) are as mentioned at the beginning.

Our aim is to achieve minimal conditions on the boundary of \(\Omega \) and on nonlinearity \(A \) so that the following statement holds

\[||\nabla u||_{K} \leq C ||M_1[\omega]||_{K}. \]

Here \(\omega = |\mu| + |\sigma| \otimes \delta_{t=0} \) and \(M_1 \) is the first order fractional Maximal parabolic potential defined by

\[M_1[\omega](x,t) = \sup_{\rho > 0} \frac{\omega(\hat{Q}_\rho(x,t))}{\rho^{N+1}} \quad \forall \ (x,t) \in \mathbb{R}^{N+1}, \]

a constant \(C \) does not depend on \(u \) and \(\mu \in \mathcal{M}_b(\Omega_T), \sigma \in \mathcal{M}_b(\Omega) \) and \(K \) is a function space. The same question is as above for the elliptic framework studied by N. C. Phuc in [70, 71, 72].

First, we take \(K = L^{p,s}(\Omega_T) \) for \(1 \leq p \leq \theta \) and \(0 < s \leq \infty \) under a capacity density condition on the domain \(\Omega \) where \(L^{p,s}(\Omega_T) \) is the Lorentz space and a constant \(\theta > 2 \) depends on the structure of this condition and of nonlinearity \(A \). It follows the recent result in [7], see remark 2.18. The capacity density condition is that, the complement of \(\Omega \) satisfies \textit{uniformly 2-thick}, see section 2. We remark that under this condition, the Sobolev embedding \(H^1_0(\Omega) \subset L^{N/2}(\Omega) \) for \(N > 2 \) is valid and it is fulfilled by any domain with Lipschitz boundary, or even of corkscrew type. This condition was used in two papers [70, 72]. Also, it is essentially sharp for higher integrability results, presented in [41, Remark 3.3]. Furthermore, we also assert that if \(\frac{2}{\gamma} < p < \theta, \quad 0 \leq \gamma < N + 2, \quad 0 < \kappa \leq \infty \) and \(\sigma \equiv 0 \) then

\[||\nabla u||_{L^{p,s,((\gamma-1)p)/(\gamma+1)}_s(\Omega_T)} \leq C ||\mu||_{L^{p,((\gamma-1)p)/(\gamma+1)}_s(\Omega_T)}, \]

for some a constant \(C \) where \(L^{p,s,((\gamma-1)p)/(\gamma+1)}_s(\Omega_T), L^{p,((\gamma-1)p)/(\gamma+1)}_s(\Omega_T) \) are the Lorentz-Morrey spaces involving "calorie" introduced in section 2. We would like to refer to [55] as the first paper where Lorentz-Morrey estimates for solutions of quasilinear elliptic equations via fractional operators have been obtained.

Next, in order to obtain shaper results, we take \(K = L^{q,s}(\Omega_T, dw) \), the weighted Lorentz spaces with weight in the Muckenhoupt class \(A_\infty \) for \(q \geq 1, \quad 0 < s \leq \infty \), we require some stricter conditions on the domain \(\Omega \) and nonlinearity \(A \). A condition on \(\Omega \) is flat enough in the sense of Reifenberg, essentially, that at boundary point and every scale the boundary of domain is between two hyperplanes at both sides (inside and outside) of domain by a distance which depends on the scale. Conditions on \(A \) are that BMO type of \(A \) with respect to the \(x \)-variable is small enough and the derivative of \(A(x,t,\zeta) \) with respect to \(\zeta \) is uniformly bounded. By choosing an appropriate weight we can establish the following important estimates:

a. The Lorentz-Morrey estimates involving "calorie" for \(0 < \kappa \leq N + 2 \) is obtained

\[||\nabla u||_{L^{p,s,((\gamma-1)p)/(\theta+1)}_s(\Omega_T)} \leq C ||M_1[\omega]||_{L^{p,s,((\gamma-1)p)/(\theta+1)}_s(\Omega_T)}, \]

b. Another Lorentz-Morrey estimates is also obtained for \(0 < \theta \leq \infty \)

\[||M(\nabla u)||_{L^{p,s,((\gamma-1)p)/(\theta+1)}_s(\Omega_T)} \leq C ||M_1[\omega]||_{L^{p,s,((\gamma-1)p)/(\theta+1)}_s(\Omega_T)}, \]
where $L^{q,s}_{*}((0,T))$ is introduced in section 2. This estimate implies global Holder-estimate in space variable and L^q-estimate in time, that is for all ball $B_{\rho} \subset \mathbb{R}^N$

$$\left(\int_0^T |\text{osc}_{B_{\rho}(\cdot, \cdot)} u(t)|^q dt \right)^{\frac{1}{q}} \leq C \rho^{1-\frac{q}{\sigma}} \| \mu \|_{L^{q,s}(\cdot, \cdot)} \text{ provided } 0 < \sigma < \min\{q, N\}.$$

In particular, there hold

$$\left(\int_0^T |\text{osc}_{B_{\rho}(\cdot, \cdot)} u(t)|^q dt \right)^{\frac{1}{q}} \leq C \rho^{1-\frac{q}{\sigma}} \| \mu \|_{L^{q,s}(\cdot, \cdot)} \text{ provided }$$

$$1 < q_1 \leq q < 2,$$

$$\max\left\{ \frac{2-q}{q-1}, \frac{1}{q-1} \left(2 + q - \frac{2q}{q_1} \right) \right\} < \sigma \leq N.$$

Where $L^{\frac{q_1}{q-2} \cdot 1 \cdot \cdot 1}(\cdot, \cdot)$ is the standard Morrey space and

$$\| \mu \|_{L^{q_1}((0,T))} = \sup_{\rho > 0, x \in \Omega} \rho^{-\frac{q_1}{2q_1}} \left(\int_{B_{\rho}(x)} \left(\int_0^T \| \mu(y,t) \|_{q_1} dt \right)^{\frac{q_2}{q_1} dy} \right)^{\frac{1}{q_2}},$$

with $q_2 = \frac{\frac{q_1}{2q_1}}{\left(\frac{1}{q} + \frac{2}{q_1} - \frac{2q}{q_1} \right)}$. Besides, we also find

$$\left(\int_0^T |\text{osc}_{B_{\rho}(\cdot, \cdot)} u(t)|^q dt \right)^{\frac{1}{q}} \leq C \rho^{1-\frac{q}{\sigma}} \| \mu \|_{L^{q,s}(\cdot, \cdot)} \text{ provided}$$

$$\sigma \equiv 0, \quad q \geq 2, 1 < q_1 \leq q,$$

$$\frac{1}{q-1} \left(2 + q - \frac{2q}{q_1} \right) < \sigma \leq N.$$

c. A global capacity estimate is also given

$$\sup_{\text{compact } K \subset \mathbb{R}^{N+1}} \left(\frac{I_{K} \|
abla u\|_{L^q}}{\text{Cap}_{\cdot \cdot \cdot} (K)} \right) \leq C \sup_{\text{compact } K \subset \mathbb{R}^{N+1}} \left(\frac{\| \mu \|_{L^{q_1}((0,T))}}{\text{Cap}_{\cdot \cdot \cdot} (K)} \right)^{\frac{1}{q_1}}.$$

To obtain this estimate we employ profound techniques in nonlinear potential theory, see section 4 and Theorem 2.22.

We utilize some ideas (in the quasilinear elliptic framework) in articles of N.C. Phuc [70, 72, 71] during we establish above estimates.

We would like to emphasize that above estimates is also true for solutions to equation (1.17) in \mathbb{R}^{N+1} with data μ (of course still true for (1.17) in $\mathbb{R}^N \times (0, \infty)$) with data μ provided $\| \mu \|_{L^1((0,T))} < \infty$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$ see Theorem 2.25 and 2.27. Moreover, a global pointwise estimates of gradient of solutions is obtained when A is independent of space variable x, that is

$$|\nabla u(x, t)| \leq C[u_1[\|\mu\|](x, t) \quad \text{a.e } (x, t) \in \mathbb{R}^{N+1},$$

see Theorem 2.5.
Our final aim is to obtain existence results for the quasilinear Riccati type parabolic problems (1.1) where \(B(x, t, u, \nabla u) = |\nabla u|^q \) for \(q > 1 \). The strategy we use in order to prove these existence results is that using Schauder Fixed Point Theorem and all above estimates and the stability Theorem see [13], Proposition 3.17 in section 3. They will be carried out in section 9. By our methods in the paper, we can treat general equations (1.1), where

\[
|B(x, t, u, \nabla u)| \leq C_1|u|^{q_1} + C_2|\nabla u|^{q_2}, \quad q_1, q_2 > 1,
\]

with constant coefficients \(C_1, C_2 > 0 \).

Acknowledgements:
The author wishes to express his deep gratitude to his advisors Professor Laurent Véron and Professor Marie-Françoise Bidaut-Véron for encouraging, taking care and giving many useful comments during the preparation of the paper. Besides the author would like to thank Nguyen Phuoc Tai for many interesting comments.

2 Main Results
Throughout the paper, we assume that \(\Omega \) is a bounded open subset of \(\mathbb{R}^N \), \(N \geq 2 \) and \(T > 0 \). Besides, we always denote \(\Omega_T = \Omega \times (0, T), \) \(T_0 = \text{diam}(\Omega) + T^{1/2} \) and \(Q_0(x, t) = B_\rho(x) \times (t - \rho^2, t) \) \(Q_\rho(x, t) = B_\rho(x) \times (t - \rho^2/2, t + \rho^2/2) \) for \((x, t) \in \mathbb{R}^{N+1} \) and \(\rho > 0 \). We always assume that \(A : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N \) is a Caratheodory vector valued function, i.e. \(A \) is measurable in \((x, t) \) and continuous with respect to \(\nabla u \) for each fixed \((x, t) \) and satisfies (1.2) and (1.3). This article is divided into three parts. First part, we study the existence problems for the quasilinear parabolic equations with absorption and source terms

\[
\begin{aligned}
\left\{
\begin{array}{ll}
u_t - \text{div}(A(x, t, \nabla u)) + |u|^{q-1}u &= \mu \text{ in } \Omega_T, \\
u &= 0 &\text{ on } \partial \Omega \times (0, T), \\
u(0) &= \sigma &\text{ in } \Omega,
\end{array}
\right.
\end{aligned}
\]

(2.1)

and

\[
\begin{aligned}
\left\{
\begin{array}{ll}
u_t - \text{div}(A(x, t, \nabla u)) = |u|^{q-1}u + \mu &\text{ in } \Omega_T, \\
u &= 0 &\text{ on } \partial \Omega \times (0, T), \\
u(0) &= \sigma &\text{ in } \Omega,
\end{array}
\right.
\end{aligned}
\]

(2.2)

where \(q > 1 \), and \(\mu, \sigma \) are Radon measures.

In order to state our results, let us introduce some definitions and notations. If \(D \) is either a bounded domain or whole \(\mathbb{R}^l \) for \(l \in \mathbb{N} \), we denote by \(\mathcal{M}(D) \) (resp. \(\mathcal{M}_b(D) \)) the set of Radon measure (resp. bounded Radon measures) in \(D \). Their positive cones are \(\mathcal{M}^+(D) \) and \(\mathcal{M}_b^+(D) \) respectively. For \(R \in (0, \infty) \), we define the \(R \)–truncated Riesz parabolic potential \(\mathcal{I}_\alpha \) and Fractional Maximal parabolic potential \(\mathcal{M}_\alpha \), \(\alpha \in (0, N + 2) \), on \(\mathbb{R}^{N+1} \) of a measure \(\mu \in \mathcal{M}^+(\mathbb{R}^{N+1}) \) by

\[
\mathcal{I}_\alpha^R[\mu](x, t) = \int_0^R \frac{\mu(Q_\rho(x, t))}{\rho^{N+2-\alpha}} \, d\rho \quad \text{and} \quad \mathcal{M}_\alpha^R[\mu](x, t) = \sup_{0 < \rho < R} \frac{\mu(Q_\rho(x, t))}{\rho^{N+2-\alpha}},
\]

(2.3)

for all \((x, t) \in \mathbb{R}^{N+1} \). If \(R = \infty \), we drop it in expressions of (2.3). We denote by \(\mathcal{H}_\alpha \) the Heat kernel of order \(\alpha \in (0, N + 2) \):

\[
\mathcal{H}_\alpha(x, t) = C_\alpha \chi_{(0, \infty)}(t)^{1/(N+2-\alpha)/2} \exp \left(-\frac{|x|^2}{4t} \right) \quad \text{for} \quad (x, t) \in \mathbb{R}^{N+1},
\]

and \(\mathcal{G}_\alpha \) the parabolic Bessel kernel of order \(\alpha > 0 \):

\[
\mathcal{G}_\alpha(x, t) = C_\alpha \chi_{(0, \infty)}(t)^{1/(N+2-\alpha)/2} \exp \left(-t - \frac{|x|^2}{4t} \right) \quad \text{for} \quad (x, t) \in \mathbb{R}^{N+1},
\]
see [4], where $C_{\alpha} = (4\pi N/3)^{\alpha/2} \Gamma (\alpha/2)^{-1}$. It is known that $F(H_{\alpha})(x,t) = (|x|^2 + it)^{-\alpha/2}$ and $F(G_{\alpha})(x,t) = (1 + |x|^2 + it)^{-\alpha/2}$. We define the parabolic Riesz potential H_{α} of a measure $\mu \in \mathfrak{M}^+(\mathbb{R}^{N+1})$ by

$$H_{\alpha}[\mu](x,t) = (H_{\alpha} * \mu)(x,t) = \int_{\mathbb{R}^{N+1}} H_{\alpha}(x-y,t-s)d\mu(y,s) \text{ for any } (x,t) \in \mathbb{R}^{N+1},$$

the parabolic Bessel potential G_{α} of a measure $\mu \in \mathfrak{M}^+(\mathbb{R}^{N+1})$ by

$$G_{\alpha}[\mu](x,t) = (G_{\alpha} * \mu)(x,t) = \int_{\mathbb{R}^{N+1}} G_{\alpha}(x-y,t-s)d\mu(y,s) \text{ for any } (x,t) \in \mathbb{R}^{N+1}.$$

We also define $I_{\alpha}, G_{\alpha}, 0 < \alpha < N$ the Riesz, Bessel potential of a measure $\mu \in \mathfrak{M}^+(\mathbb{R}^N)$ by

$$I_{\alpha}[\mu](x) = \int_{0}^{\infty} \frac{\mu(B_\alpha(x))}{\rho^{N-\alpha}} \frac{d\rho}{\rho} \text{ and } G_{\alpha}[\mu](x) = \int_{\mathbb{R}^N} G_{\alpha}(x-y)d\mu(y) \text{ for any } x \in \mathbb{R}^N,$$

where G_{α} is the Bessel kernel of order α, see [2].

Several different capacities will be used over the paper. For $1 < p < \infty$, the (H_{α}, p)-capacity, (G_{α}, p)-capacity of a Borel set $E \subset \mathbb{R}^{N+1}$ are defined by

$$\text{Cap}_{H_{\alpha}, p}(E) = \inf \left\{ \int_{\mathbb{R}^{N+1}} |f|^p dx dt : f \in L^p_{+}(\mathbb{R}^{N+1}), H_{\alpha} * f \geq \chi_E \right\}$$

and

$$\text{Cap}_{G_{\alpha}, p}(E) = \inf \left\{ \int_{\mathbb{R}^{N+1}} |f|^p dx dt : f \in L^p_{+}(\mathbb{R}^{N+1}), G_{\alpha} * f \geq \chi_E \right\}.$$

The $W^{2,1}_p$-capacity of compact set $E \subset \mathbb{R}^{N+1}$ is defined by

$$\text{Cap}_{2,1,p}(E) = \inf \left\{ ||\varphi||^p_{W^{2,1}_p(\mathbb{R}^{N+1})} : \varphi \in S(\mathbb{R}^{N+1}), \varphi \geq 1 \text{ in a neighborhood of } E \right\},$$

where

$$||\varphi||_{W^{2,1}_p(\mathbb{R}^{N+1})} = ||\varphi||_{L^p(\mathbb{R}^{N+1})} + ||\frac{\partial \varphi}{\partial t}||_{L^p(\mathbb{R}^{N+1})} + ||\nabla \varphi||_{L^p(\mathbb{R}^{N+1})} + \sum_{i,j=1,2,...,N} ||\frac{\partial^2 \varphi}{\partial x_i \partial x_j}||_{L^p(\mathbb{R}^{N+1})}.$$

We remark that thanks to Richard J. Bagby’s result (see [4]) we obtain the equivalent of capacities $\text{Cap}_{2,1,p}$ and $\text{Cap}_{G_{\alpha}, p}$, i.e, for any compact set $K \subset \mathbb{R}^{N+1}$ there holds

$$C^{-1} \text{Cap}_{2,1,p}(K) \leq \text{Cap}_{G_{\alpha}, p}(K) \leq C \text{Cap}_{2,1,p}(K),$$

for some $C = C(N,p)$, see Corollary (4.18) in section 4.

The (I_{α}, p)-capacity, (G_{α}, p)-capacity of a Borel set $O \subset \mathbb{R}^N$ are defined by

$$\text{Cap}_{I_{\alpha}, p}(O) = \inf \left\{ \int_{\mathbb{R}^N} |g|^p dx : g \in L^p_{+}(\mathbb{R}^N), I_{\alpha} * g \geq \chi_O \right\}$$

and

$$\text{Cap}_{G_{\alpha}, p}(O) = \inf \left\{ \int_{\mathbb{R}^N} |g|^p dx : g \in L^p_{+}(\mathbb{R}^N), G_{\alpha} * g \geq \chi_O \right\}.$$

In our first three Theorems, we present global pointwise potential estimates for solutions to quasilinear parabolic problems

\begin{equation}
\begin{cases}
 u_t - \text{div} (A(x,t,\nabla u)) = \mu \text{ in } \Omega_T, \\
 u = 0 \text{ on } \partial \Omega \times (0,T), \\
 u(0) = \sigma \text{ in } \Omega,
\end{cases}
\end{equation}

\begin{equation}
\begin{cases}
 u_t - \text{div} (A(x,t,\nabla u)) = \mu \text{ in } \mathbb{R}^N \times (0,\infty), \\
 u(0) = \sigma \text{ in } \mathbb{R}^N,
\end{cases}
\end{equation}

and

\begin{equation}
\begin{cases}
 u_t - \text{div} (A(x,t,\nabla u)) = \mu \text{ in } \mathbb{R}^{N+1}.
\end{cases}
\end{equation}
Theorem 2.1 There exists a constant K depending on N, Λ_1, Λ_2 such that for any $\mu \in M_0(\Omega_T), \sigma \in M_0(\Omega)$ there is a distribution solution u of (2.4) which satisfies

$$-K^2_2[\mu^- + \sigma^- \otimes \delta_{t=0}] \leq u \leq K^2_2[\mu^+ + \sigma^+ \otimes \delta_{t=0}] \text{ in } \Omega_T. \quad (2.7)$$

Remark 2.2 Since $\sup_{x \in \Omega} \|u(\sigma^+ \otimes \delta_{t=0})\| (x, t) \leq \frac{\sigma^+(\Omega)}{(N+2-\alpha)(2\alpha)^{\frac{N+2-\alpha}{N+2}}}$ for any $t \neq 0$ with $0 < \alpha < N + 2$. Thus, if $\mu \equiv 0$, then we obtain the decay estimate:

$$\frac{K\sigma^{-} (\Omega)}{N(2t)^{\alpha}} \leq \inf_{x \in \Omega} u(x, t) \leq \sup_{x \in \Omega} u(x, t) \leq \frac{K\sigma^{+} (\Omega)}{N(2t)^{\alpha}} \text{ for any } 0 < t < T. \quad (2.8)$$

Theorem 2.3 There exists a constant C depending on N, Λ_1, Λ_2 such that for any $\mu \in M^0_0(\Omega_T), \sigma \in M^0_0(\Omega)$, there is a distribution solution u of (2.4) satisfying for a.e $(y, s) \in \Omega_T$ and $B_r(y) \subset \Omega$

$$u(y, s) \geq C \sum_{k=0}^{\infty} \frac{\mu(Q_{r_k}(y, s - \frac{35}{14}r_k^2))}{r_k^N} + C \sum_{k=0}^{\infty} \frac{\sigma \otimes \delta_{t=0}(Q_{r_k}(y, s - \frac{35}{14}r_k^2))}{r_k^N}, \quad (2.9)$$

where $r_k = 4^{-k} r$.

Remark 2.4 The Theorem 2.3 is also true when we replace the assumption (1.3) by a weaker one

$$\langle A(x, t, \zeta), \zeta \rangle \geq \Lambda_2|\zeta|^2, \quad \langle A(x, t, \zeta) - A(x, t, \lambda), \zeta - \lambda \rangle > 0,$$

for every $(\lambda, \zeta) \in \mathbb{R}^N \times \mathbb{R}^N$, $\lambda \neq \zeta$ and a.e. $(x, t) \in \mathbb{R}^N \times \mathbb{R}$.

Theorem 2.5 Let K be the constant in Theorem 2.1. Let $\omega \in M(\mathbb{R}^{N+1})$ such that $L_2[|\omega|(x_0, t_0)] < \infty$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$. Then, there is a distribution solution u to (2.6) with data $\mu = \omega$ satisfying

$$-Kl_2[\omega^-] \leq u \leq Kl_2[\omega^+] \text{ in } \mathbb{R}^{N+1} \quad (2.10)$$

such that the following statements hold.

a. If $\omega \geq 0$, there exists $C_1 = C_1(N, \Lambda_1, \Lambda_2)$ such that for a.e $(x, t) \in \mathbb{R}^{N+1}$

$$u(x, t) \geq C_1 \sum_{k=-\infty}^{\infty} \frac{\omega(Q_{2-2k-3}(x, t - 35 \times 2^{-4k-7}))}{2^{-2Nk}}. \quad (2.11)$$

In particular, for any $q > \frac{N+2}{N}$

$$C_2^{-1}||H_2[\omega]|L_0(\mathbb{R}^{N+1})| \leq ||u||_{L^q(\mathbb{R}^{N+1})} \leq C_2||H_2[\omega]|L^q(\mathbb{R}^{N+1}), \quad (2.12)$$

with $C_2 = C_2(N, \Lambda_1, \Lambda_2)$.

b. If A is independent of space variable x and satisfies (2.27), then there exists $C_2 = C_2(N, \Lambda_1, \Lambda_2)$ such that

$$|\nabla u| \leq C_2||\omega|| \text{ in } \mathbb{R}^{N+1}. \quad (2.13)$$

c. If $\omega = \mu + \sigma \otimes \delta_{t=0}$ with $\mu \in M(\mathbb{R}^N \times (0, \infty))$ and $\sigma \in M(\mathbb{R}^N)$, then $u = 0$ in $\mathbb{R}^N \times (-\infty, 0)$ and $u|_{\mathbb{R}^N \times [0, \infty)}$ is a distribution solution to (2.5).

Remark 2.6 For $q > \frac{N+2}{N}$, we always have the following claim:

$$||H_2[\mu + \omega \otimes \delta_{t=0}]||_{L^q(\mathbb{R}^{N+1})} \approx ||H_2[\mu]|L^q(\mathbb{R}^{N+1}) + ||I_{2/q}[\sigma]|_{L^q(\mathbb{R}^{N+1})},$$

for every $\mu \in M^+(\mathbb{R}^N \times (0, \infty))$ and $\sigma \in M^+(\mathbb{R}^N)$.

10
Remark 2.7 For $\omega \in \mathfrak{M}^+(\mathbb{R}^{N+1})$, $0 < \alpha < N + 2$ if $\|I_0[\omega](x_0, t_0)\| < \infty$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$ then for any $0 < \beta \leq \alpha$, $\|I_\beta[\omega] \in L_{loc}(\mathbb{R}^{N+1})$ for any $0 < s < \frac{N+2}{N-2\beta}$. However, for $0 < \beta < \alpha < N + 2$, one can find $\omega \in \mathfrak{M}^+(\mathbb{R}^{N+1})$ such that $I_\alpha[\omega] \equiv \infty$ and $\|I_\beta[\omega] < \infty$ in \mathbb{R}^{N+1}, see Appendix section.

The next four theorems provide the existence of solutions to quasilinear parabolic equations with absorption and source terms. For convenience, we always denote by q' the conjugate exponent of $q \in (1, \infty)$ i.e $q' = \frac{q}{q-1}$.

Theorem 2.8 Let $q > 1$, $\mu \in \mathfrak{M}_b(\Omega_T)$ and $\sigma \in \mathfrak{M}_b(\Omega)$. Suppose that μ, σ are absolutely continuous with respect to the capacities $\text{Cap}_{1,q'}$, $\text{Cap}_{\frac{N+2}{N},q'}$ in Ω_T, Ω respectively. Then there exists a distribution solution u of (2.1) satisfying

$$-K_i[\mu^- + \sigma^- \otimes \delta_{t=0}] \leq u \leq K_i[\mu^+ + \sigma^+ \otimes \delta_{t=0}] \text{ in } \Omega_T.$$

Here the constant K_i is in Theorem 2.1.

Theorem 2.9 Let K be the constant in Theorem 2.1. Let $q > 1$, $\mu \in \mathfrak{M}_b(\Omega_T)$ and $\sigma \in \mathfrak{M}_b(\Omega)$. There exists a constant $C_1 = C_1(N, q, \Lambda_1, \Lambda_2, \text{diam}(\Omega)), T)$ such that if

$$|\mu|(E) \leq C_1 \text{Cap}_{1,q'}(E) \text{ and } |\sigma|(O) \leq C_1 \text{Cap}_{\frac{N+2}{N},q'}(O).$$

Then for every compact set $E \subset \mathbb{R}^{N+1}$, $O \subset \mathbb{R}^N$, then the problem (2.2) has a distribution solution u satisfying

$$-\frac{Kq}{q-1} \|u^- + \sigma^- \otimes \delta_{t=0}\| \leq u \leq \frac{Kq}{q-1} \|u^+ + \sigma^+ \otimes \delta_{t=0}\| \text{ in } \Omega_T.$$

Besides, for every compact set $E \subset \mathbb{R}^{N+1}$ there holds

$$\int_E |u|^q \|dxdt \leq C_2 \text{Cap}_{1,q'}(E).$$

where $C_2 = C_2(N, q, \Lambda_1, \Lambda_2, T_0)$.

Remark 2.10 From (2.15) we get if $q > \frac{N+2}{N}$,

$$\int_{\tilde{Q}_\rho(y,s)} |u|^q \|dxdt \leq C_2 \rho^{N+2-2q} \text{ for any } \tilde{Q}_\rho(y,s) \subset \mathbb{R}^{N+1},$$

if $q = \frac{N+2}{N}$,

$$\int_{\tilde{Q}_\rho(y,s)} |u|^q \|dxdt \leq C(\log(1/\rho))^{-\frac{1}{q'-1}} \text{ for any } \tilde{Q}_\rho(y,s) \subset \mathbb{R}^{N+1}, 0 < \rho < 1/2,$

for some $C = C(N, q, \Lambda_1, \Lambda_2, T_0)$, see Remark 4.14.

Remark 2.11 In the sub-critical case $1 < q < \frac{N+2}{N}$, since the capacity $\text{Cap}_{1,q'}, \text{Cap}_{\frac{N+2}{N},q'}$ of a single are positive thus the conditions (2.13) hold for some constant $C_1 > 0$ provided $\mu \in \mathfrak{M}_b(\Omega_T), \sigma \in \mathfrak{M}_b(\Omega)$. Moreover, in the super-critical case $q > \frac{N+2}{N}$, we have

$$\text{Cap}_{1,q'}(E) \geq c_1 |E|^{-\frac{2q'}{N+2}} \text{ and } \text{Cap}_{\frac{N+2}{N},q'}(O) \geq c_2 |O|^{-\frac{1}{q'-1}}$$

for every Borel sets $E \subset \mathbb{R}^{N+1}$, $O \subset \mathbb{R}^N$, thus if $\mu \in L^{\frac{N+2}{N+2}, \infty}(\Omega_T)$ and $\sigma \in L^{\frac{N+1}{N+1}, \infty}(\Omega)$ then (2.13) holds for some constant $C_1 > 0$. In addition, if $\mu \equiv 0$, then (2.14) implies for any $0 < t < T$,

$$-c_3(T_0) t^{-\frac{1}{q'-1}} \leq \inf_{x \in \Omega} u(x, t) \leq \sup_{x \in \Omega} u(x, t) \leq c_3(T_0) t^{-\frac{1}{q'-1}},$$

since $|\sigma|(B_\rho(x)) \leq c_4(T_0) \rho^{N-\frac{2q'}{N'}} \text{ for all } x \in \mathbb{R}^N, 0 < \rho < 2T_0.$
Theorem 2.12 Let K be the constant in Theorem 2.1 and $q > 1$. If $\omega \in \mathcal{M}(\mathbb{R}^{N+1})$ is absolutely continuous with respect to the capacity $\text{Cap}_{2,1,q'}$ in \mathbb{R}^{N+1}, then there exists a distribution solution $u \in L^\gamma_{\text{loc}}(\mathbb{R}; W^{1,\gamma}_{\text{loc}}(\mathbb{R}^N))$ for any $1 \leq \gamma < \frac{2q}{q+1}$ to problem

$$u_t - \text{div} (A(x,t,\nabla u)) + |u|^{q-1}u = \omega \text{ in } \mathbb{R}^{N+1},$$

which satisfies

$$-K \|2[\omega^-] \leq u \leq K \|2[\omega^+] \text{ in } \mathbb{R}^{N+1}. \quad (2.17)$$

Furthermore, when $\omega = \mu + \sigma \otimes \delta_{\{t=0\}}$ with $\mu \in \mathcal{M}(\mathbb{R}^N \times (0,\infty))$, $\sigma \in \mathcal{M}(\mathbb{R}^N)$ then $u = 0$ in $\mathbb{R}^N \times (-\infty,0)$ and $u|_{\mathbb{R}^N \times [0,\infty)}$ is a distribution solution to problem

$$\begin{cases} u_t - \text{div} (A(x,t,\nabla u)) + |u|^{q-1}u = \mu \text{ in } \mathbb{R}^N \times (0,\infty), \\ u(0) = \sigma \text{ in } \mathbb{R}^N. \end{cases} \quad (2.18)$$

Remark 2.13 The measure $\omega = \mu + \sigma \otimes \delta_{\{t=0\}}$ is absolutely continuous with respect to the capacity $\text{Cap}_{2,1,q'}$ in \mathbb{R}^{N+1} if and only if μ, σ are absolutely continuous with respect to the capacities $\text{Cap}_{2,1,q'}, \text{Cap}_{G_2,q'}$ in $\mathbb{R}^{N+1}, \mathbb{R}^N$ respectively.

Existence result of the problem (2.2) on \mathbb{R}^{N+1} or on $\mathbb{R}^N \times (0,\infty)$ is similar to Theorem 2.9 presented in the following Theorem, where the capacities $\text{Cap}_{H_2,q'}, \text{Cap}_{G_2,q'}$ are used in place of respectively $\text{Cap}_{2,1,q'}, \text{Cap}_{G_2,q'}$.

Theorem 2.14 Let K be the constant in Theorem 2.1 and $q > \frac{N+2}{N}$, $\omega \in \mathcal{M}(\mathbb{R}^{N+1})$. There exists a constant $C_1 = C_1(N,q,\Lambda_1,\Lambda_2)$ such that if

$$|\omega|(E) \leq C_1 \text{Cap}_{H_2,q'}(E), \quad (2.19)$$

for every compact set $E \subset \mathbb{R}^{N+1}$, then the problem

$$u_t - \text{div} (A(x,t,\nabla u)) = |u|^{q-1}u + \omega \text{ in } \mathbb{R}^{N+1} \quad (2.20)$$

has a distribution solution $u \in L^\gamma_{\text{loc}}(\mathbb{R}; W^{1,\gamma}_{\text{loc}}(\mathbb{R}^N))$ for any $1 \leq \gamma < \frac{2q}{q+1}$ satisfying

$$-\frac{Kq}{q-1} \|2[\omega^-] \leq u \leq \frac{Kq}{q-1} \|2[\omega^+] \text{ in } \mathbb{R}^{N+1}. \quad (2.21)$$

Moreover, when $\omega = \mu + \sigma \otimes \delta_{\{t=0\}}$ with $\mu \in \mathcal{M}(\mathbb{R}^N \times (0,\infty))$, $\sigma \in \mathcal{M}(\mathbb{R}^N)$ then $u = 0$ in $\mathbb{R}^N \times (-\infty,0)$ and $u|_{\mathbb{R}^N \times [0,\infty)}$ is a distribution solution to problem

$$\begin{cases} u_t - \text{div} (A(x,t,\nabla u)) = |u|^{q-1}u + \mu \text{ in } \mathbb{R}^N \times (0,\infty), \\ u(0) = \sigma \text{ in } \mathbb{R}^N. \end{cases} \quad (2.22)$$

In addition, for any compact set $E \subset \mathbb{R}^{N+1}$ there holds

$$\int_E |u|^q dx dt \leq C_2 \text{Cap}_{H_2,q'}(E), \quad (2.23)$$

for some $C_2 = C_2(N,q,\Lambda_1,\Lambda_2)$.

Remark 2.15 The measure $\omega = \mu + \sigma \otimes \delta_{\{t=0\}}$ satisfies (2.19) if and only if

$$|\mu|(E) \leq C \text{Cap}_{H_2,q'}(E) \text{ and } |\sigma|(O) \leq C \text{Cap}_{G_2,q'}(O),$$

for every compact sets $E \subset \mathbb{R}^{N+1}$ and $O \subset \mathbb{R}^N$, where $C = C_2C_1$, $C_3 = C_3(N,q)$.

NGUYEN QUOC HUNG
Remark 2.16 If $\omega \in L^{N+2\over n+2}_{loc}(\mathbb{R}^{n+1})$ then (2.19) holds for some constant $C_1 > 0$. Moreover, if $\omega = \sigma \otimes \delta_{(t=0)}$ with $\sigma \in \mathcal{M}_0(\mathbb{R}^N)$, then from (2.21) we get the decay estimate:

$$-c_1t^{-1\over n} \leq \inf_{x \in \mathbb{R}^N} u(x,t) \leq \sup_{x \in \mathbb{R}^N} u(x,t) \leq c_1t^{-1\over n} \quad \text{for any } t > 0,$$

since $|\sigma|(B_\rho(x)) \leq c_2 \rho^{N-1\over n}t$ for any $B_\rho(x) \subset \mathbb{R}^N$.

Second part, we establish global regularity in weighted-Lorentz and Lorentz-Morrey on gradient of solutions to problem (2.4). For this purpose, we need a capacity density condition on Ω. That is, the complement of Ω satisfies uniformly p-thick with constants c_0, r_0, i.e., for all $0 < r \leq r_0$ and all $x \in \mathbb{R}^N \setminus \Omega$ there holds

$$\text{Cap}_p(B_r(x) \cap (\mathbb{R}^N \setminus \Omega), B_{2r}(x)) \geq c_0 \text{Cap}_p(B_r(x), B_{2r}(x)),$$

where the involved capacity of a compact set $K \subset B_{2r}(x)$ is given as follows

$$\text{Cap}_p(K, B_{2r}(x)) = \inf \left\{ \int_{B_{2r}(x)} |\nabla \phi|^p dy : \phi \in C_c^\infty(B_{2r}(x)), \phi \geq \chi_K \right\}. \quad (2.24)$$

In order to obtain better regularity we need a stricter condition on Ω which is expressed in the following way. We say that Ω is a δ, R_0–Reifenberg flat domain for $\delta \in (0,1)$ and $R_0 > 0$ if for every $x_0 \in \partial \Omega$ and every $r \in (0, R_0)$, there exists a system of coordinates $(z_1, z_2, ..., z_n)$, which may depend on r and x_0, so that in this coordinate system $x_0 = 0$ and that

$$B_r(0) \cap \{z_n > \delta r\} \subset B_{\delta r}(0) \cap \Omega \subset B_r(0) \cap \{z_n > -\delta r\}. \quad (2.26)$$

We remark that this class of flat domains is rather wide since it includes C^1, Lipschitz domains with sufficiently small Lipschitz constants and fractal domains. Besides, it has many important roles in the theory of minimal surfaces and free boundary problems, this class was first appeared in a work of Reifenberg (see [74]) in the context of a Plateau problem. Its properties can be found in [37, 38, 78].

On the other hand, it is well-known that in general, conditions (1.2) and (1.3) on the nonlinearity $A(x, t, \zeta)$ are not enough to ensure higher integral of gradient of solutions to problem (2.4), we need to assume that A satisfies

$$\langle A_c(x, t, \zeta) \xi, \xi \rangle \geq \Lambda_2 |\xi|^2, \quad |A_c(x, t, \zeta)| \leq \Lambda_1, \quad (2.27)$$

for every $(\xi, \zeta) \in \mathbb{R}^N \times \mathbb{R}^N \setminus \{(0,0)\}$ and a.e $(x, t) \in \mathbb{R}^N \times \mathbb{R}$, where Λ_1, Λ_2 are constants in (1.2) and (1.3). We also require that the nonlinearity A satisfies a smallness condition of BMO type in the x-variable. We say that $A(x, t, \zeta)$ satisfies a (δ, R_0)–BMO condition for some $\delta, R_0 > 0$ with exponent $s > 0$ if

$$[A]_{s}^{R_0} := \sup_{(y,s) \in \mathbb{R}^N \times \mathbb{R}, 0<r \leq R_0} \left(\frac{1}{Q_{r}(y,s)} \int_{Q_{r}(y,s)} (\Theta(A, B_{r}(y))(x,t))^s dx \right)^{1\over s} \leq \delta,$$

where

$$\Theta(A, B_{r}(y))(x,t) := \sup_{\zeta \in \mathbb{R}^N \setminus \{0\}} \frac{|A(x,t,\zeta) - \overline{A}_{B_{r}(y)}(t,\zeta)|}{|\zeta|},$$

and $\overline{A}_{B_{r}(y)}(t,\zeta)$ is denoted the average of $A(t,.,\zeta)$ over the cylinder $B_{r}(y)$, i.e,

$$\overline{A}_{B_{r}(y)}(t,\zeta) := \frac{1}{|B_{r}(y)|} \int_{B_{r}(y)} A(x,t,\zeta) dx = \frac{1}{|B_{r}(y)|} \int_{B_{r}(y)} A(x,t,\zeta) dx.$$

The above condition was appeared in [21]. It is easy to see that the (δ, R_0)–BMO condition on A is satisfied when A is continuous or has small jump discontinuities with respect to x.

13
In this paper, M denotes the Hardy-Littlewood maximal function defined for each locally integrable function f in \mathbb{R}^{N+1} by

$$M(f)(x,t) = \sup_{\rho > 0} \int_{Q_\rho(x,t)} |f(y,s)| \, dy \, ds \quad \forall (x,t) \in \mathbb{R}^{N+1}.$$

We verify that M is bounded operator from $L^1(\mathbb{R}^{N+1})$ to $L^{1,\infty}(\mathbb{R}^{N+1})$ and $L^{s}(\mathbb{R}^{N+1})$ $(L^{s,\infty}(\mathbb{R}^{N+1}))$ to itself for $s > 1$, see [76, 77].

We recall that a positive function $w \in L^{1}_{loc}(\mathbb{R}^{N+1})$ is called an A_{∞} if there are two positive constants C and ν such that

$$w(E) \leq C \left(\frac{|E|}{|Q|} \right)^{\nu} w(Q),$$

for all cylinder $Q = \hat{Q}_\rho(x,t)$ and all measurable subsets E of Q. The pair (C,ν) is called the A_{∞} constant of w and is denoted by $[w]_{A_{\infty}}$.

For a weight function $w \in A_{\infty}$, the weighted Lorentz spaces $L^{q,s}(D, dw)$ with $0 < q < \infty$, $0 < s \leq \infty$ and a Borel set $D \subset \mathbb{R}^{N+1}$, is the set of measurable functions g on D such that

$$||g||_{L^{q,s}(D, dw)} := \left\{ \left(q \int_{0}^{\infty} (\rho^{q} w(x,t) |\{ (x,t) \in D : |g(x,t)| > \rho \})^{s} \, d\rho \right)^{1/s} < \infty \quad \text{if} \quad s < \infty, \right.$$

$$\sup_{\rho > 0} \rho w(x,t) |\{ (x,t) \in D : |g(x,t)| > \rho \})^{1/q} < \infty \quad \text{if} \quad s = \infty.$$

Here we write $w(E) = \int_{E} w(x,t) \, dx \, dt$ for a measurable set $E \subset \mathbb{R}^{N+1}$. Obviously, $||g||_{L^{q,s}(D, dw)} = ||g||_{L^{q}(D, dw)}$, thus we have $L^{q,s}(D, dw) = L^{q}(D, dw)$. As usual, when $w \equiv 1$ we simply write $L^{q,s}(D)$ instead of $L^{q,s}(D, dw)$.

We now state the next results of the paper.

Theorem 2.17 Let $\mu \in \mathcal{M}_{0}(\Omega_{T})$, $\sigma \in \mathcal{M}_{0}(\Omega)$, set $\omega = |\mu| + |\sigma| \otimes \delta_{\{t=0\}}$. There exists a distribution solution of (2.4) with data μ and σ such that if $\mathbb{R}^{N}\setminus\Omega$ satisfies uniformly 2-thick with constants c_{0}, r_{0} then for any $1 \leq p < \theta$ and $0 < s \leq \infty$,

$$||M(|\nabla u|)||_{L^{p,s}(\Omega_{T})} \leq C_{1} ||M_{1} [\omega]||_{L^{p,s}(\Omega)}. \quad (2.28)$$

Here $\theta = \theta(N, \Lambda_{1}, \Lambda_{2}, c_{0}) > 2$ and $C_{1} = C_{1}(N, \Lambda_{1}, \Lambda_{2}, p, s, c_{0}, T_{0}/r_{0})$ and $Q = B_{\diam(\Omega)}(x_{0}) \times (0,T)$ which $\Omega \subset B_{\diam(\Omega)}(x_{0})$.

Especially, when $1 < p < 2$, then

$$||M(|\nabla u|)||_{L^{p}(\Omega_{T})} \leq C_{2} \left(||G_{1}[|\mu|]||_{L^{p}(\Omega^{N+1})} + ||G_{2-1}[|\sigma|]||_{L^{p}(\Omega^{N})} \right), \quad (2.29)$$

where $C_{2} = C_{2}(N, \Lambda_{1}, \Lambda_{2}, p, c_{0}, T_{0}/r_{0})$.

Remark 2.18 If $\frac{N+2}{N+1} < p < 2$, there hold

$$||G_{1}[|\mu|]||_{L^{p}(\Omega^{N+1})} \leq C_{1} ||\mu||_{L^{\frac{N+2}{N+1}}(\Omega_{T})} \quad \text{and} \quad ||G_{2-1}[|\sigma|]||_{L^{p}(\Omega^{N})} \leq C_{1} ||\sigma||_{L^{\frac{N}{N+2-p}}(\Omega)};$$

for some $C_{1} = C_{1}(N, p)$. From (2.29) we obtain

$$|||\nabla u|||_{L^{p}(\Omega_{T})} \leq C_{2} ||\mu||_{L^{\frac{N+2}{N+1}}(\Omega_{T})} + C_{2} ||\sigma||_{L^{\frac{N}{N+2-p}}(\Omega)} \quad \text{provided} \quad \frac{N+2}{N+1} < p < 2.$$

We should mention that if $s \equiv 0$, then

$$||M_{1}[\omega]||_{L^{p,s}(\Omega^{N+1})} \leq C_{2} ||\mu||_{L^{\frac{N+2}{N+1}}(\Omega_{T})},$$

and we get [7, Theorem 1.2] from estimate (2.28).
In order to state the next results, we need to introduce Lorentz-Morrey spaces $L^{\frac{q}{p} \cdot \gamma}(D)$ involving "caloric" with a Borel set $D \subset \mathbb{R}^{N+1}$, is the set of measurable functions g on D such that
\[
\|g\|_{L^{\frac{q}{p} \cdot \gamma}(D)} := \sup_{0 < \rho < \text{diam}(D), x \in D} \rho^{-\frac{\gamma}{q}} \|g\|_{L^{\frac{q}{p}}(B_\rho(x) \cap D)} < \infty,
\]
where $0 < \kappa \leq N + 2$, $0 < q < \infty$, $0 < s \leq \infty$. Clearly, $L^{\frac{q}{p} \cdot \gamma}(D) = L^{\frac{q}{p}}(D)$. Moreover, when $q = s$ the space $L^{\frac{q}{p} \cdot \gamma}(D)$ will be denoted by $L^{\frac{q}{p}}(D)$.

The following theorem provides an estimate on gradient in Lorentz-Morrey spaces.

Theorem 2.19 Let $\mu \in \mathcal{M}_0(\Omega_T)$, $\sigma \in \mathcal{M}_0(\Omega)$, set $\omega = |\mu| + |\sigma| \otimes \delta_{(t=0)}$. There exists a distribution solution of (2.4) with data μ and σ such that if $\text{Re} \Omega$ satisfies uniformly 2–thick with constants c_0, r_0 then for any $1 \leq p < \theta$ and $0 < s \leq \infty$, $2 - \gamma_0 < \gamma < N + 2$, $\gamma \leq \frac{N+2}{p} + 1$,
\[
\|\mathcal{M}(|\nabla u|)\|_{L^{p-\gamma}(\Omega_T)} \leq C_1 \|\mathcal{M}_1[\omega]\|_{L^{\infty}(\Omega_T)} + C_2 \sup_{0 < R \leq T_0(y_0, z_0) \in \Omega_T} R^{\frac{p-\gamma_0}{p}} \|H_{\gamma}(x_0, y_0, z_0)\|_{L^{p-\gamma}(\Omega_T)},
\]
where γ is in Theorem 2.17, $\gamma_0 = \gamma_0(N, \Lambda_1, \Lambda_2, c_0) \in (0, 1/2]$ and $C_1 = C_1(N, \Lambda_1, \Lambda_2, p, s, \gamma, c_0, T_0/r_0)$, $C_2 = C_2(N, \Lambda_1, \Lambda_2, p, s, \gamma, c_0)$. Besides, if $\frac{p}{\gamma_0} < p < \theta$, $2 - \gamma_0 < \gamma < N + 2$, $0 < s \leq \infty$ and $\mu \in L^{\frac{q_{\gamma_0}}{\gamma_0} \cdot \gamma}(\Omega_T)$, $\sigma \equiv 0$, then u is a unique renormalized solution satisfied
\[
\|\mathcal{M}(|\nabla u|)\|_{L^{p-\gamma}(\Omega_T)} \leq C_3 \|\mu\|_{L^{\frac{\gamma_0}{\gamma_0} \cdot \gamma}(\Omega_T)},
\]
where $C_3 = C_3(N, \Lambda_1, \Lambda_2, p, s, \gamma, c_0, T_0/r_0)$.

Theorem 2.20 Suppose that A satisfies (2.27). Let $\mu \in \mathcal{M}_0(\Omega_T)$, $\sigma \in \mathcal{M}_0(\Omega)$, set $\omega = |\mu| + |\sigma| \otimes \delta_{(t=0)}$. There exists a distribution solution of (2.4) with data μ, σ such that the following holds. For any $w \in A_{\infty}$, $1 \leq q < \infty$, $0 < s \leq \infty$ we find $\delta = \delta(N, \Lambda_1, \Lambda_2, q, s, [w]_{A_{\infty}}) \in (0, 1)$ and $s_0 = s_0(N, \Lambda_1, \Lambda_2) > 0$ such that if Ω is (δ, R_0)–Reifenberg flat domain Ω and $[A]_{R_0} \leq \delta$ for some R_0 then
\[
\|\mathcal{M}(|\nabla u|)\|_{L^{q \cdot \gamma}((\Omega_T, dw) \leq C \|\mathcal{M}_1[\omega]\|_{L^{q \cdot \gamma}((\Omega_T, dw))},
\]
where C depends on $N, \Lambda_1, \Lambda_2, q, s, [w]_{A_{\infty}}$ and T_0/R_0.

Next results are actually consequences of Theorem 2.20. For our purpose, we introduce another Lorentz-Morrey spaces $L^{\frac{q_{\gamma_0}}{\gamma_0} \cdot \gamma}(O_1 \times O_2)$, is the set of measurable functions g on $O_1 \times O_2$ such that
\[
\|g\|_{L^{\frac{q_{\gamma_0}}{\gamma_0} \cdot \gamma}(O_1 \times O_2)} := \sup_{0 < \rho < \text{diam}(O_1), x \in O_1} \rho^{-\frac{\gamma_0}{q}} \|g\|_{L^{\frac{q}{\gamma_0}}((B_\rho(x) \cap O_1) \times O_2)} < \infty,
\]
where O_1, O_2 are Borel sets in \mathbb{R}^N and \mathbb{R} respectively, $0 < \theta \leq N$, $0 < q < \infty$, $0 < s \leq \infty$. Obviously, $L^{\frac{q_{\gamma_0}}{\gamma_0 \cdot \gamma}}(D) = L^{\frac{q}{\gamma_0 \cdot \gamma}}(D)$. For simplicity of notation, we write $L^{\frac{q}{\gamma_0 \cdot \gamma}}(\cdot)$ instead of $L^{\frac{q_{\gamma_0}}{\gamma_0 \cdot \gamma}}(\cdot)$ when $q = s$. Moreover,
\[
\|g\|_{L^{\frac{q}{\gamma_0 \cdot \gamma}}(O_1 \times O_2)} = ||G||_{L^{\frac{q}{\gamma_0 \cdot \gamma}}(O_1)}
\]
where $G(x) = ||g(x, .)||_{L^{q_0}(O_1)}$ and $L^{\frac{q}{\gamma_0 \cdot \gamma}}(O_1)$ is the usual Morrey space, i.e the spaces of all measurable functions f on O_1 with
\[
\|f\|_{L^{\frac{q}{\gamma_0 \cdot \gamma}}(O_1)} := \sup_{0 < \rho < \text{diam}(O_1), y \in O_1} \rho^{-\frac{\gamma_0}{q}} \|f\|_{L^{\frac{q}{\gamma_0 \cdot \gamma}}((B_\rho(y) \cap O_1) \times O_2)} < \infty.
\]
Theorem 2.21 Suppose that A satisfies (2.27). Let $\mu \in M_b(\Omega_T)$, $\sigma \in M_b(\Omega)$, set $\omega = |\mu| + |\sigma| \otimes \delta_{t=0}$. Let s_0 be in Theorem 2.20. There exists a distribution solution of (2.4) with data μ, σ such that the following holds.

a. For any $1 \leq q < \infty$, $0 < s \leq \infty$ and $0 < \kappa \leq N+2$ we find $\delta = \delta(N, \Lambda_1, \Lambda_2, q, s, \kappa) \in (0,1)$ such that if Ω is (δ, R_0)-Reifenberg flat domain Ω and $|A|_{R_0} \leq \delta$ for some R_0 then

$$\| M(\nabla u) \|_{L^{q,\kappa}_r(\Omega_T)} \leq C_1 \| \omega \|_{L^{q,\kappa}_r(\Omega_T)}. \tag{2.33}$$

Here C_1 depends on $N, \Lambda_1, \Lambda_2, q, s, \kappa$ and T_0/R_0.

b. For any $1 \leq q < \infty$, $0 < s \leq \infty$ and $0 < \vartheta \leq N$ we find $\delta = \delta(N, \Lambda_1, \Lambda_2, q, s, \vartheta) \in (0,1)$ such that if Ω is (δ, R_0)-Reifenberg flat domain Ω and $|A|_{R_0} \leq \delta$ for some R_0 then

$$\| M(\nabla u) \|_{L^{q,\vartheta}_r(\Omega_T)} \leq C_2 \| \omega \|_{L^{q,\vartheta}_r(\Omega_T)}, \tag{2.34}$$

for some $C_2 = C_2(N, \Lambda_1, \Lambda_2, q, s, \vartheta, T_0/R_0)$. Especially, when $q = s$ and $0 < \vartheta < \min\{N, q\}$, there holds for any ball $B_\rho \subset \mathbb{R}^N$

$$\left(\int_0^T |osc_{B_\rho} u(t)|^q dt \right)^\frac{1}{q} \leq C_3 \rho^{1-\frac{s}{q}} \| \omega \|_{L^{q,\vartheta}_r(\Omega_T)}. \tag{2.35}$$

for some $C_3 = C_3(N, \Lambda_1, \Lambda_2, q, \vartheta, T_0/R_0)$.

The following global capacitary estimates on gradient.

Theorem 2.22 Suppose that A satisfies (2.27). Let $\mu \in M_b(\Omega_T)$, $\sigma \in M_b(\Omega)$, set $\omega = |\mu| + |\sigma| \otimes \delta_{t=0}$. Let s_0 be in Theorem 2.20. There exists a distribution solution of (2.4) with data μ, σ such that the following holds. For any $1 < q < \infty$, we find $\delta = \delta(N, \Lambda_1, \Lambda_2, q) \in (0,1)$ such that if Ω is a (δ, R_0)-Reifenberg flat domain and $|A|_{s_0} \leq \delta$ for some R_0 then

$$\sup_{\text{compact } K \subset \mathbb{R}^{N+1}} \frac{\int_{K \cap \Omega_T} |\nabla u|^q dx dt}{\text{Cap}_{\mathbb{R}^{N+1}}(K)} \leq C_1 \sup_{\text{compact } K \subset \mathbb{R}^{N+1}} \frac{\omega(K)}{\text{Cap}_{\mathbb{R}^{N+1}}(K)}^q, \tag{2.36}$$

and if $q > \frac{N+2}{N+1}$,

$$\sup_{\text{compact } K \subset \mathbb{R}^{N+1}} \frac{\int_{K \cap \Omega_T} |\nabla u|^q dx dt}{\text{Cap}_{\mathbb{H}^{N+1}}(K)} \leq C_2 \sup_{\text{compact } K \subset \mathbb{H}^{N+1}} \frac{\omega(K)}{\text{Cap}_{\mathbb{H}^{N+1}}(K)}^q. \tag{2.37}$$

Where $C_1 = C_1(N, \Lambda_1, \Lambda_2, q, T_0/R_0, T_0)$ and $C_2 = C_2(N, \Lambda_1, \Lambda_2, q, T_0/R_0)$.

Remark 2.23 We have if $1 < q < 2$, then

$$C^{-1} \sup_{\text{compact } K \subset \mathbb{R}^{N+1}} \frac{\int_{K \cap \Omega_T} |\sigma| \otimes \delta_{t=0}(K)}{\text{Cap}_{\mathbb{R}^{N+1}}(K)} \leq \sup_{\text{compact } O \subset \mathbb{R}^{N}} \frac{|\sigma|(O)}{\text{Cap}_{\mathbb{R}^{N+1}}(O)} \leq C \sup_{\text{compact } K \subset \mathbb{R}^{N+1}} \frac{\int_{K \cap \Omega_T} |\sigma| \otimes \delta_{t=0}(K)}{\text{Cap}_{\mathbb{R}^{N+1}}(K)},$$

for $C = C(N, q)$, if $\frac{N+2}{N+1} < q < 2$, then above estimate is true when two capacities $\text{Cap}_{\mathbb{R}^{N+1}}$, $\text{Cap}_{\mathbb{H}^{N+1}}$ are replaced by $\text{Cap}_{\mathbb{H}^{N+1}}$, $\text{Cap}_{\mathbb{R}^{N+1}}$ respectively, see Remark 4.34.
Remark 2.24 Above results also hold when $[A]_{s}^{R_0}$ is replaced by $\{A\}_{s}^{R_0}$:

\[
\{A\}_{s}^{R_0} := \sup_{(y, s) \in \mathbb{R}^N \times \mathbb{R}, 0 < r \leq R_0} \left(\int_{Q_r(y, s)} (\Theta(A, Q_r(y, s))(x, t))^s \, dx \, dt \right)^{\frac{1}{s}} \leq \delta,
\]

where

\[
\Theta(A, Q_r(y, s))(x, t) := \sup_{\zeta \in \mathbb{R}^N \setminus \{0\}} \frac{|A(x, t, \zeta) - \overline{A}_{Q_r(y, s)}(\zeta)|}{|\zeta|},
\]

and $\overline{A}_{Q_r(y, s)}(\zeta)$ is denoted the average of $A(\cdot, \cdot, \zeta)$ over the cylinder $Q_r(y, s)$, i.e.,

\[
\overline{A}_{Q_r(y, s)}(\zeta) := \int_{Q_r(y, s)} A(x, t, \zeta) \, dx \, dt = \frac{1}{|Q_r(y, s)|} \int_{Q_r(y, s)} A(x, t, \zeta) \, dx \, dt.
\]

Next results are corresponding estimates for gradient of domain $\mathbb{R}^N \times (0, \infty)$ or whole \mathbb{R}^{N+1}.

Theorem 2.25 Let $\theta \in (2, N+2)$ be in Theorem 2.17 and $\omega \in \mathcal{M}(\mathbb{R}^{N+1})$. There exists a distribution solution ω of (2.6) with data $\mu = \omega$ such that the following statements hold

a. For any $\frac{N+2}{N+1} < p < \theta$ and $0 < s \leq \infty$,

\[
\|\nabla \omega\|_{L_p, s(\mathbb{R}^{N+1})} \leq C_1 \|\mathcal{M}_1(|\omega|)\|_{L_p, s(\mathbb{R}^{N+1})},
\]

for some $C_1 = C_1(N, \Lambda_1, \Lambda_2, p, s)$.

b. For any $\frac{N+2}{N+1} < p < \theta$ and $0 < s \leq \infty$, $2 - \gamma_0 < \gamma < N+2$ and $\gamma \leq \frac{N+2}{p} + 1$,

\[
\|\nabla \omega\|_{L_p(\mathbb{R}^{N+1})} \leq C_2 \|\mathcal{M}_1(|\omega|)\|_{L_p(\mathbb{R}^{N+1})} + C_2 \sup_{R > 0, (y_0, s_0) \in \mathbb{R}^{N+1}} \left(R^{\frac{\gamma(1-p)-N-2}{p}} \|\mathcal{M}_1(\chi_{Q_R(y_0, s_0)} |\omega|)\|_{L_p(\mathbb{R}^{N+1})} \right),
\]

provided $\|\omega\|(x_0, t_0) < \infty$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$.

Also, if $\omega \in L_p(\mathbb{R}^{N+1})$ with $p > \frac{\gamma}{\gamma - 1}$ then

\[
\|\nabla \omega\|_{L_p(\mathbb{R}^{N+1})} \leq C_3 \|\omega\|_{L_p(\mathbb{R}^{N+1})}^{\frac{\gamma(1-p)}{\gamma(1-p) - \gamma} + 1},
\]

for some $\gamma_0 = \gamma_0(N, \Lambda_1, \Lambda_2) \in (0, \frac{1}{2}]$ and $C_i = C_i(N, \Lambda_1, \Lambda_2, p, s, \gamma), i = 2, 3$.

c. The statement c in Theorem 2.5 is true.

Remark 2.26 Let $s > 1$. For $\omega \in \mathcal{M}(\mathbb{R}^{N+1})$, $\|\omega\|_{L_s(\mathbb{R}^{N+1})}$ implies $\|\omega\|_{L_s(\mathbb{R}^{N+1})} \leq \delta$ if and only if $s \leq N + 2$.

Theorem 2.27 Suppose that A satisfies (2.27). Let s_0 be in Theorem 2.20. Let $\omega \in \mathcal{M}(\mathbb{R}^{N+1})$ with $\|\omega\|(x_0, t_0) < \infty$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$. There exists a distribution solution of (2.6) with data $\mu = \omega$ such that following statements hold,

a. For any $w \in A_{\infty}$, $1 < q < \infty$, $0 < s \leq \infty$ we find $\delta = \delta(N, \Lambda_1, \Lambda_2, q, s, \|w\|_{A_\infty}) \in (0, 1)$ such that if $|A| \leq \delta$ then

\[
\|\nabla \omega\|_{L^\infty, s(\mathbb{R}^{N+1}, dw)} \leq C_1 \|\mathcal{M}_1(|\omega|)\|_{L^\infty, s(\mathbb{R}^{N+1}, dw)}.
\]

Here C_1 depends on $N, \Lambda_1, \Lambda_2, q, s, \|w\|_{A_\infty}$.

b. For any \(\frac{N+2}{N+1} < \frac{q}{q < \infty}, 0 < s \leq \infty \) and \(0 < \kappa \leq N + 2 \) we find \(\delta = \delta(N, \Lambda_1, \Lambda_2, q, s, \kappa) \in (0, 1) \) such that if \([A]_{\infty}^\infty \leq \delta \) then

\[
|||\nabla u|||_{L^{1,\infty}(\mathbb{R}^{N+1})} \leq C_2 |||\mathcal{M}_1[\omega]|||_{L^{1,\infty}(\mathbb{R}^{N+1})}.
\]

(2.42)

Here \(C_2 \) depends on \(N, \Lambda_1, \Lambda_2, q, s, \kappa \).

c. For any \(\frac{N+2}{N+1} < \frac{q}{q < \infty}, 0 < s \leq \infty \) and \(0 < \vartheta \leq N \) one find \(\delta = \delta(N, \Lambda_1, \Lambda_2, q, s, \vartheta) \in (0, 1) \) such that if \([A]_{\infty}^\infty \leq \delta \) then

\[
|||\nabla u|||_{L^{1,\infty}(\mathbb{R}^{N+1})} \leq C_3 |||\mathcal{M}_1[\omega]|||_{L^{1,\infty}(\mathbb{R}^{N+1})}.
\]

(2.43)

Here \(C_3 \) depends on \(N, \Lambda_1, \Lambda_2, q, s, \vartheta \). Especially, when \(q = s \) and \(0 < \vartheta < \min\{N, q\} \),

there holds for any ball \(B_\rho \subset \mathbb{R}^N \)

\[
\left(\int_\mathbb{R} |\text{osc}_{B_\rho} u(t)|^q dt \right)^{\frac{1}{q}} \leq C_4 \rho^{1-\frac{N}{q}} |||\mathcal{M}_1[\omega]|||_{L^{1,\infty}(\mathbb{R}^{N+1})},
\]

(2.44)

for some \(C_4 = C_4(N, \Lambda_1, \Lambda_2, q, \vartheta) \).

d. For any \(\frac{N+2}{N+1} < \frac{q}{q < \infty}, 1 < q < \infty \), one find \(\delta = \delta(N, \Lambda_1, \Lambda_2, q) \in (0, 1) \) such that if \([A]_{\infty}^\infty \leq \delta \) then

\[
\sup_{\text{compact } K \subset \mathbb{R}^{N+1}} \sup_{\text{Cap}_{\mathcal{H}_1, q'}(K) > 0} \left(\frac{\int_K |\nabla u|^q dx dt}{\text{Cap}_{\mathcal{H}_1, q'}(K)} \right) \leq C_5 \sup_{\text{compact } K \subset \mathbb{R}^{N+1}} \sup_{\text{Cap}_{\mathcal{H}_1, q'}(K) > 0} \left(\frac{|||\omega|||_{L^{2,\vartheta}}}{\text{Cap}_{\mathcal{H}_1, q'}(K)} \right)^q.
\]

(2.45)

for some \(C_5 = C_5(N, \Lambda_1, \Lambda_2, q) \).

e. The statement c in Theorem 2.5 is true.

The following some estimates for norms of \(\mathcal{M}_1[\omega] \) in \(L^{q,\kappa}(\mathbb{R}^{N+1}) \) and \(L^{q,\vartheta}(\mathbb{R}^{N+1}) \)

Proposition 2.28 Let \(1 < \kappa \leq N + 2, 0 < \vartheta \leq N \) and \(q, q_1 > 1 \). Suppose that \(\mu \in \mathfrak{M}^+(\mathbb{R}^{N+1}) \). Then \(\mathcal{M}_1[\mu] \leq 2^{N+2} \mathcal{I}_1[\mu] \) and

a. If \(q > \frac{N}{\kappa-1} \) then

\[
|||\mathcal{I}_1[\mu][L^{q,\kappa}(\mathbb{R}^{N+1})] \leq C_1 |||\mu|||_{L^{2,\kappa}(\mathbb{R}^{N+1})}.
\]

(2.46)

Here \(C_1 \) depends on \(N, q, \kappa \).

b. If \(1 < q < 2 \) then

\[
|||\mathcal{I}_1[\mu][x, .]|||_{L^{q}(\mathbb{R})} \leq \mathcal{I}_{\frac{q}{2}}[-1][\mu_1](x),
\]

(2.47)

where \(\mu_1 \) is a nonnegative radon measure in \(\mathbb{R}^N \) defined by \(\mu_1(A) = \mu(A \times \mathbb{R}) \) for every Borel set \(A \subset \mathbb{R}^N \). In particular,

\[
|||\mathcal{I}_1[\mu][L^{q,\kappa}(\mathbb{R}^{N+1})] \leq |||\mathcal{I}_{\frac{q}{2}}[-1][\mu_1][L^{q,\kappa}(\mathbb{R}^N)],
\]

(2.48)

and if \(\vartheta > \frac{2q}{q-1} \) there holds

\[
|||\mathcal{I}_1[\mu][L^{q,\vartheta}(\mathbb{R}^{N+1})] \leq C_2 |||\mu|||_{L^{\frac{2q}{q-1},\vartheta}(\mathbb{R}^N)},
\]

(2.49)

for some \(C_2 = C_2(N, q, \vartheta) \).
e. If $\frac{2q}{q+2} < q_1 \leq q$ then

$$||\mathbb{I}_1[\mu](x,.)||_{L^q(\mathbb{R})} \leq L_1^{2+\frac{2}{q_1}-\frac{2}{q_1}} |\mu_2|(x),$$

(2.50)

where $d\mu_2(x) = |\mu(x,.)|_{L^1}\,dx$. In particular,

$$||\mathbb{I}_1[\mu]||_{L^{q_1}(\mathbb{R}^{N+1})} \leq \frac{1}{2} |\mu_2||_{L^{N+\sigma}(\mathbb{R}^N)},$$

(2.51)

and if $\vartheta > \frac{1}{2-q} \left(2 + q - \frac{2q}{q_1}\right)$ there holds

$$||\mathbb{I}_1[\mu]||_{L^{q_1}(\mathbb{R}^{N+1})} \leq C_3 ||\mu||_{L^{N+\sigma}(\mathbb{R}^N)},$$

(2.52)

for some $C_3 = C_3(N, q, \vartheta)$.

The proof of Proposition 2.28 will be performed at the end of Section 8.

Remark 2.29 Let $1 < q < 2$, $0 < \vartheta \leq N$ and $\sigma \in \mathfrak{M}(\mathbb{R}^N)$. From (2.48) and (2.49) in Proposition 2.28 we assert that

$$||\mathbb{I}_1[\sigma] \otimes \delta_{t=0}||_{L^{q_1}(\mathbb{R}^{N+1})} \leq \frac{1}{2} ||\mathbb{I}_1[\sigma]||_{L^{N+\sigma}(\mathbb{R}^N)},$$

and

$$||\mathbb{I}_1[\sigma] \otimes \delta_{t=0}||_{L^{q_1}(\mathbb{R}^{N+1})} \leq C_1 ||\sigma||_{L^{N+\sigma}(\mathbb{R}^N)} \quad \text{if} \quad \vartheta > \frac{2}{q} - \frac{q}{q_1},$$

for some $C_1 = C_1(N, q, \vartheta)$. Furthermore, from preceding inequality and (2.52) in Proposition 2.28 we can state that

$$||\mathbb{I}_1[\sigma] \otimes \delta_{t=0}||_{L^{q_1}(\mathbb{R}^{N+1})} \leq C_2 ||\sigma||_{L^{N+\sigma}(\mathbb{R}^N)} + C_2 ||\mu||_{L^{N+\sigma}(\mathbb{R}^N)},$$

provided

$$1 < q_1 \leq q < 2, \quad \max \left\{ \frac{2 - q}{q - 1}, \frac{1}{q_1} \left(2 + q - \frac{2q}{q_1}\right) \right\} < \vartheta \leq N,$$

for some $C_2 = C_2(N, q, \vartheta)$. Where

$$||\mu||_{L^{q_2}(\mathbb{R}^N, L^{q_1}(\mathbb{R}))} = \sup_{\rho > 0, x \in \mathbb{R}^N} \rho^{\frac{q-N}{q_2}} \left(\int_{B_\rho(x)} \left(\int_{2} |\mu(y, t)|^{q_1} \, dy \right)^{\frac{q_2}{q_1}} \, dt \right)^{\frac{q_2}{q}}$$

with $q_2 = \frac{q q_1}{(q+2-q_1) q_1 - 2q}$.

Final part, we prove the existence solutions for the quasilinear Riccati type parabolic problems

\[
\begin{align*}
\begin{cases}
&u_t - \text{div}(A(x, t, \nabla u)) = |\nabla u|^q + \mu \quad \text{in} \ \Omega_T, \\
&u = 0 \quad \text{on} \ \partial\Omega \times (0, T), \\
&u(0) = \sigma \quad \text{in} \ \Omega,
\end{cases}
\end{align*}
\]

(2.53)

and

\[
\begin{align*}
\begin{cases}
&u_t - \text{div} \ (A(x, t, \nabla u)) = |\nabla u|^q + \mu \quad \text{in} \ \mathbb{R}^N \times (0, \infty), \\
&u(0) = \sigma \quad \text{in} \ \mathbb{R}^N,
\end{cases}
\end{align*}
\]

(2.54)

and

\[
\begin{align*}
\begin{cases}
&u_t - \text{div} \ (A(x, t, \nabla u)) = |\nabla u|^q + \mu \quad \text{in} \ \mathbb{R}^{N+1},
\end{cases}
\end{align*}
\]

(2.55)

where $q > 1$.

The following result is considered in subcritical case this means $1 < q < \frac{N+2}{N+1}$, to obtain existence solutions in this case we need data μ, σ to be finite measures and small enough.
Theorem 2.30 Let $1 < q < \frac{N+2}{N+1}$ and $\mu \in \mathcal{M}_b(\Omega_T)$, $\sigma \in \mathcal{M}_b(\Omega)$. There exists $\varepsilon_0 = \varepsilon_0(N, \Lambda_1, \Lambda_2, q) > 0$ such that if

$$|\Omega_T|^{-1} + \frac{2q}{N+1}(|\mu|+|\omega|) \leq \varepsilon_0,$$

the problem (2.53) has a distribution solution u, satisfying

$$|||\nabla u|||_{L^{\frac{N+2}{N+1}}(\Omega_T)} \leq C(|\mu|+|\omega|),$$

for some $C = C(N, \Lambda_1, \Lambda_2, q) > 0$.

In the next results are concerned in critical and supercritical case.

Theorem 2.31 Suppose that $\mathbb{R}^N \setminus \Omega$ satisfies uniformly $2-$ thick with constants c_0, r_0. Let θ be in Theorem 2.17, $q \in \left(\frac{N+2}{N+1}, \frac{N+2+\theta}{N+2}\right)$, $\mu \in \mathcal{M}_b(\Omega_T)$ and $\sigma \in \mathcal{M}_b(\Omega)$. Assume that $\sigma \equiv 0$ when $q \geq \frac{N+4}{N+2}$. There exists $\varepsilon_0 = \varepsilon_0(N, \Lambda_1, \Lambda_2, q, c_0, T_0/r_0) > 0$ such that if

$$|||I_1[\mu]|||_{L^{(N+2)(q-1)\infty}(\Omega_T)} + |||I_2[\frac{2}{N+2}, T_{\omega}^{-1}][\sigma]|||_{L^{(N+2)(q-1)\infty}(\mathbb{R})} \leq \varepsilon_0,$$

then the problem (2.53) has a distribution solution u satisfying

$$|||\nabla u|||_{L^{\frac{N+2}{N+1}}(\Omega_T)} \leq C|||I_1[\mu]|||_{L^{(N+2)(q-1)\infty}(\Omega_T)} + C|||I_2[\frac{2}{N+2}, T_{\omega}^{-1}][\sigma]|||_{L^{(N+2)(q-1)\infty}(\mathbb{R})},$$

for some $C = C(N, \Lambda_1, \Lambda_2, q_0, c_0, T_0/r_0)$.

We remark that a necessary condition for existence $\sigma \in \mathcal{M}_b(\Omega) \setminus \{0\}$ with $M_1[|\sigma| \otimes \delta_{\{t=0\}}] \in L^{(N+2)(q-1)\infty}(\mathbb{R})$ is $\frac{N+2}{N+1} \leq q < \frac{N+4}{N+2}$.

Theorem 2.32 Suppose that A satisfies (2.27). Let s_0 be the constant in Theorem 2.20. Let $q \geq \frac{N+2}{N+1}$ and $\mu \in \mathcal{M}_b(\Omega_T), \sigma \in \mathcal{M}_b(\Omega)$, set $\omega = |\mu| + |\sigma| \otimes \delta_{\{t=0\}}$. There exists $\delta = \delta(N, \Lambda_1, \Lambda_2, q) \in (0, 1)$ such that Ω is $\delta(R_0)$-Reifenberg flat domain Ω and $[A]_{s_0} \leq \delta$ for some R_0 and the following holds. The problem (2.53) has a distribution solution u if one of the following cases is true:

Case a. A is a linear operator and

$$\omega(K) \leq C_1 \text{Cap}_{\mathcal{G}_{1,q'}}(K) \text{ for every compact subset } K \subset \mathbb{R}^{N+1},$$

with a constant C_1 small enough.

Case b. there holds

$$\omega(K) \leq C_2 \text{Cap}_{\mathcal{G}_{1, (q+\varepsilon)'}}(K) \text{ for every compact subset } K \subset \mathbb{R}^{N+1},$$

where $\varepsilon > 0$ and C_2 is a constant small enough.

Case c. $q \geq \frac{N+2}{N+1}$ if $\sigma \equiv 0$, $\varepsilon > 0$ and C_2 is a constant small enough. $\omega(K) \leq C_2 \text{Cap}_{\mathcal{G}_{1, (q+\varepsilon)'}}(K) \text{ for every compact subset } K \subset \mathbb{R}^{N+1},$

where $\varepsilon > 0$ and C_2 is a constant small enough.

A solution u corresponds to Case a, b and c satisfying

$$\int_K |\nabla u|^q dx dt \leq C_3 C_4^q \text{Cap}_{\mathcal{G}_{1,q'}}(K) \text{ for every compact subset } K \subset \mathbb{R}^{N+1},$$

$$\int_K |\nabla u|^{q+\varepsilon} dx dt \leq C_4 C_2^{q+\varepsilon} \text{Cap}_{\mathcal{G}_{1, (q+\varepsilon)'}}(K) \text{ for every compact subset } K \subset \mathbb{R}^{N+1},$$
Since we have an estimate:

\[
\|\|\nabla u\|\|_{L^{(N+2)(q-1)}(\Omega_T)} \leq C_3 \|\|\|\| \|\|_{L^{(N+2)(q-1)}(\Omega_T)} + C_4 \|\|L^{(N+2)(q-1)}(\mathbb{R}^N)\|\|,
\]

respectively. Where \(C_3, C_4, C_5 \) are constants depended on \(N, \Lambda_1, \Lambda_2, q, \varepsilon, T_0/R_0, \) besides \(C_3, C_4 \) also depend on \(T_0. \)

Since \(\text{Cap}_{\Omega_T}(B_r(0) \times \{t = 0\}) = 0 \) for all \(r > 0 \) and \(0 < s \leq 2, \) see Remark 4.13 thus if there is \(\sigma \in \mathcal{M}_b(\Omega) \setminus \{0\} \) satisfying \((\|\|\sigma\|\|) \|\|_{\Omega_T}(E) \leq \text{Cap}_{\Omega_T}(E) \) for every compact subsets \(E \subset \mathbb{R}^{N+1} \) then we must have \(s > 2. \)

The above results are not sharp in the case \(A \) is a nonlinear operator. However, if \(A \) is Holder continuous with respect to \(x \) we can prove that problem (2.53) has a distribution solution with data having compact support in \(\Omega_T. \)

Theorem 2.33 Let \(\Omega \) be a bounded open subset in \(\mathbb{R}^N \) such that the boundary of \(\Omega \) is in \(C^{1,\beta} \) with \(\beta \in (0, 1). \) Suppose that \(A \) satisfies (2.27) and

\[
|A(x, t, \zeta) - A(y, t, \zeta)| \leq \Lambda_3 |x - y|^{\beta} |\zeta|, \tag{2.59}
\]

for every \(x, y \in \Omega \) and \(t > 0, \zeta \in \mathbb{R}^N. \) Let \(\Omega' \subset \subset \Omega \) and set \(d = \text{dist}(\Omega', \Omega) > 0. \) Then, there exist \(C = C(N, q, \Lambda_1, \Lambda_2, \Lambda_3, \beta, d, \Omega, T) > 0 \) and \(\Lambda = \Lambda(N, q, \Lambda_1, \Lambda_2, \Lambda_3, \beta, d, \Omega, T) > 0 \) such that for any \(\mu \in \mathcal{M}_b(\Omega_T), \sigma \in \mathcal{M}_b(\Omega) \) with \(\text{supp}(\mu) \subset \Omega' \times [0, T], \text{supp}(\sigma) \subset \Omega', \) the problem (2.53) has a distribution solution \(u, \) satisfying

\[
|\nabla u(x, t)| \leq \Lambda_1 \|\mu\| + |\sigma| \|\delta_{(t=0)}\|(x, t) \quad a.e. \quad (x, t) \in \Omega_T, \tag{2.60}
\]

provided that one of the following two cases is true:

Case a. \(1 < q < 2 \) and

\[
|\mu|(E) \leq C \text{Cap}_{\Omega, q'}(E) \quad \text{and} \quad |\sigma|(O) \leq C \text{Cap}_{\Omega, q'}(O), \tag{2.61}
\]

for all compact subsets \(E \subset \mathbb{R}^{N+1} \) and \(O \subset \mathbb{R}^N. \)

Case b. \(q \geq 2 \) and \(\sigma \equiv 0, \)

\[
|\mu|(E) \leq C \text{Cap}_{\Omega, q'}(E), \tag{2.62}
\]

for all compact subsets \(E \subset \mathbb{R}^{N+1}. \)

Remark 2.34 If \(q > \frac{N+2}{N+1}, \mu \equiv 0 \) and **Case a** is satisfied then (2.60) gives the decay estimate:

\[
\sup_{x \in \Omega} |\nabla u(x, t)| \leq c_1 t^{-\frac{1}{N+1}} \quad \forall \quad 0 < t < T,
\]

since \(|\sigma|(B\rho(x)) \leq c_2(T_0) \rho^{N-\frac{2}{q-1}} \) for any \(B\rho(x) \subset \mathbb{R}^N. \)

We have an important Proposition.

Proposition 2.35 All the existence results considered the bounded domain \(\Omega_T \) have recently been presented in above Theorems, if \(\sigma \in L^1(\Omega) \) then the solutions obtained in those Theorems are renormalized solutions.
Theorem 2.36 Let $\theta \in (2, N+2)$ be in Theorem 2.17, $q \in \left(\frac{N+2}{N+1}, \frac{N+2+\theta}{N+2}\right)$ and $\omega \in \mathcal{M}(\mathbb{R}^{N+1})$. There exists $C_1 = C_1(N, \Lambda_1, \Lambda_2, q) > 0$ such that if

$$||I_1||\omega||_L^{(N+2)}(\mathbb{R}^{N+1}) \leq C_1,$$

then the problem (2.55) has a distribution solution $u \in L_{loc}^1(\mathbb{R}; W^{1, 1}_{loc}(\mathbb{R}^N))$ such that

$$||| \nabla u |||_{L^{(N+2)}((\mathbb{R}^{N+1}))} \leq C_2 \|I_1\|\omega||_L^{(N+2)}(\mathbb{R}^{N+1})||L^{(N+2)}(\mathbb{R}^{N+1}),$$

for some $C_2 = C_2(N, \Lambda_1, \Lambda_2, q)$. Furthermore, when $\omega = \mu + \sigma \otimes \delta_{\{t=0\}}$ with $\mu \in \mathcal{M}(\mathbb{R}^{N} \times (0, \infty))$ and $\sigma \in \mathcal{M}(\mathbb{R})$ then $u = 0$ in $\mathbb{R}^N \times (-\infty, 0)$ and $u|_{\mathbb{R}^{N} \times [0, \infty)}$ is a distribution solution to problem (2.54).

Theorem 2.37 Suppose that A satisfies (2.27). Let $q > \frac{N+2}{N+1}$ and $\omega \in \mathcal{M}(\mathbb{R}^{N+1})$ such that $I_2[\omega](x_0, t_0) < \infty$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$. Let s_0 be the constant in Theorem 2.20, δ in Theorem 2.32. There exists $C_1 = C_1(N, \Lambda_1, \Lambda_2, q) > 0$ such that if $|A|_{s_0} \leq \delta$ and

$$||I_1||\omega||_L^{(N+2)}(\mathbb{R}^{N+1}) \leq C_1,$$

then the problem (2.55) has a distribution solution u satisfying (2.63). Furthermore, when $\omega = \mu + \sigma \otimes \delta_{\{t=0\}}$ with $\mu \in \mathcal{M}(\mathbb{R}^N \times (0, \infty))$ and $\sigma \in \mathcal{M}(\mathbb{R})$ then $u = 0$ in $\mathbb{R}^N \times (-\infty, 0)$ and $u|_{\mathbb{R}^N \times [0, \infty)}$ is a distribution solution to problem (2.54).

From Remark 2.26, we see that if $q \leq 2$ then (2.64) follows the assumption $I_2[\omega](x_0, t_0) < \infty$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$.

When A is independent of space variable, we can improve the result of Theorem 2.37 as follows:

Theorem 2.38 Suppose that A is independent of space variable and satisfies (2.27). Let $q > \frac{N+2}{N+1}$ and $\omega \in \mathcal{M}(\mathbb{R}^{N+1})$. Assume that $I_2[\omega](x_0, t_0) < \infty$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$. There exist constants $\Lambda = \Lambda(N, \Lambda_1, \Lambda_2, q)$ and $C = C(N, \Lambda_1, \Lambda_2, q)$ such that the problem

$$u_t - \text{div} (A(t, \nabla u)) = |\nabla u|^q + \omega \text{ in } \mathbb{R}^{N+1},$$

has a distribution solution u, satisfying

$$|\nabla u| \leq \Lambda_1[\omega] \text{ in } \mathbb{R}^{N+1},$$

provided that for all compact subset $E \subset \mathbb{R}^{N+1}$

$$|\omega|(E) \leq C \text{Cap}_{H_1, q'}(E).$$

Furthermore, when $\omega = \mu + \sigma \otimes \delta_{\{t=0\}}$ with $\mu \in \mathcal{M}(\mathbb{R}^N \times (0, \infty))$ and $\sigma \in \mathcal{M}(\mathbb{R})$ then $u = 0$ in $\mathbb{R}^N \times (-\infty, 0)$ and $u|_{\mathbb{R}^N \times [0, \infty)}$ is a distribution solution to problem

$$\left\{ \begin{array}{ll}
\text{div} (A(t, \nabla u)) = |\nabla u|^q + \mu \text{ in } \mathbb{R}^N \times (0, \infty), \\
u(0) = \sigma \text{ in } \mathbb{R}^N.
\end{array} \right.$$
3 The notion of solutions and some properties

Although the notion of renormalized solutions becomes more and more familiar in the theory of quasilinear parabolic equations with measure data, it is still necessary to present below some main aspects concerning this notion. Let Ω be a bounded domain in \mathbb{R}^N, $(a, b) \subset \subset \mathbb{R}$. If $\mu \in \mathcal{M}_b(\Omega \times (a, b))$, we denote by μ^+ and μ^- respectively its positive and negative part. We denote by $\mathcal{M}_b(\Omega \times (a, b))$ the space of measures in $\Omega \times (a, b)$ which are absolutely continuous with respect to the C_2-capacity defined on a compact set $K \subset \Omega \times (a, b)$ by

$$C_2(K, \Omega \times (a, b)) = \inf \{ \| \varphi \|_W : \varphi \geq \chi_K, \varphi \in C_c^\infty(\Omega \times (a, b)) \},$$

(3.1)

where $W = \{ z : z \in L^2(a, b, H^1_0(\Omega)), z_t \in L^2(a, b, H^{-1}(\Omega)) \}$ endowed with norm $\| \varphi \|_W = \| \varphi \|_{L^2(a, b, H^1_0(\Omega))} + \| \varphi_t \|_{L^2(a, b, H^{-1}(\Omega))}$ and χ_K is the characteristic function of K.

We also denote $\mathcal{M}_r(\Omega \times (a, b))$ the space of measures in $\Omega \times (a, b)$ with support on a set of zero C_2-capacity. Classically, any $\mu \in \mathcal{M}_b(\Omega \times (a, b))$ can be written in a unique way under the form $\mu = \mu_0 + \mu_s$ where $\mu_0 \in \mathcal{M}_b(\Omega \times (a, b)) \cap \mathcal{M}_b(\Omega \times (a, b))$ and $\mu_s \in \mathcal{M}_r(\Omega \times (a, b))$. We recall that any $\mu_0 \in \mathcal{M}_b(\Omega \times (a, b)) \cap \mathcal{M}_b(\Omega \times (a, b))$ can be decomposed under the form $\mu_0 = f - \div v + h$ where $f \in L^1(\Omega \times (a, b))$, $g \in L^2(\Omega \times (a, b), \mathbb{R}^N)$ and $h \in L^2(a, b, H^1_0(\Omega))$ and (f, g, h) is said to be decomposition of μ_0. Set $\tilde{\mu}_0 = \mu_0 - h_t = f - \div g$. In the general case $\tilde{\mu}_0 \notin \mathcal{M}_b(\Omega \times (a, b))$, but we write, for convenience,

$$\int_{\Omega \times (a, b)} w d\tilde{\mu}_0 := \int_{\Omega \times (a, b)} (fw + g, \nabla w) dxdt, \quad \forall w \in L^2(a, b, H^1_0(\Omega)) \cap L^\infty(\Omega \times (a, b)).$$

However, for $\sigma \in \mathcal{M}_b(\Omega)$ and $t_0 \in (a, b)$ then $\sigma \delta_{\{t=t_0\}} \in \mathcal{M}_b(\Omega \times (a, b))$ if and only if $\sigma \in L^1(\Omega)$, see [26]. We also have that for $\sigma \in \mathcal{M}_b(\Omega)$, $\sigma \chi_{[a, b]} \in \mathcal{M}_b(\Omega \times (a, b))$ if and only if σ is absolutely continuous with respect to the $\text{Cap}_{\text{G},2}$-capacity, see [26].

For $k > 0$ and $s \in \mathbb{R}$ we set $T_k(s) = \max\{\min\{s, k\}, -k\}$. We recall that if $u \in L^1(\Omega)$ and finite a.e. in $\Omega \times (a, b)$, such that $T_k(u) \in L^2(a, b, H^1_0(\Omega))$ for any $k > 0$, there exists a measurable function $v : \Omega \times (a, b) \to \mathbb{R}^N$ such that $\nabla T_k(u) = \chi_{|u| \leq k} v$ a.e. in $\Omega \times (a, b)$ and for all $k > 0$. We define the gradient ∇u of u by $v = \nabla u$. We recall the definition of a renormalized solution given in [65].

Definition 3.1 Suppose that $B \in C(\mathbb{R} \times \mathbb{R}^N, \mathbb{R})$. Let $\mu = \mu_0 + \mu_s \in \mathcal{M}_b(\Omega \times (a, b))$ and $\sigma \in L^1(\Omega)$. A measurable function u is a renormalized solution of

$$\begin{cases}
 u_t - \div (A(x, t, \nabla u)) = B(u, \nabla u) + \mu \text{ in } \Omega \times (a, b), \\
 u = 0 \text{ on } \partial \Omega \times (a, b), \\
 u(a) = \sigma \text{ in } \Omega,
\end{cases}$$

(3.2)

if there exists a decomposition (f, g, h) of μ_0 such that

$$v = u - h \in L^4(a, b, W^{1,4}_0(\Omega)) \cap L^\infty(a, b, L^1(\Omega)) \forall s \in \left[\frac{1}{N + 2}, \frac{N + 2}{N + 1} \right)$$

$$T_k(v) \in L^2(a, b, H^1_0(\Omega)) \forall k > 0, B(u, \nabla u) \in L^1(\Omega \times (a, b))$$

(3.3)

and:

(i) for any $S \in W^{2,\infty}(\mathbb{R})$ such that S' has compact support on \mathbb{R}, and $S(0) = 0$,

$$-\int_{\Omega} S(\sigma) \varphi(a) dx - \int_{\Omega \times (a, b)} \varphi_t S(v) dxdt + \int_{\Omega \times (a, b)} S'(v) A(x, t, \nabla u) \nabla \varphi dxdt$$

$$+ \int_{\Omega \times (a, b)} S''(v) \varphi A(x, t, \nabla u) \nabla v dxdt = \int_{\Omega \times (a, b)} S'(v) \varphi B(u, \nabla u) dxdt + \int_{\Omega \times (a, b)} S'(v) \varphi d\tilde{\mu}_0,$$

(3.4)
for any \(\varphi \in L^2(a, b, H^1_0(\Omega)) \cap L^\infty(\Omega \times (a, b)) \) such that \(\varphi_t \in L^2(a, b, H^{-1}(\Omega)) + L^1(\Omega \times (a, b)) \) and \(\varphi(., b) = 0 \);

(ii) for any \(\phi \in C(\overline{\Omega} \times [a, b]) \),

\[
\lim_{m \to \infty} \frac{1}{m} \int_{\{m \leq \nu < 2m\}} \phi A(x, t, \nabla u) \nabla v \, dx \, dt = \int_{\partial \Omega \times (a, b)} \phi \mu_+^t \quad \text{and} \quad (3.5)
\]

\[
\lim_{m \to \infty} \frac{1}{m} \int_{\{m \leq \nu < 2m\}} \phi A(x, t, \nabla u) \nabla v \, dx \, dt = \int_{\Omega \times (a, b)} \phi \mu_-^t . \quad (3.6)
\]

Remark 3.2 If \(\mu \in L^1(\Omega \times (a, b)) \), then we have the following estimates:

\[
\|u\|_{L^\infty(\Omega \times (a, b))} \leq C_1 \left(\|\sigma\|_{L^1(\Omega)} + |\mu|_{\Omega \times (a, b)} \right) \quad \text{and} \quad (3.7)
\]

\[
\|\nabla u\|_{L^\infty(\Omega \times (a, b))} \leq C_1 \left(\|\sigma\|_{L^1(\Omega)} + |\mu|_{\Omega \times (a, b)} \right) ,
\]

where \(C_1 = C_1(N, A_1, A_2) \), see [13, Remark 4.9].

In particular,

\[
\|u\|_{L^1(\Omega \times (a, b))} \leq C_2 \left(\text{diam}(\Omega) + (b-a)^{1/2} \right) \left(\|\sigma\|_{L^1(\Omega)} + |\mu|_{\Omega \times (a, b)} \right) \quad \text{and} \quad (3.8)
\]

\[
\|\nabla u\|_{L^1(\Omega \times (a, b))} \leq C_2 \left(\text{diam}(\Omega) + (b-a)^{1/2} \right) \left(\|\sigma\|_{L^1(\Omega)} + |\mu|_{\Omega \times (a, b)} \right) ,
\]

where \(C_2 = C_2(N, A_1, A_2) \).

Remark 3.3 It is easy to see that \(u \) is a weak solution of problem (3.2) in \(\Omega \times (a, b) \) with \(\mu \in L^2(\Omega \times (a, b)) \), \(\sigma \in H^1_0(\Omega) \) and \(B \equiv 0 \) then \(U = \chi_{[a,b]} u \) is a unique renormalized solution of

\[
\begin{align*}
U_t - \text{div} (A(x, t, \nabla U)) &= \chi_{[a,b]} \mu + \chi_{[a,b]} \sigma_t \quad \text{in} \ \Omega \times (c, b), \\
U &= 0 \quad \text{on} \ \partial \Omega \times (c, b), \\
U(c) &= 0 \quad \text{in} \ \Omega ,
\end{align*}
\]

for any \(c < a \).

Remark 3.4 Let \(\Omega' \subset \subset \Omega \) and \(a < a' < b' < b \). For a nonnegative function \(\eta \in C_\infty^\infty(\Omega' \times (a', b')) \), from (3.4) we have

\[
(\eta S(v))_t - \eta_t S(v) + S'(v)A(x, t, \nabla u) \nabla \eta - \text{div} (S'(v) \eta A(x, t, \nabla u))
\]

\[
+ S''(v) \eta A(x, t, \nabla u) \nabla \nu \nu = S'(v) \eta f + \nabla (S'(v) \eta) \cdot g - \text{div} (S'(v) \eta g)
\]

in \(\mathcal{D}'(\Omega' \times (a', b')) \). Thus, \((\eta S(v))_t \in L^2(a', b', H^{-1}(\Omega')) + L^1(D) \) and we have the following estimate

\[
\| (\eta S(v))_t \|_{L^2(a', b', H^{-1}(\Omega')) + L^1(D)} \leq C \left(\|\sigma\|_{W^{2,\infty}(\Omega)} \|\eta_t\|_{L^1(D)} \\
+ \|\nabla u\|_{L^1(D)} \right) + |\eta|_{\eta \sigma}| \chi_{|\nu| \leq M}|_{L^2(D)} + |\eta|_{\eta \nu} \|\nabla \nu \chi_{|\nu| \leq M}|_{L^2(D)} \\
+ |\eta|_{\eta f}|_{L^1(D)} + |\eta|_2 \|\nabla \nu \chi_{|\nu| \leq M}|_{L^1(D)} + |\eta|_{\eta g}|_{L^2(D)} \quad \text{(3.7)}
\]

with \(D = \Omega' \times (a', b') \) and \(\text{supp}(S') \subset [-M, M] \).

We recall the following important results, see [13].

Proposition 3.5 Let \(\{\mu_n\} \) be a bounded in \(M_0(\Omega \times (a, b)) \) and \(\sigma_n \) be a bounded in \(L^1(\Omega) \). Let \(u_n \) be a renormalized solution of (2.4) with data \(\mu_n = \mu_{n,0} + \mu_{n,s} \) relative to a decomposition \(\{f_n, g_n, h_n\} \) of \(\mu_{n,0} \) and initial data \(\sigma_n \). If \(\{f_n\} \) is bounded in \(L^2(\Omega \times (a, b), \mathbb{R}^N) \) and \(\{h_n\} \) convergent in \(L^2(a, b, H^1_0(\Omega)) \), then, up to a subsequence, \(\{u_n\} \) converges to a function \(u \) in \(L^1(\Omega \times (a, b)) \). Moreover, if \(\{\mu_n\} \) is a bounded in \(L^1(\Omega \times (a, b)) \) then \(\{u_n\} \) is convergent in \(L^s(a, b, W^{1,s}_0(\Omega)) \) for any \(s \in \left[1, \frac{N+2}{N+1}\right] \).
We say that a sequence of bounded measures \(\{\mu_n\} \) in \(\Omega \times (a, b) \) converges to a bounded measure \(\mu \) in \(\Omega \times (a, b) \) in the narrow topology of measures if

\[
\lim_{n \to \infty} \int_{\Omega \times (a, b)} \varphi \, d\mu_n = \int_{\Omega \times (a, b)} \varphi \, d\mu \quad \text{for all } \varphi \in C(\Omega \times (a, b)) \cap L^\infty(\Omega \times (a, b)).
\]

We recall the following fundamental stability result of [13].

Theorem 3.6 Suppose that \(B \equiv 0 \). Let \(\sigma \in L^1(\Omega) \) and

\[
\mu = f - \text{div } g + h_2 + \mu^+_s - \mu^-_s \in \mathfrak{M}_0(\Omega \times (a, b)),
\]

with \(f \in L^1(\Omega \times (a, b)), g \in L^2(\Omega \times (a, b), \mathbb{R}^N), h \in L^2(a, b, H^1_0(\Omega)) \) and \(\mu^+_s, \mu^-_s \in \mathfrak{M}_+^1(\Omega \times (a, b)) \). Let \(\sigma_n \in L^1(\Omega) \) and

\[
\mu_n = f_n - \text{div } g_n + (h_n)_t + \rho_n - \eta_n \in \mathfrak{M}_0(\Omega \times (a, b)),
\]

with \(f_n \in L^1(\Omega \times (a, b)), g_n \in L^2(\Omega \times (a, b), \mathbb{R}^N), h_n \in L^2(a, b, H^1_0(\Omega)) \), and \(\rho_n, \eta_n \in \mathfrak{M}_+^1(\Omega \times (a, b)) \), such that

\[
\rho_n = \rho^+_n - \text{div } \rho^+_s + \rho_{n,s}, \quad \eta_n = \eta^+_n - \text{div } \eta^+_s + \eta_{n,s},
\]

with \(\rho^+_n, \eta^+_n \in L^1(\Omega \times (a, b)), \rho^+_s, \eta^+_s \in L^2(\Omega \times (a, b), \mathbb{R}^N) \) and \(\rho_{n,s}, \eta_{n,s} \in \mathfrak{M}_+^1(\Omega \times (a, b)) \).

Assume that \(\{\mu_n\} \) is a bounded in \(\mathfrak{M}(\Omega \times (a, b)), \{\sigma_n\}, \{f_n\}, \{g_n\}, \{h_n\} \) converge to \(\sigma, f, g, h \) in \(L^1(\Omega) \), weakly in \(L^1(\Omega \times (a, b)) \), in \(L^2(\Omega \times (a, b), \mathbb{R}^N) \), in \(L^2(a, b, H^1_0(\Omega)) \) respectively and \(\{\rho_n\}, \{\eta_n\} \) converge to \(\mu^+_s, \mu^-_s \) in the narrow topology of measures; and \(\{\rho^+_n\}, \{\eta^+_n\} \) are bounded in \(L^1(\Omega \times (a, b)) \), and \(\{\rho^+_s\}, \{\eta^+_s\} \) bounded in \(L^2(\Omega \times (a, b), \mathbb{R}^N) \).

Let \(\{u_n\} \) be a sequence of standard mollifiers of \(\mu_n, \eta_n \) relative to the decomposition \(\{f_n + \rho^+_n - \eta^+_n, g_n + \rho^+_s - \eta^+_s, h_n\} \) of \(\mu_{n,0} \).

Then up to a subsequence, \(\{u_n\} \) converges a.e. in \(\Omega \times (a, b) \) to \(u \) on a re-normalized solution of (3.2), and \(\{v_n\} \) converges a.e. in \(\Omega \times (a, b) \) to \(v = u - h \). Moreover, \(\{\nabla u_n\} \), \(\{\nabla v_n\} \) converge respectively to \(\nabla u, \nabla v \) a.e. in \(\Omega \times (a, b) \), and \(\{T_k(v_n)\} \) converges to \(T_k(v) \) strongly in \(L^2(a, b, H^1_0(\Omega)) \) for any \(k > 0 \).

In order to apply above Theorem, we need some the following properties concerning approximate measures of \(\mu \in \mathfrak{M}_+^1(\Omega \times (a, b)) \), see [13].

Proposition 3.7 Let \(\mu = \mu_0 + \mu_s \in \mathfrak{M}_+^1(\Omega \times (a, b)) \) with \(\mu_0 \in \mathfrak{M}_0(\Omega \times (a, b)) \) and \(\mu_s \in \mathfrak{M}_+^1(\Omega \times (a, b)) \). Let \(\{\varphi_n\} \) be sequence of standard mollifiers in \(\mathbb{R}^{N+1} \).

Then, there exist a decomposition \((f, g, h) \) of \(\mu_0 \) and \(f_n, g_n, h_n \in C_\infty(\Omega \times (a, b)) \) such that \(f_n \), \(g_n \), \(h_n \) strongly converge to \(f, g, h \) in \(L^1(\Omega \times (a, b)), L^2(\Omega \times (a, b), \mathbb{R}^N) \) and \(L^2(a, b, H^1_0(\Omega)) \), \(\mu_n = f_n - \text{div } g_n + (h_n)_t + \rho_{n,s}, \mu_s \) converge to \(\mu, \mu_s \) in the narrow topology respectively, \(0 \leq \mu_n \leq \varphi \ast \mu \) and

\[
||f_n||_{L^1(\Omega \times (a, b))} + ||g_n||_{L^2(\Omega \times (a, b), \mathbb{R}^N)} + ||h_n||_{L^2(a, b, H^1_0(\Omega))} + \mu_{n,s}(\Omega \times (a, b)) \leq 2\mu(\Omega \times (a, b)).
\]

Proposition 3.8 Let \(\mu = \mu_0 + \mu_s = \mu_{0,0} + \mu_{0,s} \in \mathfrak{M}_+^1(\Omega \times (a, b)) \) with \(\mu_0, \mu_{0,s} \in \mathfrak{M}_0(\Omega \times (a, b)) \) and \(\mu_s \in \mathfrak{M}_+^1(\Omega \times (a, b)) \) such that \(\{\mu_n\} \) nonincreasingly converges to \(\mu \) in \(\mathfrak{M}_0(\Omega \times (a, b)) \) and there exist decompositions \((f, g, h) \) of \(\mu_0 \), \(f_n, g_n, h_n \) of \(\mu_{n,s} \) such that \(f_n \), \(g_n \), \(h_n \) strongly converge to \(f, g, h \) in \(L^1(\Omega \times (a, b)), L^2(\Omega \times (a, b), \mathbb{R}^N) \) and \(L^2(a, b, H^1_0(\Omega)) \) respectively satisfying

\[
||f_n||_{L^1(\Omega \times (a, b))} + ||g_n||_{L^2(\Omega \times (a, b), \mathbb{R}^N)} + ||h_n||_{L^2(a, b, H^1_0(\Omega))} + \mu_{n,s}(\Omega \times (a, b)) \leq 2\mu(\Omega \times (a, b)).
\]
Remark 3.9 For $0 < \rho \leq \frac{1}{2} \min \{ \sup_{x \in \Omega} d(x, \partial \Omega), (b-a)^{1/2} \}$, set

$$\Omega'_\rho = \{ x \in \Omega : d(x, \partial \Omega) > j \rho \} \times (a + (j \rho)^2, a + ((b-a)^{1/2} - j \rho)^2)$$ for $j = 0, \ldots, k_\rho$,

where $k_\rho = \left[\frac{\min \{ \sup_{x \in \Omega} d(x, \partial \Omega), (b-a)^{1/2} \} }{2 \rho} \right]$.

We can choose f_n, g_n, h_n in above two Propositions such that for any $j = 1, \ldots, k_\rho$,

$$\| f_n \|_{L^1(\Omega'_\rho)} + \| g_n \|_{L^2(\Omega'_\rho, \mathbb{R}^N)} + \| h_n \| + \| \nabla h_n \|_{L^2(\Omega'_\rho)} \leq 2 \mu (\Omega'_\rho)^{-1} \forall n \in \mathbb{N} \quad (3.9)$$

In fact, set $\mu_j = \chi_{\Omega'_{j-1}} \setminus \Omega'_{j-1} \mu$ if $j = 1, \ldots, k_\rho - 1$, $\mu_j = \chi_{\Omega'_{k_\rho}} \setminus \Omega'_{k_\rho} \mu$ if $j = k_\rho$ and $\mu_j = \chi_{\Omega'_{k_\rho}} \setminus \Omega'_{k_\rho} \mu$ if $j = 0$. From the proof of above two Propositions in [13], for any $2 > 0$ we can assume supports of f_n, g_n, h_n containing in $\text{supp}(\mu) + \tilde{Q}(0,0)$. Thus, for any $\mu = \mu_j$ we have f'_n, g'_n, h'_n correspondingly such that their supports contain in $\Omega'_{k_\rho-j} \setminus \Omega'_{k_\rho-j+3/2}$ if $j = 1, \ldots, k_\rho - 1$ and $\Omega'_{k_\rho} \setminus \Omega'_{k_\rho+3/2}$ if $j = k_\rho$ and $\Omega'_{k_\rho-j/2} \setminus \Omega'_{k_\rho-j+5/2}$ if $j = 0$. By $\mu_j = \sum_{j=0}^{k_\rho} \mu_j$, it is thus possible to choose $f_n = \sum_{j=0}^{k_\rho} f'_n, g_n = \sum_{j=0}^{k_\rho} g'_n$ and $h_n = \sum_{j=0}^{k_\rho} h'_n$ and (3.9) of (3.9) satisfies since

$$\| f_n \|_{L^1(\Omega'_\rho)} + \| g_n \|_{L^2(\Omega'_\rho, \mathbb{R}^N)} + \| h_n \| + \| \nabla h_n \|_{L^2(\Omega'_\rho)}$$

$$\leq \sum_{j=0}^{k_\rho} \left(\| f'_n \|_{L^1(\Omega'_{j-1})} + \| g'_n \|_{L^2(\Omega'_{j-1}, \mathbb{R}^N)} + \| h'_n \| + \| \nabla h'_n \|_{L^2(\Omega'_{j-1})} \right)$$

$$\leq \sum_{j=0}^{k_\rho-j+1} \| f'_n \|_{L^1(\Omega'_\rho)} + \| g'_n \|_{L^2(\Omega'_\rho, \mathbb{R}^N)} + \| h'_n \| + \| \nabla h'_n \|_{L^2(\Omega'_\rho)}$$

$$\leq 2 \mu_j (\Omega \times (a,b)) = 2 \mu (\Omega'_\rho)^{-1} \quad (3.9)$$

Definition 3.10 Let $\mu \in \mathcal{M}_0(\Omega \times (a,b))$ and $\sigma \in \mathcal{M}_b(\Omega)$. A measurable function u is a distribution solution to problem (3.2) if $u \in L^s(a,b, W_0^{1,s}(\Omega))$ for any $s \in \left[1, \frac{N+2}{N+1} \right]$ and $B(u, \nabla u) \in L^1(\Omega \times (a,b))$ such that

$$- \int_{\Omega \times (a,b)} u \varphi_t \, dx \, dt + \int_{\Omega \times (a,b)} A(x, t, \nabla u) \nabla \varphi \, dx \, dt$$

$$= \int_{\Omega \times (a,b)} B(u, \nabla u) \varphi \, dx \, dt + \int_{\Omega \times (a,b)} \varphi \, d\mu + \int_{\Omega} \varphi(a) \, d\sigma$$

for every $\varphi \in C_0^1(\Omega \times [a,b])$.

Remark 3.11 Let $\sigma' \in \mathcal{M}_b(\Omega)$ and $a' \in (a,b)$, set $\omega = \mu + \sigma' \otimes \delta(t = a')$. If u is a distribution solution to problem (3.2) with data ω and $\sigma = 0$ such that $\text{supp}(u) \subset \Omega \times [a', b]$, and $u = 0, B(u, \nabla u) = 0$ in $\Omega \times (a,a')$, then $\tilde{u} := u_{\Omega \times (a', b)}$ is a distribution solution to problem (3.2) in $\Omega \times (a', b)$ with data μ and σ'. Indeed, by any $\varphi \in C_0^1(\Omega \times [a', b])$ we defined

$$\tilde{\varphi}(x, t) = \left\{ \begin{array}{ll}
\varphi(x, t) & \text{if } (x, t) \in \Omega \times [a', b], \\
(1 + \varepsilon_0)(t - a') \varphi_1(x, a') + \varphi(x, (1 + \varepsilon_0)a' - \varepsilon_0 t) & \text{if } (x, t) \in \Omega \times [a', a'),
\end{array} \right.$$

where $\varepsilon_0 \in \left(0, \frac{b-a'-a}{a'-a} \right)$.

Clearly, $\tilde{\varphi} \in C_0^1(\Omega \times [a', b])$, thus we have

$$- \int_{\Omega \times (a,b)} \tilde{u} \tilde{\varphi}_t \, dx \, dt + \int_{\Omega \times (a,b)} A(x, t, \nabla u) \nabla \tilde{\varphi} \, dx \, dt$$

$$= \int_{\Omega \times (a,b)} B(u, \nabla u) \tilde{\varphi} \, dx \, dt + \int_{\Omega \times (a,b)} \tilde{\varphi} \, d\omega,$$
which implies
\[-\int_{\Omega \times (a,b)} \tilde{u}\varphi_t dxdt + \int_{\Omega \times (a,b)} A(x, t, \nabla \tilde{u}) \nabla \varphi dxdt = \int_{\Omega \times (a,b)} B(\tilde{u}, \nabla \tilde{u}) \varphi dxdt + \int_{\Omega \times (a,b)} \varphi d\mu + \int_{\Omega} \varphi(a') d\sigma'. \]

Definition 3.12 Let \(\mu \in \mathcal{M}(\mathbb{R}^N \times [a, +\infty)) \), for \(a \in \mathbb{R} \) and \(\sigma \in \mathcal{M}(\mathbb{R}^N) \). A measurable function \(u \) is a distribution solution to problem
\[
\begin{align*}
\left\{
\begin{array}{ll}
u_t - \text{div}(A(x, t, \nabla u)) &= B(u, \nabla u) + \mu & \text{in } \mathbb{R}^N \times (a, +\infty) \\
u(a) &= \sigma & \text{in } \mathbb{R}^N
\end{array}
\right.
\end{align*}
\]
if \(u \in L^1_{\text{loc}}(a, \infty, W^{1, s}_{\text{loc}}(\mathbb{R}^N)) \) for any \(s \in \left[1, \frac{N+2}{N+1} \right] \) and \(B(u, \nabla u) \in L^1_{\text{loc}}(\mathbb{R}^N \times [a, \infty)) \) such that
\[
-\int_{\mathbb{R}^N \times (a, \infty)} u \varphi_t dxdt + \int_{\mathbb{R}^N \times (a, \infty)} A(x, t, \nabla u) \nabla \varphi dxdt = \int_{\mathbb{R}^N \times (a, \infty)} B(u, \nabla u) \varphi dxdt + \int_{\mathbb{R}^N} \varphi d\omega,
\]
for every \(\varphi \in C^1_c(\mathbb{R}^N \times [a, \infty)) \).

Definition 3.13 Let \(\omega \in \mathcal{M}(\mathbb{R}^{N+1}) \). A measurable function \(u \) is a distribution solution to problem
\[
\begin{align*}
\left\{
\begin{array}{ll}
u_t - \text{div}(A(x, t, \nabla u)) &= B(u, \nabla u) + \omega & \text{in } \mathbb{R}^{N+1} \\
u(a) &= \sigma & \text{in } \mathbb{R}^N
\end{array}
\right.
\end{align*}
\]
if \(u \in L^1_{\text{loc}}(\mathbb{R}; W^{1, s}_{\text{loc}}(\mathbb{R}^N)) \) for any \(s \in \left[1, \frac{N+2}{N+1} \right] \) and \(B(u, \nabla u) \in L^1_{\text{loc}}(\mathbb{R}^{N+1}) \) such that
\[
-\int_{\mathbb{R}^{N+1}} u \varphi_t dxdt + \int_{\mathbb{R}^{N+1}} A(x, t, \nabla u) \nabla \varphi dxdt = \int_{\mathbb{R}^{N+1}} B(u, \nabla u) \varphi dxdt + \int_{\mathbb{R}^{N+1}} \varphi d\omega,
\]
for every \(\varphi \in C^1_c(\mathbb{R}^{N+1}) \).

Remark 3.14 Let \(\mu \in \mathcal{M}(\mathbb{R}^N \times [a, +\infty)) \), for \(a \in \mathbb{R} \) and \(\sigma \in \mathcal{M}(\mathbb{R}^N) \). If \(u \) is a distribution solution to problem (3.11) with data \(\omega = \mu + \sigma \otimes \delta_{t=a} \) such that \(u = 0, B(u, \nabla u) = 0 \) in \(\mathbb{R}^N \times (\infty, a), \) then \(\tilde{u} := u|_{\mathbb{R}^N \times [a, \infty]} \) is a distribution solution to problem (3.10) in \(\mathbb{R}^N \times (a, \infty) \) with data \(\mu \) and \(\sigma \), see Remark 3.11.

To prove the existence distribution solution of problem (3.10) we need the following results.
First, we have local estimates of the renormalized solution which get from [13, Proposition 2.8].

Proposition 3.15 Let \(u, v \) be in Definition 3.1. There exists \(C = C(\Lambda_1, \Lambda_2) > 0 \) such that for \(k \geq 1 \) and \(0 \leq \eta \in C^\infty(\Omega \times (a, b)) \)
\[
\int_{|v| \leq k} \eta |\nabla u|^2 dx dt + \int_{|v| \leq k} \eta |\nabla v|^2 dx dt \leq CK A \tag{3.12}
\]
where
\[
A = ||\eta||_{L^1(\Omega \times (a, b))} + ||\nabla u||_{L^1(\Omega \times (a, b))} + ||\nabla \eta||_{L^1(\Omega \times (a, b))} + ||\eta g||_{L^1(\Omega \times (a, b))} + ||\eta ||_{L^1(\Omega \times (a, b))} + \int_{\Omega \times (a, b)} \eta d\mu_x.
\]

27
For our purpose, we recall the Landes-time approximation of functions \(w \) belonging to \(L^2(a, b, H^1_0(\Omega)) \), introduced in [45], used in [24, 17, 8]. For \(\nu > 0 \) we define

\[
\langle w \rangle_\nu(x, t) = \nu \int_a^{\min(t, b)} w(x, s)e^{\nu(s-t)}ds \quad \text{for all } (x, t) \in \Omega \times (a, b).
\]

We have that \(\langle w \rangle_\nu \) converges to \(w \) strongly in \(L^2(a, b, H^1_0(\Omega)) \) and \(\|\langle w \rangle_\nu\|_{L^q(\Omega \times (a, b))} \leq \|w\|_{L^q(\Omega \times (a, b))} \) for every \(q \in [1, \infty) \). Moreover,

\[
\langle \langle w \rangle_\nu \rangle_\nu = \nu (w - \langle w \rangle_\nu) \quad \text{in the sense of distributions if } w \in L^\infty(\Omega \times (a, b)).
\]

Proposition 3.16 Let \(q_0 > 1 \) and \(0 < \alpha < 1/2 \) such that \(q_0 > \alpha + 1 \). Let \(L : \mathbb{R} \to \mathbb{R} \) be continuous and nondecreasing such that \(L(0) = 0 \). If \(u \) is a solution of

\[
\begin{cases}
 u_t - \text{div}(A(x, t, \nabla u)) + L(u) = \mu & \text{in } \Omega \times (a, b), \\
 u = 0 & \text{on } \partial \Omega \times (a, b), \\
 u(a) = 0 & \text{in } \Omega,
\end{cases}
\]

with \(\mu \in C_\infty^\infty(\Omega \times (a, b)) \) there exists \(C_1 > 0 \) depending on \(\Lambda_1, \Lambda_2, \alpha, q_0 \) such that for \(0 \leq \eta \in C_\infty^\infty(D) \) where \(D = \Omega' \times (a', b') \), \(\Omega' \subset \subset \Omega \) and \(a < a' < b' < b \), then

\[
\frac{1}{k} \int_D |\nabla T_k(u)|^2 \eta dxdt + \int_D \frac{|\nabla u|^2}{(|u| + 1)^\alpha + 1} \eta dxdt + |\nabla u||\nabla \eta||_{L^1(D)} + \|L(u)\eta\|_{L^1(D)} \leq C_1 B,
\]

where \(q_1 = \frac{q_0 - \alpha - 1}{2q_0 - 1} \),

\[
B = \|\eta h(|u| + 1)\|_{L^1(D)} + \int_D |u| + 1 \eta^\eta \eta dxdt + \int_D |\nabla \eta|^2 \eta^\eta dxdt + \int_D \eta d\mu.
\]

Furthermore, for \(T_k(u) \in L^2(a', b', H^1_0(\Omega')) \), the Landes-time approximation \(\langle T_k(u) \rangle_\nu \) of the truncated function \(T_k(u) \) in \(D \) then for any \(\varepsilon \in (0, 1) \) and \(\nu > 0 \)

\[
\nu \int_D \eta (T_k(u) - \langle T_k(u) \rangle_\nu) T_n(T_k(u) - \langle T_k(u) \rangle_\nu) dxdt + \int_D \eta A(x, t, \nabla T_k(u)) \nabla T_n(T_k(u) - \langle T_k(u) \rangle_\nu) dxdt \leq C_2 \varepsilon(1 + k) B,
\]

for some \(C_2 = C_2(\Lambda_1, \Lambda_2, \alpha, q_0) \).

Proposition 3.17 Let \(q_0 > 1 \), \(\mu_n = \mu_{n, 0} + \mu_{n,s} \in \mathcal{W}_b(B_n(0) \times (-n^2, n^2)) \). Let \(u_n \) be a renormalized solution of

\[
\begin{cases}
 (u_n) - \text{div}(A(x, t, \nabla u_n)) = \mu_n & \text{in } B_n(0) \times (-n^2, n^2), \\
 u_n = 0 & \text{on } \partial B_n(0) \times (-n^2, n^2), \\
 u_n(-n^2) = 0 & \text{in } B_n(0),
\end{cases}
\]

relative to the decomposition \((f_n, g_n, h_n) \) of \(\mu_{n,0} \) satisfying (3.15) in Proposition 3.16 with \(L \equiv 0 \). Assume that for any \(m \in \mathbb{N} \) and \(\alpha \in (0, 1/2) \), \(D_m := B_m(0) \times (-m^2, m^2) \)

\[
\frac{1}{k} \|\nabla T_k(u_n)^2\|_{L^1(D_m)} + \|\nabla u_n^2|(|u| + 1)^{-\alpha - 1}\|_{L^1(D_m)} + \|\nabla u_n|\|_{L^1(D_m)} + |\mu_n|_{D_m} + \|f_n\|_{L^1(D_m)} + \|g_n\|_{L^2(D_m, \mathbb{R}^N)} + |h_n| + |\nabla h_n|\|_{L^2(D_m)} + |u_n|_{L^\infty(D_m)} \leq C(m, \alpha)
\]

28
Proofs of above two Propositions are given in the Appendix section. The following result is a corollary of Proposition 3.18.

Corollary 3.18 Let $\mu_n \in L^1(B_0(0) \times (-n^2, n^2))$. Let u_n be a unique renormalized solution of problem 3.16. Assume that for any $m \in \mathbb{N}$,

$$
\sup_{n \geq m} |\mu_n|(B_m(0) \times (-m^2, m^2)) < \infty \quad \text{and} \quad \sup_{n \geq m} \int_{B_m(0) \times (-m^2, m^2)} |u_n|^p dx dt < \infty.
$$
	hen there exists a subsequence of $\{u_n\}$, still denoted by $\{u_n\}$ such that u_n converges to u a.e in \mathbb{R}^{N+1} and in $L_{loc}^p(\mathbb{R}; W^{1,s}_{loc}(\mathbb{R}^N))$ for any $s \in [1, \frac{N+2}{N+1})$.

Finally, we would like to present a technical lemma which will be used several times in the paper, specially in the proof of Theorem 2.17, 2.19 and 2.20. It is a consequence of Vitali Covering Lemma, a proof of lemma can be seen in [22, 21, 54].

Lemma 3.19 Let Ω be a (R_0, δ)- Reifenberg flat domain with $\delta < 1/4$ and let w be an A_∞ weight. Suppose that the sequence of balls $\{B_r(y_i)\}_{i=1}^L$ with centers $y_i \in \overline{\Omega}$ and a common radius $r \leq R_0/2$ covers Ω. Set $s_i = T - \frac{i}{r^2}$ for all $i = 0, 1, \ldots, \lceil \frac{R_0}{r} \rceil$. Let $E \subset F \subset \Omega_{\cdot}$ be measurable sets for which there exists $0 < \varepsilon < 1$ such that $w(E) < \varepsilon w(Q_r(y_i, s_i))$ for all $i = 1, \ldots, L$, and for all $(x, t) \in \Omega_{\cdot}$, we have $Q_\rho(x, t) \subset F$ if $w(E \cap Q_\rho(x, t)) \geq \varepsilon w(Q_\rho(x, t))$. Then $w(E) \leq B\varepsilon w(F)$ for a constant B depending only on N and $[w]_{A_\infty}$.

Clearly, the Lemma contains the following two Lemmas

Lemma 3.20 Let $0 < \varepsilon < 1, R > 0$ and cylinder $\tilde{Q}_R := Q_R(x_0, t_0)$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$ and $w \in A_\infty$. Let $E \subset F \subset \tilde{Q}_R$ be two measurable sets in \mathbb{R}^{N+1} with $w(E) < \varepsilon w(Q_R)$ and satisfying the following property: for all $(x, t) \in \tilde{Q}_R$ and $r \in (0, R]$, we have $\tilde{Q}_r(x, t) \cap \tilde{Q}_R \subset F$ provided $w(E \cap \tilde{Q}_r(x, t)) \geq \varepsilon w(Q_r(x, t))$. Then $w(E) \leq B\varepsilon w(F)$ for some $B = B(N, [w]_{A_\infty})$.

Lemma 3.21 Let $0 < \varepsilon < 1$ and $R > R' > 0$ and let $E \subset F \subset Q = B_R(x_0) \times (a, b)$ be two measurable sets in \mathbb{R}^{N+1} with $|E| < \varepsilon|Q_R|$ and satisfying the following property: for all $(x, t) \in Q$ and $r \in (0, R']$, we have $Q_r(x, t) \cap Q \subset F$ if $|E \cap \tilde{Q}_r(x, t)| \geq \varepsilon|Q_r(x, t)|$. Then $|E| \leq B\varepsilon|F|$ for a constant B depending only on N.

4 Estimates on Potential

In this section, we will develop nonlinear potential theory corresponding to quasilinear parabolic equations.

First we introduce the Wolff parabolic potential of $\mu \in W^{1+}(\mathbb{R}^{N+1})$ by

$$
\mathbb{W}^R_{\alpha,p}[\mu](x, t) = \int_0^R \left(\frac{\mu(Q_{\rho}(x, t))}{\rho^{N+2-\alpha p}} \right)^{\frac{1}{p-1}} \frac{d\rho}{\rho} \quad \text{for any } (x, t) \in \mathbb{R}^{N+1},
$$

where $\alpha > 0, 1 < p < \alpha^{-1}(N+2)$ and $0 < R \leq \infty$. For convenience, $\mathbb{W}_{\alpha,p}[\mu] := \mathbb{W}^\infty_{\alpha,p}[\mu]$.

The following result is an extension of [36, Theorem 1.1], [16, Proposition 2.2] to Parabolic potential.
Theorem 4.1 Let $\alpha > 0$, $1 < p < \alpha^{-1}(N + 2)$ and $w \in A_\infty$, $\mu \in \mathfrak{M}^+(\mathbb{R}^{N+1})$. There exist constants $C_1, C_2 > 0$ and $\varepsilon_0 \in (0, 1)$ depending on $N, \alpha, p, [w]_{A_\infty}$ such that for any $\lambda > 0$ and $\varepsilon \in (0, \varepsilon_0)$

$$w(\{W^R_{\alpha,p}[\mu] > a\lambda, (M^R_{\alpha,p}[\mu])^{\frac{1}{\alpha p}} \leq \varepsilon \lambda\}) \leq C_1 \exp(-C_2 \varepsilon^{-1})w(\{W^R_{\alpha,p}[\mu] > \lambda\})$$

(4.1)

where $a = 2 + 3\frac{N+1}{\alpha p}$.

Proof of Theorem 4.1. We only consider case $R < \infty$. Let $\{\tilde{Q}_R(x_j, t_j)\}$ be a cover of \mathbb{R}^{N+1} such that $\sum_j x_{\tilde{Q}_R(x_j, t_j)} \leq M$ in \mathbb{R}^{N+1} for some constant $M = M(N) > 0$. It is enough to show that there exist constants $c_1, c_2 > 0$ and $\varepsilon_0 \in (0, 1)$ depending on $N, \alpha, p, [w]_{A_\infty}$ such that for any $Q \in \{\tilde{Q}_R(x_j, t_j)\}$, $\lambda > 0$ and $\varepsilon \in (0, \varepsilon_0)$

$$w(Q \cap \{W^R_{\alpha,p}[\mu] > a\lambda, (M^R_{\alpha,p}[\mu])^{\frac{1}{\alpha p}} \leq \varepsilon \lambda\}) \leq c_1 \exp(-c_2 \varepsilon^{-1})w(Q \cap \{W^R_{\alpha,p}[\mu] > \lambda\})$$

(4.2)

Fix $\lambda > 0$ and $0 < \varepsilon < 1/10$. We set

$$E = Q \cap \{W^R_{\alpha,p}[\mu] > a\lambda, (M^R_{\alpha,p}[\mu])^{\frac{1}{\alpha p}} \leq \varepsilon \lambda\} \quad \text{and} \quad F = Q \cap \{W^R_{\alpha,p}[\mu] > \lambda\}.$$

Thanks to Lemma 3.20 we will get (4.2) if we verify the following two claims:

$$w(E) \leq c_3 \exp(-c_4 \varepsilon^{-1})w(Q), \quad \text{(4.3)}$$

and for any $(x,t) \in Q$, $0 < r \leq R$,

$$w(E \cap \tilde{Q}_r(x,t)) < c_5 \exp(-c_6 \varepsilon^{-1})w(\tilde{Q}_r(x,t)),$$

(4.4)

provided that $\tilde{Q}_r(x,t) \cap Q \cap F^c \neq \emptyset$ and $E \cap \tilde{Q}_r(x,t) \neq \emptyset$, where constants c_3, c_4, c_5 and c_6 depend on N, α, p and $[w]_{A_\infty}$.

Claim (4.3): Set

$$g_k(x,t) = \int_{2^{-k+1}R}^{2^{-k+1}R} \left(\frac{\mu(\tilde{Q}_r(x,t))}{\rho^{N+2-\alpha p}}\right)^{\frac{1}{\alpha p}} \frac{d\rho}{\rho}$$

We have for $m \in \mathbb{N}$ and $(x,t) \in E$

$$W^R_{\alpha,p}[\mu](x,t) = \sum_{k=m+1}^{\infty} g_k(x,t) + \int_{2^{-m+1}R}^{R} \left(\frac{\mu(\tilde{Q}_r(x,t))}{\rho^{N+2-\alpha p}}\right)^{\frac{1}{\alpha p}} \frac{d\rho}{\rho}$$

$$\leq \sum_{k=m+1}^{\infty} g_k(x,t) + m(M^R_{\alpha,p}[\mu](x,t))^{\frac{1}{\alpha p}}$$

$$\leq \sum_{k=m+1}^{\infty} g_k(x,t) + m\varepsilon \lambda.$$
We can assume that \((x_0, t_0) \in Q\), \((M^{R}_{\alpha \rho} [\mu](x_0, t_0)) \overset{\text{dist}}{\to} \varepsilon \lambda\). Thus, by computing, see [16, Proof of Proposition 2.2] we have for any \(k \in \mathbb{N}\)

\[
|Q \cap \{ g_k > s \}| \leq \frac{c_7}{s^{p-1}} 2^{-k\alpha p} |Q| (\varepsilon \lambda)^{p-1}.
\]

Consequently,

\[
|E| \leq \sum_{k=m+1}^{\infty} \left(\frac{2^{-\beta(k-m-1)}(1-2^{-\beta})(1-m\varepsilon)}{1-m\varepsilon} \right)^{p-1} 2^{-k\alpha p} |Q| (\varepsilon \lambda)^{p-1}
\]

\[
\leq c_7 2^{-(m+1)\alpha p} \left(\frac{\varepsilon}{1-m\varepsilon} \right)^{p-1} |Q| (1-2^{-\beta})^{-p+1} \sum_{k=m+1}^{\infty} 2^{(\beta(p-1)-\alpha p)(k-m-1)}.
\]

If we choose \(\varepsilon^{-1} - 2 < m \leq \varepsilon^{-1} - 1\) and \(\beta = \beta(\alpha, p)\) so that \(\beta(p-1) - \alpha p < 0\), we obtain

\[
|E| \leq c_8 \exp(-\alpha p \ln(2) \varepsilon^{-1}) |Q|.
\]

Thus, we get (4.3).

Claim (4.4). Take \((x, t) \in Q\) and \(0 < r \leq R\). Now assume that \(\tilde{Q}_r(x, t) \cap Q \cap \mathcal{F}^c \neq \emptyset\) and \(E \cap \tilde{Q}_r(x, t) \neq \emptyset\) i.e., there exist \((x_1, t_1), (x_2, t_2) \in \tilde{Q}_r(x, t) \cap Q\) such that \(\mathbb{W}^{R}_{\alpha, p} [\mu](x_1, t_1) \leq \lambda\) and \((M^{R}_{\alpha \rho} [\mu](x_2, t_2)) \overset{\text{dist}}{\to} \varepsilon \lambda\). We need to prove that

\[
w(E \cap \tilde{Q}_r(x, t)) < c_9 \exp(-c_{10} \varepsilon^{-1}) w(\tilde{Q}_r(x, t)).
\]

To do this, for all \((y, s) \in E \cap \tilde{Q}_r(x, t)\). \(\mathbb{Q}_p(y, s) \subset \mathbb{Q}_p(x_1, t_1)\) if \(p > r\).

If \(r \leq R/3\),

\[
\mathbb{W}^{R}_{\alpha, p} [\mu](y, s) = \mathbb{W}^{p}_{\alpha, p} [\mu](y, s) + \int_{r}^{R/3} \left(\frac{\mu(\mathbb{Q}_p(y, s))}{\rho^{N+2-\alpha p}} \right)^{\frac{1}{\alpha p}} \frac{d\rho}{\rho} + \int_{R/3}^{R} \left(\frac{\mu(\mathbb{Q}_p(y, s))}{\rho^{N+2-\alpha p}} \right)^{\frac{1}{\alpha p}} \frac{d\rho}{\rho}
\]

\[
\leq \mathbb{W}^{p}_{\alpha, p} [\mu](y, s) + \int_{r}^{R/3} \left(\frac{\rho^{N+2-\alpha p}}{\rho^{N+2-\alpha p}} \right)^{\frac{1}{\alpha p}} \frac{d\rho}{\rho} + 2(M^{R}_{\alpha \rho} [\mu](y, s)) \overset{\text{dist}}{\to} \varepsilon \lambda.
\]

which follows \(\mathbb{W}^{R}_{\alpha, p} [\mu](y, s) > \lambda\).

If \(r \geq R/3\)

\[
\mathbb{W}^{R}_{\alpha, p} [\mu](y, s) \leq \mathbb{W}^{R}_{\alpha, p} [\mu](y, s) + \int_{R/3}^{R} \left(\frac{\mu(\mathbb{Q}_p(y, s))}{\rho^{N+2-\alpha p}} \right)^{\frac{1}{\alpha p}} \frac{d\rho}{\rho}
\]

\[
\leq \mathbb{W}^{R}_{\alpha, p} [\mu](y, s) + 2 \varepsilon \lambda,
\]

which follows \(\mathbb{W}^{R}_{\alpha, p} [\mu](y, s) > \lambda\).

Thus,

\[
w(E \cap \tilde{Q}_r(x, t)) \leq w(\tilde{Q}_r(x, t) \cap \{ \mathbb{W}^{R}_{\alpha, p} [\mu] > \lambda \}).
\]

Since \((x_2, t_2) \in \tilde{Q}_r(x, t)\), \((M^{R}_{\alpha \rho} [\mu](x_2, t_2)) \overset{\text{dist}}{\to} \varepsilon \lambda\), so as above we also obtain

\[
w(\tilde{Q}_r(x, t) \cap \{ \mathbb{W}^{p}_{\alpha, p} [\mu] > \lambda \}) \leq c_9 \exp(-c_{10} \varepsilon^{-1}) w(\tilde{Q}_r(x, t)),
\]

which implies (4.4). This completes the proof of the Theorem.
Theorem 4.2 Let $\alpha > 0$, $1 < p < \alpha^{-1}(N+2)$, $p-1 < q < \infty$ and $0 < s \leq \infty$ and $w \in A_\infty$.
There holds
\[
C^{-1}||M_{op}^R[\mu]||_{L^{N,s}(\mathbb{R}^{N+1},dw)} \leq ||W_{\alpha,p}^R[\mu]||_{L^{N,s}(\mathbb{R}^{N+1},dw)} \leq C||M_{op}^R[\mu]||_{L^{N,s}(\mathbb{R}^{N+1},dw)},
\]
for all $\mu \in \mathcal{M}^+(\mathbb{R}^{N+1})$ and $R \in (0,\infty)$ where C is a positive constant only depending on N, α, p, q, s and $[w]_{A_\infty}$.

Proof. From (4.1) in Theorem (4.1), we have for $0 < s < \infty$
\[
||W_{\alpha,p}^R[\mu]||_{L^{N,s}(\mathbb{R}^{N+1},dw)} = a^s \int_0^\infty \lambda^s w(\{W_{\alpha,p}^R[\mu] > a\lambda\}) \frac{d\lambda}{\lambda},
\]
\[
\leq c_1 \exp(-c_2 \varepsilon^{-1}) \int_0^\infty \lambda^s w(\{W_{\alpha,p}^R[\mu] > \lambda\}) \frac{d\lambda}{\lambda} + c_3 s \int_0^\infty \lambda^s w(\{\mu > \varepsilon\lambda\}) \frac{d\lambda}{\lambda},
\]
Choose $0 < \varepsilon < \varepsilon_0$ such that $c_1 \exp(-c_2 \varepsilon^{-1}) < 1/2$ we get
\[
||W_{\alpha,p}^R[\mu]||_{L^{N,s}(\mathbb{R}^{N+1},dw)} \leq c_4 \exp(-c_2 \varepsilon^{-1}).
\]
Similarly, we also get above inequality in case $s = \infty$. So, we proved the right-hand side inequality of (4.5).

To complete the proof, we prove the left-hand side inequality of (4.5). Since for every $(x,t) \in \mathbb{R}^{N+1}$
\[
(W_{\alpha,p}^R[\mu](x,t)))_{p^*} \leq c_5 \left(W_{\alpha,p}^R[\mu](x,t) + \left(\frac{\mu(\tilde{Q}_R(x,t))}{R^{N+2-\alpha p}} \right)^{\frac{1}{p^*}} \right),
\]
thus it is enough to show that for any $\lambda > 0$
\[
w \left(\left\{ (x,t) : \left(\frac{\mu(\tilde{Q}_R(x,t))}{R^{N+2-\alpha p}} \right)^{\frac{1}{p^*}} > \lambda \right\} \right) \leq c_7 w \left(\left\{ (x,t) : \left(\frac{\mu(\tilde{Q}_R(x,t))}{R^{N+2-\alpha p}} \right)^{\frac{1}{p^*}} > c_8 \lambda \right\} \right).
\]
Let $\{Q_j\} = \{\tilde{Q}_{R_i}(x_j,t_j)\}$ be a cover of \mathbb{R}^{N+1} such that for any $Q_j \in \{Q_j\}$, there exist $Q_{j,1}, \ldots, Q_{j,M_i} \in \{Q_j\}$ with $\sum_{j} \sum_{k=1}^{M_i} \chi_{Q_{j,k}} \leq M_2$ and $Q_j + \tilde{Q}_2R(0,0) \subset \bigcup_{k=1}^{M_i} Q_{j,k}$ for some integer constants $M_i = M_i(N), i = 1, 2$. Then,
\[
w \left(\left\{ (x,t) : \left(\frac{\mu(\tilde{Q}_2(x,t))}{R^{N+2-\alpha p}} \right)^{\frac{1}{p^*}} > \lambda \right\} \right) \leq \sum_j w \left(\left\{ (x,t) : \left(\frac{\mu(\tilde{Q}_2(x,t))}{R^{N+2-\alpha p}} \right)^{\frac{1}{p^*}} > \lambda \right\} \cap Q_j \right)
\]
\[
\leq \sum_j w \left(\left\{ (x,t) : \left(\frac{\mu(Q_{j,k})}{R^{N+2-\alpha p}} \right)^{\frac{1}{p^*}} > \lambda^{p-1} \right\} \cap Q_j \right)
\]
\[
\leq \sum_{j} \sum_{k=1}^{M_i} w \left(\left\{ (x,t) : \left(\frac{\mu(Q_{j,k})}{R^{N+2-\alpha p}} \right)^{\frac{1}{p^*}} > M_i^{-1/(p-1)} \lambda \right\} \cap Q_j \right)
\]
\[
= \sum_{j} \sum_{k=1}^{M_i} a_{j,k} w(Q_j),
\]
where \(a_{j,k} = 1 \) if \(\left(\frac{\mu(Q_{j,k})}{R^N + 2 - \alpha p} \right)^{\frac{1}{p-1}} > M_1^{-1/(p-1)} \lambda \) and \(a_{j,k} = 0 \) if otherwise.

Using the strong doubling property of \(w \), there is \(c_9 = c_9(N, [w]_{A_\infty}) \) such that \(w(Q_j) \leq c_9 w(Q_{j,k}) \). On the other hand, if \(a_{j,k} = 1 \) then \(Q_{j,k} \subseteq \left\{ (x, t) : \left(\frac{\mu(Q_{j,k}(x,t))}{R^{N+2-\alpha p}} \right)^{\frac{1}{p-1}} > M_1^{-1/(p-1)} \lambda \right\} \).

Therefore,

\[
\begin{align*}
\sum_{j} \sum_{k=1}^{M_1} c_9 w \left(\left\{ (x, t) : \left(\frac{\mu(Q_{j,k}(x,t))}{R^{N+2-\alpha p}} \right)^{\frac{1}{p-1}} > M_1^{-1/(p-1)} \lambda \right\} \right) \\
\leq \sum_{j} \sum_{k=1}^{M_1} c_9 w(Q_{j,k})
\end{align*}
\]

which implies (4.6) since \(\sum_{j} \sum_{k=1}^{M_1} c_9 w(Q_{j,k}) \leq c_2 \).

Theorem 4.3 Let \(0 < \alpha < N + 2 \) and \(w \in A_\infty \). There exist \(C_1, C_2 > 0 \) depending on \(N, \alpha, p \) and \([w]_{A_\infty}\) such that for any \(\mu \in \mathfrak{M}^+(\mathbb{R}^{N+1}) \), any cylinder \(\tilde{Q}_\rho \subset \mathbb{R}^{N+1} \) holds

\[
\frac{1}{w(\tilde{Q}_\rho)} \int_{\tilde{Q}_\rho} \left(C_1 \mathfrak{W}^{R}_{\alpha, p}[\tilde{Q}_\rho](x,t) \right) \, dw(x,t) \leq C_2
\]

provided \(||\mathfrak{W}^{R}_{\alpha, p}[\tilde{Q}_\rho]||_{L^\infty(\tilde{Q}_\rho)} \leq 1 \), where \(w(\tilde{Q}_\rho) = \chi_{\tilde{Q}_\rho} \mu \).

Proof. Assume that \(||\mathfrak{W}^{R}_{\alpha, p}[\tilde{Q}_\rho]||_{L^\infty(\tilde{Q}_\rho)} \leq 1 \). We apply Theorem (4.1) to \(\mu_{\tilde{Q}_\rho} \). Then, choose \(\varepsilon = \lambda^{-1} \) for all \(\lambda \geq \lambda_0 := \max \{ \varepsilon^{-1} \frac{N + 2 - \alpha p}{p - 1} \} \), we obtain

\[
w\left(\left\{ \mathfrak{W}^{R}_{\alpha, p}[\tilde{Q}_\rho] > a\lambda \right\} \cap \tilde{Q}_2\rho \right) \leq C_1 \exp(-C_2\varepsilon^{-1}) \int_{\left\{ \mathfrak{W}^{R}_{\alpha, p}[\tilde{Q}_\rho] > \lambda \right\}} \, dw(x,t) \quad \forall \lambda \geq \lambda_0.
\]

On the other hand, if \(\rho > R \), clearly we have \(\mathfrak{W}^{R}_{\alpha, p}[\tilde{Q}_\rho] \equiv 0 \) in \(\mathbb{R}^{N+1} \setminus \tilde{Q}_{2\rho} \), if \(\rho \leq R \), for any \((x, t) \in \mathbb{R}^{N+1} \setminus \tilde{Q}_{\rho} \)

\[
\mathfrak{W}^{R}_{\alpha, p}[\tilde{Q}_\rho](x,t) = \int_{\rho}^{R} \left(\frac{\mu(\tilde{Q}_\rho(Q_{j,k}(x,t)))}{R^{N+2-\alpha p}} \right)^{\frac{1}{p-1}} \, dr \leq \frac{\lambda_0}{\lambda_0 - 1} \left(\frac{\mu(\tilde{Q}_\rho)}{\rho^{N+2-\alpha p}} \right)^{\frac{1}{p-1}} \leq \lambda_0.
\]

So, we get \(\mathfrak{W}^{R}_{\alpha, p}[\tilde{Q}_\rho] > a\lambda \) \(\forall \lambda \leq \lambda_0 \). This can be written under the form

\[
w\left(\left\{ \mathfrak{W}^{R}_{\alpha, p}[\tilde{Q}_\rho] > a\lambda \right\} \cap \tilde{Q}_{\rho} \right) \leq \lambda_0 \leq \left(C_1 \exp(-C_2\lambda_0) \right) w(\tilde{Q}_{\rho}),
\]

for all \(\lambda > 0 \). Therefore, we get (4.7).

In what follows, we need some estimates on Wolff parabolic potential:

Proposition 4.4 Let \(p > 1, 0 < \alpha < N + 2 \) and \(q > 1, \alpha q < N + 2 \). There exist \(C_1, C_2 \) such that

\[
||\mathfrak{W}_{\alpha, p}[\mu]||_{L^{p(N+2)/(p-1)-\alpha}((\mathbb{R}^{N+1})^+)} \leq C_1(\mu(\mathbb{R}^{N+1}))^{\frac{1}{p-1}} \quad \forall \mu \in \mathfrak{M}^+_q(\mathbb{R}^{N+1}),
\]

\[4.8\]

\[
||\mathfrak{W}_{\alpha, p}||_{L^{p(N+2)/(p-1)-\alpha}((\mathbb{R}^{N+1})^+)} \leq C_2 ||\mu||_{L^{p\infty}(\mathbb{R}^{N+1})} \quad \forall \mu \in L^{p\infty}(\mathbb{R}^{N+1}), \mu \geq 0,
\]

\[4.9\]

and

\[
||\mathfrak{W}_{\alpha, p}[\mu]||_{L^{p(N+2)/(p-1)-\alpha}((\mathbb{R}^{N+1})^+)} \leq C_2 ||\mu||_{L^q(\mathbb{R}^{N+1})} \quad \forall \mu \in L^q(\mathbb{R}^{N+1}), \mu \geq 0.
\]

\[4.10\]
In particular, for \(s > \frac{(p-1)(N+2)}{N+2-op} \), we define \(F(\mu) := (\mathcal{W}_{\alpha,p}[\mu])^s \) for all \(\mu \in \mathfrak{M}^{+}_b(\mathbb{R}^{N+1}) \). Then,
\[
\|F(\mu)\|_{L^{(N+2)(s-p+1)\alpha p}(\mathbb{R}^{N+1})} \leq C_3\|\mu\|_{\mathfrak{M}^{+}_b(\mathbb{R}^{N+1})} \quad \text{and} \quad \|F(\mu)\|_{L^{(N+2)(s-p+1)\alpha p}(\mathbb{R}^{N+1})} \leq C_3\|\mu\|_{L^{(N+2)(s-p+1)\alpha p}(\mathbb{R}^{N+1})},
\]
for some constant \(C_i = C_i(N,p,\alpha,s) \) for \(i = 3,4 \).

Proof. Let \(s \geq 1 \) such that \(\alpha sp < N + 2 \). It is known that if \(\mu \in L^{s,\infty}(\mathbb{R}^{N+1}) \) then
\[
|\mu|_{\mathcal{Q}_p(x,t)} \leq c_1\|\mu\|_{L^{s,\infty}(\mathbb{R}^{N+1})} \rho^{\frac{N+2}{\alpha p}} \quad \forall \ \rho > 0.
\]
Thus for \(\delta = \|\mu\|_{L^{s,\infty}(\mathbb{R}^{N+1})}^{\frac{\alpha p}{N+2}}(\mathcal{M}(\mu)(x,t))^{\frac{1}{\alpha p}} \) we have
\[
\mathcal{W}_{\alpha,p}[\mu](x,t) = \int_0^\delta \left(\frac{\mu(\mathcal{Q}_p(x,t))}{\rho^{N+2-\alpha p}} \right) \frac{1}{\rho} \, dp + \int_\delta^\infty \left(\frac{\mu(\mathcal{Q}_p(x,t))}{\rho^{N+2-\alpha p}} \right) \frac{1}{\rho} \, dp \\
\leq c_2 \left(\mathcal{M}(\mu)(x,t) \right)^{\frac{1}{\alpha p}} \delta^{\frac{\alpha p}{N+2}} + c_2 \|\mu\|_{L^{s,\infty}(\mathbb{R}^{N+1})} \delta^{\frac{N+2-\alpha p}{\alpha p}} \\
= c_3 \left(\mathcal{M}(\mu)(x,t) \right)^{\frac{N+2-\alpha p}{N+2}} \|\mu\|_{L^{s,\infty}(\mathbb{R}^{N+1})}^{\frac{\alpha p}{N+2}}.
\]
So, for any \(\lambda > 0 \)
\[
|\{\mathcal{W}_{\alpha,p}[\mu] > \lambda\}| \leq |\{\mathcal{M}(\mu) > c_4\|\mu\|_{L^{s,\infty}(\mathbb{R}^{N+1})}^{\frac{\alpha p}{N+2}} \lambda^{\frac{(p-1)(N+2)}{N+2-op}}\}|.
\]
Hence, since \(\mathcal{M} \) is bounded from \(\mathfrak{M}^{+}_b(\mathbb{R}^{N+1}) \) to \(L^{1,\infty}(\mathbb{R}^{N+1}) \) and \(L^p(\mathbb{R}^{N+1}) \) \(L^{p,\infty}(\mathbb{R}^{N+1}) \) resp.) to itself, we get the result.

Remark 4.5 Assume that \(\alpha p = N + 2 \) and \(R > 0 \). As above we also have for any \(\varepsilon > 0 \)
\[
\mathcal{W}_{\alpha,p}^R[\mu](x,t) \leq C_{1,\varepsilon} \max \left\{ (|\mu|(\mathbb{R}^{N+1}))^{\frac{1}{\alpha p}}, ((\mathcal{M}(\mu)(x,t))^{\varepsilon}(|\mu|(\mathbb{R}^{N+1}))^{\frac{\alpha p}{R^{p-op}}} R^{p-op})^{\frac{1}{\alpha p}} \right\}
\]
where \(C_{1,\varepsilon} = C_{1}(N,\alpha,p,\varepsilon) \).
Therefore, for any \(\lambda > C_{2,\varepsilon}(|\mu|(\mathbb{R}^{N+1}))^{\frac{1}{\alpha p}} \),
\[
|\{\mathcal{W}_{\alpha,p}^R[\mu] > \lambda\}| \leq C_{2,\varepsilon} \left(\frac{|\mu|(\mathbb{R}^{N+1}))^{\frac{1}{\alpha p}}}{\lambda} \right)^{\frac{\alpha p + (p-1)}{\alpha p}} R^{p-op}, \quad (4.11)
\]
where \(C_{2,\varepsilon} = C_{2}(N,\alpha,p,\varepsilon) \). In particular, if \(\mu \in \mathfrak{M}^{+}_b(\mathbb{R}^{N+1}) \) then \(\mathcal{W}_{\alpha,p}^R[\mu] \in L^{1,\infty}_{loc}(\mathbb{R}^{N+1}) \) for all \(s > 0 \).

Remark 4.6 Assume that \(p,q > 1, 0 < \alpha pq < N + 2 \). As in [59, Theorem 3], it is easy to prove that if \(w \in A_{q,N+2-\alpha pq} \), i.e., \(0 < w \in L^{1}_{loc}(\mathbb{R}^{N+1}) \) and for any \(\mathcal{Q}_p(y,s) \subset \mathbb{R}^{N+1} \)
\[
\sup_{\mathcal{Q}_p(y,s) \subset \mathbb{R}^{N+1}} \left(\int_{\mathcal{Q}_p(y,s)} w \, dx dt \right)^{\frac{1}{q-1}} \left(\int_{\mathcal{Q}_p(y,s)} w^{-\frac{N+2-\alpha pq}{N+2}} \, dx dt \right)^{\frac{q-1}{q}} = C_1 < \infty,
\]
then
\[
\left(\int_{\mathbb{R}^{N+1}} (\mathcal{M}_{\alpha p}[f])^{\frac{(N+2)q}{N+2-op}} \, dx dt \right)^{\frac{N+2-op}{N+2}} \leq C_2 \left(\int_{\mathbb{R}^{N+1}} |f|^q w^{1-\frac{op}{N+2}} \, dx dt \right)^{\frac{1}{q}},
\]

34
for some a constant $C_2 = C_2(N, \alpha, p, q, C_1)$.
Therefore, from (4.5) in Theorem 4.2 we get a weighted version of (4.10)
\[
\left(\int_{\mathbb{R}^{N+1}} \left(\mathcal{W}_{\alpha,p}[|f|] \right)^{\frac{N+2-\alpha p}{(N+2)p}} \mu \right)^{\frac{1}{\frac{N+2-\alpha p}{(N+2)p}}} \leq C_2 \left(\int_{\mathbb{R}^{N+1}} |f|^p \mu^{1-\frac{\alpha p}{N+2}} dxdt \right)^{\frac{1}{p}}.
\]

The following another version of (4.10) in the Lorentz-Morrey spaces involving calorie.

Proposition 4.7 Let $p, q > 1$, and $0 < \alpha p q < \theta \leq N + 2$. There exists a constant $C > 0$ such that
\[
\| \mathcal{W}_{\alpha,p}(|\mu|)^{p-1} \|_{L^\frac{N+2-\alpha pq}{N+2}(\mathbb{R}^{N+1})} \leq C \| \mu \|_{L^q(\mathbb{R}^{N+1})} \quad \forall \mu \in L^q(\mathbb{R}^{N+1}). \tag{4.12}
\]

Proof. As the proof of Proposition 4.4 we have
\[
\mathcal{W}_{\alpha,p}(|\mu|) \leq c_1 \left(M_{\theta/q}(|\mu|) \right)^{\frac{\alpha pq}{\theta - \alpha pq}} \left(M(|\mu|) \right)^{\frac{\alpha pq}{\theta - \alpha pq}}.
\]
Since $M_{\theta/q}(|\mu|) \leq c_2 \left(M_{\theta}(|\mu|) \right)^{1/q}$, above inequality becomes
\[
\mathcal{W}_{\alpha,p}(|\mu|) \leq c_3 \left(M_{\theta}(|\mu|) \right)^{\frac{\alpha pq}{\theta - \alpha pq}} \left(M(|\mu|) \right)^{\frac{\alpha pq}{\theta - \alpha pq}}. \tag{4.13}
\]

Take $\tilde{Q}_r(y, s) \subset \mathbb{R}^{N+1}$, we have
\[
\int_{\tilde{Q}_r(y, s)} \left(\mathcal{W}_{\alpha,p}(|\mu|) \right)^{\frac{\alpha pq}{\theta - \alpha pq}} dxdt \leq c_4 \left(\int_{\tilde{Q}_r(y, s)} \left(\mathcal{W}_{\alpha,p}(|\mu|) \right)^{\frac{\alpha pq}{\theta - \alpha pq}} dxdt \right)^{\frac{\alpha pq}{\theta - \alpha pq}}
\]
\[
+ c_5 \left(\int_{\tilde{Q}_r(y, s)} \left(\mathcal{W}_{\alpha,p}(|\mu|) \right)^{\frac{\alpha pq}{\theta - \alpha pq}} dxdt \right)^{\frac{\alpha pq}{\theta - \alpha pq}} = A + B.
\]

Using inequality (4.13) and boundness M from $L^q(\mathbb{R}^{N+1})$ to itself, yield
\[
A \leq c_5 \int_{\mathbb{R}^{N+1}} \left(M_{\theta/q}(|\mu|) \right)^{\frac{\alpha pq}{\theta - \alpha pq}} \left(M(|\mu|) \right)^{\frac{\alpha pq}{\theta - \alpha pq}} dxdt
\]
\[
\leq c_6 \| |\mu| |_{L_{\theta,q}(\mathbb{R}^{N+1})} \int_{\mathbb{R}^{N+1}} |\mu| dxdt
\]
\[
\leq c_7 \| |\mu| |_{L_{\theta,q}(\mathbb{R}^{N+1})} \rho^{N+2-\theta}.
\]

On the other hand, since $|\mu|(|\tilde{Q}_r(x, t)|) \leq c_8 \| |\mu| |_{L_{\theta,q}(\mathbb{R}^{N+1})} \rho^{N+2-\theta}$, for all $\tilde{Q}_r(x, t) \subset \mathbb{R}^{N+1}$,
\[
B \leq c_9 \int_{\mathbb{R}^{N+1}} \left(\int_{\rho}^{\infty} \frac{|\mu|(|\tilde{Q}_r(x, t)|)}{r^{N+2-\alpha p}} dr \right)^{\frac{\alpha pq}{\theta - \alpha pq}} dxdt
\]
\[
\leq c_9 \int_{\mathbb{R}^{N+1}} \left(\int_{\rho}^{\infty} \frac{|\mu|(|\tilde{Q}_r(x, t)|)}{r^{N+2-\theta}} dr \right)^{\frac{\alpha pq}{\theta - \alpha pq}} dxdt
\]
\[
\leq c_{10} \| |\mu| |_{L_{\theta,q}(\mathbb{R}^{N+1})} \rho^{N+2-\theta}.
\]

Therefore,
\[
\int_{\tilde{Q}_r(y, s)} \left(\mathcal{W}_{\alpha,p}(|\mu|) \right)^{\frac{\alpha pq}{\theta - \alpha pq}} dxdt \leq c_{11} \| |\mu| |_{L_{\theta,q}(\mathbb{R}^{N+1})} \rho^{N+2-\theta},
\]
which follows (4.12).

In the next result we state a series of equivalent norms concerning potentials $\mu_\alpha[\mu], \mu^{R}_\alpha[\mu], \mathcal{H}_\alpha[\mu], \mathcal{G}_\alpha[\mu]$.

NGUYEN QUOC HUNG

35
Proposition 4.8 Let $q > 1$, $0 < \alpha < N + 2$ and $R > 0$. There exist constants $C_1 = C_1(N, \alpha, q)$ and $C_2 = C_2(N, \alpha, q, R)$ such that the following statements hold

a. for any $\mu \in \mathfrak{M}^+(\mathbb{R}^{N+1})$

\[
C_1^{-1} ||\mathcal{I}_0[\mu]||_{L^q(\mathbb{R}^{N+1})} \leq ||\mathcal{H}_0[\mu]||_{L^q(\mathbb{R}^{N+1})} \leq C_1 ||\mathcal{I}_0[\mu]||_{L^q(\mathbb{R}^{N+1})}
\]

and

\[
C_2^{-1} ||\mathcal{I}_0[\mu]||_{L^q(\mathbb{R}^{N+1})} \leq ||\mathcal{\tilde{V}}_0[\mu]||_{L^q(\mathbb{R}^{N+1})} \leq C_2 ||\mathcal{I}_0[\mu]||_{L^q(\mathbb{R}^{N+1})}
\]

b. for any $\mu \in \mathfrak{M}^+(\mathbb{R}^{N+1})$

\[
C_2^{-1} ||\mathcal{I}^R_0[\mu]||_{L^q(\mathbb{R}^{N+1})} \leq ||\mathcal{G}_0[\mu]||_{L^q(\mathbb{R}^{N+1})} \leq C_2 ||\mathcal{I}^R_0[\mu]||_{L^q(\mathbb{R}^{N+1})}
\]

where $\mathcal{H}_0[\mu]$ is the backward parabolic Riesz potential, defined by

\[
\mathcal{\tilde{V}}_0[\mu](x, t) = (\mathcal{H}_0 * \mu)(x, t) = \int_{\mathbb{R}^{N+1}} \mathcal{H}_0(x - y, s - t) d\mu(y, s),
\]

and $\mathcal{G}_0[\mu]$ is the backward parabolic Bessel potential:

\[
\mathcal{G}_0[\mu](x, t) = (\mathcal{G}_0 * \mu)(x, t) = \int_{\mathbb{R}^{N+1}} \mathcal{G}_0(x - y, s - t) d\mu(y, s).
\]

Proof. a. We have:

\[
c_1^{-1} \int_0^{\pi/2} \chi_{\{x|\theta \leq \alpha\}} \frac{dr}{r} \leq \mathcal{H}_0(x, t) \leq \frac{c_1}{\max\{\{x|\theta \leq \alpha\}, \sqrt{2r}\}^{N+2-\alpha}},
\]

which implies

\[
c_2^{-1} \int_0^\infty \frac{\chi_{B_r(0)} \times \left((\frac{r^2}{2}, r\right)}{r^{N+2-\alpha}} \frac{dr}{r} \leq \mathcal{H}_0(x, t) \leq c_2 \int_0^\infty \frac{\chi_{\tilde{Q}_r(0)} \times \left((\frac{r^2}{2}, r\right)}{r^{N+2-\alpha}} \frac{dr}{r}
\]

Thus,

\[
c_2^{-1} \int_0^\infty \frac{\mu(B(x, r) \times (t - r^2, t - t^2/4)))}{r^{N+2-\alpha}} \frac{dr}{r} \leq \mathcal{H}_0[\mu](x, t) \leq c_2 \int_0^\infty \frac{\mu(\tilde{Q}_r(x, t))}{r^{N+2-\alpha}} \frac{dr}{r}.
\]

Thanks to Theorem 4.2 we will finish the proof of (4.14) when we show that

\[
\int_\mathbb{R} \left(\int_0^\infty \frac{\mu(B(x, r) \times (t - r^2, t - r^2/4)))}{r^{N+2-\alpha}} \frac{dr}{r} \right)^q dt \geq c_3 \int_\mathbb{R} \int_0^\infty \left(\frac{\mu(\tilde{Q}_r(x, t))}{r^{N+2-\alpha}} \right)^q dr dt.
\]

Indeed, we have for $r_k = (\frac{2}{\alpha})^{-1}$,

\[
\left(\int_0^{\infty} \frac{\mu(B(x, r) \times (t - r^2, t - r^2/4)))}{r^{N+2-\alpha}} \frac{dr}{r} \right)^q \geq c_4 \left(\sum_{k=-\infty}^\infty (\frac{1}{r_k^{N+2-\alpha}}) \frac{\mu(B(x, r_k) \times (t - r_k^2, t - r_k^2/4)))}{r_k^{N+2-\alpha}} \right)^q \]

\[
\geq c_4 \sum_{k=-\infty}^\infty \left(\frac{\mu(B(x, r_k) \times (t - r_k^2, t - r_k^2/4)))}{r_k^{N+2-\alpha}} \right)^q.
\]
Thus,
\[
\int_{\mathbb{R}} \left(\int_{0}^{\infty} \frac{\mu \left(B(x,r) \times (t-r^{2},t-\frac{1}{4}r^{2}) \right) dr}{r^{N+2-\alpha}} \right)^{q} dt \geq c_{4} \sum_{k=-\infty}^{\infty} \int_{\mathbb{R}} \left(\frac{\mu \left(B(x,r_{k}) \times (t-r_{k}^{2},t-\frac{1}{4}r_{k}^{2}) \right) dr}{r_{k}^{N+2-\alpha}} \right)^{q} dt
\]
\[
= c_{4} \sum_{k=-\infty}^{\infty} \int_{\mathbb{R}} \left(\frac{\mu \left(B(x,r_{k}) \times (t-\frac{1}{3}r_{k}^{2},t+\frac{1}{3}r_{k}^{2}) \right) dr}{r_{k}^{N+2-\alpha}} \right)^{q} dt
\]
\[
\geq c_{5} \int_{\mathbb{R}} \int_{0}^{r^{+\infty}} \left(\frac{\mu(Q_{r}(x,t))}{r^{N+2-\alpha}} \right)^{q} dr dt.
\]

Similarly, we also can prove (4.15).

b. Obviously
\[
c_{6}^{-1} \exp(-4R^{2}) c_{6} \chi_{0<\alpha<4R^{2}} \chi_{|\mu|\leq2\sqrt{t}} \leq G_{\alpha}(x,t)
\]
\[
\leq \frac{c_{6}}{\max\{|x|,2|t|\}^{N+2-\alpha}} \chi_{\tilde{Q}_{\alpha}(0,0)}(x,t) + \frac{c_{6}}{R^{N+2-\alpha}} \exp \left(-\max\{|x|,\sqrt{2|t|}\} \right).
\]

Thus, we can assert that
\[
c_{7}(R) \int_{0}^{2R} \frac{\chi_{B(r,0) \times (r^{2},r^{2})}(x,t)}{r^{N+2-\alpha}} dr \leq G_{\alpha}(x,t) \leq c_{8} \int_{0}^{R} \frac{\chi_{\tilde{Q}_{\alpha}(0,0)}(x,t)}{r^{N+2-\alpha}} dr
\]
\[
+ c_{9}(R) \int_{\mathbb{R}^{N+1}} \exp \left(-\max\{|y|,\sqrt{2|s|}\} \right) \chi_{\tilde{Q}_{\alpha}(0,0)}(x-y,t-s) dy ds.
\]

Immediately, we get
\[
c_{7}(R) \int_{0}^{2R} \frac{\mu \left(B(x,r) \times (t-r^{2},t-\frac{r^{2}}{4}) \right)}{r^{N+2-\alpha}} dr \leq G_{\alpha}[\mu](x,t) \leq c_{8} \int_{0}^{R} \frac{\mu(\tilde{Q}_{R/2}(x-y,t-s))}{r^{N+2-\alpha}} dr + c_{9}(R) F(x,t),
\]
(4.19)

where \(F(x,t) = \int_{\mathbb{R}^{N+1}} \exp \left(-\max\{|y|,\sqrt{2|s|}\} \right) \mu \left(\tilde{Q}_{R/2}(x-y,t-s) \right) dy ds. \)

As above, we can show that
\[
\int_{0}^{\infty} \left(\int_{0}^{2R} \frac{\mu \left(B(x,r) \times (t-r^{2},t-\frac{r^{2}}{4}) \right)}{r^{N+2-\alpha}} dr \right)^{q} dt \geq c_{10} \int_{0}^{\infty} \int_{0}^{2R} \left(\frac{\mu(\tilde{Q}_{r}(x,t))}{r^{N+2-\alpha}} \right)^{q} dr dt.
\]

Thus, thanks to Theorem 4.2 we get the left-hand side inequality of (4.16).

To show the right-hand side of (4.16), we use \(\mu \left(\tilde{Q}_{R/2}(x-y,t-s) \right) \leq c_{10} R^{-(N+2-\alpha)\mu} |\mu|(x-y,t-s) \) and Young inequality
\[
||G_{\alpha}[\mu]||_{L^{q}(\mathbb{R}^{N+1})} \leq c_{8} \frac{\|I_{\alpha}^{R}[\mu]\|_{L^{q}(\mathbb{R}^{N+1})}}{L^{q}(\mathbb{R}^{N+1})} + c_{9}(R) \|F\|_{L^{q}(\mathbb{R}^{N+1})}
\]
\[
\leq c_{8} \frac{\|I_{\alpha}^{R}[\mu]\|_{L^{q}(\mathbb{R}^{N+1})}}{L^{q}(\mathbb{R}^{N+1})} + c_{11}(R) \frac{\|I_{\alpha}^{R}[\mu]\|_{L^{q}(\mathbb{R}^{N+1})}}{L^{q}(\mathbb{R}^{N+1})} \int_{\mathbb{R}^{N+1}} \exp \left(-\max\{|x|,\sqrt{2|t|}\} \right) dx dt
\]
\[
= c_{12}(R) \frac{\|I_{\alpha}^{R}[\mu]\|_{L^{q}(\mathbb{R}^{N+1})}}{L^{q}(\mathbb{R}^{N+1})}.
\]

Similarly, we also can prove (4.17). This completes the proof of the Proposition.
Remark 4.9 Assume that $0 < \alpha < N + 2$. From (4.8) in Proposition 4.4 and $|\mathcal{G}_\alpha[\mu]|L^1(\mathbb{R}^{N+1}) \leq c_1 \mu(\mathbb{R}^{N+1})$ we deduce that for $1 \leq s < \frac{N + 2 - \alpha}{N + 2 - s}$

$$|\mathcal{G}_\alpha[\mu]|L^s(\mathbb{R}^{N+1}) \leq c_2 \mu(\mathbb{R}^{N+1}) \forall \mu \in \mathcal{M}(\mathbb{R}^{N+1})$$

Next, we introduce the following kernel:

$$E^R_{\alpha}(x, t) = \max\{|x|, \sqrt{2|t|}\}^{-(N + 2 - \alpha)}\chi_{Q^R_\alpha(0, 0)}(x, t)$$

where $0 < \alpha < N + 2$ and $0 < R \leq \infty$. We denote E^∞_{α} by E_{α}. It is easy to see that $E_{\alpha} \ast \mu = (N + 2 - \alpha)\mathbb{I}_{\alpha}[\mu]$ and $||E^R_{\alpha} \ast \mu||L^1(\mathbb{R}^{N+1})$ is equivalent to $||E^R_{\alpha}[\mu]|L^1(\mathbb{R}^{N+1})$ for every $\mu \in \mathcal{M}(\mathbb{R}^{N+1})$ where $1 \leq s < \infty$.

We obtain equivalences of capacities $\text{Cap}_{E_{\alpha}^p}, \text{Cap}_{E_{\alpha}^R}, \text{Cap}_{\mathcal{H}_{\alpha}^p}, \text{Cap}_{\mathcal{H}_{\alpha}^R}$.

Corollary 4.10 Let $p > 1$, $1 < \alpha < N + 2$ and $R > 0$. There exist constants $C_1 = C_1(N, \alpha, p)$ and $C_2 = C_2(N, \alpha, p, R)$ such that the following statements hold

a. for any compact $E \subset \mathbb{R}^{N+1}$

$$C_1^{-1} \text{Cap}_{\mathcal{H}_{\alpha}^p}(E) \leq \text{Cap}_{E_{\alpha}^R}(E) \leq C_1 \text{Cap}_{\mathcal{H}_{\alpha}^p}(E) \quad (4.20)$$

b. for any compact $E \subset \mathbb{R}^{N+1}$

$$C_2^{-1} \text{Cap}_{\mathcal{G}_{\alpha}^p}(E) \leq \text{Cap}_{E_{\alpha}^R}(E) \leq C_2 \text{Cap}_{\mathcal{G}_{\alpha}^p}(E) \quad (4.21)$$

c. for any compact $E \subset \mathbb{R}^{N+1}$

$$\text{Cap}_{\mathcal{H}_{\alpha}^p}(E) \leq \text{Cap}_{\mathcal{G}_{\alpha}^p}(E) \leq C_1 \left(\text{Cap}_{\mathcal{H}_{\alpha}^p}(E) + \left(\text{Cap}_{\mathcal{H}_{\alpha}^p}(E)\right)^{\frac{N + 2}{N + 2 - \alpha}}\right) \quad (4.22)$$

provided $1 < \alpha p < N + 2$.

Proof. By [2, Chapter 2], we have

$$\text{Cap}_{E_{\alpha}^p}(E)^{1/p} = \sup\{\mu(E) : \mu \in \mathcal{M}(E), ||E_{\alpha} \ast \mu||L^p(\mathbb{R}^{N+1}) \leq 1\},$$

$$\text{Cap}_{E_{\alpha}^R}(E)^{1/p} = \sup\{\mu(E) : \mu \in \mathcal{M}(E), ||E^R_{\alpha} \ast \mu||L^p(\mathbb{R}^{N+1}) \leq 1\},$$

$$\text{Cap}_{\mathcal{H}_{\alpha}^p}(E)^{1/p} = \sup\{\mu(E) : \mu \in \mathcal{M}(E), ||\mathcal{H}_{\alpha}[\mu||L^p(\mathbb{R}^{N+1}) \leq 1\}$$

and

$$\text{Cap}_{\mathcal{G}_{\alpha}^p}(E)^{1/p} = \sup\{\mu(E) : \mu \in \mathcal{M}(E), ||\mathcal{G}_{\alpha}[\mu||L^p(\mathbb{R}^{N+1}) \leq 1\}.$$

Thanks to (4.15), (4.17) in Proposition 4.8 and $\mathbb{I}_{\alpha}[\mu] = E_{\alpha} \ast \mu$ and $||E^R_{\alpha} \ast \mu||L^p(\mathbb{R}^{N+1})$ is equivalent to $||E^R_{\alpha}[\mu||L^p(\mathbb{R}^{N+1})$, we get (4.20) and (4.21).

Since $\mathcal{G}_{\alpha} \leq \mathcal{H}_{\alpha}$, thus $\text{Cap}_{\mathcal{H}_{\alpha}^p}(E) \leq \text{Cap}_{\mathcal{G}_{\alpha}^p}(E)$ for any compact $E \subset \mathbb{R}^{N+1}$. Put $\text{Cap}_{E_{\alpha}^p}(E) = a > 0$. We need to prove that

$$\text{Cap}_{E_{\alpha}^R}(E) \leq c_1 \left(a + a^{\frac{N + 2}{N + 2 - \alpha}}\right). \quad (4.23)$$

We will follow a proof of Yu.V. Netrusov in [2, Chapter 5]. First, we can find $f \in L^p_{\alpha}(\mathbb{R}^{N+1})$ such that $||f||L^p(\mathbb{R}^{N+1}) \leq 2a$ and $E_{\alpha} \ast f \geq \frac{1}{2}$. Set $F_{\alpha} = E_{\alpha} - E_{\alpha}^1$, we have $c_2 F_{\alpha} \leq E_{\alpha}^1 \ast F_{\alpha}$ for some $c_1 > 0$. Thus, $E \subset \{E_{\alpha}^1 \ast f > 1/2\} \cup \{E_{\alpha}^1 \ast (F_{\alpha} \ast f) \geq 2/2\}$. Since $||E_{\alpha}^1||L^1(\mathbb{R}^{N+1}) \leq \infty$, for $c_3 = c_2(4||E_{\alpha}^1||L^1(\mathbb{R}^{N+1}))^{-1}$

$$E_{\alpha}^1 \ast (F_{\alpha} \ast f) \leq c_2/4 + E_{\alpha}^1 \ast g \text{ with } g = \chi_{F_{\alpha} \ast f \geq c_3 F_{\alpha} \ast f},$$

\[38\]
which follows $E \subset \{ E_1^a + f \geq 1/2 \} \cup \{ E_2^a + g \geq c_2/4 \}$.

Using the subadditivity of capacity, we have

$$\text{Cap}_{E_1^a,p}(E) \leq \text{Cap}_{E_1^a}(\{ E_1^a + f \geq 1/2 \}) + \text{Cap}_{E_1^a}(\{ E_1^a + g \geq c_1/4 \})$$

$$\leq 2^p ||f||_{L^p[\mathbb{R}^{N+1}]} + (4/c_1)^p ||g||_{L^p[\mathbb{R}^{N+1}]}$$

$$\leq 2^p ||f||_{L^p[\mathbb{R}^{N+1}]} + (4/c_1)^p c_3 \rho_{f,p}\|E_1^a + f\|_{L^{p^*}[\mathbb{R}^{N+1}]}^p,$$

with $p^* = \frac{(N + 2)p}{N + 2 - \alpha p}$.

On the other hand, from (4.10) in Proposition 4.4 we have

$$\|E_1^a + f\|_{L^{p^*}[\mathbb{R}^{N+1}]} \leq c_4 \|f\|_{L^p[\mathbb{R}^{N+1}]}.$$

Hence, we get (4.23).

\section*{Remark 4.11}

Since $G_\alpha \in L^1(\mathbb{R}^{N+1})$,

$$\int_{\mathbb{R}^{N+1}} (G_\alpha + f)^p \, dx \, dt \leq ||G_\alpha||_{L^p(\mathbb{R}^{N+1})} \int_{\mathbb{R}^{N+1}} f^p \, dx \, dt \quad \forall f \in L^p(\mathbb{R}^{N+1})$$

Thus, for any Borel set $E \subset \mathbb{R}^{N+1}$

$$\text{Cap}_{G_\alpha,p}(E) \geq C|E| \text{ with } C = ||G_\alpha||_{L^p(\mathbb{R}^{N+1})}^{-p}.$$ (4.24)

\section*{Remark 4.12}

It is well-known that H_2 is the fundamental solution of the heat operator $\frac{\partial}{\partial t} - \Delta$. In [31], R. Gariepy and W. P. Ziemer introduced the following capacity:

$$C_{H_2}(K) = \sup \{ \mu(K) : \mu \in \mathfrak{M}^+(K), H_2[\mu] \leq 1 \},$$

whenever $K \subset \mathbb{R}^{N+1}$ is compact. Thanks to [2, Theorem 2.5.5], we obtain

$$\text{Cap}_{H_1,2}(K) = C_{H_2}(K).$$

\section*{Remark 4.13}

For any Borel set $E \subset \mathbb{R}^N$, then we always have $\text{Cap}_{G_\alpha,p}(E \times \{ t = 0 \}) = 0$.

In fact,

$$\text{Cap}_{G_\alpha,p}(B_1(0) \times \{ t = 0 \}) = \sup \{ \omega(B_1(0)) : \omega \in \mathfrak{M}^+(B_1(0)), ||E_1^a + (\omega \otimes \delta_0)||_{L^2(\mathbb{R}^{N+1})} \leq 1 \}.$$

Since $||E_1^a + (\omega \otimes \delta_0)||_{L^2(\mathbb{R}^{N+1})} = \infty$ if $\omega \neq 0$, thus $\text{Cap}_{G_\alpha,p}(B_1(0) \times \{ t = 0 \}) = \text{Cap}_{G_\alpha,p}(B_1(0) \times \{ t = 0 \}) = 0$. In particular, $\text{Cap}_{G_\alpha,p}$ is not absolutely continuous with respect to capacity $C_{1,2}(\mathbb{R} \times \{ a, b \})$. This capacity will be defined in next section.

\section*{Remark 4.14}

Let $p > 1$ and $\alpha > 0$. Case $\alpha p \geq p + 1$, we always have $||H_\alpha[\mu]||_{L^{p^*}(\mathbb{R}^{N})} = \infty$ for any $\mu \in \mathfrak{M}^+(\mathbb{R}^{N}) \setminus \{0\}$ which implies $\text{Cap}_{H_\alpha,p}(\tilde{Q}_1(0,0)) = 0$. If $0 < \alpha p < N + 2$, $\text{Cap}_{H_\alpha,p}(\tilde{Q}_1(0,0)) = c_\alpha N^{2-\alpha}p$ for some constant c. From (4.22) in Corollary 4.10 we get

$$\text{Cap}_{G_\alpha,p}(\tilde{Q}_p(0,0)) \approx \rho^{N+2-\alpha}p \text{ for } 0 < \rho < 1 \text{ if } \alpha p < N + 2.$$

Since $||G_\alpha[\delta(0,0)]||_{L^{p^*}(\mathbb{R}^{N+1})} < \infty$ thus $\text{Cap}_{G_\alpha,p}(\delta(0,0)) > 0$ if $\alpha p > N + 2$.

If $\alpha p = N + 2$, $\text{Cap}_{G_\alpha,p}(\tilde{Q}_p(0,0)) \approx (\log(1/p))^{-1}p$ for any $0 < \rho < 1/2$. In fact, we can prove that $||f^{1/2}[\mu]||_{L^{p^*}(\mathbb{R}^{N})} \leq 1$ for any $\mu \in \mathfrak{M}^+(\mathbb{R}^{N})$.

Moreover, for $\mu \in \mathfrak{M}^+(\mathbb{R}^{N})$, if $||f^{1/2}[\mu]||_{L^{p^*}(\mathbb{R}^{N+1})} \leq 1$, we have

$$1 \geq \int_{\tilde{Q}_1(0,0)} \left(\int_{\max\{|x|,|t|^{1/2}\}} \mu(\tilde{Q}_r(x,t)) \, dr \right)^p \, dx \, dt$$

$$\geq \int_{\tilde{Q}_1(0,0)} \left(\frac{1}{\max\{|x|,|t|^{1/2}\}} \right)^p \, dx \, dt \, \text{Cap}_{\tilde{Q}_p(0,0)}(\tilde{Q}_p(0,0))^{p^*}.$$

So $\text{Cap}_{G_\alpha,p}(\tilde{Q}_p(0,0)) \leq c_\alpha \text{Cap}_{\tilde{Q}_p(0,0)}^{p^*} \leq c_\alpha (\log(1/p))^{-1}p.$
Definition 4.15 The parabolic Bessel potential $\mathcal{L}^p_\alpha(\mathbb{R}^{N+1})$, $\alpha > 0$ and $p > 1$ is defined by
\[
\mathcal{L}^p_\alpha(\mathbb{R}^{N+1}) = \{ f : f = G_\alpha * g, g \in L^p(\mathbb{R}^{N+1}) \}
\] (4.25)
with the norm $\| f \|_{\mathcal{L}^p_\alpha(\mathbb{R}^{N+1})} := \| f \|_{L^p(\mathbb{R}^{N+1})}$. We denote its dual space by $(\mathcal{L}^p_\alpha(\mathbb{R}^{N+1}))^*$.

Definition 4.16 For k a positive integer, the Sobolev space $W^{2k,k}_p(\mathbb{R}^{N+1})$ is defined by
\[
W^{2k,k}_p(\mathbb{R}^{N+1}) = \{ \varphi : \frac{\partial^{1+i_1+...+i_N+\alpha+i} \varphi}{\partial x_1^{i_1} ... \partial x_N^{i_N} \partial t^i} \in L^p(\mathbb{R}^{N+1}) \text{ for any } i_1 + ... + i_N + 2i \leq 2k \}
\]
with the norm $\| \varphi \|_{W^{2k,k}_p(\mathbb{R}^{N+1})} = \sum_{1 \leq i_1 + ... + i_N + 2i \leq 2k} \| \frac{\partial^{1+i_1+...+i_N+\alpha+i} \varphi}{\partial x_1^{i_1} ... \partial x_N^{i_N} \partial t^i} \|_{L^p(\mathbb{R}^{N+1})}$. We denote its dual space by $(W^{2k,k}_p(\mathbb{R}^{N+1}))^*$. We also define a corresponding capacity $\text{Cap}_{2k,k,p}(E) = \inf \{ \| \varphi \|_{W^{2k,k}_p(\mathbb{R}^{N+1})} : \varphi \in S(\mathbb{R}^{N+1}), \varphi \geq 1 \text{ in a neighborhood of } E \}$.

Let us recall Richard J. Bagby’s result, proved in [4].

Theorem 4.17 Let $p > 1$ and k be a positive integer. Then, there exists a constant C depending on N, k, p such that for any $u \in \mathcal{L}^p_{2k}(\mathbb{R}^{N+1})$,
\[
C^{-1} \| u \|_{\mathcal{L}^p_{2k}(\mathbb{R}^{N+1})} \leq \| u \|_{L^p(\mathbb{R}^{N+1})} \leq C \| u \|_{\mathcal{L}^p_{2k}(\mathbb{R}^{N+1})}.
\]
Above Theorem gives the assertion of equivalence of capacity $\text{Cap}_{2k,k,p}(E)$, $\text{Cap}_{2k,k,p}$.

Corollary 4.18 Let $p > 1$ and k be a positive integer. There exists a constant C depending on N, k, p such that for any compact set $E \subset \mathbb{R}^{N+1}$
\[
C^{-1} \text{Cap}_{2k,k,p}(E) \leq \text{Cap}_{2k,k,p}(E) \leq C \text{Cap}_{2k,k,p}(E).
\] (4.26)

Next result provides some relations of Riesz, Bessel parabolic potential and Riesz, Bessel potential.

Proposition 4.19 Let $q > 1$ and $\frac{1}{q} \leq \alpha < N + \frac{1}{q}$. There exists a constant C depending on N, q, α such that for any $\omega \in \mathcal{M}^+(\mathbb{R}^N)$
\[
C^{-1} \| I_{\alpha-\frac{q}{q}} [\omega] \|_{L^q(\mathbb{R}^N)} \leq \| H_\alpha [\omega \otimes \delta_{(t=0)}] \|_{L^q(\mathbb{R}^{N+1})}, \| H_\alpha^\vee [\omega \otimes \delta_{(t=0)}] \|_{L^q(\mathbb{R}^{N+1})} \leq C \| I_{\alpha-\frac{q}{q}} [\omega] \|_{L^q(\mathbb{R}^N)}
\] (4.27)
and
\[
C^{-1} \| G_{\alpha-\frac{q}{q}} [\omega] \|_{L^q(\mathbb{R}^N)} \leq \| G_\alpha [\omega \otimes \delta_{(t=0)}] \|_{L^q(\mathbb{R}^{N+1})}, \| G_\alpha^\vee [\omega \otimes \delta_{(t=0)}] \|_{L^q(\mathbb{R}^{N+1})} \leq C \| G_{\alpha-\frac{q}{q}} [\omega] \|_{L^q(\mathbb{R}^N)}
\] (4.28)
where $\delta_{(t=0)}$ is the Dirac mass in time at 0.

Proof. We have
\[
\mathbb{I}_\alpha [\omega \otimes \delta_{(t=0)}](x,t) = \int_{\sqrt{2|t|}}^\infty \frac{\omega(B(x,r))}{r^{N+2-\alpha}} dr, \quad \mathbb{I}_\alpha^\vee [\omega \otimes \delta_{(t=0)}](x,t) = \int_{\min(1,\sqrt{2|t|})}^{1} \frac{\omega(B(x,r))}{r^{N+2-\alpha}} dr.
\]
By [16, Theorem 2.3] and Proposition 4.8, thus it is enough to show that
\[
c_{1}^{-1} \int_{0}^{\infty} \left(\frac{\omega(B(x, r))}{r^{N+2-\alpha}} \right)^{q} \frac{dr}{r} \leq \int_{R} \left(\frac{\omega(B(x, r))}{r^{N+2-\alpha}} \right)^{q} \frac{dt}{t} \leq c_{1} \int_{0}^{\infty} \left(\frac{\omega(B(x, r))}{r^{N+2-\alpha}} \right)^{q} \frac{dr}{r},
\]
(4.29)

and
\[
c_{1}^{-1} \int_{0}^{1/2} \left(\frac{\omega(B(x, r))}{r^{N+2-\alpha}} \right)^{q} \frac{dr}{r} \leq \int_{R} \left(\int_{\min(1, \sqrt{2}r)} \omega(B(x, r)) \frac{dr}{r} \right)^{q} \frac{dt}{t} \leq c_{1} \int_{0}^{1/2} \left(\frac{\omega(B(x, r))}{r^{N+2-\alpha}} \right)^{q} \frac{dr}{r},
\]
(4.30)

Indeed, by changing variables
\[
\int_{-\infty}^{\infty} \left(\int_{\sqrt{2}r}^{\infty} \omega(B(x, r)) \frac{dr}{r} \right)^{q} \frac{dt}{t} = 2 \int_{0}^{\infty} \left(\int_{t}^{\infty} \omega(B(x, r)) \frac{dr}{r} \right)^{q} \frac{dt}{t}. \tag{4.31}
\]

Using Hardy’s inequality, we have
\[
\int_{0}^{\infty} \left(\int_{t}^{\infty} \omega(B(x, r)) \frac{dr}{r} \right)^{q} \frac{dt}{t} \leq c_{2} \int_{0}^{\infty} t \left(\int_{t}^{\infty} \omega(B(x, r)) \frac{dr}{r} \right)^{q} \frac{dt}{t},
\]
and using the fact that
\[
\int_{t}^{\infty} \omega(B(x, r)) \frac{dr}{r} \geq c_{3} \omega(B(x, r)) \frac{dr}{r},
\]
we get
\[
\int_{0}^{\infty} t \left(\int_{t}^{\infty} \omega(B(x, r)) \frac{dr}{r} \right)^{q} \frac{dt}{t} \geq c_{3} \int_{0}^{\infty} r \left(\frac{\omega(B(x, r))}{r^{N+2-\alpha}} \right)^{q} \frac{dr}{r}. \tag{4.32}
\]

Thus, we get (4.29). Likewise, we also obtain (4.30).

We have comparisons of \(Cap_{H_{\alpha}, p}, Cap_{G_{\alpha}, p}, Cap_{I_{\alpha}, p}, Cap_{G_{\alpha}, p}' \).

Corollary 4.20 Let \(p > 1 \) and \(\frac{\alpha}{p} < \alpha < N + \frac{\alpha}{p} \). There exists a constant \(C \) depending on \(N, q, \alpha \) such that for any compact \(K \subset R^{N} \)
\[
C^{-1} Cap_{I_{\alpha}, p}(K) \leq Cap_{H_{\alpha}, p}(K \times \{0\}) \leq C Cap_{I_{\alpha}, p}(K)
\]
(4.33)

and
\[
C^{-1} Cap_{G_{\alpha}, p}(K) \leq Cap_{G_{\alpha}, p}(K \times \{0\}) \leq C Cap_{G_{\alpha}, p}(K)
\]
(4.34)

Proof. By [2, Chapter 2], we have
\[
Cap_{H_{\alpha}, p}(K \times \{0\})^{1/p} = \sup \{ \mu(K \times \{0\}) : \mu \in M^{+}(K \times \{0\}), ||H_{\alpha}[\mu]||_{L^{p}(R^{N+1})} \leq 1 \},
\]

cap\(H_{\alpha}, p \) \((K \times \{0\})^{1/p} = \sup \{ \omega(K) : \omega \in M^{+}(K), ||H_{\alpha}[\omega]||_{L^{p}(R^{N+1})} \leq 1 \},
\]
\[
Cap_{G_{\alpha}, p}(K \times \{0\})^{1/p} = \sup \{ \omega(K) : \omega \in M^{+}(K), \|G_{\alpha}[\omega]||_{L^{p}(R^{N+1})} \leq 1 \},
\]
\[
Cap_{I_{\alpha}, p}(K)^{1/p} = \sup \{ \omega(K) : \omega \in M^{+}(K), ||I_{\alpha}[\omega]||_{L^{p}(R^{N+1})} \leq 1 \},
\]
\[
Cap_{G_{\alpha}, p}'(K)^{1/p} = \sup \{ \omega(K) : \omega \in M^{+}(K), ||G_{\alpha}[\omega]||_{L^{p}(R^{N+1})} \leq 1 \}.
\]

Therefore, thanks to Proposition (4.19) we get the results.
\[\Box\]
Corollary 4.21 Let \(p > 1 \) and \(k \) be a positive integer such that \(2k < N + 2/p \). There exists a constant \(C \) depending on \(N, k, p \) such that for any compact set \(K \subset \mathbb{R}^N \)
\[
C^{-1} \operatorname{Cap} \tilde{G}_{2k-\frac{p}{2}}(K) \leq \operatorname{Cap}_{2k-\frac{p}{2}}(K \times \{0\}) \leq C \operatorname{Cap} \tilde{G}_{2k-\frac{p}{2}}(K).
\] (4.34)

We also have comparisons of \(\operatorname{Cap}_{G_{\alpha, p}} \), \(\operatorname{Cap}_{G_{\alpha, p}'} \).

Proposition 4.22 Let \(0 < \alpha < N, \ p > 1 \). For \(a > 0 \) there exists a constant \(C \) depending on \(N, \alpha, p, a \) such that for any compact \(K \subset \mathbb{R}^N \),
\[
C^{-1} \operatorname{Cap}_{G_{\alpha, p}'}(K) \leq \operatorname{Cap}_{G_{\alpha, p}}(K \times [-a, a]) \leq C \operatorname{Cap}_{G_{\alpha, p}'}(K).
\]

Proof. By [2], we have
\[
\operatorname{Cap}_{L_\alpha^{\frac{p}{2}}}(K) \leq c_1 \operatorname{Cap}_{G_{\alpha, p}}(K),
\]
for some \(c_1 = c_1(N, \alpha, p, a) > 0 \). So, we can find \(f \in L^p_+(\mathbb{R}^N) \) such that \(\frac{\alpha}{\alpha} f \geq c_1 \), and
\[
\int_{\mathbb{R}^N} |f|^p dx \leq 2c_1 \operatorname{Cap}_{G_{\alpha, p}}(K).
\]

Note that \((E_{\alpha} \frac{\alpha}{\alpha} f)(x, t) \geq c_1 (E_{\alpha} \frac{\alpha}{\alpha} f)(x, t)\) for all \((x, t) \in \mathbb{R}^N \times [-a, a]\) where \(f(x, t) = f(x) \chi_{[-2a, 2a]}(t)\) and constant \(c_2 = c_2(N, \alpha, p)\). So,
\[
\operatorname{Cap}_{E_{\alpha}^{\frac{p}{2}}}(K \times [-a, a]) \leq c_2 \int_{\mathbb{R}^{N+1}} |\tilde{f}|^p dx dt
\]
\[
= 4c_2^{-p} a \int_{\mathbb{R}^N} |f|^p dx.
\]
By Corollary 4.10, there is \(c_1 = c_1(N, \alpha, p, a) > 0 \) such that
\[
\operatorname{Cap}_{G_{\alpha, p}}(K \times [-a, a]) \leq c_1 \operatorname{Cap}_{E_{\alpha}^{\frac{p}{2}}}(K \times [-a, a]).
\]
Thus, we get
\[
\operatorname{Cap}_{G_{\alpha, p}}(K \times [-a, a]) \leq c_3 \operatorname{Cap}_{G_{\alpha, p}}(K),
\]
for some \(c_3 = c_3(N, \alpha, p, a)\).

Finally, we prove other one. It is easy to see that
\[
\frac{\sqrt{\alpha}}{\sqrt{\alpha}} |\omega \chi_{[-a, a]}|}_{L^p(\mathbb{R}^{N+1})} \leq c_4 |\tilde{\omega}|}_{L^p(\mathbb{R}^N)} \ orall \omega \in \mathcal{M}(\mathbb{R}^N),
\]
for some \(c_4 = c_4(N, \alpha, p)\), which implies
\[
|G_\alpha |\omega \chi_{[-a, a]}|}_{L^p(\mathbb{R}^{N+1})} \leq c_5 |G_\alpha |\omega |}_{L^p(\mathbb{R}^N)} \ orall \omega \in \mathcal{M}(\mathbb{R}^{N+1}),
\]
for some \(c_4 = c_4(N, \alpha, p, a)\).

It follows,
\[
\operatorname{Cap}_{G_{\alpha, p}}(K \times [-a, a]) \geq c_6 \operatorname{Cap}_{G_{\alpha, p}}(K),
\]
for some \(c_6 = c_6(N, \alpha, p, a)\).

The following proposition is useful for proving that many operators of classical analysis are bounded in the space the space of functions \(f \) such that
\[
\int_K |f|^p dx dt \leq C \operatorname{Cap}(K)
\]
for every compact set \(K \subset \mathbb{R}^{N+1}, (1 < p < \infty) \), if they are bounded in \(L^q(\mathbb{R}^{N+1}, dw) \) with \(w \in A_\infty \).
Proposition 4.23 Let $0 < R \leq \infty$, $1 < p \leq \alpha^{-1}(N + 2)$, $0 < \delta < \alpha$ and $f, g \in L_{\text{loc}}^1(\mathbb{R}^{N+1})$. Suppose that

1. There exists a positive constant C_1 such that
 \[\int_K |f| \, dx \, dt \leq C_1 \text{Cap}_{E_{\alpha,p}}(K) \quad \text{for any compact sets } K \subset \mathbb{R}^{N+1}. \tag{4.35} \]

2. For all weights $w \in A_1$,
 \[\int_{\mathbb{R}^{N+1}} |g| \, w \, dx \, dt \leq C_2 \int_{\mathbb{R}^{N+1}} |f| \, w \, dx \, dt, \tag{4.36} \]
 where the constant C_2 depends only on N and $[w]_{A_1}$.

Then,
\[\int_K |g| \, dx \, dt \leq C_3 \text{Cap}_{E_{\alpha,p}}(K) \quad \text{for any compact set } K \subset \mathbb{R}^{N+1}, \tag{4.37} \]
where the constant C_3 depends only on N, α, p, δ and C_1, C_2.

The capacity is mentioned in the Proposition (4.23), that is $(E_{\alpha,p})$-capacity defined by
\[\text{Cap}_{E_{\alpha,p}}(E) = \inf \left\{ \int_{\mathbb{R}^{N+1}} |f|^p \, dx \, dt : f \in L_p^+(\mathbb{R}^{N+1}), E_{\alpha,p}^\ast f \geq \chi_E \right\}, \]
for all measurable sets $E \subset \mathbb{R}^{N+1}$, where $0 < R \leq \infty$, $0 < \delta < \alpha < N + 2$,
\[E_{\alpha}(x,t) = \max\{|x|, \sqrt{2/|t|}\}^{-(N + 2 - \alpha)} \min \left\{ 1, \left(\frac{\max\{|x|, \sqrt{2/|t|}\}}{R} \right)^{-\delta} \right\}. \]

Remark 4.24 For $0 < \alpha q < N + 2$, the inequality (4.10) in Proposition 4.4 implies
\[\left(\int_{\mathbb{R}^{N+1}} (E_{\alpha,p}^\ast f)^{\frac{q(N+2)}{N + 2 - \alpha q}} \, dx \, dt \right)^{\frac{N + 2 - \alpha q}{q(N+2)}} \leq C \int_{\mathbb{R}^{N+1}} f^q \, dx \, dt \quad \forall f \in L^q(\mathbb{R}^{N+1}), f \geq 0. \tag{4.38} \]
Hence, we get the isoperimetric inequality:
\[|E|^{\frac{N + 2 - \alpha q}{q(N+2)}} \leq C \text{Cap}_{E_{\alpha,p}}(E), \tag{4.39} \]
for all measurable sets $E \subset \mathbb{R}^{N+1}$.

Also, we recall that a positive function $w \in L_{\text{loc}}^1(\mathbb{R}^{N+1})$ is called an A_1 weight, if the quality
\[[w]_{A_1} := \sup \left(\int_Q w \, dy \, ds \right) \text{ess} \sup_{(x,t) \in Q} \frac{1}{w(x,t)} < \infty, \]
where the supremum is taken over all cylinder $Q = Q_R(x,t) \subset \mathbb{R}^{N+1}$. The constant $[w]_{A_1}$ is called the A_1 constant of w.

To prove the Proposition (4.23), we need to introduce the (R, δ)--Wolff parabolic potential,
\[\mathbb{W}_{\alpha,p}[\mu](x,t) = \int_0^\infty \left(\frac{\mu(\tilde{Q}_p(x,t))}{\rho^{N+2 - \alpha p}} \right)^{\frac{1}{N + 2 - \alpha p}} \min \left\{ 1, \left(\frac{\rho}{R} \right)^{-\delta} \right\} \frac{dp}{\rho} \quad \text{for any } (x,t) \in \mathbb{R}^{N+1}, \]
where \(p > 1 \), \(0 < \alpha p \leq N + 2 \), \(0 < \delta < \alpha p' \) and \(R \in (0, \infty) \) and \(\mu \in \mathcal{M}^+(\mathbb{R}^{N+1}) \).

It is easy to see that
\[
\mathcal{W}_{\alpha, p}^{R, \delta} \mu \leq C \sup_{(y, s) \in \text{supp} \mu} \mathcal{W}_{\alpha, p}^{R, \delta} \mu(y, s).
\]

for some a constant \(C = C(N, \alpha, p, \delta) > 0 \).

Remark 4.25 We easily verify that the Theorem 4.1 also holds for \(\mathcal{W}_{\alpha, p}^{R, \delta, R_1} \mu \) and \(M_{\alpha, p}^{R, \delta, R_1} \mu \):
\[
\mathcal{W}_{\alpha, p}^{R, \delta, R_1} \mu(x, t) = \int_0^{R_1} \left(\frac{\mu(\hat{Q}_p(x, t))}{\rho^{N+2-\alpha p}} \right) \min \left\{ 1, \left(\frac{\rho}{R} \right)^{-\delta} \right\} \frac{dp}{\rho}
\]
\[
M_{\alpha, p}^{R, \delta/(p-1), R_1} \mu(x, t) = \sup_{0 < \rho < R_1} \left(\frac{\mu(\hat{Q}_p(x, t))}{\rho^{N+2-\alpha p}} \right) \min \left\{ 1, \left(\frac{\rho}{R} \right)^{-\delta(p-1)} \right\}
\]
for any \((x, t) \in \mathbb{R}^{N+1} \),

where \(0 < \delta < \alpha p' \), \(1 < p < \alpha^{-1}(N+2) \) and \(R_1 > R > 0 \). This means, for \(w \in A_\infty \), \(\mu \in \mathcal{M}^+(\mathbb{R}^{N+1}) \), there exist constants \(C_1, C_2 > 0 \) and \(\varepsilon_0 \in (0, 1) \) depending on \(N, \alpha, p, \delta, \| w \|_{A_\infty} \) such that for any \(\lambda > 0 \) and \(\varepsilon \in (0, \varepsilon_0) \)
\[
w(\mathcal{W}_{\alpha, p}^{R, \delta, R_1} \mu > a\lambda, (M_{\alpha, p}^{R, \delta/(p-1), R_1} \mu)^{\frac{1}{p-1}} \leq \varepsilon\lambda)) \leq C_1 \exp(-C_2\varepsilon^{-1})w(\mathcal{W}_{\alpha, p}^{R, \delta, R_1} \mu > \lambda),
\]
where \(a = 2 + 3^{N+2-\alpha p+2(p-1)} \).

Therefore, for \(q > p - 1 \)
\[
\| \mathcal{W}_{\alpha, p}^{R, \delta, R_1} \mu \|_{L^q(\mathbb{R}^{N+1}, dw)} \leq C_3 \| (M_{\alpha, p}^{R, \delta/(p-1), R_1} \mu)^{\frac{1}{p-1}} \|_{L^q(\mathbb{R}^{N+1}, dw)},
\]
where \(C_3 = C_3(N, \alpha, p, \delta, q) \). Letting \(R_1 \to \infty \), we get
\[
\| \mathcal{W}_{\alpha, p}^{R, \delta} \mu \|_{L^q(\mathbb{R}^{N+1}, dw)} \leq C_3 \| (M_{\alpha, p}^{R, \delta/(p-1)} \mu)^{\frac{1}{p-1}} \|_{L^q(\mathbb{R}^{N+1}, dw)},
\]
where \(M_{\alpha, p}^{R, \delta/(p-1)} \mu := M_{\alpha, p}^{R, \delta/(p-1), \infty} \mu \).

We will need the following three Lemmas to prove the Proposition (4.23).

Lemma 4.26 Let \(0 < p \leq \alpha^{-1}(N+2) \) and \(0 < \beta < \frac{(N+2)(p-1)}{N+2-\alpha p+(p-1)} \). There exists a constant \(c \) depending on \(\delta \) such that for each \(\hat{Q}_r = \hat{Q}_r(x, t) \)
\[
\int_{\partial \hat{Q}_r} (\mathcal{W}_{\alpha, p}^{R, \delta} \mu(y, s))^\beta dy ds \leq c(\mathcal{W}_{\alpha, p}^{R, \delta} \mu(x, t))^\beta.
\]

Proof. We set
\[
U_{\alpha, p}^r [\mu](y, s) = \int_r^\infty \left(\frac{\mu(\hat{Q}_p(y, s))}{\rho^{N+2-\alpha p}} \right) \min \left\{ 1, \left(\frac{\rho}{R} \right)^{-\delta} \right\} \frac{dp}{\rho}
\]
and
\[
L_{\alpha, p}^r [\mu](y, s) = \int_0^r \left(\frac{\mu(\hat{Q}_p(y, s))}{\rho^{N+2-\alpha p}} \right) \min \left\{ 1, \left(\frac{\rho}{R} \right)^{-\delta} \right\} \frac{dp}{\rho}.
\]

Thus,
\[
\int_{\partial \hat{Q}_r} (\mathcal{W}_{\alpha, p}^{R, \delta} [\mu](y, s))^\beta dy ds \leq c_1 \int_{\partial \hat{Q}_r} (U_{\alpha, p}^r [\mu](y, s))^\beta dy ds + c_1 \int_{\partial \hat{Q}_r} (L_{\alpha, p}^r [\mu](y, s))^\beta dy ds.
\]
Since for each \((y, s) \in \tilde{Q}_r\) and \(\rho \geq r \) we have \(\tilde{Q}_s(y, s) \subset \tilde{Q}_{2\rho}(x, t) \), thus for each \((y, s) \in \tilde{Q}_r\),
\[
U_{\alpha, p}^r[y, s] \leq \int_{\tilde{Q}_r} \left(\frac{\mu(\tilde{Q}_{2\rho}(x, t))}{\rho^{N+2-\alpha p}} \right)^{\frac{1}{p-1}} \left(\max\{1, \frac{\rho}{R}\} \right)^{-\frac{1}{p}} \frac{d\rho}{\rho} \\
\leq c_2 \mathcal{W}_{\alpha, p}^{R, \delta}[\mu](x, t),
\]
which implies
\[
\int_{\tilde{Q}_r} (U_{\alpha, p}^r[y, s])^\delta dyds \leq c_2 (\mathcal{W}_{\alpha, p}^{R, \delta}[\mu](x, t))^\delta.
\]
Since for each \((y, s) \in \tilde{Q}_r \) and \(\rho \leq r \) we have \(\tilde{Q}_s(y, s) \subset \tilde{Q}_{\rho}(x, t) \) thus,
\[
L_{\alpha, p}^r[\mu] = L_{\alpha, p}^r[\mu \chi_{\tilde{Q}_{\rho}(x, t)}] \leq \mathcal{W}_{\alpha, p}^{R, \delta}[\mu \chi_{\tilde{Q}_{\rho}(x, t)}] \quad \text{in} \quad \tilde{Q}_r(x, t).
\]
We now consider two cases.

Case 1: \(r \leq R \). We have for \(a > 0 \),
\[
\int_{\tilde{Q}_r} (L_{\alpha, p}^r[\mu](y, s))^\beta dyds \leq \int_{\tilde{Q}_r} \left(\mathcal{W}_{\alpha, p}^r[\mu \chi_{\tilde{Q}_{\rho}(x, t)}](y, s) \right)^\beta dyds
\]
\[
= \frac{1}{|\tilde{Q}_r|} \beta \int_0^\infty \lambda_\beta^{-1} \left[\mathcal{W}_{\alpha, p}^r[\mu \chi_{\tilde{Q}_{\rho}(x, t)}] > \lambda \right] \bigcap \tilde{Q}_r |d\lambda
\]
\[
\leq a^\beta + c_2 r^{-N-2} \int_a^\infty \lambda_\beta^{-1} \left[\mathcal{W}_{\alpha, p}^r[\mu \chi_{\tilde{Q}_{\rho}(x, t)}] > \lambda \right] |d\lambda.
\]

If \(\alpha p = N + 2 \), we use (4.11) in Remark 4.5 with \(\varepsilon = \frac{\alpha p}{2} \) and take \(a = (\mu(\tilde{Q}_{2\rho}(x, t)))^{\frac{1}{p-1}} \)
\[
\int_{\tilde{Q}_r} (L_{\alpha, p}^r[\mu](y, s))^\beta dyds \leq a^\beta + c_2 r^{-N-2} \int_a^\infty \lambda_\beta^{-1} \left((\mu(\tilde{Q}_{2\rho}(x, t)))^{\frac{1}{p-1}} \right)^{\frac{\alpha p + (p-1)}{p-1}} r^{(\alpha p - 2)} |d\lambda
\]
\[
\leq c_1 (\mu(\tilde{Q}_{2\rho}(x, t)))^{\frac{1}{p-1}} r^{-\frac{N+2-\alpha p}{p-1}}
\]
\[
\leq c_2 (\mathcal{W}_{\alpha, p}^{R, \delta}[\mu](x, t))^\beta.
\]

If \(\alpha p < N + 2 \), we use (4.8) in Proposition 4.4 and take \(a = (\mu(\tilde{Q}_{2\rho}(x, t)))^{\frac{1}{p-1}} r^{-\frac{N+2-\alpha p}{p-1}} \), we get
\[
\int_{\tilde{Q}_r} (L_{\alpha, p}^r[\mu](y, s))^\beta dyds \leq c_6 \left((\mu(\tilde{Q}_{2\rho}(x, t)))^{\frac{1}{p-1}} r^{-\frac{N+2-\alpha p}{p-1}} \right)^\beta
\]
\[
\leq c_7 (\mathcal{W}_{\alpha, p}^{R, \delta}[\mu](x, t))^\beta.
\]

Case 2: \(r \geq R \). As above case, we have
\[
\int_{\tilde{Q}_r} \left(\mathcal{W}_{\alpha, \frac{p-1}{p}}[\mu \chi_{\tilde{Q}_{2\rho}(x, t)}](y, s) \right)^\beta dyds \leq c_6 \left((\mu(\tilde{Q}_{2\rho}(x, t)))^{\frac{1}{p-1}} r^{-\frac{N+2-\alpha p}{p-1}} \right)^\beta.
\]
Since \(\mathcal{W}_{\alpha, \frac{p-1}{p}}[\mu \chi_{\tilde{Q}_{2\rho}(x, t)}] \leq R^\delta \mathcal{W}_{\alpha, \frac{p-1}{p}}[\mu \chi_{\tilde{Q}_{2\rho}(x, t)}] \), thus
\[
\int_{\tilde{Q}_r} (L_{\alpha, p}^r[\mu](y, s))^\beta dyds \leq c_6 \left((\mu(\tilde{Q}_{2\rho}(x, t)))^{\frac{1}{p-1}} r^{-\frac{N+2-\alpha p}{p-1}} R^\delta \right)^\beta
\]
\[
\leq c_6 \mathcal{W}_{\alpha, \frac{p-1}{p}}^{R, \delta}[\mu](x, t))^\beta.
\]

Therefore, we get (4.43). The proof completes. \(\blacksquare \)

Remark 4.27 It is easy to see that the inequality (4.43) does not true for \(\mathcal{W}_{\alpha, p}^{R, \delta}[\delta(0,0)] \) where \(\delta(0,0) \) is the Dirac mass at \((x, t) = (0,0)\).
Remark 4.28 From Lemma (4.26), we have, if there exists \((x_0, t_0) \in \mathbb{R}^{N+1}\) such that
\(\mathcal{W}^{R, \beta}_{\alpha, p}[\mu](x_0, t_0) < \infty\) then \(\mathcal{W}^{R, \beta}_{\alpha, p}[\mu] \in L^\beta_{\text{loc}}(\mathbb{R}^{N+1})\) for any \(0 < \beta < \frac{(N+2)(p-1)}{N+2-\alpha p+3p-1}\).

Lemma 4.29 Let \(R \in (0, \infty]\), \(1 < p \leq \alpha^{-1}(N+2)\) and \(0 < \delta < \alpha p\). Assume that \(\alpha p < N+2\) if \(R = \infty\). Then, for any compact set \(K \subset \mathbb{R}^{N+1}\) there exists a \(\mu \in \mathcal{M}^+(K)\), called a capacitary measure of \(K\) such that
\[C_1^{-1} \text{Cap}_{E_{\alpha, p}^{R, \beta}}(K) \leq \mu(K) \leq C_1 \text{Cap}_{E_{\alpha, p}^{R, \beta}}(K)\]
and \(\mathcal{W}^{R, \beta}_{\alpha, p}[\mu](x, t) \geq C_2 \text{ a.e in } K\) and \(\mathcal{W}^{R, \beta}_{\alpha, p}[\mu] \leq C_3 \text{ a.e in } \mathbb{R}^{N+1}\) for some constants \(C_i = C_i(N, \alpha, p), i = 1, 2, 3\).

Proof. We consider a measure \(\nu\) on \(M = \mathbb{R}^{N+1} \times \mathbb{Z}\) as follows
\[\nu = m \otimes \sum_{n=\infty}^{\infty} \delta_n,\]
where \(m\) is Lebesgue measure, and \(\delta_n\) denotes unit mass at \(n\). Thus, \(f \in L^p(M, d\nu)\), means \(f = \{f_n\}_{n=\infty}^\infty\), with
\[||f||_{L^p(M, d\nu)}^p = \sum_{n=\infty}^{\infty} ||f_n||_{L^p(\mathbb{R}^{N+1})}^p.\]
Let \(n_R \in \mathbb{Z} \cup \{+\infty\}\) such that \(2^{-n_R} \leq R < 2^{-n_R+1}\) if \(R < +\infty\) and \(n_R = -\infty\) if \(R = +\infty\). We define a kernel \(P_\alpha\) in \(\mathbb{R}^{N+1} \times \mathbb{R}^{N+1} \times \mathbb{Z}\) by
\[P_\alpha(x, t, x', t', n) = \min\{1, 2^{(n-n_R)\delta/\rho'}\}2^{n(N+2-\alpha)}\chi_{\mathcal{Q}_{n}}(x-x', t-t').\]
If \(f\) is \(\nu\)-measurable and nonnegative and \(\mu \in \mathcal{M}^+(\mathbb{R}^{N+1})\), the corresponding potentials \(P_\alpha f, P_\alpha \mu\) and \(V_{\mu}^\mu\) are everywhere well defined and given by
\[(P_\alpha f)(x, t) = \int_M P_\alpha(x, t, x', t', n)f(x', t', n)d\nu(x', t', n)\]
\[= \sum_{n=\infty}^{\infty} \min\{1, 2^{(n-n_R)\delta/\rho'}\}2^{n(N+2-\alpha)}(\chi_{\mathcal{Q}_{n}} * f_n)(x, t),\]
\[(P_\alpha \mu)(x', t') = \int_{\mathbb{R}^{N+1}} P_\alpha(x, t, x', t')d\mu(x, t)\]
\[= \min\{1, 2^{(n-n_R)\delta/\rho'}\}2^{n(N+2-\alpha)}(\chi_{\mathcal{Q}_{n}} * \mu)(x', t'),\]
\[V_{\mu}^\mu(x, t) = (P_\alpha(P_\alpha \mu)^{\rho'-1})(x, t)\]
\[= \sum_{n=\infty}^{\infty} \min\{1, 2^{(n-n_R)\delta}\}2^{n\rho'N+2-\alpha}(\chi_{\mathcal{Q}_{n}} * (\chi_{\mathcal{Q}_{n}} * \mu)^{\rho'-1})(x, t),\]
for any \((x, t, x', t', n) \in \mathbb{R}^{N+1} \times M\).
Since for all \((x, t) \in \mathbb{R}^{N+1},\)
\[|\tilde{Q}_1|2^{-(n+1)(N+2)}(\mu(\bar{Q}_{n-1})(x, t)))^{\rho'-1} \leq \tilde{Q}_12^{-(n+1)(N+2)}(\mu(\bar{Q}_{n-1})(x, t))^{\rho'-1},\]
thus,
\[c_1^{-1}V_{\mu}^\mu \leq \mathcal{W}^{R, \beta}_{\alpha, p}[\mu] \leq c_1V_{\mu}^\mu, \quad (4.44)\]
for some a positive constant c_1. We now define the L^p-capacity with $1 < p < \infty$
\[\text{Cap}_{\alpha, p}(E) = \inf \left\{ \| f \|_{L^p(M, dv)}^p : f \in L^p(M, dv), \mathcal{P}_\alpha f \geq \chi_E \right\}. \]
for any Borel set $E \subset \mathbb{R}^{N+1}$. By [2, Theorem 2.5.1], for any compact set $K \subset \mathbb{R}^{N+1}$
\[\text{Cap}_{\alpha, p}(K)^{1/p} = \sup \{ \mu(K) : \mu \in \mathcal{M}^+(K), \| \mathcal{P}_\alpha \mu \|_{L^p(M, dv)} \leq 1 \}. \]
By [2, Theorem 2.5.6], for any compact set K in \mathbb{R}^{N+1}, there exists $\mu \in \mathcal{M}^+(K)$, called
a capacity measure for K, such that $V_{\alpha, p}^{R, \delta} \geq 1$ Cap$_{\alpha, p}$ - q.e. in K, $V_{\alpha, p}^{R, \delta} \leq 1$ a.e in
supp(μ) and $\mu(K) = \text{Cap}_{\alpha, p}(K)$. Thanks to (4.44) and (4.40), we have $\mathcal{W}_p^{R, \delta}[\mu] \geq c_1^{-1}$
Cap$_{\alpha, p}$ - q.e. in K, $\mathcal{W}_p^{R, \delta}[\mu] \leq c_2$ a.e in \mathbb{R}^{N+1} and $\mu(K) = \text{Cap}_{\alpha, p}(K)$.
On the other hand,
\[\| \mathcal{P}_\alpha \mu \|_{L^p(M, dv)}^p = \sum_{n=-\infty}^{\infty} \left\| \min\{1, 2^{(n-n_0)\delta/p'}\} \chi_{\tilde{Q}_{2n}} * \mu \right\|_{L^p(M, dv)}^p \]
\[= \sum_{n=-\infty}^{\infty} \min\{1, 2^{(n-n_0)\delta/p'}\} \chi_{\tilde{Q}_{2n}} * \mu)^{p'} \int_{\mathbb{R}^{N+1}} \left(\frac{\mu(\tilde{Q}_{2n}(x, t))}{\rho^{N+2-\alpha}} \right)^{p'} \frac{d\rho}{\rho^{N+2-\alpha}} dx dt, \]
this quantity is equivalent to
\[\int_{\mathbb{R}^{N+1}} \int_0^\infty \left(\frac{\mu(\tilde{Q}_{2n}(x, t))}{\rho^{N+2-\alpha}} \right)^{p'} \min\{1, \left(\frac{\rho}{R} \right)^{-\delta} \} \frac{d\rho}{\rho} dx dt. \]
So, thanks to (4.42) in Remark 4.45, we obtain
\[c_2^{-1} \| E_p^{R, \delta/p'} * \mu \|_{L^p(M, dv)}^p \leq \| \mathcal{P}_\alpha \mu \|_{L^p(M, dv)}^p \leq c_2 \| E_p^{R, \delta/p'} * \mu \|_{L^p(M, dv)}^p, \]
for $c_2 = c_2(N, p, \alpha, \delta)$. It follows that two capacities Cap$_{\alpha, p}$ and Cap$_{E_p^{R, \delta/p'}}$ are equivalent.
Therefore, we obtain the desired results. \hfill \blacksquare

Lemma 4.30 Let $R \in (0, \infty]$, $1 < p \leq \alpha^{-1}(N + 2)$ and $0 < \delta < \alpha'$. Assume that $\alpha p < N + 2$ if $R = \infty$. Then there exists $C = C(N, \alpha, p, \delta)$ such that for any $\mu \in \mathcal{M}_N^N(\mathbb{R}^{N+1})$
\[\text{Cap}_{E_p^{R, \delta/p'}}(\{ \mathcal{W}_p^{R, \delta}[\mu] > \lambda \}) \leq \lambda^{-p+1} \mu(\mathbb{R}^{N+1}) \quad \forall \lambda > 0. \quad (4.45) \]
In particular, $\mathcal{W}_p^{R, \delta}[\mu] < \infty$ Cap$_{E_p^{R, \delta/p'}}$ - q.e. in \mathbb{R}^{N+1}.

Proof. By Lemma 4.29, there is a capacitary measure σ for a compact subset K of \{ $\mathcal{W}_p^{R, \delta}[\mu] > \lambda$ \} such that $\mathcal{W}_p^{R, \delta}[\sigma](x, t) \leq c_1$ on suppσ and Cap$_{E_p^{R, \delta/p'}}(K) \approx \sigma(K)$ where $c_1 = c_1(N, p, \alpha, \delta)$. Set $M_\mu, \sigma(x, t) = \sup_{p > 0} \frac{\mu(\tilde{Q}_p(x, t))}{\sigma(\tilde{Q}_p(x, t))}$ for any $(x, t) \in \text{supp} \sigma$. Then, for any $(x, t) \in \text{supp} \sigma$
\[\lambda < \mathcal{W}_p^{R, \delta}[\mu](x, t) \leq (M_\mu, \sigma)(x, t) \frac{1}{\rho^{N+2-\alpha p}} \int_0^\infty \left(\frac{\sigma(\tilde{Q}_{\rho p}(x, t))}{\rho^{N+2-\alpha p}} \right)^{1/p} \min\{1, \left(\frac{\rho}{R} \right)^{-\delta} \} \frac{d\rho}{\rho} \]
\[\leq c_2 (M_\mu, \sigma)(x, t) \frac{1}{\rho^{N+2-\alpha p}}. \]
Thus, for any $\lambda > 0$, supp$\sigma \subset \{ c_2 (M_\mu, \sigma)(x, t) \frac{1}{\rho^{N+2-\alpha p}} > \lambda \} = \{ M_\mu, \sigma \} > \left(\frac{\lambda}{c_2} \right)^{p-1}$. By Vitali Covering Lemma one can cover suppσ with a union of $\tilde{Q}_{\frac{\rho p}{\sigma}}(x_i, t_i)$ for $i = 1, ..., m(K)$ so that
$\tilde{Q}_{\rho_p}(x_i, t_i)$ are disjoint and $\sigma(\tilde{Q}_{3\rho_p}(x_i, t_i)) < (\lambda/c_2)^{-p+1}\mu(\tilde{Q}_{\rho_p}(x_i, t_i))$. It follows that

$$\text{Cap}_{E;\rho_p}(K) \leq c_3 \sum_{i=1}^{m(K)} \sigma(\tilde{Q}_{3\rho_p}(x_i, t_i))$$

$$\leq c_3c_2^{-p-1}\lambda^{-p+1} \sum_{i=1}^{m(K)} \mu(\tilde{Q}_{\rho_p}(x_i, t_i))$$

$$\leq c_3c_2^{-p-1}\lambda^{-p+1}\mu(\mathbb{R}^{N+1}).$$

So, for all compact subset K of $\{\mathbb{W}^{R,\delta}_{\alpha,\rho}[\mu] > \lambda\}$,

$$\text{Cap}_{E;\rho_p}(K) \leq c_4\lambda^{-p+1}\mu(\mathbb{R}^{N+1}).$$

Therefore we obtain (4.45).

Remark 4.31 Let $0 < \delta < \alpha < N + 2$ and $\delta \leq 1$. From the following inequality

$$|\max\{|x_1 - z|, \sqrt{2|t_1 - s|}\} - N - 2 + \alpha - \max\{|x_2 - z|, \sqrt{2|t_2 - s|}\} - N - 2 + \alpha|$$

$$\leq c_1 \left(\max\{|x_1 - z|, \sqrt{2|t_1 - s|}\} - N - 2 + \alpha - \delta + \max\{|x_2 - z|, \sqrt{2|t_2 - s|}\} - N - 2 + \alpha + \delta\right)$$

$$\times \left(|x_1 - x_2| + |t_1 - t_2|^{1/2}\right)^{\delta},$$

for all $(x_1, t_1), (x_2, t_2), (z, s) \in \mathbb{R}^{N+1}$, where c_1 is a constant depending on N, α, δ. Thus, for $\mu \in \mathbb{M} (\mathbb{R}^{N+1})$

$$\left|\mathbb{I}_\alpha(\mu)(x_1, t_1) - \mathbb{I}_\alpha(\mu)(x_2, t_2)\right| \leq c_2 \left(\mathbb{I}_{\alpha-\delta}(\mu)(x_1, t_1) + \mathbb{I}_{\alpha-\delta}(\mu)(x_2, t_2)\right) \left(|x_1 - x_2| + |t_1 - t_2|^{1/2}\right)^{\delta},$$

for all $(x_1, t_1), (x_2, t_2) \in \mathbb{R}^{N+1}$ and $c_2 = c_1 \frac{N+2-\alpha+\delta}{N+2-\alpha}$. Consequently, for any $\mu \in \mathbb{M} (\mathbb{R}^{N+1})$, $\mathbb{I}_\alpha(\mu)$ is δ-Holder $\text{Cap}_{E;\rho_p}(\mathbb{R}^{N+1})$-quasicontinuous this means, for any $\varepsilon > 0$ there exists a Borel set $O_\varepsilon \subset \mathbb{R}^{N+1}$ and $c_\varepsilon > 0$ such that

$$\left|\mathbb{I}_\alpha(\mu)(x_1, t_1) - \mathbb{I}_\alpha(\mu)(x_2, t_2)\right| \leq c_\varepsilon \left(|x_1 - x_2| + |t_1 - t_2|^{1/2}\right)^{\delta} \quad \forall (x_1, t_1), (x_2, t_2) \in O_\varepsilon$$

and $\text{Cap}_{E;\rho_p}(\mathbb{R}^{N+1})(O_\varepsilon) < \varepsilon$.

Now we are ready to prove Proposition 4.23.

Proof of Proposition 4.23. By Lemma 4.26, 4.29 and 4.30, there is the capacitory measure μ of a compact subset $K \subset \mathbb{R}^{N+1}$ such that $\mathbb{W}^{R,\delta}_{\alpha,\rho}[\mu] \geq c_1$ a.e in K, $\mathbb{W}^{R,\delta}_{\alpha,\rho}[\mu] \leq c_2$ a.e in \mathbb{R}^{N+1} and $\text{Cap}_{E;\rho}(\mathbb{W}^{R,\delta}_{\alpha,\rho}[\mu] > \lambda) \leq c_2 \lambda^{-p+1} \text{Cap}_{E;\rho}(K)$ for all $\lambda > 0$, $(\mathbb{W}^{R,\delta}_{\alpha,\rho}[\mu])^{\beta} \in A_1$ for any $0 < \beta < \frac{(N+2)(p-1)}{N+2-\alpha+p}$. From second assumption we have

$$\int_{\mathbb{R}^{N+1}} |g|^{(\mathbb{W}^{R,\delta}_{\alpha,\rho}[\mu])^{\beta}} dxdy \leq C_2 \int_{\mathbb{R}^{N+1}} |f|^{(\mathbb{W}^{R,\delta}_{\alpha,\rho}[\mu])^{\beta}} dxdy.$$

Thus

$$\int_K |g| dxdy \leq c_3 \int_{\mathbb{R}^{N+1}} |g|^{(\mathbb{W}^{R,\delta}_{\alpha,\rho}[\mu])^{\beta}} dxdy$$

$$\leq c_3 \int_{\mathbb{R}^{N+1}} |f|^{(\mathbb{W}^{R,\delta}_{\alpha,\rho}[\mu])^{\beta}} dxdy$$

$$= c_3 \beta \int_0^{(\mathbb{W}^{R,\delta}_{\alpha,\rho}[\mu])^{\beta}} |f| dxdy (\beta - 1) d\lambda.$$

48
By first assumption we get
\[
\int_{\mathcal{W}_{\alpha,p'}(\mathbb{R}^N)} |f| \, dx \leq C_1 \text{Cap}_{E_{\alpha,p'}}(\mathcal{W}_{\alpha,p'}(\mathbb{R}^N)) \leq c_4 \lambda^{-p+1} \text{Cap}_{E_{\alpha,p'}}(K).
\]
Therefore,
\[
\int_{K} |g| \, dx \leq c_5 \delta \int_{0}^{\varepsilon_1} \lambda^{-p+1} \text{Cap}_{E_{\alpha,p'}}(K) \lambda^{d-1} \, d\lambda = c_6 \text{Cap}_{E_{\alpha,p'}}(K),
\]
since one can choose \(\delta > p - 1 \). This completes the proof of the Proposition. \(\square \)

Definition 4.32 Let \(s > 1 \), \(\alpha > 0 \). We define the space \(\mathcal{M}^{H_{\alpha,s}}(\mathbb{R}^N+1) \) (resp.) to be the set of all measure \(\mu \in \mathcal{M}(\mathbb{R}^N+1) \) such that
\[
[\mu]_{\mathcal{M}^{H_{\alpha,s}}(\mathbb{R}^N+1)} := \sup \{ |\mu(K)| : \text{Cap}_{H_{\alpha,s}}(K) > 0 \} < \infty,
\]
\[
[\mu]_{\mathcal{M}^{G_{\alpha,s}}(\mathbb{R}^N+1)} := \sup \{ |\mu(K)| : \text{Cap}_{G_{\alpha,s}}(K) > 0 \} < \infty \text{ resp.}
\]
where the supremum is taken all compact sets \(K \subset \mathbb{R}^N+1 \).
For simplicity, we will write \(\mathcal{M}^{H_{\alpha,s}} \) to denote \(\mathcal{M}^{H_{\alpha,s}}(\mathbb{R}^N+1) \), \(\mathcal{M}^{G_{\alpha,s}} \) to denote \(\mathcal{M}^{G_{\alpha,s}}(\mathbb{R}^N+1) \) resp.

We see that if \(\alpha s \geq N + 2 \), \(\mathcal{M}^{H_{\alpha,s}}(\mathbb{R}^N+1) = \{0\} \), if \(\alpha s < N + 2 \), \(\mathcal{M}^{H_{\alpha,s}}(\mathbb{R}^N+1) \subset \mathcal{M}^{G_{\alpha,s}}(\mathbb{R}^N+1) \). On the other hand, \(\mathcal{M}^{G_{\alpha,s}}(\mathbb{R}^N+1) \subset \mathcal{M}_b(\mathbb{R}^N+1) \) if \(\alpha s > N + 2 \).

We now have the following two remarks:

Remark 4.33 For \(s > 1 \), there is \(C = C(N,\alpha,s) > 0 \) such that
\[
[f]_{\mathcal{M}^{G_{\alpha,s}}} \leq C |f|_{\mathcal{M}^{G_{\alpha,s}}}^{1/s} \quad \text{for all function } f.
\] (4.46)
Indeed, set \(a = |[f]|_{\mathcal{M}^{G_{\alpha,s}}} \), so for any compact set \(K \) in \(\mathbb{R}^N+1 \),
\[
\int_{K} |f|^{p} \, dx \leq a \text{Cap}_{G_{\alpha,s}}(K).
\]
This gives \(2a \text{Cap}_{G_{\alpha,s}}(K) \geq \int_{K} |f|^{p} + C_1 a \, dx \geq C_2 a^{1-1/s} \int_{K} |f| \, dx \), here we used (4.24) in Remark 4.11 at the first inequality and Holder’s inequality at the second one. It follows (4.46).

Remark 4.34 Assume that \(p > 1 \) and \(\frac{2}{p} < \alpha < N + \frac{2}{p} \). Clearly, from Corollary 4.20 we assert that for \(\omega \in \mathcal{M}^{+}(\mathbb{R}^N) \)
\[
C_1^{-1} |\omega|_{\mathcal{M}^{G_{\alpha-2/p-p}}(\mathbb{R}^N)} \leq \omega \subset \delta(1=0) \|\mathcal{M}^{G_{\alpha-2/p-p}}(\mathbb{R}^N) \| \\
C_2^{-1} |\omega|_{\mathcal{M}^{G_{\alpha-2/p-p}}(\mathbb{R}^N)} \leq \omega \subset \delta(1=0) \|\mathcal{M}^{G_{\alpha-2/p-p}}(\mathbb{R}^N) \|
\]
for some \(C_i = C_i(N,p,\alpha), \quad i = 1, 2 \). Where \(\mathcal{M}^{I_{\alpha-2/p-p}} := \mathcal{M}^{I_{\alpha-2/p-p}}(\mathbb{R}^N) \), \(\mathcal{M}^{G_{\alpha-2/p-p}} := \mathcal{M}^{G_{\alpha-2/p-p}}(\mathbb{R}^N) \) and
\[
|\omega|_{\mathcal{M}^{I_{\alpha-2/p-p}}(\mathbb{R}^N)} := \sup \{ \omega(K) : \text{Cap}_{I_{\alpha-2/p-p}}(K) > 0 \},
\]
\[
|\omega|_{\mathcal{M}^{G_{\alpha-2/p-p}}(\mathbb{R}^N)} := \sup \{ \omega(K) : \text{Cap}_{G_{\alpha-2/p-p}}(K) > 0 \},
\]
where the supremum is taken all compact sets \(K \subset \mathbb{R}^N \).

Clearly, Theorem 4.2 and Proposition 4.23 lead to the following result.
Proposition 4.35 Let $q > p - 1$, $s > 1$ and $0 < \alpha p < N + 2$. Then the following quantities are equivalent
\[\left(\mathbf{W}^{R, \alpha, p}[\mu] \right)^{\frac{1}{q}}, \left(\mathbf{W}^{R, \alpha, p}[\mu] \right)^{\frac{1}{r}}, \left(\mathbf{M}^{R, \alpha, p}[\mu] \right)^{\frac{1}{q}} \text{ and } \left(\mathbf{M}^{R, \alpha, p}[\mu] \right)^{\frac{1}{r}} \]
for every $\mu \in L^{+}(\mathbb{R}^{N+1})$ and $0 < R \leq \infty$.

In the next result, we present a characterization of the following trace inequality:
\[\text{Theorem 4.36 Let } 0 < R \leq \infty, 1 < p < \alpha^{-1}(N + 2), 0 < \delta < \alpha \text{ and } \mu \text{ be a nonnegative Radon measure on } \mathbb{R}^{N+1}. \text{ Then the following statements are equivalent.} \]

1. The trace inequality (4.47) holds.
2. There holds
\[\|E_{R, \alpha}^{R, \delta} * f\|_{L^{p}(\mathbb{R}^{N+1}, d\omega)} \leq C_{2}\|f\|_{L^{p}(\mathbb{R}^{N+1})} \forall f \in L^{p}(\mathbb{R}^{N+1}), \]
where $d\omega = (1_{R, \alpha}^{R, \delta})(\mu)^{\frac{1}{p}} dx dt$.
3. There holds
\[\|E_{R, \alpha}^{R, \delta} * f\|_{L^{p}(\mathbb{R}^{N+1}, d\mu)} \leq C_{3}\|f\|_{L^{p}(\mathbb{R}^{N+1})} \forall f \in L^{p}(\mathbb{R}^{N+1}). \]
4. For every compact set $E \subset \mathbb{R}^{N+1}$,
\[\mu(E) \leq C_{4}\text{Cap}_{E_{R, \alpha}^{R, \delta}}(E). \]
5. $1_{R, \alpha}^{R, \delta}[\mu] < \infty \text{ a.e and}$
\[1_{R, \alpha}^{R, \delta}[1_{R, \alpha}^{R, \delta}[\mu]]^{p} \leq C_{5}1_{R, \alpha}^{R, \delta}[\mu] \text{ a.e.} \]
6. For every compact set $E \subset \mathbb{R}^{N+1}$,
\[\int_{E}(1_{R, \alpha}^{R, \delta}[\mu])^{p} dx dt \leq C_{6}\text{Cap}_{E_{R, \alpha}^{R, \delta}}(E). \]
7. For every compact set $E \subset \mathbb{R}^{N+1}$,
\[\int_{\mathbb{R}^{N+1}}(1_{R, \alpha}^{R, \delta}[\mu \chi_{E}])^{p} dx dt \leq C_{7}\mu(E). \]
8. For every compact set $E \subset \mathbb{R}^{N+1}$,
\[\int_{E}(1_{R, \alpha}^{R, \delta}[\mu \chi_{E}])^{p} dx dt \leq C_{8}\mu(E). \]

We can find a simple sufficient condition on μ so that trace inequality (4.47) is satisfied from the isoperimetric inequality (4.39).

Proof of Theorem 4.36. As in [80] we can show that $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 6 \Rightarrow 7$ and $7 \Rightarrow 8, 5 \Rightarrow 2$. Thus, it is enough to show that $8. \Rightarrow 5$. First, we need to show that
\[\left(\int_{r}^{\infty} \frac{\mu(\hat{Q}_{R}^{r}, t))}{r^{N+2-\alpha}} \min\{1, \left(\frac{r}{R} \right)^{-\delta} \} \frac{dt}{r} \right)^{p-1} \leq c_{1}r^{-\alpha} \left(\min\{1, \left(\frac{r}{R} \right)^{-\delta} \} \right)^{-1} \]
(4.55)
We have for any \((y, s) \in \tilde{Q}_r(x, t)\)

\[
\varGamma_{\alpha}^{R, \delta}[\mu \chi_{\tilde{Q}_r(x, t)}](y, s) = \int_0^\infty \frac{\mu(\tilde{Q}_r(x, t) \cap \tilde{Q}_p(y, s))}{\rho^{N+2-\alpha}} \min\{1, \left(\frac{r}{R}\right)^{\delta} \} \frac{d\rho}{\rho} \\
\geq \int_{2r}^{4r} \frac{\mu(\tilde{Q}_r(x, t) \cap \tilde{Q}_p(y, s))}{\rho^{N+2-\alpha}} \min\{1, \left(\frac{r}{R}\right)^{\delta} \} \frac{d\rho}{\rho} \\
\geq c_2 \frac{\mu(\tilde{Q}_r(x, t))}{r^{N+2-\alpha}} \min\{1, \left(\frac{r}{R}\right)^{\delta} \}.
\]

In (4.54), we take \(E = \tilde{Q}_r(x, t)\)

\[
c_\mu(\tilde{Q}_r(x, t)) \geq \int_{\tilde{Q}_r(x, t)} (I_\alpha[\mu \chi_{\tilde{Q}_r(x, t)}])^{\rho'} \\
\geq \left(\frac{\varGamma_{\alpha}^{R, \delta}[\mu \chi_{\tilde{Q}_r(x, t)}]}{r^{N+2-\alpha}} \min\{1, \left(\frac{r}{R}\right)^{\delta} \} \right)^{\rho'} |\tilde{Q}_r(x, t)|.
\]

So \(\mu(\tilde{Q}_r(x, t)) \leq c_3 r^{N+2-\alpha} \left(\min\{1, \left(\frac{r}{R}\right)^{\delta} \} \right)^{-p}\) which implies (4.55).

Next we set

\[
L_r[\mu](x, t) = \int_r^{+\infty} \frac{\mu(\tilde{Q}_r(x, t))}{\rho} \min\{1, \left(\frac{r}{R}\right)^{\delta} \} \frac{d\rho}{\rho},
\]

\[
U_r[\mu](x, t) = \int_0^r \frac{\mu(\tilde{Q}_r(x, t))}{\rho} \min\{1, \left(\frac{r}{R}\right)^{\delta} \} \frac{d\rho}{\rho},
\]

and

\[
d\omega = (I_\alpha[\mu])^p \, dxdt, \quad d\sigma_{1,r} = (L_r[\mu])^{\rho'} \, dxdt, \quad d\sigma_{2,r} = (U_r[\mu])^{\rho'} \, dxdt.
\]

We have \(d\omega \leq 2^{\rho'-1}(d\sigma_{1,r} + d\sigma_{2,r})\). To prove (4.51) we need to show that

\[
\int_0^\infty \frac{\sigma_{1,r}(\tilde{Q}_r(x, t))}{r^{N+2-\alpha}} \min\{1, \left(\frac{r}{R}\right)^{\delta} \} \frac{dr}{r} \leq c_4 \varGamma_{\alpha}^{R, \delta}[\mu](x, t),
\]

(4.56)

\[
\int_0^\infty \frac{\sigma_{2,r}(\tilde{Q}_r(x, t))}{r^{N+2-\alpha}} \min\{1, \left(\frac{r}{R}\right)^{\delta} \} \frac{dr}{r} \leq c_5 \varGamma_{\alpha}^{R, \delta}[\mu](x, t).
\]

(4.57)

Since, for all \(r > 0, \ 0 < \rho < r \) and \((y, s) \in \tilde{Q}_r(x, t)\) we have \(\tilde{Q}_r(y, s) \subset \tilde{Q}_{2r}(x, t)\). So,

\[
\sigma_{2,r}(\tilde{Q}_r(x, t)) = \int_{\tilde{Q}_r(x, t)} (U_r[\mu](y, s))^{\rho'} \, dyds = \int_{\tilde{Q}_r(x, t)} (U_r[\mu \chi_{\tilde{Q}_{2r}(x, t)}](y, s))^{\rho'} \, dyds.
\]

Thus, from (4.54) we get

\[
\sigma_{2,r}(\tilde{Q}_r(x, t)) \leq \int_{\tilde{Q}_{2r}(x, t)} (U_r[\mu \chi_{\tilde{Q}_{2r}(x, t)}](y, s))^{\rho'} \, dyds \\
\leq \int_{\tilde{Q}_{2r}(x, t)} \left(\frac{\varGamma_{\alpha}^{R, \delta}[\mu \chi_{\tilde{Q}_{2r}(x, t)}]}{r^{N+2-\alpha}} \min\{1, \left(\frac{r}{R}\right)^{\delta} \} \right)^{\rho'} \, dyds \\
\leq c_6 \varGamma_{\alpha}^{R, \delta}[\mu](x, t).
\]

Therefore, (4.57) follows.

Since, for all \(r > 0, \ \rho \geq r \) and \((y, s) \in \tilde{Q}_r(x, t)\) we have \(\tilde{Q}_r(y, s) \subset \tilde{Q}_{2r}(x, t)\). So, for all \((y, s) \in Q_r(x, t)\) we have

\[
L_r[\mu](y, s) \leq \int_r^{+\infty} \frac{\mu(\tilde{Q}_{2r}(x, t))}{\rho^{N+2-\alpha}} \min\{1, \left(\frac{r}{R}\right)^{\delta} \} \frac{d\rho}{\rho} \\
\leq c_7 L_r[\mu](x, t).
\]
Hence,
\[\sigma_{r,\hat{Q}(x,t)}(L_r[\mu](y,s))^{p'} dyds \leq c_8 r^{N+2} (L_r[\mu](x,t))^{p'}. \]
Since \(r^{\alpha-1} \min\{1, \left(\frac{r}{\pi} \right)^{\delta} \} \leq \frac{1}{\pi^\alpha} \frac{d}{dr} \left(r^{\alpha} \min\{1, \left(\frac{r}{\pi} \right)^{\delta} \} \right) \), we deduce that
\[\int_0^\infty \frac{\sigma_{r,\hat{Q}(x,t)}}{r^{N+2-\alpha}} \min\{1, \left(\frac{r}{\pi} \right)^{\delta} \} dr \leq c_7 \int_0^\infty r^{\alpha-1} (L_r[\mu](x,t))^{p'} \min\{1, \left(\frac{r}{\pi} \right)^{\delta} \} dr \]
\[\leq c_8 \int_0^\infty r^{\alpha} (L_r[\mu](x,t))^{p'-1} \frac{\mu(\hat{Q}(x,t))^{\alpha}}{r^{N+2-\alpha}} \min\{1, \left(\frac{r}{\pi} \right)^{\delta} \} \frac{dr}{r}. \]
Therefore, we get (4.56) from (4.55). This completes the proof of Theorem.

Remark 4.37 It is easy to assert that if 8. holds then for any \(0 < \beta < N+2 \)
\[I_\beta \left(\left[(\alpha^R)_{\alpha}^{\beta} [\mu] \right]^{p'} \right) \leq C I_\beta [\mu], \]
for some \(C = C(N, \alpha, \beta, \delta, p) > 0 \).

Corollary 4.38 Let \(p > 1, \alpha > 0 \) such that \(0 < \alpha p < N + 2 \). There holds
\[C_1^{-1} [\mu]^{p'}_{\mathcal{D}_{\alpha}} \leq \left[(\alpha^R)_{\alpha}^{\beta} [\mu]^{p'} \right]_{\mathcal{D}_{\alpha}} \leq C_1 [\mu]^{p'}_{\mathcal{D}_{\alpha}}, \]
for all \(\mu \in \mathcal{M}^+ (\mathbb{R}^{N+1}) \). Furthermore,
\[[\varphi_n * \mu]_{\mathcal{D}_{\alpha}} \leq C_2 [\mu]_{\mathcal{D}_{\alpha}} \]
for \(n \in \mathbb{N}, \mu \in \mathcal{M}^+ (\mathbb{R}^{N+1}) \) where \(\{ \varphi_n \} \) is a sequence of mollifiers in \(\mathbb{R}^{N+1} \). Here \(C_i = C_i(N,p,\alpha), i = 1, 2 \).

Proof. For \(R = \infty \) we have \((\alpha^R)_{\alpha}^{\beta} [\mu] = \mathbb{I}_{\alpha} [\mu] \) and \(E_{\alpha}^{R,\delta} = E_{\alpha} \). Thus, by (4.20) in Corollary 4.10 and Theorem 4.36 we get for every compact set \(E \subset \mathbb{R}^{N+1} \),
\[\mu(E) \leq c_1 \text{Cap}_{\mathcal{D}_{\alpha},p}(E) \]
if and only if for every compact set \(E \subset \mathbb{R}^{N+1}, \)
\[\int_E (\mathbb{I}_{\alpha} [\mu])^{p'} dx dt \leq c_2 \text{Cap}_{\mathcal{D}_{\alpha},p}(E). \]
It follows (4.59).
Since \(\mathbb{I}_{\alpha} [\varphi_n * \mu] = \varphi_n * \mathbb{I}_{\alpha} [\mu] \leq \mathbb{M} (\alpha^R)_{\alpha}^{\beta} [\mu] \) and \(\mathbb{M} \) is bounded in \(L^{p'}(\mathbb{R}^{N+1}, dw) \) with \(w \in A_{p'} \) yield
\[\int_{\mathbb{R}^{N+1}} (\mathbb{I}_{\alpha} [\varphi_n * \mu])^{p'} dw \leq c_3 ([w]_{A_{p'}}) \int_{\mathbb{R}^{N+1}} (\mathbb{I}_{\alpha} [\mu])^{p'} dw. \]
Thanks to Proposition 4.23 we have
\[\left[(\mathbb{I}_{\alpha} [\varphi_n * \mu])^{p'} \right]_{\mathcal{D}_{\alpha}} \leq c_4 \left[(\mathbb{I}_{\alpha} [\mu])^{p'} \right]_{\mathcal{D}_{\alpha}}, \]
which implies (4.60).
Corollary 4.39 Let \(\rho > 1, \alpha > 0 \) with \(0 < \alpha \rho \leq N + 2, 0 < \delta < \alpha \) and \(d, \rho > 0 \). There holds
\[
\left(\{ R^\delta_{\alpha}[\mu] \} \right)^\rho_{\mathbb{R}^N \setminus \partial \mathbb{R}^N} \leq C_1(d/R, R) [\mu]_{\mathbb{R}^N \setminus \partial \mathbb{R}^N} \tag{4.61}
\]
for all \(\mu \in \mathcal{M}(\mathbb{R}^{N+1}) \) with \(\text{diam}(\text{supp}(\mu)) \leq d \). Furthermore,
\[
[\varphi_n * \mu]_{\mathbb{R}^N \setminus \partial \mathbb{R}^N} \leq C_2(d) [\mu]_{\mathbb{R}^N \setminus \partial \mathbb{R}^N} \tag{4.62}
\]
for \(n \in \mathbb{N}, \mu \in \mathcal{M}(\mathbb{R}^{N+1}) \) with \(\text{diam}(\text{supp}(\mu)) \leq d \) where \(\{ \varphi_n \} \) is a sequence of standard mollifiers in \(\mathbb{R}^{N+1} \).

Proof. It is easy to see that
\[
(c_1(d/R))^{-1} \| E_\alpha^\rho[\mu] \|_{L^\rho(\mathbb{R}^{N+1})} \leq \| E_\alpha^\rho \|_{L^\rho(\mathbb{R}^{N+1})} \leq c_1(d/R) \| E_\alpha^\rho[\mu] \|_{L^\rho(\mathbb{R}^{N+1})}
\]
for any \(\mu \in \mathcal{M}(\mathbb{R}^{N+1}) \) with \(\text{diam}(\text{supp}(\mu)) \leq d \), thus two quantities \(\text{Cap}_{E_\alpha^\rho \setminus \rho} \) and \(\text{Cap}_{E_\alpha^\rho \setminus \rho} \) are equivalent for every compact set \(E \subset \mathbb{R}^{N+1}, \text{diam}(E) \leq d \) where equivalent constants depend only on \(N, p, \alpha \) and \(d/R \). Therefore, by Corollary 4.10 we get \(\text{Cap}_{E_\alpha^\rho \setminus \rho} \approx \text{Cap}_{E_\alpha^\rho \setminus \rho} \) for every compact set \(E \subset \mathbb{R}^{N+1}, \text{diam}(E) \leq d \) where equivalent constants depend on \(d/R \) and \(R \). Thus, by Theorem 4.36 and \(\text{diam}(\text{supp}(\mu)) \leq d \) we get, if for every compact set \(E \subset \mathbb{R}^{N+1}, \)
\[
\mu(E) \leq c_2(d/R, R) \text{Cap}_{E_\alpha^\rho \setminus \rho}(E),
\]
then for every compact set \(E \subset \mathbb{R}^{N+1}, \)
\[
\int_E \| \{ R^\delta_{\alpha}[\mu] \} \|_{L^\rho(\mathbb{R}^{N+1})} \leq c_3(d/R, R) \text{Cap}_{E_\alpha^\rho \setminus \rho}(E) \leq c_4(d/R, R) \text{Cap}_{E_\alpha^\rho \setminus \rho}(E). \tag{4.63}
\]
It follows (4.61). As in the Proof of Corollary 4.38 we also have for \(w \in A_\rho \)
\[
\int_{\mathbb{R}^{N+1}} \| \{ R^\delta_{\alpha}[\mu] \} \|_{L^\rho(\mathbb{R}^{N+1})} \leq c_5([w]_{A_\rho}) \int_{\mathbb{R}^{N+1}} \| \{ R^\delta_{\alpha}[\mu] \} \|_{L^\rho(\mathbb{R}^{N+1})} \leq c_6([w]_{A_\rho}) \int_{\mathbb{R}^{N+1}} \| \{ R^\delta_{\alpha}[\mu] \} \|_{L^\rho(\mathbb{R}^{N+1})} \leq c_7([w]_{A_\rho}) \int_{\mathbb{R}^{N+1}} \| \{ R^\delta_{\alpha}[\mu] \} \|_{L^\rho(\mathbb{R}^{N+1})}
\]

Thanks to Proposition 4.23 and Theorem 4.36 we obtain (4.62). \hfill \blacksquare

Remark 4.40 Likewise (see [71, Lemma 5.7]), we can verify that if \(\frac{N}{\rho} < \alpha < N + \frac{N}{\rho}, \)
\[
[\varphi_{1, n} * \omega_1]_{\partial \mathbb{R}^{N-2}/p} \leq C_1 \left[\left[\omega_1 \right]_{\partial \mathbb{R}^{N-2}/p} \right] \quad \text{and} \quad [\varphi_{1, n} * \omega_2]_{\partial \mathbb{R}^{N-2}/p} \leq C_2(d) \left[\left[\omega_2 \right]_{\partial \mathbb{R}^{N-2}/p} \right],
\]
for \(n \in \mathbb{N} \) and \(\omega_1, \omega_2 \in \mathcal{M}(\mathbb{R}^{N}) \) with \(\text{diam}(\text{supp}(\omega_2)) \leq d \) where \(C_1 = C_1(N, \alpha, p), C_2(d) = C_2(N, \alpha, p, d), \{ \varphi_n \} \) is a sequence of standard mollifiers in \(\mathbb{R}^{N} \) and \([\cdot]_{\partial \mathbb{R}^{N-2}/p}, [\cdot]_{\partial \mathbb{R}^{N-2}/p} \) was defined in Remark 4.34. Hence, we obtain
\[
[(\varphi_{1, n} * \omega_1) * \delta_{(1,0)}]_{\partial \mathbb{R}^{N-1}} \leq C_3 \left[\left[\omega_1 \right]_{\partial \mathbb{R}^{N-1}} \right] \quad \text{and} \quad [(\varphi_{1, n} * \omega_2) * \delta_{(1,0)}]_{\partial \mathbb{R}^{N-1}} \leq C_4(d) \left[\left[\omega_2 \right]_{\partial \mathbb{R}^{N-1}} \right],
\]
for \(n \in \mathbb{N} \) and \(\omega_1, \omega_2 \in \mathcal{M}(\mathbb{R}^{N+1}) \), \(\text{diam}(\text{supp}(\mu)) \leq d \) where \(C_3 = C_3(N, \alpha, p), C_4(d) = C_4(N, \alpha, p, d). \)

Proposition 4.41 Let \(q > 1, 0 < \alpha q < N + 2, 0 < R \leq \infty, 0 < \delta < \alpha \) and \(K > 0 \). Let \(0 \leq f \in L^q_0(\mathbb{R}^{N+1}). \) Let \(C_4, C_5 \) be constants in inequalities (4.50) and (4.51) in Theorem 4.36 with \(p = q' \). Suppose that \(\{ u_n \} \) is a sequence of nonnegative measurable functions in \(\mathbb{R}^{N+1} \) satisfying
\[
u_{n+1} \leq K^R_{\alpha} \left[u_n \right] + f \quad \forall n \in \mathbb{N}
\]
\[
u_0 \leq f
\]
\[
u_{n+1} \leq K^R_{\alpha} \left[u_n \right] + f \quad \forall n \in \mathbb{N}
\]
(4.63)
Then, if for every compact set \(E \subset \mathbb{R}^{N+1} \),
\[
\int_E f^q dxdt \leq C \text{Cap}_{E^{n+1}, q'}(E)
\] (4.64)
with
\[
C \leq C_4 \left(\frac{2^{-q+1}}{C \sqrt{q-1}} \left(\frac{q-1}{q K 2^{q-1}} \right)^q \right) ,
\] (4.65)
then
\[
u_n = \frac{K q 2^{q-1}}{q-1} \left[\frac{\alpha}{\alpha} \right] + f \quad \forall n \in \mathbb{N}.
\] (4.66)

Proof. From (4.50) and (4.51) in Theorem 4.36, we see that (4.64) implies
\[
I_{\alpha}^R \left[\left(I_{\alpha}^R \left[f^q \right] \right) q \right] \leq \left(\frac{C}{C_4} \right) \frac{1}{\alpha} C_3 \alpha^{R, \delta}[f^q].
\] (4.67)

Now we prove (4.66) by induction. Clearly, (4.66) holds with \(n = 0 \). Next we assume that (4.66) holds with \(n = m \). Then, by (4.65), (4.67) and (4.63) we have
\[
u_{m+1} \leq K_1 I_{\alpha}^R \left[u_n^q \right] + f
\]
\[
\leq K 2^{q-1} \left(\frac{K q 2^{q-1}}{q-1} \right)^q I_{\alpha}^R \left[\left(I_{\alpha}^R \left[f^q \right] \right) q \right] + K 2^{q-1} \left(\frac{C}{C_4} \right) \frac{1}{\alpha} C_3 \alpha^{R, \delta}[f^q] + f
\]
\[
\leq K 2^{q-1} \left(\frac{K q 2^{q-1}}{q-1} \right)^q \left(\frac{\alpha}{\alpha} \right) \frac{1}{\alpha} C_3 \alpha^{R, \delta}[f^q] + K 2^{q-1} \left(\frac{\alpha}{\alpha} \right) \frac{1}{\alpha} C_3 \alpha^{R, \delta}[f^q] + f
\]
Therefore (4.66) also holds true with \(n = m + 1 \). This completes the proof of the Theorem. ■

Corollary 4.42 Let \(q > \frac{N+2}{N+2-\alpha} \), \(\alpha > 0 \) and \(f \in L_{\alpha}^q(\mathbb{R}^{N+1}) \). There exists a constant \(C > 0 \) depending on \(N, \alpha, q \) such that if for every compact set \(E \subset \mathbb{R}^{N+1} \), \(\int_E f^q dxdt \leq C \text{Cap}_{H_{\alpha, q}}(E) \), then \(u = H_{\alpha}[u^q] + f \) admits a positive solution \(u \in L^q_{\alpha} (\mathbb{R}^{N+1}) \).

Proof. Consider the sequence \(\{ u_n \} \) of nonnegative functions defined by \(u_0 = f \) and \(u_{n+1} = H_{\alpha}[u_n^q] + f \quad \forall n \geq 0 \). It is easy to see that \(u_{n+1} \leq c_1 I_{\alpha}^R \left[u_n^q \right] + f \quad \forall n \geq 0 \). By Proposition 4.41 and Corollary 4.38, there exists a constant \(c_2 = c_2(N, \alpha, q) > 0 \) such that if for every compact set \(E \subset \mathbb{R}^{N+1} \), \(\int_E f^q dxdt \leq c_2 \text{Cap}_{H_{\alpha, q'}}(E) \) then \(u_n \) is well defined and
\[
u_n \leq c_1 q 3^{q-1} \left(\frac{\alpha}{\alpha} \right) \frac{1}{\alpha} I_{\alpha}^R \left[f^q \right] + f \quad \forall n \geq 0.
\]
Since \(\{ u_n \} \) is nondecreasing, thus thanks to the dominated convergence theorem we obtain
\[
u(x, t) = \lim_{n \to \infty} u_n(x, t) \]
is a solution of \(u = H_{\alpha}[u^q] + f \) which \(u \in L^q_{\alpha} (\mathbb{R}^{N+1}) \). This completes the proof of the Corollary. ■

Corollary 4.43 Let \(q > 1 \), \(\alpha > 0 \), \(0 < R \leq \infty \), \(0 < \delta < \alpha \) and \(\mu \in \mathbb{N}^+(\mathbb{R}^{N+1}) \). The following two statements are equivalent.

a. For every compact set \(E \subset \mathbb{R}^{N+1} \), \(\int_E f^q dxdt \leq C \text{Cap}_{E^{n+1}, q'}(E) \) for some constant \(C > 0 \)

b. There exists a function \(u \in L^q_{\alpha} (\mathbb{R}^{N+1}) \) such that \(u = \| R^\delta \left[u^q \right] + \epsilon f \) for some \(\epsilon > 0 \).
Proof. We will prove $b. \Rightarrow a.$ Set $d\omega(x,t) = ((\|^{R,\delta}_\alpha[w])^q + \epsilon^q f^q) \, dxdt,$ thus we have $d\omega(x,t) \geq ((^{R,\delta}_\alpha[w])^q \, dxdt.$ Let \mathbb{M}_ω denote the centered Hardy-Littlewood maximal function which is defined for $g \in L^{1}_{loc}(\mathbb{R}^{N+1},d\omega),$

$$\mathbb{M}_\omega g(x,t) = \sup_{\rho>0} \frac{1}{\omega(Q_\rho(x,t))} \int_{Q_\rho(x,t)} |g|d\omega(x,t).$$

For $E \subset \mathbb{R}^{N+1}$ is a compact set, we have

$$\int_{\mathbb{R}^{N+1}} (\mathbb{M}_\omega \chi_{E})^q ((^{R,\delta}_\alpha[w])^q \, dxdt \leq \int_{\mathbb{R}^{N+1}} (\mathbb{M}_\omega \chi_{E})^q d\omega(x,t).$$

Since \mathbb{M}_ω is bounded on $L^s(\mathbb{R}^{N+1},d\omega)$ for $s > 1$ and $(\mathbb{M}_\omega \chi_{E})^q ((^{R,\delta}_\alpha[w])^q \geq (^{R,\delta}_\alpha[w\chi_{E}])^q,$

$$\int_{\mathbb{R}^{N+1}} (^{R,\delta}_\alpha[w\chi_{E}])^q \, dxdt \leq c_1 \omega(E).$$

By Theorem 4.36, we get for any compact set $E \subset \mathbb{R}^{N+1}$

$$\omega(E) \leq c_2 \text{Cap}_{E_\alpha^{R,\delta,q}}(E).$$

It follows the results.

Remark 4.44 In [64], we also use Theorem (4.36) to show existence of mild solutions to the Navier-Stokes Equations

$$\begin{align*}
\begin{cases}
\partial_t u - \Delta u + \mathbb{P} \text{div}(u \otimes u) = \mathbb{P} F & \text{in } \mathbb{R}^N \times (0, \infty), \\
u(0) = u_0 & \text{in } \mathbb{R}^N.
\end{cases}
\end{align*}$$

(4.68)

where $u, F \in \mathbb{R}^N,$ $\mathbb{P} = id - \nabla \Delta^{-1} \nabla.$ is the Helmholtz Leray projection onto the vector fields of zero divergence, i.e., for $f \in \mathbb{R}^N,$ $\mathbb{P} f = f - \nabla u$ and $\Delta u = \text{div} f.$ Namely, there exists $C = C(N) > 0$ such that if $\text{div}(u_0) = 0$ and

$$\int_K |D(x,t)|^2 \, dxdt \leq C \text{Cap}_{H^{1,2}}(K),$$

(4.69)

for any compact set $K \subset \mathbb{R}^{N+1},$ where if $(x,t) \in \mathbb{R}^N \times [0, +\infty),$

$$D(x,t) = (e^{t\Delta}u_0)(x) + \int_0^t (e^{(t-s)\Delta} \mathbb{P} F)(x) \, ds,$$

and $D(x,t) = 0$ otherwise. Then, the equation (4.68) has global solution u satisfying

$$|u(x,t)| \leq |D(x,t)| + c_3 |D|^2(x,t),$$

(4.70)

for all $(x,t) \in \mathbb{R}^N \times (0, \infty)$ for some $c = c(N).$

5 Global point wise estimates of solutions to the parabolic equations

First, we recall Duzzar and Mingione’s result [27], also see [42, 43] which involves local pointwise estimates for solutions of equations (2.4).

Theorem 5.1 Then, there exists a constant C depending only N, Λ_1, Λ_2 such that if $u \in L^2(0,T, H^1(\Omega)) \cap C(\Omega_T)$ is a weak solution to (2.4) with $\mu \in L^2(\Omega_T)$ and $u(0) = 0$

$$|u(x,t)| \leq C \int_{Q_R(x,t)} |u| \, dyds + \|\mu\|_{L^2(\Omega_T)}(x,t)$$

(5.1)
for all \(Q_{2R}(x,t) \subset \Omega \times (-\infty,T)\).

Furthermore, if \(A\) is independent of space variable \(x\), (2.27) is satisfied and \(\nabla u \in C(\Omega_T)\) then

\[
|\nabla u(x,t)| \leq C \int_{Q_{2R}(x,t)} |\nabla u|dyds + C||\mu||(x,t) \tag{5.2}
\]

for all \(Q_{2R}(x,t) \subset \Omega \times (-\infty,T)\).

Proof of Theorem 2.1. Let \(\mu = \mu_0 + \mu_s \in \mathfrak{M}_0(\Omega_T)\), with \(\mu_0 \in \mathfrak{M}_0(\Omega_T), \mu_s \in \mathfrak{M}_s(\Omega_T)\). By Proposition 3.7, there exist sequences of nonnegative measures \(\mu_{n,0,i} = (f_{n,i},g_{n,i},h_{n,i})\) and \(\mu_{n,s,i}\) such that \(f_{n,i},g_{n,i},h_{n,i} \in C_c^\infty(\Omega_T)\) and strongly converge to some \(f_i,g_i,h_i\) in \(L^1(\Omega_T), L^2(\Omega_T, \mathbb{R}^N)\) and \(L^2(0,T,H_0^1(\Omega))\) respectively and \(\mu_{n,1},\mu_{n,2},\mu_{n,3},\mu_{n,4} \in C_c^\infty(\Omega_T)\) converge to \(\mu^+,\mu^-,\mu_+^*,\mu_-^*\) resp. in the narrow topology with \(\mu_{n,i} = \mu_{n,1} + \mu_{n,2}\) for \(i = 1, 2\) and satisfying \(\mu_0^0 = (f_1,g_1,h_1), \mu_0^0 = (f_2,g_2,h_2)\) and \(0 \leq \mu_{n,1} \leq \varphi^n * \mu^+, 0 \leq \mu_{n,2} \leq \varphi^n * \mu^-\), where \(\varphi^n\) is a sequence of standard mollifiers in \(\mathbb{R}^{N+1}\).

Let \(\sigma_{1,n}, \sigma_{2,n} \in C_c^\infty(\Omega)\) be convergent to \(\sigma^+\) and \(\sigma^-\) in the narrow topology and in \(L^1(\Omega)\) if \(\sigma \in L^1(\Omega)\) resp. such that \(0 \leq \sigma_{1,n} \leq \varphi_{1,n} * \sigma^+, 0 \leq \sigma_{2,n} \leq \varphi_{1,n} * \sigma^-\) where \(\varphi_{1,n}\) is a sequence of standard mollifiers in \(\mathbb{R}^N\). Set \(\mu_n = \mu_{n,1} - \mu_{n,2}\) and \(\sigma_n = \sigma_{1,n} - \sigma_{2,n}\).

Let \(u_n, u_{n,1}, u_{n,2}\) be solutions of equations

\[
\begin{cases}
(u_{n,t}) - div(A(x,t,\nabla u_{n})) = \mu_n & \text{in } \Omega_T,

u_n = 0 & \text{on } \partial\Omega \times (0,T),

u_n(0) = \sigma_n & \text{on } \Omega,
\end{cases}
\tag{5.3}
\]

\[
\begin{cases}
(u_{n,1}) - div(A(x,t,\nabla u_{n,1})) = \chi_{\Omega_T} \mu_{n,1} & \text{in } B_{2T_0}(x_0) \times (0,2T_0^2),

u_{n,1} = 0 & \text{on } \partial B_{2T_0}(x_0) \times (0,2T_0^2),

u_{n,1}(0) = \sigma_{1,n} & \text{on } B_{2T_0}(x_0),
\end{cases}
\tag{5.4}
\]

\[
\begin{cases}
(u_{n,2}) + div(A(x,t,\nabla u_{n,2})) = \chi_{\Omega_T} \mu_{n,2} & \text{in } B_{2T_0}(x_0) \times (0,2T_0^2),

u_{n,2} = 0 & \text{on } \partial B_{2T_0}(x_0) \times (0,2T_0^2),

u_{n,2}(0) = \sigma_{2,n} & \text{on } B_{2T_0}(x_0),
\end{cases}
\tag{5.5}
\]

where \(\Omega \subset B_{2T_0}(x_0)\) for \(x_0 \in \Omega\).

We see that \(u_{n,1}, u_{n,2} \geq 0 \in B_{2T_0}(x_0) \times (0,2T_0^2)\) and \(-u_{n,2} \leq u_n \leq u_{n,1} \in \Omega_T\).

Now, we estimate \(u_{n,1}\). By Remark 3.3 and Theorem 3.6, a sequence \(\{u_{n,1,m}\}\) of solutions to equations

\[
\begin{cases}
(u_{n,1,m}) - div(A(x,t,\nabla u_{n,1,m})) = (g_{n,m})_t + \chi_{\Omega_T} \mu_{n,1} & \text{in } B_{2T_0}(x_0) \times (-2T_0^2,2T_0^2),

u_{n,1,m} = 0 & \text{on } \partial B_{2T_0}(x_0) \times (-2T_0^2,2T_0^2),

u_{n,1,m}(-2T_0^2) = 0 & \text{on } B_{2T_0}(x_0),
\end{cases}
\tag{5.6}
\]

converges to \(u_{n,1}\) in \(B_{2T_0}(x_0) \times (0,2T_0^2)\), where \(g_{n,m}(x,t) = \sigma_{1,n}(x) \int_{-2T_0^2}^{t} \varphi_{2,m}(s)ds\) and \(\{\varphi_{2,m}\}\) is a sequence of mollifiers in \(\mathbb{R}\).

By Remark 3.2, we have

\[
||u_{n,1,m}||_{L^1(0,2T_0^2)} \leq c_1 T_0^2 A_{n,m}, \tag{5.7}
\]

where \(A_{n,m} = \mu_{n,1}(\Omega_T) + \int_{Q_{2T_0}(x_0,0)} \sigma_{1,n}(x) \varphi_{2,m}(t)dxdt\).

Hence, thanks to Theorem 5.1 we have for \((x,t) \in \Omega_T\)

\[
u_{n,1,m}(x,t) \leq c_8 T_0^{-N/2} ||u_{n,1,m}||_{L^1(0,2T_0^2)} + c_8 \|\mu_{n,1}\|_{L^1(0,2T_0^2)} + c_8 \|\sigma_{1,n}\|_{L^1(0,2T_0^2)} \varphi_{m,n}(x,t)
\]

\[
\leq c_9 \|\mu_{n,1}\|_{L^1(0,2T_0^2)} ||\mu_{n,1}||_{L^1(0,2T_0^2)} + c_9 \|\sigma_{1,n}\|_{L^1(0,2T_0^2)} ||\varphi_{m,n}||_{L^1(0,2T_0^2)}
\]

Since \(0 \leq \mu_{n,1} \leq \varphi_{1,n} * \mu^+, \sigma_{1,n} \leq \varphi_{1,n} * \sigma^+, \)

\[
u_{n,1,m}(x,t) \leq c_9 \varphi_{1,n} * \mu^+(x,t) + c_9 (\varphi_{1,n} \varphi_{2,m}) * \mu^+(x,t) \lor \varphi_{1,n} \varphi_{2,m} * \sigma^+ \lor \delta_{\{t=0\}}(x,t) \lor (x,t) \in \Omega_T.
\]
Letting $m \to \infty$, we get

$$u_{n,1}(x,t) \leq c_0 \varphi_n \ast I_2[\mu^+](x,t) + c_0 \varphi_{1,n} \ast (I_2[\sigma^+ \otimes \delta_{t=0}](..,t)) (x) \forall (x,t) \in \Omega_T.$$

Similarly, we also get

$$u_{n,2}(x,t) \leq c_0 \varphi_n \ast I_2[\mu^-](x,t) + c_0 \varphi_{1,n} \ast (I_2[\sigma^- \otimes \delta_{t=0}](..,t)) (x) \forall (x,t) \in \Omega_T.$$

Consequently, by Proposition 3.5 and Theorem 3.6, up to a subsequence, $\{u_n\}$ converges to a distribution solution (a renormalized solution if $\sigma \in L^1(\Omega)$) u of (2.4) and satisfied (2.7).

\[\tag{5.8} \]

\[\tag{5.9} \]

Remark 5.2 Obviously, if $\sigma \equiv 0$ and $\text{supp}(\mu) \subseteq \overline{\Omega} \times [a,T]$, $a > 0$ then $u = 0$ in $\Omega \times (0,a)$.

Remark 5.3 If A is independent of space variable x, (2.27) is satisfied then

$$|\nabla u(x,t)| \leq C(N, \Lambda_1, \Lambda_2, \Gamma_0/d) \| I_1^d \| |\mu| + |\sigma| \otimes \delta_{t=0}(x,t)$$

for any $(x,t) \in \Omega^d \times (0,T)$ and $0 < d \leq \frac{1}{2} \min \{\text{sup}_{x \in \Omega} d(x,\partial \Omega), T_0^{1/2}\}$ where $\Omega^d = \{x \in \Omega : d(x,\partial \Omega) > d\}$. Indeed, by Remark 3.3 and Theorem 3.6, a sequence $\{v_{n,m}\}$ of solutions to equations

$$\begin{cases}
(v_{n,m})_t - \text{div}(A(t,\nabla v_{n,m})) = (g_{n,m})_t + \chi_{\Omega \setminus \Omega_n} \mu \quad \text{in} \quad \Omega \times (-2T_0^2, T), \\
v_{n,m} = 0 \quad \text{on} \quad \partial \Omega \times (-2T_0^2, T), \\
v_{n,m}(-2T_0^2) = 0 \quad \text{on} \quad \Omega.
\end{cases}$$

converges to u_n in $L^1(0,T, W_0^{1,1}(\Omega))$, where $g_{n,m}(x,t) = \sigma_n(x) \int_{-2T_0^2}^t \varphi_{2,m}(s) \, ds$ and $\{\varphi_{2,m}\}$ is a sequence of mollifiers in \mathbb{R}.

By Theorem 5.1, we have for any $(x,t) \in \Omega^d \times (0,T)$

$$|\nabla v_{n,m}(x,t)| \leq c_1 \int_{Q_{1/2}(x,t)} |\nabla v_{n,m}| \, dy \, ds + c_2 |I_1^d| |\mu_n| + |\sigma_n| \otimes \varphi_{2,m}(x,t).$$

On the other hand, by remark 3.2,

$$\| |\nabla v_{n,m}| \|_{L^1(\Omega \times (-T_0^2, T))} \leq c_2 T_0(\| \mu_n \| + |\sigma_n| \otimes \varphi_{2,m})(\Omega \times (-T_0^2, T)).$$

Therefore, for any $(x,t) \in \Omega^d \times (0,T)$

$$|\nabla v_{n,m}(x,t)| \leq c_3 \| I_1^d \| |\mu_n| + |\sigma_n| \otimes \varphi_{2,m}(x,t),$$

where c_3 depends on T_0/d.

Finally, letting $m \to \infty$ and $n \to \infty$ we get for any $(x,t) \in \Omega^d \times (0,T)$

$$|\nabla u(x,t)| \leq c_3 \| I_1^d \| |\mu| + |\sigma| \otimes \delta_{t=0}(x,t).$$

We conclude (5.8) since $I_1(\| \mu \| + |\sigma| \otimes \delta_{t=0}) \leq c_4 \| I_1^d \| |\mu| + |\sigma| \otimes \delta_{t=0}| \in \Omega_T$.

Next, we will establish pointwise estimates from below for solutions of equations (2.4).

Theorem 5.4 If $u \in C(Q_r(y,s)) \cap L^2(s-r^2, s, H^1(B_r(y)))$ is a nonnegative weak solution of (2.4) with data $\mu \in \mathcal{M}(Q_r(y,s))$ and $u(s-r^2) \geq 0$, then there exists a constant C depending on N, Λ_1, Λ_2 such that

$$u(y,s) \geq C \sum_{k=0}^{\infty} \frac{\mu(Q_{r_k}(y,s - \frac{3r_k}{12r^2} r^2))}{r_k^N},$$

where $r_k = 4^{-k} r$.

57
First, we verify that for $\theta \in (0, r)$
\[
\mu(Q_{\rho/8}(y, s - \frac{35}{128}\rho^2)) \leq c_1(\inf_{Q_{\rho/4}(y, s)} u - \inf_{Q_{\rho}(y, s)} u).
\] (5.11)

By [50, Theorem 6.18, p. 122], we have for any δ,
\[
\left(\int_{Q_{\rho/4}(y, s - \rho^2/4)} (u - a)^\theta \right)^{1/\theta} \leq c_2(b - a),
\] (5.12)
where $b = \inf_{Q_{\rho/4}(y, s)} u$, $a = \inf_{Q_{\rho}(y, s)} u$ and a constant c_2 depends on $N, \Lambda_1, \Lambda_2, \theta$.

Let $\eta \in C_c^\infty(Q_{\rho}(y, s))$ such that $0 \leq \eta \leq 1$, $\text{supp} \eta \subset Q_{\rho/4}(y, s - \frac{1}{4}\rho^2)$, $\eta = 1$ in $Q_{\rho/8}(y, s - \frac{35}{128}\rho^2)$ and $|\nabla \eta| \leq c_3/\rho^2$, $|\eta| \leq c_3/\rho^2$ where $c_3 = c_3(N)$. We have
\[
\mu(Q_{\rho/8}(y, s - \frac{35}{128}\rho^2)) \leq \int_{Q_{\rho}(y, s)} \eta^2 d\mu(x, t)
\]
\[
= \int_{Q_{\rho}(y, s)} u_t \eta^2 dx dt + 2 \int_{Q_{\rho}(y, s)} \eta A(x, t, \nabla u) \nabla \eta dx dt
\]
\[
= -2 \int_{Q_{\rho}(y, s)} (u - a) \eta \eta dx dt + 2 \int_{Q_{\rho}(y, s)} \eta A(x, t, \nabla u) \nabla \eta dx dt
\]
\[
\leq c_3 r^{-2} \int_{Q_{\rho/4}(y, s - \frac{1}{4}\rho^2)} (u - a) \eta dx dt + 2 \Lambda_1 \int_{Q_{\rho}(y, s)} \eta |\nabla u| |\nabla \eta| dx dt
\]
\[
\leq c_4 r^{-N} (b - a) + c_4 \int_{Q_{\rho}(y, s)} \eta |\nabla u| |\nabla \eta| dx dt.
\]
Here we used (5.12) with $\theta = 1$ in the last inequality. It remains to show that
\[
\int_{Q_{\rho}(y, s)} \eta |\nabla u| |\nabla \eta| dx dt \leq c_5 r^{-N} (b - a).
\] (5.13)

First, we verify that for $\varepsilon \in (0, 1)$
\[
\int_{Q_{\rho}(y, s)} |\nabla u|^2 (u - a)^{-\varepsilon - 1} \eta^2 dx dt \leq c_6 \int_{Q_{\rho}(y, s)} (u - a)^{1-\varepsilon} (\eta|\eta| + |\nabla \eta|^2) dx dt.
\] (5.14)

Indeed, for $\delta \in (0, 1)$ we choose $\varphi = (u - a + \delta)^{-\varepsilon} \eta^2$ as test function in (2.4),
\[
0 \leq \int_{Q_{\rho}(y, s)} u_t (u - a + \delta)^{-\varepsilon} \eta^2 dx dt + \int_{Q_{\rho}(y, s)} A(x, t, \nabla u) \nabla ((u - a + \delta)^{-\varepsilon} \eta^2) dx dt
\]
\[
\leq 2(1 - \varepsilon) \int_{Q_{\rho}(y, s)} (u - a + \delta)^{1-\varepsilon} |\eta| \eta dx dt - \varepsilon \Lambda_2 \int_{Q_{\rho}(y, s)} |\nabla u|^2 (u - a + \delta)^{-\varepsilon - 1} \eta^2 dx dt
\]
\[
+ 2\Lambda_1 \int_{Q_{\rho}(y, s)} \eta |\nabla u| (u - a + \delta)^{-\varepsilon} |\nabla \eta| dx dt.
\]
So, we deduce (5.14) from using the Holder inequality and letting $\delta \to 0$.
Therefore, for $\varepsilon \in (0, 2/N)$ using the Holder inequality and we get
\[
\int_{Q_r(y,s)} \eta |\nabla u||\nabla \eta| \, dxdt
\leq \left(\int_{Q_r(y,s)} |\nabla u|^2(u - a)^{-\varepsilon}\eta^2 \, dxdt \right)^{1/2} \left(\int_{Q_r(y,s)} (u - a)^{\varepsilon+1} |\nabla \eta|^2 \, dxdt \right)^{1/2}
\leq c_1 \left(\int_{Q_r(y,s)} (u - a)^{1-\varepsilon} (\eta|\nabla \eta| + |\nabla \eta|^2) \, dxdt \right)^{1/2} \left(\int_{Q_r(y,s)} (u - a)^{\varepsilon+1} |\nabla \eta|^2 \, dxdt \right)^{1/2}
\leq c_2 r^{-2} \left(\int_{Q_{r/4}(y,s - \frac{35}{128}r^2)} (u - a)^{1-\varepsilon} \, dxdt \right)^{1/2} \left(\int_{Q_{r/4}(y,s - \frac{35}{128}r^2)} (u - a)^{\varepsilon+1} \, dxdt \right)^{1/2}.
\]
Consequently, we get (5.11) from (5.12).
\[\square\]

Proof of Theorem 2.3. Let $\mu_n \in (C^\infty_c(\Omega_T))^+$, $\sigma_n \in (C^\infty_c(\Omega))^+$ be in the proof of Theorem 2.1. Let u_n be a weak solution of equation
\[
\begin{cases}
(u_n)_t - \text{div}(A(x, t, \nabla u_n)) = \mu_n & \text{in } \Omega_T, \\
u_n = 0 & \text{on } \partial \Omega \times (0, T), \\
u_n(0) = \sigma_n & \text{on } \Omega.
\end{cases}
\]
As the proof of Theorem 2.1, thanks to Theorem 5.4 we get By Remark for any $Q_r(y,s) \subset \Omega \times (-\text{diam}(\Omega), T)$ and $r_k = 4^{-k}r$
\[
u_n(y,s) \geq c_1 \sum_{k=0}^{\infty} \frac{\mu_n(Q_{r_k/s}(y,s - \frac{35}{128}r^2_k))}{r^N_k} + c_1 \sum_{k=0}^{\infty} \frac{\sigma_n \otimes \delta_{t=0}(Q_{r_k/s}(y,s - \frac{35}{128}r^2_k))}{\frac{1}{r^N_k}}.
\]
Finally, by Proposition 3.5 and Theorem 3.6 we get the results.
\[\square\]

Remark 5.5 If $u \in L^q(\Omega_T)$ satisfies (2.8) then $G_2[\chi_{E}\mu] \in L^q(\mathbb{R}^{N+1})$ and $G_2[\chi_{F}\sigma] \in L^q(\mathbb{R}^N)$ for every $E \subset \subset \Omega \times [0, T]$ and $F \subset \subset \Omega$. Indeed, for $E \subset \subset \Omega \times [0, T]$, $\varepsilon = \text{dist} (E, (\Omega \times (0, T)) \cup (\Omega \times \{t = T\}) > 0$, we can see that for any $(y,s) \in \Omega_T$, $r_k = 4^{-k}\varepsilon/4$
\[
u(y,s) \geq c_1 \sum_{k=0}^{\infty} \frac{\tilde{\mu}(E \cap Q_{r_k/s}(y,s - \frac{35}{128}r^2_k))}{r^N_k},
\]
where $\tilde{\mu} = \mu + \sigma \otimes \delta_{t=0}$.
Moreover, for any $(y,s) \notin \Omega_T$
\[
\sum_{k=0}^{\infty} \frac{\tilde{\mu}(E \cap Q_{r_k/s}(y,s - \frac{35}{128}r^2_k))}{r^N_k} = 0.
\]
Thus,

\[
\infty > \int_{\mathbb{R}^{N+1}} \sum_{k=0}^{\infty} \left(\frac{\bar{\mu}(E \cap Q_{r_k}/s(y, s - \frac{35}{128} r_k^2))}{r_k^N} \right)^q dyds \\
= \int_{\mathbb{R}^N} \sum_{k=0}^{\infty} \int_{\mathbb{R}} \left(\frac{\bar{\mu}(E \cap Q_{r_k}/s(y, s - \frac{35}{128} r_k^2))}{r_k^N} \right)^q dsdy \\
\geq \int_{\mathbb{R}^N} \sum_{k=0}^{\infty} \int_{\mathbb{R}} \left(\frac{\bar{\mu}(E \cap Q_{r_k}/s(y, s))}{r_k^N} \right)^q dsdy \\
\geq c_2 \varepsilon^{7/64} \int_{\mathbb{R}^{N+1}} \left(\frac{\bar{\mu}(E \cap Q_{r_k}/s(y, s))}{\rho^N} \right)^q \frac{d\rho}{\rho} dsdy \\
\geq c_3(\varepsilon) \int_{\mathbb{R}^{N+1}} (G_2[\bar{\mu} \chi x])^q dsdy.
\]

Thus, from Proposition 4.19, we get the results.

Proof of Theorem 2.5. Set \(D_n = B_n(0) \times (-n^2, n^2) \). For \(n \geq 4 \), by Theorem 2.1, there exists a renormalized solution \(u_n \) to problem

\[
\left\{
\begin{array}{ll}
(u_n)_t - \text{div}(A(x, t, \nabla u_n)) = \chi_{D_n} \omega & \text{in } D_n, \\
u_n = 0 & \text{on } \partial B_n(0) \times (-n^2, n^2), \\
u_n(-n^2) = 0 & \text{on } B_n(0).
\end{array}
\right.
\]

relative to a decomposition \((f_n, g_n, h_n)\) of \(\chi_{D_n} \omega_0 \) satisfying

\[-K\|\omega^{-}\|(x, t) \leq u_n(x, t) \leq K\|\omega^{+}\|(x, t) \quad \forall (x, t) \in D_n.\] \(5.16\)

From the proof of Theorem 2.1 and Remark 3.9, we can assume that \(u_n \) satisfies (3.14) and (3.15) in Proposition 3.16 with \(1 < q_0 < \frac{N+2}{N}, L \equiv 0 \) and

\[
||f_n||_{L^1(D_i)} + ||g_n||_{L^2(D_i)} + ||h_n||_{L^2(D_i)} \leq 2||\omega||_{(D_i+1)} \quad \forall i = 1, \ldots, n-1 \quad \text{and} \quad h_n \text{ is convergent in } L^1_{\text{loc}}(\mathbb{R}^{N+1}),
\]

for any \(i = 1, \ldots, n-1 \) and \(h_n \) is convergent in \(L^1_{\text{loc}}(\mathbb{R}^{N+1}) \).

On the other hand, by Lemma 4.26 we have for any \(s \in (1, \frac{N+2}{N}) \)

\[
\int_{D_m} |u_n|^s dxdt \leq K^s \int_{D_m} (I_2[|\omega|])^s dxdt \\
\leq K^s \int_{Q_m(x_0, t_0)} (I_2[|\omega|])^s dxdt \\
\leq c_1 M m^{N+2}, \quad \forall \alpha \in (0, 1/2)
\]

for \(n \geq m \geq |x_0| + |t_0|^{1/4} \). Consequently, we can apply Proposition 3.17 and obtain that \(u_n \) converges to some \(u \) in \(L^1_{\text{loc}}(\mathbb{R}; W^{1,1}_{\text{loc}}(\mathbb{R}^N)) \).

Since for any \(\alpha \in (0, 1/2) \)

\[
\int_{D_m} \frac{|\nabla u_n|^2}{|u_n| + 1}^{\alpha+1} dxdt \leq C_m(\alpha) \quad \forall n \geq m,
\]

thus using (5.18) and Holder inequality, we get for any \(1 \leq s_1 < \frac{N+2}{N+1} \)

\[
\int_{D_m} |\nabla u_n|^{s_1} dxdt \leq C_m(s_1) \quad \forall n \geq m \geq |x_0| + |t_0|^{1/2}.
\]
Remark 5.6

This yields $u_n \to u$ in $L_{loc}^{r_1}(\mathbb{R}; W_{loc}^{1,s_1}(\mathbb{R}^N))$.

Take $\varphi \in C_c^\infty(\mathbb{R}^N)$ and $m_0 \in \mathbb{N}$ with $\text{supp}(\varphi) \subset D_{m_0}$, we have for $n \geq m_0 + 1$

$$ - \int_{\mathbb{R}^N} u_n \varphi_t dxdt + \int_{\mathbb{R}^N} A(x, t, \nabla u_n) \nabla \varphi dxdt = \int_{\mathbb{R}^N} \varphi d\omega $$

Letting $n \to \infty$, we conclude that u is a distribution solution to problem (2.6) with data $\mu = \omega$ which satisfies (2.9).

Claim 1. If $\omega \geq 0$. By Theorem 2.3, we have for $n \geq 4^{k_0+1}$, $(y, s) \in B_{4^k n} \times (0, 2^{2k})$

$$ u_n(y, s) \geq c_2 \sum_{k=0}^\infty \omega(Q_{2k}(y, s - 35 \times 2^{-4k-7}) \cap D_{n-1}) $$

where $r_k = 4^{-k+k_0}$. This gives

$$ u_n(y, s) \geq c_2 \sum_{k=-k_0}^\infty \frac{\omega(Q_{2k-3}(y, s - 35 \times 2^{-4k-7}) \cap B_{n-1}(0)) \times (0, (n-1)^2)}{2^{-2Nk}}. $$

Letting $n \to \infty$ and $k_0 \to \infty$ we have (2.10). Finally, thanks to Proposition 4.8 and Theorem 4.2, we will assert (2.11) if we show that for $q > \frac{N+2}{4}$

$$ \int_{\mathbb{R}} \left(\sum_{k=-\infty}^\infty \frac{\omega(Q_{2k-3}(x, t - 35 \times 2^{-4k-7}))}{2^{-2Nk}} \right)^q dxdt \geq c_3 \int_{\mathbb{R}} \int_0^{+\infty} \left(\frac{\omega(\hat{Q}(x, t))}{\rho^{Nq}} \right)^q \rho d\rho dxdt. $$

Indeed,

$$ \int_{\mathbb{R}} \left(\sum_{k=-\infty}^\infty \frac{\omega(Q_{2k-3}(x, t - 35 \times 2^{-4k-7}))}{2^{-2Nk}} \right)^q dxdt $$

$$ \geq \sum_{k=-\infty}^\infty \int_{\mathbb{R}} \left(\frac{\omega(Q_{2k-3}(x, t - 35 \times 2^{-4k-7}))}{2^{-2Nk}} \right)^q dtdx $$

$$ = \sum_{k=-\infty}^\infty \int_{\mathbb{R}} \left(\frac{\omega(Q_{2k-3}(x, t))}{2^{-2Nk}} \right)^q dt $$

$$ \geq c_4 \int_{\mathbb{R}^N} \int_0^{+\infty} \left(\frac{\omega(\hat{Q}(x, t))}{\rho^{Nq}} \right)^q \rho d\rho dxdt. $$

Claim 2. If A is independent of space variable x and (2.27) is satisfied. By Remark 5.3 we get for any $(x, t) \in D_{n/4}$

$$ |\nabla u_n(x, t)| \leq c_5 I_1[\omega](x, t). $$

Letting $n \to \infty$, we get (2.12).

Claim 3. If $\omega = \mu + \sigma \otimes \delta_{t=0}$ with $\mu \in \mathcal{M}(\mathbb{R}^N \times (0, \infty))$ and $\sigma \in \mathcal{M}(\mathbb{R}^N)$, then by Remark (5.2) we can assume that $u_n = 0$ in $B_{4^k n}(0) \times (-n^2, 0)$. So, $u = 0$ in $\mathbb{R}^N \times (-\infty, 0)$. Therefore, clearly $u|_{\mathbb{R}^N \times (0, \infty)}$ is a distribution solution to (2.5). The proof is complete.

Remark 5.6 If $\omega \in \mathcal{M}(\mathbb{R}^{N+1})$ then u satisfies

$$ |||\nabla u|||_{L_\infty^{N+2}}(\mathbb{R}^{N+1}) \leq C(N, \Lambda_1, \Lambda_2)[\omega](\mathbb{R}^{N+1}). $$

Moreover, $I_2[\omega] \in L_\infty^{N+2}(\mathbb{R}^{N+1})$ and $I_2[\omega] < \infty \text{ a.e in } \mathbb{R}^{N+1}$.

61
6 Quasilinear Lane-Emden Type Parabolic Equations

6.1 Quasilinear Lane-Emden Parabolic Equations in Ω_T

To prove Theorem 2.8 we need the following proposition which was proved in [6].

Proposition 6.1 Assume O is an open subset of \mathbb{R}^{n+1}. Let $p > 1$ and $\mu \in \mathcal{M}^+(O)$. If μ is absolutely continuous with respect to $\mathcal{C}_{2,p}$ in O, there exists a nondecreasing sequence $\{\mu_n\} \subset \mathcal{M}^+(O) \cap (\mathcal{C}^2_2(\mathbb{R}^{n+1}))^\ast$, with compact support in O which converges to μ weakly in $\mathcal{M}(O)$. Moreover, if $\mu \in \mathcal{M}^+_b(O)$ then $\|\mu_n - \mu\|_{\mathcal{M}(O)} \to 0$ as $n \to \infty$.

Remark 6.2 By Theorem 4.17, $W^{2,1}_p(\mathbb{R}^{n+1}) = \mathcal{C}^2_2(\mathbb{R}^{n+1})$. Consequently, from (4.17) in Proposition 4.8, we obtain $\ell^2[\mu_n] \in L^p(\mathbb{R}^{n+1})$ for any $n \in \mathbb{N}$ and $R > 0$. In particular, $\ell^2[\mu_n] \in L^p_{loc}(\mathbb{R}^{n+1})$ for any $n \in \mathbb{N}$.

Remark 6.3 As in the proof of Theorem 2.5 in [16], we can prove a general version of Proposition 6.1, that is: for $p > 1$, if μ is absolutely continuous with respect to $\mathcal{C}_{2,p}$ in O, there exists a nondecreasing sequence $\{\mu_n\} \subset \mathcal{M}^+(O) \cap (\mathcal{C}^2_2(\mathbb{R}^{n+1}))^\ast$, with compact support in O which converges to μ weakly in $\mathcal{M}(O)$. Furthermore, $\ell^2[\mu_n] \in L^p(\mathbb{R}^{n+1})$ for all $n \in \mathbb{N}$. Besides, we also obtain that for $\mu \in \mathcal{M}^+_b(O)$ is absolutely continuous with respect to $\mathcal{C}_{2,p}$ in O if and only if $\mu = f + \nu$ where $f \in L^1(\Omega)$ and $\nu \in L^p(\mathbb{R}^{n+1})$.

Proof of Theorem 2.8. First, assume that $\sigma \in L^1(\Omega)$. Because μ is absolutely continuous with respect to the capacity $\mathcal{C}_{2,p}$, so are $\mu^+ \mbox{ and } \mu^-$. Applying Proposition 6.1 there exist two nondecreasing sequences $\{\mu_{1,n}\}$ and $\{\mu_{2,n}\}$ of positive bounded measures with compact support in Ω_T which converge to μ^+ and μ^- in $\mathcal{M}_b(\Omega_T)$ respectively and such that $\ell^2[\mu_{1,n}], \ell^2[\mu_{2,n}] \in L^p(\Omega_T)$.

For $i = 1, 2$, set $\tilde{\mu}_{i,1} = \mu_{i,1}$ and $\tilde{\mu}_{i,j} = \mu_{i,j} - \mu_{i,j-1} \geq 0$, so $\mu_{i,n} = \sum_{j=1}^n \tilde{\mu}_{i,j}$. We write $\mu_{i,n} = \sum_{j=1}^n (\mu_{i,j} + \tilde{\mu}_{i,j}).$ For any $\mu_{i,n}$, let $f_{i,j} \in C^\infty_0(\Omega_T)$ be such that $f_{i,j} \geq 0$, $\int_{\Omega_T} f_{i,j} \, dx \leq \sum_{j=1}^n \tilde{\mu}_{i,j}$ and there exist sequences $\mu_{i,j} \in C^\infty_0(\Omega_T)$, $\theta_{i,j} \in \mathcal{M}_b(\Omega_T)$ and strongly converge to some $\mu_{i,j} \in C^\infty_0(\Omega_T)$. Then $\int_{\Omega_T} \theta_{i,j} \, dx \leq \sum_{j=1}^n \tilde{\mu}_{i,j}$ and $\theta_{i,j} \in C^\infty_0(\Omega_T)$. Moreover, $\mu_{i,j} \in C^\infty(\Omega_T)$ and strongly converge to some $\mu_{i,j} \in C^\infty(\Omega_T)$.

Note: Here $\{\varphi_n\}$ is a sequence of mollifiers in \mathbb{R}^{n+1}.

For any $n, k, m \in \mathbb{N}$, let $u_{n,k,m}, u_{1,n,k,m}, u_{2,n,k,m} \in W$ with $W = \{z : z \in L^2(0, T, H^1_0(\Omega)), \int_{\Omega_T} z \, dx \leq 1\}$ be solutions of problems

\begin{align*}
\left\{ \begin{array}{l}
(u_n, k, m)_{t} - div(A(x, t, \nabla u_{n,k,m})) + T_k(\mathbf{u}, u_{n,k,m} | q^{-1} u_{n,k,m}) = \sum_{j=1}^n (\tilde{\mu}_{m,1,j} - \tilde{\mu}_{m,2,j}) & \text{in } \Omega_T, \\
u_{n,k,m}(0) = T_n(\sigma^+) - T_n(\sigma^-) & \text{on } \partial \Omega \times (0, T), \\
u_{n,k,m}(0) = 0 & \text{on } \partial \Omega \times (0, T),
\end{array} \right. \\
\left\{ \begin{array}{l}
u_{1,n,k,m}(0) = T_n(\sigma^+) & \text{in } \Omega_T, \\
u_{1,n,k,m}(0) = 0 & \text{on } \partial \Omega \times (0, T), \\
u_{1,n,k,m}(0) = 0 & \text{on } \partial \Omega \times (0, T),
\end{array} \right. \\
\left\{ \begin{array}{l}
u_{2,n,k,m}(0) = T_n(\sigma^+) & \text{in } \Omega_T, \\
u_{2,n,k,m}(0) = 0 & \text{on } \partial \Omega \times (0, T), \\
u_{2,n,k,m}(0) = 0 & \text{on } \partial \Omega \times (0, T),
\end{array} \right.
\end{align*}
where \(\tilde{A}(x,t,\xi) = -A(x,t,-\xi) \).

By Comparison Principle Theorem and Theorem 2.1, there holds, for any \(m, k \) the sequences \(\{u_{1,n,k,m}\}_n \) and \(\{u_{2,n,k,m}\}_n \) are increasing and

\[
-K\|I_2[T_n(\sigma^-) \otimes \delta_{t=0}] - K\|I_2[\mu_{2,n} * \varphi_m]\leq -u_{2,n,k,m} \leq u_{1,n,k,m} \leq u_{1,n,k,m} \\
\leq KI_2[\mu_{1,n} * \varphi_m] + KI_2[T_n(\sigma^+) \otimes \delta_{t=0}],
\]

where a constant \(K \) is in Theorem 2.1. Thus,

\[
-K\|I_2[T_n(\sigma^-) \otimes \delta_{t=0}] - K\|I_2[\mu_{2,n} * \varphi_m]\leq -u_{2,n,k,m} \leq u_{1,n,k,m} \leq u_{1,n,k,m} \\
\leq KI_2[\mu_{1,n} * \varphi_m] + KI_2[T_n(\sigma^+) \otimes \delta_{t=0}].
\]

Moreover,

\[
\int_{\Omega_T} T_k(u_{1,n,k,m})dxdt \leq \int_{\Omega_T} \varphi_m * u_{k,n} dxdt + |\sigma|(\Omega) \leq |\mu|(\Omega_T) + |\sigma|(\Omega).
\]

As in [14, Proof of Lemma 5.3], thanks to Proposition 3.5 and Theorem 3.6, there exist subsequences of \(\{u_{1,n,k,m}\}_m \) and \(\{u_{2,n,k,m}\}_m \), still denoted them, converging to renormalized solutions \(u_{n,k}(t) \) of equations (6.2) with data \(\mu_{1,n} - \mu_{2,n}, u_{n,k}(0) = T_n(\sigma^+ - T_n(\sigma^-)) \) and the decomposition \((\sum_{j=1}^{n} f_{1,j} - \sum_{j=1}^{n} f_{2,j}, \sum_{j=1}^{n} g_{1,j} - \sum_{j=1}^{n} g_{2,j}, \sum_{j=1}^{n} h_{1,j} - \sum_{j=1}^{n} h_{2,j}) \) of \(\mu_{1,n,0} - \mu_{2,n,0} \), (6.3) with data \(\mu_{1,n}, u_{n,k}(0) = T_n(\sigma^+) \) and the decomposition \((\sum_{j=1}^{n} f_{1,j}, \sum_{j=1}^{n} g_{1,j}, \sum_{j=1}^{n} h_{1,j}) \) of \(\mu_{1,n,0} \), (6.4) with data \(\mu_{2,n}, u_{n,k}(0) = T_n(\sigma^-) \) and the decomposition \((\sum_{j=1}^{n} f_{2,j}, \sum_{j=1}^{n} g_{2,j}, \sum_{j=1}^{n} h_{2,j}) \) of \(\mu_{2,n,0} \) respectively, which satisfy

\[
-K\|I_2[T_n(\sigma^-) \otimes \delta_{t=0}] - K\|I_2[\mu_{2,n}]\leq -u_{2,n,k} \leq u_{n,k} \leq u_{1,n,k} \\
\leq KI_2[\mu_{1,n}] + K\|I_2[T_n(\sigma^+) \otimes \delta_{t=0}].
\]

Next, as in [14, Proof of Lemma 5.4] since \(I_2[\mu_{n}] \in L^q(\Omega_T) \) for any \(n \), thanks to Proposition 3.5 and Theorem 3.6, there exist subsequences of \(\{u_{n,k}\}_k \) and \(\{u_{2,n,k}\}_k \), still denoted them, converging to renormalized solutions \(u_{n,k} \) of equations

\[
\begin{align*}
\begin{cases}
(u_{1,n} - \text{div}(A(x,t,\nabla u_{1,n}))) + |u_{n}|^{q-1}u_{n} = \mu_{1,n} - \mu_{2,n} & \text{in } \Omega_T, \\
\quad u_{n} = 0 & \text{on } \partial\Omega \times (0,T), \\
u_{n}(0) = T_{n}(\sigma^{+}) - T_{n}(\sigma^{-}) & \text{in } \Omega,
\end{cases}
\end{align*}
\]

(6.5)

\[
\begin{align*}
\begin{cases}
(u_{1,n} - \text{div}(A(x,t,\nabla u_{1,n}))) + u_{n}^{2} = \mu_{1,n} & \text{in } \Omega_T, \\
\quad u_{1,n} = 0 & \text{on } \partial\Omega \times (0,T), \\
u_{1,n}(0) = T_{n}(\sigma^{+}) & \text{in } \Omega,
\end{cases}
\end{align*}
\]

(6.6)

\[
\begin{align*}
\begin{cases}
(u_{2,n} - \text{div}(\tilde{A}(x,t,\nabla u_{2,n}))) + u_{n}^{2} = \mu_{2,n} & \text{in } \Omega_T, \\
\quad u_{2,n} = 0 & \text{on } \partial\Omega \times (0,T), \\
u_{2,n}(0) = T_{n}(\sigma^{-}) & \text{in } \Omega,
\end{cases}
\end{align*}
\]

(6.7)

relative to the decomposition \((\sum_{j=1}^{n} f_{1,j} - \sum_{j=1}^{n} f_{2,j}, \sum_{j=1}^{n} g_{1,j} - \sum_{j=1}^{n} g_{2,j}, \sum_{j=1}^{n} h_{1,j} - \sum_{j=1}^{n} h_{2,j}) \) of \(\mu_{1,n,0} - \mu_{2,n,0} \), (6.8) \((\sum_{j=1}^{n} f_{1,j}, \sum_{j=1}^{n} g_{1,j}, \sum_{j=1}^{n} h_{1,j}) \) of \(\mu_{1,n,0} \) and (6.9) \((\sum_{j=1}^{n} f_{2,j}, \sum_{j=1}^{n} g_{2,j}, \sum_{j=1}^{n} h_{2,j}) \) of \(\mu_{2,n,0} \), respectively, which satisfy

\[
-K\|I_2[T_{n}(u_{0}^{n}) \otimes \delta_{t=0}] - K\|I_2[\mu_{2,n}]\leq -u_{2,n} \leq u_{n} \leq u_{1,n} \\
\leq KI_2[\mu_{1,n}] + K\|I_2[T_{n}(u_{0}^{+}) \otimes \delta_{t=0}].
\]

and the sequences \(\{u_{1,n}\}_n \) and \(\{u_{2,n}\}_n \) are increasing and

\[
\int_{\Omega_T} u_{n}^{2} dxdt \leq |\mu|(\Omega_T) + |\sigma|(\Omega).
\]
Note that from (6.1) we have
\[\|f_{i,j}\|_{L^1(\Omega_T)} + \|g_{i,j}\|_{L^2(\Omega_T, \mathbb{R}^N)} + \|h_{i,j}\|_{L^2(0,T,H_0^1(\Omega))} \leq 2\tilde{\mu}_{i,j}(\Omega_T) \]
which implies
\[\sum_{j=1}^{n} \|f_{i,j}\|_{L^1(\Omega_T)} + \sum_{j=1}^{n} \|g_{i,j}\|_{L^2(\Omega_T, \mathbb{R}^N)} + \sum_{j=1}^{n} \|h_{i,j}\|_{L^2(0,T,H_0^1(\Omega))} \leq 2\mu_{i,n}(\Omega_T) \leq 2|\mu|_T(\Omega_T). \]

Finally, as in [14, Proof of Theorem 5.2] thanks to Proposition 3.5, Theorem 3.6 and Monotone Convergence Theorem there exist subsequences of \(\{u_n\}_n, \{u_{1,n}\}_n, \{u_{2,n}\}_n \), still denoted them, converging to renormalized solutions \(u, u_1, u_2 \) of equations (6.5) with data \(\mu, u(0) = \sigma \) and the decomposition \((\sum_{j=1}^{\infty} f_{1,j} - \sum_{j=1}^{\infty} f_{2,j}, \sum_{j=1}^{\infty} g_{1,j} - \sum_{j=1}^{\infty} g_{2,j}, \sum_{j=1}^{\infty} h_{1,j} - \sum_{j=1}^{\infty} h_{2,j}) \) of \(\mu_0 \), (6.6) with data \(\mu^+ \), \(u_1(0) = \sigma^+ \) and the decomposition \((\sum_{j=1}^{\infty} f_{1,j} + \sum_{j=1}^{\infty} g_{1,j}, \sum_{j=1}^{\infty} h_{1,j}) \) of \(\mu_0^+ \), (6.7) with data \(\mu^- \), \(u_2(0) = \sigma^- \) and the decomposition \((\sum_{j=1}^{\infty} f_{2,j}, \sum_{j=1}^{\infty} g_{2,j}, \sum_{j=1}^{\infty} h_{2,j}) \) of \(\mu_0^- \), respectively and
\[-K_2[\sigma^- \otimes \delta_{\{t=0\}}] - K_2[\mu^-] \leq -u_2 \leq u \leq K_2[\mu^+] + K_2[\sigma^+ \otimes \delta_{\{t=0\}}]. \]

We now have remark: if \(\sigma \equiv 0 \) and \(\supp(\mu) \subset \overline{\Omega} \times [0,T] \), \(a > 0 \), then \(u = u_1 = u_2 = 0 \) in \(\Omega \times (0,a) \) since \(u_{n,k} = u_{1,n} = u_{2,n} = 0 \) in \(\Omega \times (0,a) \).

Next, we will consider \(\sigma \in \mathcal{M}_b(\Omega) \) such that \(\sigma \) is absolutely continuous with respect to the capacity \(\operatorname{Cap}_{C_{\frac{1}{2},q'}} \) in \(\Omega \). So, \(\chi_{\Omega_T} \mu + \sigma \otimes \delta_{\{t=0\}} \) is absolutely continuous with respect to the capacity \(\operatorname{Cap}_{2,q'} \) in \(\Omega \times (-T,T) \). As above, we verify that there exists a renormalized solution \(u \) of
\[\begin{cases} u_t - \text{div}(A(x,t,\nabla u)) + |u|^{q-1}u = \chi_{\Omega_T} \mu + \sigma \otimes \delta_{\{t=0\}} & \text{in } \Omega \times (-T,T), \\ u(0) = 0 & \text{on } \partial \Omega \times (-T,T), \\ u(-T) = 0 & \text{on } \Omega, \end{cases} \]
satisfying \(u = 0 \) in \(\Omega \times (-T,0) \) and
\[-K_2[\sigma^- \otimes \delta_{\{t=0\}}] - K_2[\mu^-] \leq u \leq K_2[\mu^+] + K_2[\sigma^+ \otimes \delta_{\{t=0\}}]. \]

Finally, from remark 3.11 we get the result. This completes the proof of the theorem.

Proof of Theorem 2.9. Let \(\{u_{n,i}\} \subset C_c^\infty(\Omega_T), \sigma_{i,n} \in C_c^\infty(\Omega) \) for \(i = 1, 2 \) be as in the proof of Theorem 2.1. We have \(0 \leq \mu_{n,1} \leq \varphi_n + \mu^+ \), \(0 \leq \mu_{n,2} \leq \varphi_n + \mu^- \), \(0 \leq \sigma_{1,n} \leq \varphi_{1,n} + \sigma^+ \), \(0 \leq \sigma_{2,n} \leq \varphi_{1,n} + \sigma^- \) for any \(n \in \mathbb{N} \) where \(\{\varphi_{n}\} \) and \(\{\varphi_{1,n}\} \) are sequences of standard mollifiers in \(\mathbb{R}^{N+1} \times \mathbb{R}^N \), respectively.

We prove that the problem (2.2) has a solution with data \(\mu = \mu_{n_0} = \mu_{n_0,1} - \mu_{n_0,2}, \sigma = \sigma_{n_0} = \sigma_{1,n_0} - \sigma_{2,n_0} \) for \(n_0 \in \mathbb{N} \). Put
\[J = \left\{ u \in L^1(\Omega_T) : u^+ \leq \frac{qK}{q-1} \|\varphi_{2,n} - \delta_{\{t=0\}}\|_{L^1(\Omega_T)} \right\}, \]
\[u^- \leq \frac{qK}{q-1} \|\varphi_{2,n} - \delta_{\{t=0\}}\|_{L^1(\Omega_T)} \right\}.
\]
where \(\max\{-\frac{N+2}{q} + 2, 0\} < \delta < 2 \).

Clearly, \(J \) is closed under the strong topology of \(L^1(\Omega_T) \) and convex.

We consider a map \(S : J \rightarrow J \) defined for each \(v \in J \) by \(S(v) = u \), where \(u \in L^1(\Omega_T) \) is the unique renormalized solution of
\[\begin{cases} u_t - \text{div}(A(x,t,\nabla u)) = |v|^{q-1} v + \mu_{n_0,1} - \mu_{n_0,2} & \text{in } \Omega_T, \\ u(0) = \sigma_{1,n_0} - \sigma_{2,n_0} & \text{in } \Omega \end{cases} \]
By Theorem 2.1, we have
\[u^+ \leq K_2^n [v^+]^q + K_2^n [\mu_{n,0} + \sigma_1,0 \otimes \delta_{t=0}], \]
\[u^- \leq K_2^n [v^-]^q + K_2^n [\mu_{n,2} + \sigma_2,0 \otimes \delta_{t=0}], \]
where \(K \) is the constant in Theorem 2.1. Thus,
\[u^+ \leq K \left(\frac{qK}{q-1} \right)^q \|v\|_{2T_0} \delta_1 [\mu_{n,0,1} + \sigma_1,0 \otimes \delta_{t=0}] + K \|v\|_{2T_0} \delta_1 [\mu_{n,1} + \sigma_1,0 \otimes \delta_{t=0}], \]
\[u^- \leq K \left(\frac{qK}{q-1} \right)^q \|v\|_{2T_0} \delta_1 [\mu_{n,2} + \sigma_2,0 \otimes \delta_{t=0}] + K \|v\|_{2T_0} \delta_1 [\mu_{n,2} + \sigma_2,0 \otimes \delta_{t=0}]. \]

Thus, thanks to Theorem 4.36 there exists \(c_1 \in C(N,K,q) \) such that if for every compact sets \(E \subset \mathbb{R}^{N+1}, \)
\[|\mu_{n,i}|(E) + (|\sigma_i,0| \otimes \delta_{t=0})(E) \leq c_1 \text{Cap}_{E_2^{2T_0}}(E), \]
then \(\Sigma_{n,0} \delta_1 [\mu_{n,0} + \sigma_1,0 \otimes \delta_{t=0}] \in L^q(\mathbb{R}^{N+1}) \) and \(\Sigma_{n,0} \delta_1 [\mu_{n,2} + \sigma_2,0 \otimes \delta_{t=0}] \in L^q(\mathbb{R}^{N+1}) \)
which implies \(u \in L^q(\Omega_T) \) and
\[u^+ \leq \frac{qK}{q-1} \|v\|_{2T_0} \delta_1 [\mu_{n,0,1} + \sigma_1,0 \otimes \delta_{t=0}] \]
\[u^- \leq \frac{qK}{q-1} \|v\|_{2T_0} \delta_1 [\mu_{n,2} + \sigma_2,0 \otimes \delta_{t=0}]. \]

Now we assume that (6.10) is satisfied, so \(S \) is well defined. Therefore, if we can show that the map \(S : J \to J \) is continuous and \(S(J) \) is pre-compact under the strong topology of \(L^q(\Omega_T) \) then by Schauder Fixed Point Theorem, \(S \) has a fixed point on \(J \). Hence the problem (2.2) has a solution with data \(\mu = \mu_{n,0}, \sigma = \sigma_{n,0}. \)

Now we show that \(S \) is continuous. Let \(\{v_n\} \) be a sequence in \(J \) such that \(v_n \) converges strongly in \(L^q(\Omega_T) \) to a function \(v \) in \(J \). Set \(u_n = S(v_n) \). We need to show that \(u_n \to S(v) \) in \(L^q(\Omega_T) \).

By Proposition 3.5, there exists a subsequence of \(\{u_n\} \), still denoted by it, converging to \(u \) a.e in \(\Omega_T \). Since
\[|u_n| \leq \sum_{i=1,2} \frac{qK}{q-1} \|v\|_{2T_0} \delta_1 [\mu_{n,i} + \sigma_1,0 \otimes \delta_{t=0}] \in L^q(\Omega_T) \quad \forall \; n \in \mathbb{N} \]
Applying Dominated Convergence Theorem, we have \(u_n \to u \) in \(L^q(\Omega_T) \). Hence, thanks to Theorem 3.6 we get \(u = S(v) \).

Next we show that \(S \) is pre-compact. Indeed if \(\{u_n\} = \{S(v_n)\} \) is a sequence in \(S(J) \). By Proposition 3.5, there exists a subsequence of \(\{u_n\} \), still denoted by it, converging to \(u \) a.e in \(\Omega_T \). Again, using get Dominated Convergence Theorem we get \(u_n \to u \) in \(L^q(\Omega_T) \). So \(S \) is pre-compact.

Next, thanks to Corollary 4.39 and Remark 4.40 we have
\[[\mu_{n,i} + \sigma_1,0 \otimes \delta_{t=0}]_{\text{Cap}_{E_2^{2T_0}}} \leq c_2 [\mu_i + \sigma \otimes \delta_{t=0}]_{\text{Cap}_{E_2^{2T_0}}} \quad \forall \; n \in \mathbb{N}, \; i = 1,2, \]
for some \(c_2 = c_2(N,q). \)
In addition, by the proof of Corollary 4.39 we get
\[(c_3(T_0))^{-1} \text{Cap}_{E_2^{2T_0}}(E) \leq \text{Cap}_{E_2^{2T_0}}(E) \leq c_3(T_0) \text{Cap}_{E_2^{2T_0}}(E). \]
for every compact set \(E \) with \(\text{diam}(E) \leq 2T_0 \). Thus, there is \(c_4 = c_4(N, K, \delta, q, T_0) \) such that if
\[
[|\mu| + |\sigma| \otimes \delta_{(t=0)}]_{2\mathfrak{N}^2,q'} \leq c_4, \tag{6.11}
\]
then (6.10) holds for any \(n_0 \in \mathbb{N} \).

Now we suppose that (6.11) holds, it is equivalent to (2.13) holding for some constant \(C_1 = C_1(T_0) \) by Remark 4.34. Therefore, for any \(n \in \mathbb{N} \) there exists a renormalized solution \(u_n \) of
\[
\begin{cases}
(u_n)_{t} - \text{div}(A(x, t, \nabla u_n)) = |u_n|^{q-1}u_n + \mu_{n,1} - \mu_{n,2} \text{ in } \Omega_T, \\
\quad u_n = 0 \quad \text{on } \partial\Omega \times (0, T), \\
\quad u_n(0) = \sigma_{1,n} - \sigma_{2,n} \quad \text{in } \Omega,
\end{cases}
\tag{6.12}
\]
which satisfies
\[
-\frac{qK}{q-1} \|u_n\|^{2T_0,\delta}_{\mu_{n,2} + \sigma_{2,n} \otimes \delta_{(t=0)}} \leq u_n \leq \frac{qK}{q-1} \|u_n\|^{2T_0,\delta}_{\mu_{n,1} + \sigma_{1,n} \otimes \delta_{(t=0)}}.
\]

Thus, for every \((x, t) \in \Omega_T \),
\[
-\frac{qK}{q-1} \varphi_n (2T_0, \delta)[\mu_n] (x, t) - \frac{qK}{q-1} \varphi_n (2T_0, \delta)[\sigma_n] (x, t) = u_n(x, t) \leq \frac{qK}{q-1} \varphi_n (2T_0, \delta)[\mu_n] (x, t) + \frac{qK}{q-1} \varphi_n (2T_0, \delta)[\sigma_n] (x, t).
\]

Since \(\varphi_n (2T_0, \delta)[\mu_n] (x, t) \) and \(\varphi_n (2T_0, \delta)[\sigma_n] (x, t) \) converge to \((\frac{qK}{q-1} \varphi_n (2T_0, \delta)[\mu_n] (x, t)) \) and \((\frac{qK}{q-1} \varphi_n (2T_0, \delta)[\sigma_n] (x, t)) \) in \(L^\infty(\mathbb{R}^{N+1}) \) as \(n \to \infty \), respectively, so \(|u_n|^{q-1} \) is equi-integrable.

By Proposition 3.5, there exists a subsequence of \(\{u_n\} \), still denoted by its, converging to \(u \) a.e in \(\Omega_T \). It follows \(|u_n|^{q-1} \to |u|^{q-1} \) in \(L^1(\Omega_T) \).

Consequently, by Proposition 3.5 and Theorem 3.6, we obtain that \(u \) is a distribution (a renormalized solution if \(\sigma \in L^1(\Omega) \)) of (2.2) with data \(\mu, \sigma \), and satisfies (2.14). Furthermore, by Corollary 4.39 we have
\[
(c_3(T_0))^{\frac{1}{q}} \left[|\mu| + |\sigma| \otimes \delta_{(t=0)} \right]_{\mathfrak{N}^2,q'} \leq \left[(\frac{qK}{q-1} \varphi_n (2T_0, \delta)[\mu_n] + |\sigma| \otimes \delta_{(t=0)}) \right]_{\mathfrak{N}^2,q'} \leq c_5(T_0) \left[|\mu| + |\sigma| \otimes \delta_{(t=0)} \right]_{\mathfrak{N}^2,q'},
\]
which implies \(|u|^{q-1} \) is equi-integrable and we get (2.15). This completes the proof of the Theorem.

\[\blacksquare\]

Remark 6.4 In view of above proof, we can see that

i. The Theorem 2.9 also holds when we replace assumption (2.13) by
\[
|\mu|(E) \leq C \text{Cap}_{\mathcal{H}_n,q}(E) \quad \text{and} \quad |\sigma|(F) \leq C \text{Cap}_{\mathcal{H}_n,q}(F).
\]
for every compact sets \(E \subset \mathbb{R}^{N+1}, F \subset \mathbb{R}^N \) where \(C = C(N\Lambda_1, \Lambda_2, q) \) is some a constant.

ii. If \(\sigma \equiv 0 \) and \(\text{supp}(\mu) \subset \overline{\Omega} \times [a, T], a > 0 \), then we can show that a solution \(u \) in Theorem 2.9 satisfies \(u = 0 \) in \(\Omega \times (0, a) \) since we can replace the set \(E \) by \(E' \):
\[
E' = \left\{ u \in L^q(\Omega_T) : u = 0 \text{ in } \Omega \times (0, a) \text{ and } u^+ \leq \frac{qK}{q-1} \|u_n\|^{2T_0,\delta}_{\mu_{n,0} + \sigma_{1,n} \otimes \delta_{(t=0)}} \right\}
\]
and \(u^- \leq \frac{qK}{q-1} \|u_n\|^{2T_0,\delta}_{\mu_{n,0} + \sigma_{1,n} \otimes \delta_{(t=0)}} \right\} \)
6.2 Quasilinear Lane-Emden Parabolic Equations in $\mathbb{R}^N \times (0, \infty)$ and \mathbb{R}^{N+1}

This section is devoted to proofs of Theorem 2.12 and 2.14.

Proof of the Theorem 2.12. Since ω is absolutely continuous with respect to the capacity $\text{Cap}_{L^{1,\varphi}}$ in \mathbb{R}^{N+1}, $|\omega|$ is too. Set $D_n = B_n(0) \times (-n^2, n^2)$. From the proof of Theorem 2.8, there exist renormalized solutions u_n, v_n of

$$
\begin{cases}
(u_n)_t - \text{div}(A(x,t,\nabla u_n)) + |u_n|^{q-1}u_n = \chi_{D_n}\omega & \text{in } D_n, \\
0 & \text{in } \partial B_n(0) \times (-n^2, n^2), \\
u_n(-n^2) = 0 & \text{in } B_n(0),
\end{cases}
$$

and

$$
\begin{cases}
(v_n)_t - \text{div}(A(x,t,\nabla v_n)) + v_n^q = \chi_{D_n}|\omega| & \text{in } D_n, \\
0 & \text{in } \partial B_n(0) \times (-n^2, n^2), \\
v_n(-n^2) = 0 & \text{in } B_n(0),
\end{cases}
$$

relative to decompositions (f_n, g_n, h_n) of $\chi_{D_n}\omega_0$ and $(\mathcal{T}_n, \mathcal{G}_n, \mathcal{H}_n)$ of $\chi_{B_n(0) \times (-n^2, n^2)}|\omega_0|$, satisfied (3.14), (3.15) in Proposition 3.16 with $1 < \alpha_0 < q$, $L(u_n) = |u_n|^{q-1}u_n$, $L(v_n) = v_n^q$ and μ is replaced by $\chi_{D_n}\omega$ and $\chi_{D_n}|\omega|$ respectively. Moreover, there hold

$$-KI_2[|\omega^-|] \leq u_n \leq KI_2[|\omega^+|], \quad 0 \leq v_n \leq KI_2[|\omega|] \quad \text{in } D_n, \quad (6.13)$$

and $v_{n+1} \geq v_n$, $|u_n| \leq v_n$ in D_n.

By Remark 3.9, we can assume that

$$
\|f_n\|_{L^1(D_1)} + \|g_n\|_{L^2(D_1;\mathbb{R}^N)} + \|h_n\| + \|\nabla h_n\|_{L^2(D_1)} \leq 2\omega(D_{i+1}) \quad \text{and}
$$

$$
\|\mathcal{T}_n\|_{L^1(D_1)} + \|\mathcal{G}_n\|_{L^2(D_1;\mathbb{R}^N)} + \|\mathcal{H}_n\| + \|\nabla \mathcal{H}_n\|_{L^2(D_1)} \leq 2\omega(D_{i+1}),
$$

for any $i = 1, \ldots, n-1$ and h_n, \mathcal{H}_n are convergent in $L^1_{\text{loc}}(\mathbb{R}^{N+1})$. On the other hand, since u_n, v_n satisfy (3.14) in Proposition 3.16 with $1 < \alpha_0 < q$, $L(u_n) = |u_n|^{q-1}u_n$, $L(v_n) = v_n^q$ and thanks to Holder inequality: for any $\varepsilon \in (0,1)$

$$(|u_n| + 1)^\theta \leq \varepsilon |u_n|^q + c_1(\varepsilon) \quad \text{and} \quad (|v_n| + 1)^\theta \leq \varepsilon |v_n|^q + c_1(\varepsilon).$$

Thus we get

$$
\int_{D_i} |u_n|^q dx dt + \int_{D_i} |u_n|^\theta dx dt + \int_{D_i} v_n^q dx dt + \int_{D_i} v_n^\theta dx dt \leq C(i) + c_2\omega(D_{i+1}). \quad (6.14)
$$

for $i = 1, \ldots, n-1$, where the constant $C(i)$ depends on $N, A_1, A_2, \gamma, q, \varphi$ and i. Consequently, we can apply Proposition 3.17 with $\mu_n = [-|u_n|^{q-1}u_n + \chi_{D_n}\omega, -v_n^q + \chi_{D_n}|\omega|]$ and obtain that there are subsequences of u_n, v_n, still denoted by them, converging to some u, v in $L^1_{\text{loc}}(\mathbb{R}; W^{1,1}_{\text{loc}}(\mathbb{R}^N))$. So, $\frac{|u|^q}{(1 + |u|^{q+\gamma})^{1+\gamma}} \in L^1_{\text{loc}}(\mathbb{R}^{N+1})$ for all $\alpha > 0$ and $u \in L^1_{\text{loc}}(\mathbb{R}; W^{1,\gamma}_{\text{loc}}(\mathbb{R}^N))$ satisfies (2.17). In addition, using Holder inequality we get $u \in L^1_{\text{loc}}(\mathbb{R}; W^{1,\gamma}_{\text{loc}}(\mathbb{R}^N))$ for any $1 \leq \gamma < \frac{2q}{q+\gamma}$.

Thanks to (6.14) and Monotone Convergence Theorem we get $v_n \to v$ in $L^1_{\text{loc}}(\mathbb{R}^{N+1})$. After, we also have $u_n \to u$ in $L^q_{\text{loc}}(\mathbb{R}^{N+1})$ by $|u_n| \leq v_n$ and Dominated Convergence Theorem. Consequently, u is a distribution solution of problem (2.16) which satisfies (2.17).

If $\omega = \mu + \sigma \odot \delta_{t=0}$ with $\mu \in \mathcal{M}(\mathbb{R}^N \times (0, \infty))$ and $\sigma \in \mathcal{M}(\mathbb{R}^N)$, then by the proof of Theorem 2.8 we can assume that $u_n = 0$ in $B_n(0) \times (-n^2, 0)$. So, $u = 0$ in $\mathbb{R}^N \times (-\infty, 0)$. Therefore, clearly $u |_{\mathbb{R}^N \times (0, \infty)}$ is a distribution solution to (2.18).

This completes the proof of the theorem.

Proof of the Theorem 2.14. By the proof of Theorem 2.9 and Remark 6.4, 4.34, there exists a constant $c_1 = c_1(N, q, A_1, A_2)$ such that if ω satisfy for every compact set $E \subset \mathbb{R}^{N+1}$

$$|\omega|(E) \leq c_1 \text{Cap}_{\mathcal{H}_{L^{1,\varphi}}}(E), \quad (6.15)$$
then there is a renormalized solution u_n of
\[
\begin{cases}
(u_n) - \text{div}(A(x,t,\nabla u_n)) = |u_n|^{q-1}u_n + \chi_{D_n}\omega & \text{in } D_n \\
u_n = 0 & \text{on } \partial B_n(0) \times (-n^2, n^2), \\
u_n(-n^2) = 0 & \text{in } B_n(0),
\end{cases}
\]
relative to a decomposition (f_n, g_n, h_n) of $\chi_{D_n}\omega_0$, satisfying (3.14), (3.15) in Proposition 3.16 with $q_0 = q$, $L \equiv 0$ and μ is replaced by $|u_n|^{q-1}u_n + \chi_{D_n}\omega$ and
\[
-qK \leq u_n \leq qK
\]
for a.e (x,t) in D_n and $L_2[\omega^\pm] \in L^\beta_{\text{loc}}(\mathbb{R}^{N+1})$.

Besides, thanks to Remark 3.9, we can assume that f_n, g_n, h_n satisfies (5.17) in proof of Theorem (2.5) and h_n is convergent in $L^1_{\text{loc}}(\mathbb{R}^{N+1})$.

Consequently, we can apply Proposition 3.17 and obtain that there exist a subsequence of u_n, still denoted by it, converging to some u a.e in \mathbb{R}^{N+1} and in $L^1_{\text{loc}}(\mathbb{R}; W^1,1_{\text{loc}}(\mathbb{R}^{N+1}))$. Also, $u_n \to u$ in $L^\beta_{\text{loc}}(\mathbb{R}^{N+1})$ by Dominated Convergence Theorem, $\|\nabla u\|^\alpha_{\text{loc}} \in L^1_{\text{loc}}(\mathbb{R}^{N+1})$ for all $\alpha > 0$. Using Holder inequality we get $u \in L^\beta_{\text{loc}}(\mathbb{R}; W^1,\gamma(\mathbb{R}^{N}))$ for any $1 \leq \gamma < \frac{2}{\beta+1}$.

Thus we obtain that u is a distribution solution of (2.20) which satisfies (2.21). Since (6.15) holds, thus by Theorem 4.36 we get
\[
c^{-1} \|\omega\|_{2^{\frac{N+2}{N}}}' \leq \|\omega\|_{2^{\frac{N+2}{N}}}' \leq c_2 \|\omega\|_{2^{\frac{N+2}{N}}}'
\]
so we have $\|u\|_{2^{\frac{N+2}{N}}}' \leq c_0$. It follows (2.23).

If $\omega = \mu + \sigma \otimes \delta_{\{t=0\}}$ with $\mu \in \mathcal{M}(\mathbb{R}^N \times (0,\infty))$ and $\sigma \in \mathcal{M}(\mathbb{R}^N)$, then by Remark 6.4 we can assume that $u_n = 0$ in $B_n(0) \times (-n^2,0)$. So, $u = 0$ in $\mathbb{R}^N \times (-\infty,0)$. Therefore, clearly $u_{|\mathbb{R}^N \times [0,\infty)}$ is a distribution solution to (2.22).

This completes the proof of the theorem.

7 Interior Estimates and Boundary Estimates for Parabolic Equations

In this section we always assume that $u \in C(-T,T; L^2(\Omega)) \cap L^2(-T,T; H^1(\Omega))$ is a solution to equation (2.4) in $\Omega \times (-T, T)$ with $\mu \in L^2(\Omega \times (-T, T))$ and $u(-T) = 0$. We extend u by zero to $\Omega \times (-\infty, -T)$, clearly u is a solution to equation
\[
\begin{cases}
u_t - \text{div}(A(x,t,\nabla u)) = \chi_{(-T,T)}(t)\mu & \text{in } \Omega \times (-\infty, T), \\
u = 0 & \text{on } \partial \Omega \times (-\infty, T).
\end{cases}
\]

7.1 Interior Estimates

For each ball $B_{2R} = B_{2R}(x_0) \subset \subset \Omega$ and $t_0 \in (-T,T)$, one considers the unique solution
\[
w \in C(t_0 - 4R^2, t_0; L^2(B_{2R})) \cap L^2(t_0 - 4R^2, t_0; H^1(B_{2R}))
\]
to the following equation
\[
\begin{cases}
w_t - \text{div}(A(x,t,\nabla w)) = 0 & \text{in } Q_{2R}, \\
w = u & \text{on } \partial_{0}Q_{2R},
\end{cases}
\]
where $Q_{2R} = B_{2R} \times (t_0 - 4R^2, t_0)$ and $\partial_{0}Q_{2R} = (\partial B_{2R} \times (t_0 - 4R^2, t_0)) \cup (B_{2R} \times \{t = t_0 - 4R^2\})$. 68
Theorem 7.1 There exist constants $\theta_1 > 2$, $\beta_1 \in (0, \frac{1}{2}]$ and C_1, C_2, C_3 depending on N, Λ_1, Λ_2 such that the following estimates are true

$$\int_{Q_{2R}} |\nabla u - \nabla w| \, dx \, dt \leq C_1 \frac{|\mu|(Q_{2R})}{R^{N+1}},$$

(7.4)

$$\left(\int_{Q_{\rho/2}(y,s)} |\nabla w|^\theta \, dx \, dt \right)^{\frac{1}{\theta}} \leq C_2 \int_{Q_{s}(y,s)} |\nabla w| \, dx \, dt,$$

(7.5)

$$\left(\int_{Q_{\rho_1}(y,s)} |w - \overline{w}_{Q_{\rho_1}(y,s)}|^2 \, dx \, dt \right)^{1/2} \leq C_3 \left(\frac{\rho_1}{\rho_2} \right)^{\beta_1} \left(\int_{Q_{\rho_2}(y,s)} |w - \overline{w}_{Q_{\rho_2}(y,s)}|^2 \, dx \, dt \right)^{1/2},$$

(7.6)

and

$$\left(\int_{Q_{\rho_1}(y,s)} |\nabla w|^2 \, dx \, dt \right)^{1/2} \leq C_3 \left(\frac{\rho_1}{\rho_2} \right)^{\beta_1-1} \left(\int_{Q_{\rho_2}(y,s)} |\nabla w|^2 \, dx \, dt \right)^{1/2},$$

(7.7)

for any $Q_{\rho}(y,s) \subset Q_{2R}$, and $Q_{\rho_1}(y,s) \subset Q_{\rho_2}(y,s) \subset Q_{2R}$.

Proof. Inequalities (7.4), (7.5) and (7.6) were proved by Duzaar and Mingione in [27]. So, it remains to prove (7.7) in case $\rho_1 \leq \rho_2/2$. By interior Caccioppoli inequality we have

$$\left(\int_{Q_{\rho_1}(y,s)} |\nabla w|^2 \, dx \, dt \right)^{1/2} \leq \frac{c_1}{\rho_1} \left(\int_{Q_{2\rho_1}(y,s)} |w - \overline{w}_{Q_{2\rho_1}(y,s)}|^2 \, dx \, dt \right)^{1/2}.$$

On the other hand, by a Sobolev inequality there holds

$$\left(\int_{Q_{\rho_2}(y,s)} |w - \overline{w}_{Q_{\rho_2}(y,s)}|^2 \, dx \, dt \right)^{1/2} \leq c_2 \rho_2 \left(\int_{Q_{\rho_2}(y,s)} |\nabla w|^2 \, dx \, dt \right)^{1/2}.$$

Therefore, (7.7) follows from (7.6). \hfill \blacksquare

Corollary 7.2 Let β_1 be the constant in Theorem 7.1. For $2 - \beta_1 < \theta < N + 2$, there exists a constant $C = C(N, \Lambda_1, \Lambda_2, \theta) > 0$ such that for any $B_{\rho_1}(y) \subset B_{\rho_0}(y) \subset \Omega$, $s \in (-T,T)$

$$\int_{Q_{\rho}(y,s)} |\nabla u| \, dx \, dt \leq C \rho^{N+3-\theta} \left(\frac{T_0}{\rho_0} \right)^{N+3-\theta} \left(1 + \|\mathcal{M}_\theta[\mu]\|_{L^\infty(\Omega \times (-T,T))} \right).$$

(7.8)

Proof. Take $B_{\rho_2}(y) \subset \Omega$ and $s \in (-T,T)$. For any $Q_{\rho_1}(y,s) \subset Q_{\rho_2}(y,s)$ with $\rho_1 \leq \rho_2/2$, we take w as in Theorem 7.1 with $Q_{2R} = Q_{\rho_2}(y,s)$. Thus,

$$\int_{Q_{\rho_1}(y,s)} |\nabla w| \, dx \, dt \leq c_1 \left(\frac{\rho_1}{\rho_2} \right)^{N+\beta_1+1} \int_{Q_{\rho_2}(y,s)} |\nabla w| \, dx \, dt,$$

and we also have

$$\int_{Q_{\rho_2}(y,s)} |\nabla u - \nabla w| \, dx \, dt \leq c_2 \rho_2 |\mu|(Q_{\rho_2}(y,s)),$$

and

$$c_3^{-1} \int_{Q_{\rho_2}(y,s)} |\nabla u| \, dx \, dt \leq \int_{Q_{\rho_2}(y,s)} |\nabla w| \, dx \, dt \leq c_3 \int_{Q_{\rho_2}(y,s)} |\nabla u| \, dx \, dt.$$
It follows that
\[
\int_{Q_{r_1}(y,s)} |\nabla u| dx dt \leq \int_{Q_{r_1}(y,s)} |\nabla w| dx dt + \int_{Q_{r_1}(y,s)} |\nabla u - \nabla w| dx dt \\
\leq c_4 \left(\frac{\rho_1}{\rho_2} \right)^{N+\beta_1+1} \int_{Q_{r_2}(y,s)} |\nabla w| dx dt + \int_{Q_{r_2}(y,s)} |\nabla u - \nabla w| dx dt \\
\leq c_5 \left(\frac{\rho_1}{\rho_2} \right)^{N+\beta_1+1} \int_{Q_{r_2}(y,s)} |\nabla u| dx dt + c_5 \rho_2 |(Q_{r_2}(y,s)).
\]
This implies
\[
\int_{Q_{r_1}(y,s)} |\nabla u| dx dt \leq c_5 \left(\frac{\rho_1}{\rho_2} \right)^{N+\beta_1+1} \int_{Q_{r_2}(y,s)} |\nabla u| dx dt + c_5 \rho_2 N^{3-\theta} ||M_\rho|u||_{L^\infty(\Omega \times (-T,T))}.
\]
Since \(N + 3 - \beta < N + \beta_1 + 1\), applying [50, Lemma 4.6, page 54] we obtain
\[
\int_{Q_{r_1}(y,s)} |\nabla v| dx dt \leq c_6 \left(\frac{\rho_1}{\rho_0} \right)^{N+3-\theta} ||\nabla u||_{L^1(\Omega_\times(-T,T))} + c_6 \rho_0 N^{3-\theta} ||M_\rho|u||_{L^\infty(\Omega \times (-T,T))},
\]
for any \(B_\rho(y) \subset B_\rho_0(y) \subset \subset \Omega, s \in (-T,T)\). On the other hand, by Remark 3.2
\[
||\nabla u||_{L^1(\Omega \times (-T,T))} \leq c_7 T_0 |\rho|_\Omega \times (-T,T) \leq c_8 T_0 N^{3-\theta} ||M_\rho|u||_{L^\infty(\Omega \times (-T,T))}.
\]
Hence, we get the desired result.

To continue, we consider the unique solution
\[
v \in C(t_0 - R^2, t_0; L^2(B_R)) \cap L^2(t_0 - R^2, t_0; H^2(B_R))
\]
(7.9)
to the following equation
\[
\begin{cases}
 v_t - \text{div} (\overline{\mathcal{A}}_{B_B(x_0)}(t, \nabla v)) = 0 \text{ in } Q_R, \\
 v = w \quad \text{on } \partial_p Q_R,
\end{cases}
\]
(7.10)
where \(Q_R = B_R(x_0) \times (t_0 - R^2, t_0)\) and \(\partial_p Q_R = (\partial B_R \times (t_0 - R^2, t_0)) \cup (B_R \times \{t = t_0 - R^2\})\).

Lemma 7.3 Let \(\theta_1\) be the constant in Theorem 7.1. There exist constants \(C_1 = C_1(N, \Lambda_1, \Lambda_2)\) and \(C_2 = C_2(\Lambda_1, \Lambda_2)\) such that
\[
\left(\int_{Q_\theta} |\nabla w - \nabla v|^2 dx dt \right)^{1/2} \leq C_1 |A|^{s_1} \int_{Q_{2\theta}} |\nabla w| dx dt,
\]
(7.11)
with \(s_1 = \frac{2n}{\beta_1 - 2}\) and
\[
C_2^{-1} \int_{Q_\theta} |\nabla v|^2 dx dt \leq \int_{Q_\theta} |\nabla w|^2 dx dt \leq C_2 \int_{Q_\theta} |\nabla v|^2 dx dt.
\]
(7.12)

Proof. We can choose \(\varphi = w - v\) as a test function for equations (7.3), (7.10) and since
\[
\int_{Q_\theta} w_1 (w - v) dx dt - \int_{Q_\theta} v_1 (w - v) dx dt = \frac{1}{2} \int_{B_R} (w - v)^2(t_0) dx \geq 0,
\]
we find
\[
- \int_{Q_\theta} \overline{\mathcal{A}}_{B_B(x_0)}(t, \nabla v) \nabla (w - v) dx dt \leq - \int_{Q_\theta} A(x, t, \nabla w) \nabla (w - v) dx dt.
\]
By using inequalities (1.2) and (1.3) together with Holder’s inequality we get
\[
c_i^{-1} \int_{Q_n} |\nabla v|^2 dx dt \leq \int_{Q_n} |\nabla w|^2 dx dt \leq c_1 \int_{Q_n} |\nabla v|^2 dx dt, \tag{7.13}
\]
and we also have
\[
\Lambda_2 \int_{Q_n} |\nabla w - \nabla v|^2 dx dt \leq \int_{Q_n} (\overline{A}_{B_R(x_0)}(t, \nabla w) - \overline{A}_{B_R(x_0)}(t, \nabla v)) (\nabla w - \nabla v) dx dt \\
\leq \int_{Q_n} (\overline{A}_{B_R(x_0)}(t, \nabla w) - A(x, t, \nabla w)) (\nabla w - \nabla v) dx dt \\
\leq \int_{Q_n} \Theta(A, B_R(x_0))(x, t)|\nabla w||\nabla w - \nabla v| dx dt.
\]
Here we used the definition of \(\Theta(A, B_R(x_0)) \) in the last inequality. Using Holder’s inequality with exponents \(s_1 = \frac{2\theta_2}{\theta_1 - 2} \), \(\theta_1 \) and 2 gives
\[
\Lambda_2 \int_{Q_n} |\nabla w - \nabla v|^2 dx dt \leq \left(\int_{Q_n} \Theta(A, B_R(x_0))(x, t)^{s_1} dx dt \right)^{1/s_1} \left(\int_{Q_n} |\nabla w|^\theta_1 dx dt \right)^{1/\theta_1} \\
\times \left(\int_{Q_n} |\nabla w - \nabla v|^2 dx dt \right)^{1/2}.
\]
In other words,
\[
\left(\int_{Q_n} |\nabla w - \nabla v|^2 dx dt \right)^{1/2} \leq \Lambda_2^{-1}[A]^{R} \left(\int_{Q_n} |\nabla w|^\theta_1 dx dt \right)^{1/\theta_1} .
\]
After using the inequality (7.5) in Theorem 7.1 we get (7.11).

Lemma 7.4 Let \(\theta_1 \) be the constant in Theorem 7.1. There exists a functions \(v \in C([t_0 - R^2, t_0; L^2(B_R)] \cap L^2([t_0 - R^2, t_0; H^1(B_R)]) \cap L^\infty([t_0 - \frac{1}{2}R^2, t_0; W^{1,\infty}(B_{R/2})]) \) such that
\[
||\nabla v||_{L^\infty\cap L^\infty(Q_{n/2})} \leq C \int_{Q_{2n}} |\nabla u| dx dt + C \frac{[\mu(Q_{2R})]}{R^{N+1}}, \tag{7.14}
\]
and
\[
\int_{Q_{2n}} |\nabla u - \nabla v| dx dt \leq C \frac{[\mu(Q_{2R})]}{R^{N+1}} + C[A]^{R} \int_{Q_{2n}} |\nabla u| dx dt + C \frac{[\mu(Q_{2R})]}{R^{N+1}}, \tag{7.15}
\]
where \(s_1 = \frac{2\theta_2}{\theta_1 - 2} \) and \(C = C(N, A_1, A_2) \).

Proof. Let \(w \) and \(v \) be in equations (7.3) and (7.10). By standard interior regularity and inequality (7.5) in Theorem 7.1 and (7.12) in Lemma 7.3 we have
\[
||\nabla v||_{L^\infty(Q_{n/2})} \leq c_1 \left(\int_{Q_n} |\nabla v|^2 dx dt \right)^{1/2} \\
\leq c_2 \left(\int_{Q_n} |\nabla w|^2 dx dt \right)^{1/2} \\
\leq c_3 \int_{Q_{2n}} |\nabla w| dx dt.
\]
Thus, we get (7.14) from (7.4) in Theorem 7.1.

On the other hand, (7.11) in Lemma 7.3 and Holder’s inequality yield
\[
\int_{Q_n} |\nabla w - \nabla v| dx dt \leq c_4[A]^{R} \int_{Q_{2n}} |\nabla w| dx dt.
\]

71
It leads
\[
\int_{Q_R} |\nabla u - \nabla v| dx dt \leq \int_{Q_R} |\nabla u - \nabla w| dx dt + c_4 |A|_{L_1}^R \int_{Q_{2R}} |\nabla w| dx dt.
\]
Consequently, we get (7.15) from (7.4) in Theorem 7.1. The proof is complete.

7.2 Boundary Estimates

In this subsection, we focus on the corresponding estimates near the boundary.

Let \(x_0 \in \partial \Omega \) be a boundary point and for \(R > 0 \) and \(t_0 \in (-T, T) \), we set \(\tilde{\Omega}_{6R} = \Omega_{6R}(x_0, t_0) = (\Omega \cap B_{6R}(x_0)) \times (t_0 - (6R)^2, t_0) \) and \(Q_{6R} = Q_{6R}(x_0, t_0) \).

We consider the unique solution \(w \) to the equation
\[
\begin{cases}
 w_t - \text{div} (A(x, t, \nabla w)) = 0 \text{ in } \tilde{\Omega}_{6R}, \\
 w = u \text{ on } \partial \tilde{\Omega}_{6R}.
\end{cases}
\] (7.16)

In what follows we extend \(\mu \) and \(u \) by zero to \((\Omega \times (-\infty, T))^c\) and then extend \(w \) by \(u \) to \(\mathbb{R}^{N+1} \setminus \Omega_{6R} \).

In order to obtain estimates for \(w \) as in Theorem 7.1 we require the domain \(\Omega \) to be satisfied 2–Capacity uniform thickness condition.

7.2.1 2-Capacity uniform thickness domain

It is well known that if \(\mathbb{R}^N \setminus \Omega \) satisfies uniformly 2–thick with constants \(c_0, r_0 > 0 \), there exist \(p_0 \in (\frac{2N}{N+2}, 2) \) and \(C = C(N, c_0) > 0 \) such that
\[
\text{Cap}_{p_0}(B_r(x) \cap (\mathbb{R}^N \setminus \Omega), B_{2r}(x)) \geq C r^{N-p_0},
\] (7.17)
for all \(0 < r \leq r_0 \) and all \(x \in \mathbb{R}^N \setminus \Omega \), see [47, 57].

Theorem 7.5 Suppose that \(\mathbb{R}^N \setminus \Omega \) satisfies uniformly 2–thick with constants \(c_0, r_0 \). Let \(w \) be in (7.16) with \(0 < 6R \leq r_0 \). There exist constants \(\theta_2 > 2, \beta_2 \in (0, \frac{1}{2}], C_2, C_3 \) depending on \(N, \Lambda_1, \Lambda_2, c_0 \) and \(C_1 \) depending on \(N, \Lambda_1, \Lambda_2 \) such that
\[
\int_{Q_{6R}} |\nabla u - \nabla w| dx dt \leq C_1 \frac{|\mu|(\tilde{\Omega}_{6R})}{RN+1},
\] (7.18)
\[
\left(\int_{Q_{3R}(z, s)} |w|^{\theta_2} dx dt \right)^{\frac{1}{\theta_2}} \leq C_2 \int_{Q_{3R}(z, s)} |\nabla w| dx dt,
\] (7.19)
\[
\left(\int_{Q_{3\rho_1}(y, s)} |w|^2 dx dt \right)^{1/2} \leq C_3 \left(\frac{\rho_1}{\rho_2} \right)^{\beta_2} \left(\int_{Q_{3\rho_2}(y, s)} |w|^2 dx dt \right)^{1/2},
\] (7.20)
and
\[
\left(\int_{Q_{3\rho_1}(z, s)} |\nabla w|^2 dx dt \right)^{1/2} \leq C_3 \left(\frac{\rho_1}{\rho_2} \right)^{\beta_2 - 1} \left(\int_{Q_{3\rho_2}(z, s)} |\nabla w|^2 dx dt \right)^{1/2},
\] (7.21)
for any \(Q_{3\rho}(z, s) \subset Q_{6R}, \ y \in \partial \Omega, \ Q_{3\rho_1}(y, s) \subset Q_{3\rho_2}(y, s) \subset Q_{6R} \) and \(Q_{\rho_1}(z, s) \subset Q_{\rho_2}(z, s) \subset Q_{6R} \)
Here we used the equality \(\phi = \eta \), for any \(k > 0 \), as a test function for (7.1) and (7.16), we get
\[
\int_{\Omega_R} (u - w)T_k(u - w)\eta dx dt
\]
\[
+ \int_{\Omega_R} (A(x, t, \nabla u) - A(x, t, \nabla w)) \nabla T_k(u - w)\eta dx dt = \int_{\Omega_R} T_k(u - w)\eta d\mu.
\]
Thanks to (1.3), we obtain
\[
- \int_{\Omega_R} T_k(u - w)h dx dt + \Lambda_2 \int_{\Omega_R} |\nabla T_k(u - w)|^2 \eta dx dt \leq k|\mu|(\tilde{\Omega}_R),
\]
where \(T_k(s) = \int_{0}^{s} T_k(r) dr \). As in \[13, \text{Proposition 2.8}\], we also verify that
\[
|||\nabla(u - w)|||_{L^\infty} \leq c_1 |\mu|(\tilde{\Omega}_R).
\]
Hence we get (7.18).

2. We need to prove that
\[
\int_{Q_{r/4}} |\nabla w|^2 dx dt \leq \frac{1}{2} \int_{Q_{r/4}} |\nabla w|^2 dx dt + c_7 \left(\int_{Q_{r/4}} |\nabla w|^{p_0} dx dt \right)^{\frac{1}{p_0}}, \quad (7.22)
\]
for all \(Q_{r/4} \subseteq Q_{0R} = Q_{R}(x_0, t_0) \). Here the constant \(p_0 \) is in inequality (7.17).
Suppose that \(B_r(z) \subset \Omega \). Take \(\rho \in (0, r) \). Let \(\varphi \in C_c^\infty(B_\rho(z)) \), \(\eta \in C_c^\infty([s - \rho^2, s]) \) be such that \(0 \leq \varphi, \eta \leq 1 \), \(\varphi = 1 \) in \(B_\rho/2(z) \), \(\eta = 1 \) in \([s - \rho^2/4, s]\) and \(|\nabla \varphi| \leq c_1/\rho \), \(|\eta| \leq c_1/\rho^2 \). We denote
\[
\bar{w}_{B_r(z)}(t) = \left(\int_{B_r(z)} \varphi(x)^2 dx \right)^{-1} \int_{B_r(z)} w(x, t)\varphi(x)^2 dx.
\]
Using \(\varphi = (w - \bar{w}_{B_r(z)})\varphi^2 \eta^2 \) as a test function for the equation (7.16) we have for all \(s' \in [s - \rho^2/4, s] \)
\[
\int_{B_r(z) \times (s - \rho^2, s')} (w - \bar{w}_{B_r(z)})t(w - \bar{w}_{B_r(z)})\varphi^2 \eta^2 dx dt
\]
\[
+ \int_{B_r(z) \times (s - \rho^2, s')} A(x, t, \nabla w)\nabla ((w - \bar{w}_{B_r(z)})\varphi^2 \eta^2) dx dt = 0.
\]
Here we used the equality \(\int_{B_r(z) \times (s - \rho^2, s')} (\bar{w}_{B_r(z)})_t (w - \bar{w}_{B_r(z)}) \varphi^2 \eta^2 dx dt = 0. \)
Thus, we can write
\[
\frac{1}{2} \int_{B_r(z)} (w(s') - \bar{w}_{B_r(z)}(s'))^2 \varphi^2 dx + \int_{B_r(z) \times (s - \rho^2, s')} A(x, t, \nabla w)\nabla \varphi \varphi \eta^2 dx dt
\]
\[
= -2 \int_{B_r(z) \times (s - \rho^2, s')} A(x, t, \nabla w)\nabla \varphi \varphi \eta^2 (w - \bar{w}_{B_r(z)}) dx dt
\]
\[
+ \int_{B_r(z) \times (s - \rho^2, s')} (w - \bar{w}_{B_r(z)})^2 \varphi^2 \eta dx dt.
\]
From conditions (1.2) and (1.3), we get
\[
\frac{1}{2} \int_{B_r(z) \times (s - \rho^2, s')} (w(s') - \bar{w}_{B_r(z)}(s'))^2 \varphi^2 dx + \Lambda_2 \int_{B_r(z) \times (s - \rho^2, s')} |\nabla w|^2 \varphi^2 \eta^2 dx dt
\]
\[
\leq 2\Lambda_1 \int_{B_r(z) \times (s - \rho^2, s')} \nabla \varphi \varphi \eta^2 \varphi |w - \bar{w}_{B_r(z)}| dx dt + \frac{c_8}{\rho^2} \int_{Q_{r/4}(z)} (w - \bar{w}_{B_r(z)})^2 dx dt.
\]
Using Holder inequality we can verify that
\[
\begin{align*}
\sup_{s' \in [s-r^2/4,s]} \int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 dx \\
&\quad + \int_{Q_{r/2}(z,s)} |\nabla w|^2 dxdt \leq \frac{c_9}{\rho^2} \int_{Q_{r/2}(z,s)} |w - \tilde{w}_{B_{r/2}}|^2 dxdt. \quad (7.23)
\end{align*}
\]

On the other hand, for any \(s' \in [s-r^2/4,s]\)
\[
\int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 dx \leq 2(1 + 2^{N+2}) \int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 dx, \quad (7.24)
\]
where \(\varphi_1(x) = \varphi(z + 2(x - z))\) for all \(x \in B_{r/2}(z)\) and
\[
\tilde{w}_{B_{r/2}}(z) = \left(\int_{B_{r/2}(z)} \varphi_1(x)^2 dx \right)^{-1} \int_{B_{r/2}(z)} w(x,t) \varphi_1(x)^2 dx.
\]

In fact, since \(0 \leq \varphi \leq 1\) and \(\varphi = 1\) in \(B_{r/2}(z)\) thus
\[
\begin{align*}
\int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 dx \\
&\leq 2 \int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 dx + 2^{N+1}(\tilde{w}_{B_{r/2}}(s') - \tilde{w}_{B_{r/2}}(s'))^2 |B_{r/4}(z)| \\
&\leq 2 \int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 dx + 2^{N+2} \int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 \varphi_1^2 dx \\
&\quad + 2^{N+2} \int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 \varphi_1^2 dx.
\end{align*}
\]
which yields (7.24) due to the following inequality
\[
\int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 dx \leq \int_{B_{r/2}(z)} (w(s') - l)^2 \varphi_1^2 dx \quad \forall l \in \mathbb{R}.
\]

Therefore,
\[
\begin{align*}
\sup_{s' \in [s-r^2/4,s]} \int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 dx \\
&\quad + \int_{Q_{r/2}(z,s)} |\nabla w|^2 dxdt \leq \frac{c_{10}}{\rho^2} \int_{Q_{r/2}(z,s)} |w - \tilde{w}_{B_{r/2}}|^2 dxdt. \quad (7.25)
\end{align*}
\]

Now we use estimate (7.25) for \(\rho = r/2\), we have
\[
\begin{align*}
\int_{Q_{r/4}(z,s)} |\nabla w|^2 dxdt &\leq \frac{c_{10}}{r^2} \int_{Q_{r/2}(z,s)} (w - \tilde{w}_{B_{r/2}})^2 dxdt \\
&\quad \leq \frac{c_{10}}{r^2} \left(\sup_{s' \in [s-r^2/4,s]} \int_{B_{r/2}(z)} (w(s') - \tilde{w}_{B_{r/2}}(s'))^2 dx \right)^\frac{1}{2} \\
&\quad \times \int_{s-r^2/4}^s \left(\int_{B_{r/2}(z)} (w - \tilde{w}_{B_{r/2}})^2 dx \right)^\frac{1}{2} dt.
\end{align*}
\]
After we again use estimate (7.25) for $p = r$ we get
\[
\int_{Q_{r/s}(z,s)} |\nabla w|^2 \, dx \, dt \leq c_{11} \left(\frac{1}{r^2} \int_{Q_r(z,s)} |w - \tilde{w}_{B_r(z)}|^2 \, dx \, dt \right)^{\frac{2}{r+2}} \times \int_{s-r^2/4}^s \left(\int_{B_{r^2/2}(z)} (w - \tilde{w}_{B_r(z)})^2 \, dx \right)^{\frac{2}{r+2}} \, dt.
\]

Thanks to a Sobolev-Poincare inequality, we obtain
\[
\int_{Q_{r/s}(z,s)} |\nabla w|^2 \, dx \, dt \leq c_{12} \left(\int_{Q_r(z,s)} |\nabla w|^2 \, dx \, dt \right)^{\frac{2}{r+2}} \int_{Q_{r^2/2}(z,s)} |\nabla w|^2 \, dx \, dt.
\]

Since $p_0 \in \left(\frac{2N}{N+2}, 2\right)$, thanks to Holder inequality we get (7.22).

Finally, we consider the case $B_r(z) \cap \Omega \neq \emptyset$. In this case we choose $z_0 \in \partial \Omega$ such that $|z - z_0| = \text{dist}(z, \partial \Omega)$. Then $|z_0 - z| < r$ and thus $\frac{1}{2}r \leq \rho_1 \leq \frac{1}{2}r$.

Let $\varphi \in C_c^\infty(B_{r^4/2}(z_0))$ be such that $0 \leq \varphi \leq 1$, $\varphi = 1$ in $B_{r^4/2}(z_0)$ and $|\nabla \varphi| \leq C/r$. For $\frac{1}{2}r \leq \rho_2 \leq r$, let $\eta \in C_c^\infty((s - \rho_2^2, s])$ be such that $0 \leq \eta \leq 1$, $\eta = 1$ in $[s - \rho_2^2, s]$ and $|\eta_t| \leq c/r^2$. Using $\phi = w \varphi^2 \eta^2$ as a test function for (7.16) we have for any $s' \in (s - \rho_2^2, s)$
\[
\int_{(B_{r^4/2}(z_0) \cap \Omega) \times (s - \rho_2^2, s')} w_\eta \varphi^2 \eta^2 \, dx \, dt + \int_{(B_{r^4/2}(z_0) \cap \Omega) \times (s - \rho_2^2, s')} A(x,t,\nabla w) (w \varphi^2 \eta^2) \, dx \, dt = 0.
\]

As above we also get
\[
\sup_{s' \in (s - \rho_2^2, s)} \int_{B_{r^4/2}(z_0)} w^2(s') \, dx + \int_{B_{r^4/2}(z_0) \times (s - \rho_2^2, s)} |\nabla w|^2 \, dx \, dt \leq c_{13} \left(\frac{1}{r^2} \int_{B_{r^4/2}(z_0) \times (s - \rho_2^2, s)} w^2 \, dx \, dt \right)^{\frac{2}{r+2}}.
\]

In particular, for $\rho_1 = \frac{1}{4}r$, $\rho_2 = \frac{1}{4}r$ and using (7.26) yield
\[
\int_{Q_{r^4/2}(z,s)} |\nabla w|^2 \, dx \, dt \leq c_{14} \left(\frac{1}{r^2} \int_{B_{r^4/2}(z_0) \times (s - r^2/4, s)} w^2 \, dx \, dt \right)^{\frac{2}{r+2}}, \tag{7.27}
\]

and $\rho_1 = (\frac{1}{4} + \frac{1}{10})r$, $\rho_2 = r$,
\[
\sup_{s' \in (s - r^2/4, s)} \int_{B_{r^4/2}(z_0)} w^2(s') \, dx \leq c_{15} \left(\frac{1}{r^2} \int_{B_{r^4/2}(z_0) \times (s - r^2/2, s)} w^2 \, dx \, dt \right)^{\frac{2}{r+2}}.
\]

Set $K_1 = \{w = 0\} \cap B_{r^4/2}(z_0)$ and $K_2 = \{w = 0\} \cap B_{r^4/2} \cap \Omega \cap B_{r^4/2}(z_0)$. Since $\mathbb{R}^N \setminus \Omega$ satisfies an uniformly 2-thick, we have the following estimates

\[
\text{Cap}_{2}(K_1, B_{r^4/2}(z_0)) \geq c_{16} r^{N-2} \quad \text{and} \quad \text{Cap}_{p_0}(K_2, B_{r^4/2}(z_0)) \geq c_{17} r^{N-p_0}.
\]

So, by Sobolev-Poincare’s inequality we get
\[
\int_{B_{r^4/2}(z_0)} w^2 \, dx \leq c_{17} r^2 \int_{B_{r^4/2}(z_0)} |\nabla w|^2 \, dx, \tag{7.28}
\]

75
Let us denote:
\[
\int_{B_{\frac{3}{4},(z_0)}} w^2 \, dx \, dt \leq c_{18} r^2 \left(\int_{B_{\frac{3}{4},(z_0)}} |\nabla w|^{p_0} \, dx \right) \leq c_{19} r^2 \left(\int_{B_{\frac{3}{4},(z_0)}} |\nabla w|^{p_0} \, dx \right)^{\frac{2}{p_0}}.
\]

and
\[
\sup_{s \in [s-r^2/4, s]} \int_{B_{\frac{3}{4},(z_0)}} w^2(s') \, dx \leq c_{20} \int_{B_{\frac{3}{4},(z_0)}} |\nabla w|^2 \, dx \, dt,
\]

(7.29)

and
\[
\int_{B_{\frac{3}{4},(z_0)}} w^2(t) \, dx \leq c_{21} r^{N+2} \left(\int_{B_{\frac{3}{4},(z_0)}} |\nabla w|^{p_0}(t) \, dx \right)^{\frac{2}{p_0}}.
\]

(7.30)

From (7.27), we have
\[
\int_{Q_{\frac{3}{4},(z,s)}} |\nabla w|^2 \, dx \, dt \leq c_{22} \left(\int_{B_{\frac{3}{4},(z_0)}} \sup_{s \in [s-r^2/4, s]} w^2(s') \, dx \right)^{1-\frac{p_0}{2}} \left(\int_{B_{\frac{3}{4},(z_0)}} w^2(t) \, dx \right)^{\frac{p_0}{2}} dt.
\]

Using (7.30), (7.29) and Holder’s inequality we get
\[
\int_{Q_{\frac{3}{4},(z,s)}} |\nabla w|^2 \, dx \, dt \leq c_{23} \left(\int_{Q_{\frac{3}{4},(z,s)}} |\nabla w|^2 \, dx \right)^{1-\frac{p_0}{2}} \left(\int_{Q_{\frac{3}{4},(z,s)}} |\nabla w|^{p_0} \, dx \right)^{\frac{p_0}{2}}
\]
\[
= c_{24} \left(\int_{Q_{\frac{3}{4},(z,s)}} |\nabla w|^2 \, dx \right)^{1-\frac{p_0}{2}} \left(\int_{Q_{\frac{3}{4},(z,s)}} |\nabla w|^{p_0} \, dx \right)^{\frac{p_0}{2}}
\]
\[
\leq c_{25} \left(\int_{Q_{\frac{3}{4},(z,s)}} |\nabla w|^2 \, dx \right)^{\frac{p_0}{2}} \left(\int_{Q_{\frac{3}{4},(z,s)}} |\nabla w|^{p_0} \, dx \right)^{\frac{p_0}{2}}.
\]

So we proved (7.22).

Therefore, By Gehring’s Lemma (see [60]) we get (7.19).

3. Now we prove (7.20). Let \(y \in \partial \Omega, \ Q_{\rho_1}(y, s) \subset Q_{\rho_2}(y, s) \subset Q_{\rho_0} \) with \(\rho_1 \leq \rho_2/4 \). First, we will show that there exists a constant \(\beta_1 = \beta_2(N, \Lambda_1, \Lambda_2, c_0) \in (0, 1/2] \) such that
\[
\text{osc}(w, Q_{\rho_1}(y, s)) \leq c_{26} \left(\frac{\rho_1}{\rho_2} \right)^{\beta_1} \text{osc}(w, Q_{\rho_2/2}(y, s)),
\]

(7.31)

where \(\text{osc}(w, A) = \sup_A w - \inf_A w \).

Indeed, since
\[
\int_0^1 \frac{\text{Cap}_{1,2}(\Omega^c \cap B_{r}(z), B_{2r}(z)) \, dr}{r^{N-2}} = +\infty \quad \forall z \in \partial \Omega.
\]

thus by the Wiener criterion (see [83]), we have \(w \) is continuous up to \(\partial \rho \Omega_{6R} \). So, we can choose \(\varphi = (V - M_{4\rho}) \eta^2 \in L^2(-\infty, T; H^1(\Omega \cap B_{6R}(x_0))) \) as test function in (7.16), where a. \(\eta \in C^\infty(Q_{4\rho_1}(y, s)), \ 0 \leq \eta \leq 1 \) such that \(\eta = 1 \) in \(Q_{\rho_1/2}(y, s - 4\rho_1^2) \), \(\supp(\eta) \subset Q_{\rho_1}(y, s - 4\rho_1^2) \) and \(|\nabla \eta| \leq c_{27}/\rho_1, \ |\eta| \leq c_{28}/\rho_1^2 \).
b. \(M_{4\rho_1} = \sup_{Q_{4\rho_1}(y,s)} w \) and \(V = \inf \{ M_{4\rho_1} - w, M_{4\rho_1} \} \) in \(\tilde{\Omega}_{6R} \), \(V = M_{4\rho_1} \) outside \(\tilde{\Omega}_{6R} \). We have

\[
\int_{\tilde{\Omega}_{6R}} w_t (V - M_{4\rho_1}) \eta^2 dxdt + \int_{\tilde{\Omega}_{6R}} 2\eta A(x, t, \nabla w) \nabla \eta (V - M_{4\rho_1}) dxdt + \int_{\tilde{\Omega}_{6R}} \eta^2 A(x, t, \nabla w) \nabla V dxdt = 0,
\]

which implies

\[
\int_{\tilde{\Omega}_{6R}} \eta^2 A(x, t, -\nabla V) (-\nabla V) dxdt = \int_{\tilde{\Omega}_{6R}} 2\eta A(x, t, -\nabla V) \nabla \eta (V - M_{4\rho_1}) dxdt
\]

\[- \int_{\tilde{\Omega}_{6R}} (V - M_{4\rho_1}) \partial_t (V - M_{4\rho_1}) \eta^2 dxdt. \]

Using (1.2) and (1.3) we get

\[
\Lambda_2 \int_{\tilde{\Omega}_{6R}} \eta^2 |\nabla V|^2 dxdt
\]

\[\leq 2\Lambda_1 \int_{\tilde{\Omega}_{6R}} \eta |\nabla V||\nabla \eta||V - M_{4\rho_1}| dxdt - \frac{1}{2} \int_{\tilde{\Omega}_{6R}} (V - M_{4\rho_1})^2 - M_{4\rho_1}^2 \eta^2 dxdt \]

\[\leq 2\Lambda_1 M_{4\rho_1} \int_{\tilde{\Omega}_{6R}} \eta |\nabla V||\nabla \eta| dxdt + 2M_{4\rho_1} \int_{\tilde{\Omega}_{6R}} \eta V|\eta| dxdt. \]

Since \(\text{supp}(|\nabla V|) \cap \text{supp}(\eta) \subset \tilde{\Omega}_{6R} \), thus

\[
\int_{\mathbb{R}^{N+1}} |\nabla (\eta V)|^2 dxdt \leq c_{29} M_{4\rho_1} \left(\int_{\mathbb{R}^{N+1}} \eta |\nabla V||\nabla \eta| dxdt + \int_{\mathbb{R}^{N+1}} V (|\eta| + |\nabla \eta|^2) dxdt \right)
\]

\[\leq c_{30} M_{4\rho_1} \left(\int_{\mathbb{R}^{N+1}} \eta |\nabla V||\nabla \eta| dxdt + \frac{1}{\rho_1^2} \int_{Q_{\rho_1}(y,s-4\rho_1^2)} V dxdt \right). \] (7.32)

By [50, Theorem 6.31, p. 132], for any \(\sigma \in (0, 1 + 2/N) \) there holds

\[
\left(\int_{Q_{\rho_1}(y,s-4\rho_1^2)} V^\sigma dxdt \right)^{1/\sigma} \leq c_{31} \inf_{Q_{\rho_1}(y,s)} V = c_{31} (M_{4\rho_1} - \sup_{Q_{\rho_1}(y,s)} w) = c_{31} (M_{4\rho_1} - M_{\rho_1}).
\] (7.33)

In particular,

\[
\frac{1}{\rho_1^2} \int_{Q_{\rho_1}(y,s-4\rho_1^2)} V dxdt \leq c_{32} \rho_1^N (M_{4\rho_1} - M_{\rho_1}).
\] (7.34)

We need to estimate \(\int_{\tilde{\Omega}_{6R}} \eta |\nabla V||\nabla \eta| dxdt \). Using Holder inequality and (7.33), for \(\varepsilon \in (0, \min\{2/N, 1\}) \) we have

\[
\int_{\tilde{\Omega}_{6R}} \eta |\nabla V||\nabla \eta| dxdt \leq \left(\int_{\tilde{\Omega}_{6R}} \eta^2 V^{-(1+\varepsilon)} |\nabla V|^2 dxdt \right)^{1/2} \left(\int_{\tilde{\Omega}_{6R}} V^{1+\varepsilon} |\nabla \eta|^2 dxdt \right)^{1/2}
\]

\[\leq c_{29} \left(\int_{\tilde{\Omega}_{6R}} \eta^2 V^{-(1+\varepsilon)} |\nabla V|^2 dxdt \right)^{1/2} \left(\int_{Q_{\rho_1}(y,s-4\rho_1^2)} V^{1+\varepsilon} dxdt \right)^{1/2}
\]

\[\leq c_{33} \left(\int_{\tilde{\Omega}_{6R}} \eta^2 V^{-(1+\varepsilon)} |\nabla V|^2 dxdt \right)^{1/2} \rho_1^{N/2} (M_{4\rho_1} - M_{\rho_1})^{(1+\varepsilon)/2}. \]
To estimate \(\left(\int_{\Omega_{\alpha n}} \eta^2 V^{-(1+\varepsilon)} |\nabla V|^2 \, dx \, dt \right)^{1/2} \), we can choose \(\varphi = \left((V + \delta)^{-\varepsilon} - (M_{4\rho_1} + \delta)^{-\varepsilon} \right) \eta^2 \), for \(\delta > 0 \), as test function in (7.16), we will get
\[
\int_{\Omega_{\alpha n}} \eta^2 (V + \delta)^{-\varepsilon} |\nabla V|^2 \, dx \, dt \\
\leq c_{34} \int_{\Omega_{\alpha n}} \eta (V + \delta)^{-\varepsilon} |\nabla V| |\nabla \eta| \, dx \, dt + c_{34} \int_{\Omega_{\alpha n}} \eta (V + \delta)^{1-\varepsilon} |\eta_t| \, dx \, dt.
\]

Thanks to Holder’s inequality, we obtain
\[
\int_{\Omega_{\alpha n}} \eta^2 (V + \delta)^{-\varepsilon} |\nabla V|^2 \, dx \, dt \\
\leq c_{35} \int_{\Omega_{\alpha n}} (V + \delta)^{1-\varepsilon} (\eta |\eta_t| + |\nabla \eta|^2) \, dx \, dt \\
\leq c_{36} \rho_1^2 \int_{Q_{\rho_1}(y, s-4\rho_1^2)} (V + \delta)^{1-\varepsilon} \, dx \, dt.
\]

Letting \(\delta \to 0 \) and using (7.33), we get
\[
\int_{\Omega_{\alpha n}} \eta^2 V^{-(1+\varepsilon)} |\nabla V|^2 \, dx \, dt \\
\leq c_{38} \rho_1^N (M_{4\rho_1} - M_{\rho_1}).
\]

Thus,
\[
\int_{\Omega_{\alpha n}} \eta |\nabla V| |\nabla \eta| \, dx \, dt \\
\leq c_{38} \rho_1^N (M_{4\rho_1} - M_{\rho_1}).
\]

Combining this with (7.32) and (7.34),
\[
\int_{\mathbb{R}^{N+1}} |\nabla (\eta V)|^2 \, dx \, dt \\
\leq c_{38} \rho_1^N M_{4\rho_1} (M_{4\rho_1} - M_{\rho_1}).
\]

Note that \(\eta V = M_{4\rho_1} \) in \((\Omega^c \cap B_{1/2}(y)) \times (s - \frac{9}{2} \rho_1^2, s - \frac{12}{4} \rho_1^2) \) thus
\[
\int_{\mathbb{R}^{N+1}} |\nabla (\eta V)|^2 \, dx \, dt \\
\leq \int_{s - \frac{9}{2} \rho_1^2}^{s - \frac{12}{4} \rho_1^2} \int_{\mathbb{R}^N} |\nabla (\eta V)|^2 \, dx \, dt \\
\geq \int_{s - \frac{9}{2} \rho_1^2}^{s - \frac{12}{4} \rho_1^2} M_{4\rho_1}^2 Cap_{1,2}(\Omega^c \cap B_{1/2}(y), B_{\rho_1}(y)) \, dt \\
\geq c_{40} M_{4\rho_1}^2 \rho_1^N.
\]

Here we used \(Cap_{1,2}(\Omega^c \cap B_{1/2}(y), B_{\rho_1}(y)) \geq c_{41} N - 2 \) in the last inequality. It follows
\[
M_{4\rho_1} \leq c_{41} (M_{4\rho_1} - M_{\rho_1}).
\]

So
\[
\sup_{Q_{\rho_1}(y, s)} w \leq \gamma \sup_{Q_{\rho_1}(y, s)} w \quad \text{where} \quad \gamma = \frac{c_{41}}{c_{41} + 1} < 1.
\]

Of course, above estimate is also true when we replace \(w \) by \(-w \). These give,
\[
osc(w, Q_{\rho_1}(y, s)) \leq \gamma osc(w, Q_{4\rho_1}(y, s)).
\]

It follows (7.31).
We come back the proof of (7.20).
Since \(w = 0 \) outside \(\Omega_T \) this leads to
\[
\left(\int_{Q_{\rho_1}(y, s)} |w|^2 \, dx \, dt \right)^{1/2} \leq c_{42} osc(w, Q_{\rho_2/2}(y, s)).
\]
On the other hand, By [50, Theorem 6.30, p. 132] we have
\[\sup_{Q_{\rho_2/2}(y,s)} w \leq c_{43} \left(\int_{Q_{\rho_2}(y,s)} (w^+)^2 dxdt \right)^{1/2} \]
and
\[\sup_{Q_{\rho_2/2}(y,s)} (-w) \leq c_{44} \left(\int_{Q_{\rho_2}(y,s)} (w^-)^2 dxdt \right)^{1/2}. \]

Thus, we get (7.20).

Next, we have (7.21) for case \(z = y \in \partial \Omega \) since from Caccioppoli’s inequality,
\[\int_{Q_{\rho_1}(z,s)} |\nabla w|^2 dxdt \leq \frac{c_{45}}{\rho_1^2} \int_{Q_{\rho_1}} |w|^2 dxdt, \]
and using Sobolev-Poincare’s inequality as in (7.28),
\[\int_{Q_{\rho_2}(z,s)} |w|^2 dxdt \leq c_{46} \rho_2^2 \int_{Q_{\rho_2}} |\nabla w|^2 dxdt. \]

We now prove (7.21). Take \(Q_{\rho_1}(z,s) \subset Q_{\rho_2}(z,s) \subset Q_{6R} \), it is enough to consider the case \(\rho_1 \leq \rho_2/2 \). Clearly, if \(B_{\rho_2/4}(z) \subset \Omega \) then (7.21) follows from (7.7) in Theorem 7.1. We consider \(B_{\rho_2/4}(z) \cap \partial \Omega \neq \emptyset \); let \(z_0 \in B_{\rho_2/4}(z) \cap \partial \Omega \) such that \(|z - z_0| = \text{dist}(z, \partial \Omega) \leq \rho_2/4 \). Obviously, if \(\rho_1 < |z - z_0|/4 \) and \(z \notin \Omega \), then (7.21) is trivial. If \(\rho_1 < |z - z_0|/4 \) and \(z \in \Omega \), then (7.21) follows from (7.7) in Theorem 7.1.

Now assume \(\rho_1 \geq |z - z_0|/4 \) then since \(Q_{\rho_1}(z,s) \subset Q_{5\rho_1}(z_0,s) \)
\[\left(\int_{Q_{\rho_1}(z,s)} |
abla w|^2 dxdt \right)^{1/2} \leq c_{47} \left(\int_{Q_{5\rho_1}(z_0,s)} |
abla w|^2 dxdt \right)^{1/2} \]
\[\leq c_{48} \left(\frac{\rho_1}{\rho_2} \right)^{\beta_2-1} \left(\int_{Q_{\rho_2/4}(z_0,s)} |
abla w|^2 dxdt \right)^{1/2}, \]
\[\leq c_{49} \left(\frac{\rho_1}{\rho_2} \right)^{\beta_1-1} \left(\int_{Q_{\rho_2/2}(z,s)} |
abla w|^2 dxdt \right)^{1/2}, \]
which implies (7.21).

Corollary 7.6 Suppose that \(\mathbb{R}^N \setminus \Omega \) satisfies uniformly 2–thick with constants \(c_0, r_0 \). Let \(\beta_2 \) be the constant in Theorem 7.5. For \(2 - \beta_2 < \theta < N + 2 \), there exists a constant \(C = C(N, \Lambda_1, \Lambda_2, \theta) > 0 \) such that for any \(B_\rho(y) \cap \partial \Omega \neq \emptyset, s \in (-T,T), 0 < \rho \leq r_0 \)
\[\int_{Q_{\rho}(y,s)} |\nabla u| dxdt \leq C \rho^{N+3-\theta} \left(\frac{T_0}{r_0} \right)^{N+3-\theta} + 1 \| M_\theta[\mu] \|_{L^\infty(\Omega \times (-T,T), \delta)} \], \hspace{1cm} (7.35) \]
where \(T_0 = \text{diam}(\Omega) + T^{1/2} \).

Proof. Take \(B_{\rho_2/4}(y) \cap \partial \Omega \neq \emptyset \) and \(s \in (-T,T), \rho_2 \leq 2r_0 \). Let \(y_0 \in B_{\rho_2/4}(y) \cap \partial \Omega \) such that \(|y - y_0| = \text{dist}(y, \partial \Omega) \leq \rho_2/4 \), thus \(Q_{\rho_2/4}(y,s) \subset Q_{\rho_2/2}(y_0,s) \) For any \(Q_{\rho_1}(y,s) \subset Q_{\rho_2}(y,s) \) with \(\rho_1 \leq \rho_2/4 \), we take \(w \) as in Theorem 7.5 with \(Q_6R = Q_{\rho_2/2}(y_0,s) \). Thus,
\[\int_{Q_{\rho_1}(y,s)} |\nabla w| dxdt \leq c_1 \left(\frac{\rho_1}{\rho_2} \right)^{N+\beta_1+1} \int_{Q_{\rho_2/4}(y,s)} |\nabla w| dxdt, \]
\[\int_{Q_{\rho_2/2}(y_0,s)} |\nabla u - \nabla w| dxdt \leq c_2 \rho_2 \| \mu \|_{L^\infty(Q_{\rho_2/2}(y_0,s))}. \]

As in the proof of Corollary 7.2, we get the result.

79
Lemma 7.7

Let $v = \nabla (A_{B_p}(t, \nabla v))$ in $\bar{\Omega}_p(0)$,
\[
\begin{align*}
 &v_t - \text{div} \left(A_{B_p}(t, \nabla v) \right) = 0 \text{ in } \bar{\Omega}_p(0), \\
 &v = w \quad \text{on } \partial_p \bar{\Omega}_p(0),
\end{align*}
\]
where $\bar{\Omega}_p(0) = (\Omega \cap B_p(0)) \times (t_0 - \rho^2, t_0)$ and $w = \text{constant}$.

Since $\rho < 1/2$ we have
\[
B_p^+ (0) \subset \Omega \cap B_p(0) \subset B_p(0) \cap \{y = (y_1, y_2, ..., y_N) : y_N > -2\rho/(1 - \delta)\},
\]
where $B_p^+ (0) := B_p(0) \cap \{y = (y_1, y_2, ..., y_N) : y_N > 0\}$.

Furthermore we consider the unique solution
\[
v \in C(t_0 - \rho^2, t_0; L^2(\Omega \cap B_p(0))) \cap L^2(t_0 - \rho^2, t_0; H^1(\Omega \cap B_p(0)))
\]
to the following equation
\[
\begin{align*}
 &v_t - \text{div} \left(A_{B_p}(0)(t, \nabla v) \right) = 0 \text{ in } \bar{\Omega}_p(0), \\
 &v = w \quad \text{on } \partial_p \bar{\Omega}_p(0),
\end{align*}
\]
where $\bar{\Omega}_p(0) = (\Omega \cap B_p(0)) \times (t_0 - \rho^2, t_0)$ and $w = \text{constant}$.
We put $v = w$ outside $\bar{\Omega}_p(0)$. As Lemma 7.3 we have the following Lemma.

Lemma 7.7 Let θ_2 be the constant in Theorem 7.5. There exists constants $C_1 = C_1(N, \Lambda_1, \Lambda_2)$, $C_2 = C_2(\Lambda_1, \Lambda_2)$ such that
\[
\frac{1}{2} \int_{Q_{\rho}(0,t_0)} |\nabla w| dx \leq C_1 |w|_{s_2} \quad \text{for all } w \in C_{s_2}^1(Q_{\rho}(0,t_0)) \cap C\left(0, t_0\right).
\]

We can see that if the boundary of Ω is bad enough, then the L^∞-norm of ∇v up to $\partial \Omega \cap B_p(0)$ could be unbounded. For our purpose, we will consider another equation:
\[
\begin{align*}
 &V_t - \text{div} \left(A_{B_p}(0)(t, \nabla V) \right) = 0 \text{ in } Q_p^+(0, t_0), \\
 &V = 0 \quad \text{on } T_p(0, t_0),
\end{align*}
\]
where $Q_p^+(0, t_0) = B_p^+ (0) \times (t_0 - \rho^2, t_0)$ and $T_p(0, t_0) = Q_p(0, t_0) \cap \{x_N = 0\}$.

A weak solution V of above problem is understood in the following sense: the zero extension of V to $Q_p(0, t_0)$ is in $V \in C(t_0 - \rho^2, t_0; L^2(B_p(0))) \cap L^2(T_p(0, t_0); H^1(B_p(0)))$ and for every $\varphi \in C_{s_2}^1(Q_p^+(0, t_0))$ there holds
\[
- \int_{Q_p^+(0, t_0)} V \varphi_t dx dt + \int_{Q_p^+(0, t_0)} A_{B_p}(0)(t, \nabla V) \varphi dx dt = 0.
\]

We have the following gradient L^∞ estimate up to the boundary for V.

80
Lemma 7.8 (see [48, 49]) For any weak solution $V \in C(t_0 - \rho^2, t_0; L^2(B_\rho^+(0)) \cap L^2_{\text{loc}}(t_0 - \rho^2, t_0; H^1(B_\rho^+(0)))$ of (7.41), we have
\[
||\nabla V||_{L^\infty(Q_{\rho/2}(0,t_0))} \leq C \int_{Q_{\rho/2}^+(0,t_0)} |\nabla V|^2 \, dx \, dt \quad 0 < \rho' \leq \rho.
\] (7.42)
for some constant $C = C(N, \Lambda_1, \Lambda_2) > 0$. Moreover, ∇V is continuous up to $T_\rho(0,t_0)$.

Lemma 7.9 If $V \in C(t_0 - \rho^2, t_0; L^2(B_\rho^+(0)) \cap L^2(t_0 - \rho^2, t_0; H^1(B_\rho^+(0)))$ is a weak solution of (7.41), then its zero extension from $Q_{\rho}^+(0,t_0)$ to $Q_\rho(0,t_0)$ solves
\[
V_t - \text{div} (\overline{A}_{B_\rho}(t, \nabla V)) = \frac{\partial F}{\partial x_N},
\] (7.43)
weakly in $Q_\rho(0,t_0)$, for $(x,t) = (x',x_N,t) \in Q_\rho(0,t_0)$,
\[
\overline{A}_{B_\rho}(0) = (\overline{A}_{B_\rho}(0), \overline{A}_{B_\rho}^2(0), \ldots, \overline{A}_{B_\rho}^N(0)), \quad F(x,t) = \chi_{\partial S_\rho} \cdot \overline{A}_{B_\rho}(0)(t, \nabla V(x',0,0)).
\]

Proof. Let $g \in C^\infty(\mathbb{R})$ with $g = 0$ on $(-\infty, 1/2)$ and $g = 1$ on $(1, \infty)$. Then, for any $\varphi \in C^\infty(Q_\rho(0,t_0))$ and $n \in \mathbb{N}$. We have $\varphi_n(x,t) = \varphi_n(x',x_N,t) = g(nx_N)\varphi(x,t) \in C^\infty(Q_{\rho}^+(0,t_0))$. Thus, we get
\[
\int_{Q_{\rho}^+(0,t_0)} V_t \varphi_n \, dx \, dt + \int_{Q_{\rho}^+(0,t_0)} \overline{A}_{B_\rho}(0)(t, \nabla V) \nabla (g(nx_N)\varphi(x,t)) \, dx \, dt = 0,
\]
which implies
\[
\int_{Q_{\rho}^+(0,t_0)} V_t \varphi_n \, dx \, dt + \int_{Q_{\rho}^+(0,t_0)} \overline{A}_{B_\rho}(0)(t, \nabla V) \nabla \varphi(x,t) g(nx_N) \, dx \, dt
\]
\[= - \int_0^\rho G(x_N) g'(nx_N) \, dx_N.
\]
where
\[
G(x_N) = \int_{0 - \rho}^{t_0} \int_{|x'| < \sqrt{\rho^2 - x_N^2}} \overline{A}_{B_\rho}(0)(t, \nabla V) \varphi(x',x_N,t) \, dx' \, dt \in C([0, \infty)).
\]
Letting $n \to \infty$ we get
\[
\int_{Q_{\rho}^+(0,t_0)} V_t \varphi \, dx \, dt + \int_{Q_{\rho}^+(0,t_0)} \overline{A}_{B_\rho}(0)(t, \nabla V) \nabla \varphi(x,t) \, dx \, dt = -G(0)
\]
\[= - \int_{Q_{\rho}^+(0,t_0)} F \frac{\partial \varphi}{\partial x_N} \, dx \, dt.
\]
Since $\nabla V = 0$, $V = 0$ outside Q_ρ^+, therefore we get the result.

We now consider a scaled version of equation (7.38)
\[
\begin{align*}
\left\{ \begin{array}{ll}
vt - \text{div} (\overline{A}_{B_\rho}(0)(t, \nabla v)) = 0 & \text{in } \tilde{\Omega}_1(0), \\
v = 0 & \text{on } \partial \tilde{\Omega}_1(0) \setminus (\Omega \times (-T,T)),
\end{array} \right.
\] (7.44)
under assumption
\[
B_\rho^+(0) \subset \Omega \cap B_1(0) \subset B_1(0) \cap \{x_N > -4\delta\}.
\] (7.45)

Lemma 7.10 For any $\varepsilon > 0$ there exists a small $\delta = \delta(N, \Lambda_1, \Lambda_2, \varepsilon) > 0$ such that if $v \in C(t_0 - 1, t_0; L^2(\Omega \cap B_1(0))) \cap L^2(t_0 - 1, t_0; H^1(\Omega \cap B_1(0)))$ is a solution of (7.44) and (7.45) is satisfied, then the bounded
\[
\int_{Q_1(0,t_0)} |\nabla v|^2 \, dx \, dt \leq 1,
\] (7.46)

\[
81
\]
then there exists a weak solution $V \in C(t_0 - 1, t_0; L^2(B^+_1(0))) \cap L^2(t_0 - 1, t_0; H^1(B^+_1(0)))$ of (7.41) with $\rho = 1$, whose zero extension to $Q_1(0, t_0)$ satisfies

$$\int_{Q_1(0, t_0)} |v - V|^2 dx dt \leq \varepsilon^2,$$

(7.47)

Proof. We argue by contradiction. Suppose that the conclusion was false. Then, there exist a constant $\varepsilon_0 > 0$, $t_0 \in \mathbb{R}$ and a sequence of nonlinearities $\{A_k\}$ satisfying (1.2) and (2.27), a sequence of domains $\{\Omega^k\}$, and a sequence of functions $\{v_k\} \subset C(t_0 - 1, t_0; L^2(\Omega^k \cap B_1(0))) \cap L^2(t_0 - 1, t_0; H^1(\Omega^k \cap B_1(0)))$ such that

$$B^+_1(0) \subset \Omega^k \cap B_1(0) \subset B_1(0) \cap \{x_N > -1/2k\},$$

(7.48)

$$\begin{aligned}
\{(v_k)_t - \text{div} (A_k, B_1(0)(t, \nabla v_k)) &= 0 \quad \text{in} \ \tilde{\Omega}^+_1(0), \\
v_k &= 0 \quad \text{on} \ \partial B_1(0) \setminus (\Omega^k \times (-T, T)),
\end{aligned}$$

(7.49)

and the zero extension of each v_k to $Q_1(0, t_0)$ satisfies

$$\int_{Q_1(0, t_0)} |\nabla v_k|^2 dx dt \leq 1 \quad \text{but}$$

$$\int_{Q_1(0, t_0)} |v_k - V_k|^2 dx dt \geq \varepsilon_0^2,$$

(7.50)

(7.51)

for any weak solution V_k of

$$\begin{aligned}
\{(V_k)_t - \text{div} (\tilde{A}_k, B_1(0)(t, \nabla V_k)) &= 0 \quad \text{in} \ Q^+_1(0, t_0), \\
V_k &= 0 \quad \text{on} \ T_1(0, t_0).
\end{aligned}$$

(7.52)

By (7.48) and (7.50) and Poincare’s inequality it follows that

$$\|v_k\|_{L^2(t_0 - 1, t_0; H^1(B_1(0)))} \leq c_1 \|\nabla v_k\|_{L^2(Q_1(0, t_0))} \leq c_2,$$

and

$$\|(v_k)_t\|_{L^2(t_0 - 1, t_0; H^{-1}(B_1(0)))} = \|\tilde{A}_k, Q_1(0, t_0)(\nabla v_k)\|_{L^2(t_0 - 1, t_0; H^{-1}(B_1(0)))}$$

$$\leq \int_{Q_1(0, t_0)} |\tilde{A}_k, B_1(0)(t, \nabla v_k)|^2 dx dt$$

$$\leq c_3 \int_{Q_1(0, t_0)} |\nabla v_k|^2 dx dt$$

$$\leq c_4.$$

Therefore, using Aubin–Lions Lemma, one can find v_0 and a subsequence, still denoted by $\{v_k\}$ such that

$$v_k \rightarrow v_0 \text{ weakly in } L^2(t_0 - 1, t_0, H^1(B_1(0))) \text{ and strongly in } L^2(t_0 - 1, t_0, L^2(B_1(0))),$$

and

$$\|(v_k)_t\|_{L^2(t_0 - 1, t_0, H^{-1}(B_1(0)))} \rightarrow \|(v_0)_t\| \quad \text{weakly in } L^2(t_0 - 1, t_0, H^{-1}(B_1(0))).$$

Moreover, $v_0 = 0$ in $Q^+_1(0, t_0) := (B_1(0) \cap \{x_N < 0\}) \times (1 - t_0)$ since $v_k = 0$ on outside $\Omega^k \cap Q_1(0, t_0)$ for all k.

To get a contradiction we take $V = v_0$ to be the unique solution of $(V_k)_t - \text{div} (\tilde{A}_k, B_1(0)(t, \nabla V_k)) = 0 \text{ in } Q^+_1(0, t_0)$ and $V_k - v_0 \in L^2(t_0 - 1, t_0, H^1_0(B^+_1(0)))$ and $V_k(t_0 - 1) = v_0(t_0 - 1)$. As above, one can find V_0 and a subsequence, still denoted by $\{V_k\}$ such that

$$V_k \rightarrow V_0 \text{ weakly in } L^2(t_0 - 1, t_0, H^1(B_1(0))) \text{ and strongly in } L^2(t_0 - 1, t_0, L^2(B_1(0))),$$

82
and
\[(V_k)_t \to (V_0)_t \text{ weakly in } L^2(t_0-1,t_0,H^{-1}(B_1)),\]
for some \(V_0 \in v_0 + L^2(t_0-1,t_0,H^1(B_1(0)))\) and \(V_0(t_0-1) = v_0(t_0-1)\).

Thanks to (7.51), the proof would be complete if we could show that \(v_0 = V_0\). In fact, let \(J_k : X \to L^2(Q^+_1(0,t_0),\mathbb{R}^N)\) determined by
\[J_k(\phi(x,t)) = \overline{A}_{k,B_1(0)}(t,\nabla \phi(x,t)) \quad \text{for any } \phi \in X,
\]
where \(X \subset L^2(t_0-1,t_0,H^1(B_1(0)))\) is closures (in the strong topology of \(L^2(t_0-1,t_0,H^1(B_1(0)))\)) of convex combinations of \(\{v_k\}_{k \geq 1} \cup \{V_k\}_{k \geq 1} \cup \{0\}\). Since \(v_k, V_k\) converge weakly to \(v_0, V_0\) in \(L^2(t_0-1,t_0,H^1(B_1(0)))\) resp., thus by Mazur Theorem, \(X\) is compact subset of \(L^2(t_0-1,t_0,H^1(B_1(0)))\) and \(v_0, V_0 \in X\). Thanks to (1.2) and (2.27), we get \(J_k(0) = 0\) and
\[||J_k(\phi_1) - J_k(\phi_2)||_{L^2(Q^+_1(0,t_0),\mathbb{R}^N)} \leq A_1||\phi_1 - \phi_2||_{L^2(t_0-1,t_0,H^1(B_1(0)))},
\]
for every \(\phi_1, \phi_2 \in X\) and \(k \in \mathbb{N}\). Thus, by Ascoli Theorem, there exist \(J \in C(X,L^2(Q^+_1(0,t_0),\mathbb{R}^N))\) and a subsequence of \(\{J_k\}\), still denote by it, such that
\[\sup_{\phi \in X} ||J_k(\phi) - J(\phi)||_{L^2(Q^+_1(0,t_0),\mathbb{R}^N)} \to 0 \text{ as } k \to \infty, \quad (7.53)
\]
and also for any \(\phi_1, \phi_2 \in X\),
\[\int_{Q^+_1(0,t_0)} (J(\phi_1) - J(\phi_2)) \cdot (\nabla \phi_1 - \nabla \phi_2) \, dx \, dt \geq A_2||\nabla \phi_1 - \nabla \phi_2||_{L^2(Q^+_1(0,t_0))}, \quad (7.54)
\]
From (7.48), we deduce
\[\int_{Q^+_1(0,t_0)} (v_k - V_k)_t (v_0 - V_0) \, dx \, dt
\]
\[+ \int_{Q^+_1(0,t_0)} (\overline{A}_{k,B_1}(0)(t,\nabla v_k) - \overline{A}_{k,B_1}(0)(t,\nabla V_k)) \cdot \nabla (v_0 - V_0) \, dx \, dt = 0.
\]
We have
\[\int_{Q^+_1(0,t_0)} |\overline{A}_{k,B_1}(0)(\nabla v_k)|^2 \, dx \, dt \leq c_9 \int_{Q^+_1(0,t_0)} |\nabla v_k|^2 \, dx \, dt \leq c_{10} \quad \text{and}
\]
\[\int_{Q^+_1(0,t_0)} |\overline{A}_{k,B_1}(0)(\nabla V_k)|^2 \, dx \, dt \leq c_9 \int_{Q^+_1(0,t_0)} |\nabla V_k|^2 \, dx \, dt \leq c_{11}.
\]
for every \(k\).

Thus there exists a subsequence, still denoted by \(\{\overline{A}_{k,B_1}(0)(t,\nabla v_k), \overline{A}_{k,B_1}(0)(t,\nabla V_k)\}\) and a vector field \(A_1, A_2\) belonging to \(L^2(Q^+_1(0,t_0),\mathbb{R}^N)\) such that
\[\overline{A}_{k,B_1}(0)(t,\nabla v_k) \to A_1 \quad \text{and} \quad \overline{A}_{k,B_1}(0)(t,\nabla V_k) \to A_2,
\]
weakly in \(L^2(Q^+_1(0,t_0),\mathbb{R}^N)\). It follows
\[\int_{Q^+_1(0,t_0)} (v_0 - V_0)_t (v_0 - V_0) \, dx \, dt + \int_{Q^+_1(0,t_0)} (A_1 - A_2) \cdot \nabla (v_0 - V_0) \, dx \, dt = 0.
\]
Since
\[\int_{Q^+_1(0,t_0)} (v_0 - V_0)_t (v_0 - V_0) \, dx \, dt = \int_{B^+_1(0)} (v_0 - V_0)^2(t_0) \, dx \geq 0,
\]
83
we get
\[
\int_{Q^+_1(0,t_0)} (A_1 - A_2) \nabla (v_0 - V_0) dx dt \leq 0. \tag{7.55}
\]

For our purpose, we need to show that
\[
\int_{Q^+_1(0,t_0)} (A_1 - J(v_0)) \nabla (v_0 - V_0) dx dt \geq 0 \quad \text{and} \quad \int_{Q^+_1(0,t_0)} (A_2 - J(V_0)) \nabla (V_0 - v_0) dx dt \geq 0. \tag{7.56, 7.57}
\]

To do this, we fix a function \(g \in X \) and any \(\varphi \in C^1_\infty (Q^+_1(0,t_0)) \) such that \(\varphi \geq 0 \). We have
\[
0 \leq \int_{Q^+_1(0,t_0)} \varphi (\mathcal{A}_{k,B}(t,t,v_k) - \mathcal{A}_{k,B}(t,t,g)) (\nabla v_k - \nabla g) dx dt
\]
\[
= \int_{Q^+_1(0,t_0)} \varphi \mathcal{A}_{k,B}(t,t,v_k) \nabla v_k dx dt - \int_{Q^+_1(0,t_0)} \varphi \mathcal{A}_{k,B}(t,t,v_k) \nabla g dx dt
\]
\[
- \int_{Q^+_1(0,t_0)} \varphi \mathcal{A}_{k,B}(t,t,g) (\nabla v_k - \nabla g) dx dt
\]
\[
:= B_1 + B_2 + B_3.
\]

It is easy to see that
\[
\lim_{k \to \infty} B_2 = - \int_{Q^+_1(0,t_0)} \varphi A_1 \nabla g dx dt \quad \text{and} \quad \lim_{k \to \infty} B_3 = - \int_{Q^+_1(0,t_0)} \varphi J(g) (\nabla v_0 - \nabla g) dx dt.
\]

Moreover, we have
\[
B_1 = - \int_{Q^+_1(0,t_0)} (v_k)_t \varphi v_k dx dt - \int_{Q^+_1(0,t_0)} \mathcal{A}_{k,Q}(v_k) \nabla \varphi v_k dx dt
\]
\[
= \frac{1}{2} \int_{Q^+_1(0,t_0)} v_k^2 \varphi_t dx dt - \int_{Q^+_1(0,t_0)} \mathcal{A}_{k,Q}(v_k) \nabla \varphi v_k dx dt.
\]

Thus,
\[
\lim_{k \to \infty} B_1 = \frac{1}{2} \int_{Q^+_1(0,t_0)} v_0^2 \varphi_t dx dt - \int_{Q^+_1(0,t_0)} A_1 \nabla \varphi v_0 dx dt
\]
\[
= - \int_{Q^+_1(0,t_0)} (v_0)_t \varphi v_0 dx dt - \int_{Q^+_1(0,t_0)} A_1 (\nabla (v_0)) dx dt + \int_{Q^+_1(0,t_0)} \varphi A_1 \nabla v_0 dx dt
\]
\[
= \int_{Q^+_1(0,t_0)} \varphi A_1 \nabla v_0 dx dt.
\]

Hence,
\[
0 \leq \int_{Q^+_1(0,t_0)} \varphi (A_1 - J(g)) (\nabla v_0 - \nabla g) dx dt
\]
holds for all \(\varphi \in C^1_\infty (Q^+_1(0,t_0)) \), \(\varphi \geq 0 \) and \(g \in X \). Now we choose \(g = v_0 - \xi(v_0 - V_0) = (1 - \xi)v_0 + \xi V_0 \in X \) for \(\xi \in (0,1) \), so
\[
0 \leq \int_{Q^+_1(0,t_0)} \varphi (A - J(v_0 - \xi(v_0 - V_0))) (\nabla v_0 - \nabla V_0) dx dt
\]
Letting $\xi \to 0^+$ and $\varphi \to \chi_{Q^+_1(0,t_0)}$, we get (7.56). Similarly, we also obtain (7.57). Thus,

$$
\int_{Q^+_1(0,t_0)} (A_1 - A_2) \nabla(v_0 - V_0) dxdt \geq \int_{Q^+_1(0,t_0)} (\mathcal{J}(v_0) - \mathcal{J}(V_0)) \nabla(v_0 - V_0) dxdt.
$$

Combining this with (7.54), (7.55) and Poincare’s inequality, we get (7.59).

Using (7.41), we can obtain

$$
\int_{Q^+_1(0,t_0)} \varphi \left(\frac{\partial F}{\partial x_N} \right) dxdt
$$

and a weak solution V. Given $\rho = 1$ such that

$$
\int_{Q^+_1(0,t_0)} |\nabla\varphi|^2 dxdt \leq 1,
$$

then there exists a weak solution $V \in C(t_0 - 1, t_0; L^2(B^+_1(0))) \cap L^2(t_0 - 1, t_0; H^1(B^+_1(0)))$ of (7.41) with $\rho = 1$, whose zero extension to $Q_1(0,t_0)$ satisfies

$$
\|\nabla V\|_{L^\infty(Q^{1/4}(0,t_0))} \leq C \quad \text{and}
$$

$$
\int_{Q_1/(4,0,t_0)} |\nabla\varphi - \nabla V|^2 dxdt \leq \varepsilon^2,
$$

for some $C = C(N, A_1, A_2) > 0$.

Proof. Given $\varepsilon \in (0,1)$ by applying Lemma 7.10 one finds a small $\delta = \delta(N, A_1, A_2, \varepsilon) > 0$ and a weak solution $V \in C(t_0 - 1, t_0; L^2(B^+_1(0))) \cap L^2(t_0 - 1, t_0; H^1(B^+_1(0)))$ of (7.41) with $\rho = 1$ such that

$$
\int_{Q_1/(0,t_0)} |v - V|^2 dxdt \leq \varepsilon^2,
$$

Using $\phi^2 V$ with $\phi \in C^\infty_0(B_1 \times (t_0 - 1, t_0))$, $0 \leq \phi \leq 1$ and $\phi = 1$ in $Q_{1/2}(0,t_0)$ as test function in (7.41), we can obtain

$$
\int_{Q_{1/2}(0,t_0)} |\nabla V|^2 dxdt \leq c_1 \int_{Q_1/(0,t_0)} |V|^2 dxdt.
$$

This implies

$$
\int_{Q_{1/2}(0,t_0)} |\nabla V|^2 dxdt \leq c_2 \int_{Q_1/(0,t_0)} (|v - V|^2 + |\nabla \varphi|^2) dxdt
$$

$$
\leq c_3 \int_{Q_1/(0,t_0)} (|v - V|^2 + |\nabla\varphi|^2) dxdt
$$

$$
\leq c_4,
$$

since (7.58), (7.61) and Poincare’s inequality. Thus, using Lemma 7.8 we get (7.59).

Next, we will prove (7.60). By Lemma 7.9, the zero extension of V to $Q_1(0,t_0)$ satisfies

$$
V_t - \text{div} \left(\overline{A}_{B_1(0)}(t, \nabla V) \right) = \frac{\partial F}{\partial x_N} \quad \text{in weakly} \quad Q_1(0,t_0).
$$

where $F(x,t) = \chi_{x_N < 0} \overline{A}_{B_1(0)}(t, \nabla V(x',0,t))$. Thus, we can write

$$
\int_{\hat{\Omega}_1(0,t_0)} (V - v) \varphi dxdt
$$

$$
+ \int_{\hat{\Omega}_1(0,t_0)} (\overline{A}_{B_1(0)}(t, \nabla V) - \overline{A}_{B_1(0)}(t, \nabla v)) \varphi dxdt = - \int_{\hat{\Omega}_1(0,t_0)} F \frac{\partial \varphi}{\partial x_N} dxdt,
$$

85
for any \(\varphi \in L^2(t_0 - 1, t_0, H^1_0(\Omega \cap B_4(0))) \).

We take \(\varphi = \phi^2 (V - v) \) where \(\varphi \in C_c^\infty (B_{1/4} \times (t_0 - (1/4)^2, t_0]) \), \(0 \leq \phi \leq 1 \) and \(\phi = 1 \) on \(Q_{1/8}(0, t_0) \), so

\[
\int_{\tilde{\Omega}_1(0, t_0)} \phi^2 (\overline{A}_{B_1(0)}(t, \nabla V) - \overline{A}_{B_1(0)}(t, \nabla v)) (\nabla V - \nabla v) \, dx \, dt \\
= -2 \int_{\tilde{\Omega}_1(0, t_0)} \phi (V - v) (\overline{A}_{B_1(0)}(t, \nabla V) - \overline{A}_{B_1(0)}(t, \nabla v)) \nabla \phi \, dx \, dt \\
- \int_{\tilde{\Omega}_1(0, t_0)} \phi^2 (V - v)_t (V - v) \, dx \, dt \\
- \int_{\tilde{\Omega}_1(0, t_0)} \phi^2 F \frac{\partial (V - v)}{\partial x_N} + 2\phi F (V - v) \frac{\partial \phi}{\partial x_N} \, dx \, dt.
\]

We can rewrite \(I_1 = I_2 + I_3 + I_4 \).

We see that

\[
I_1 \geq c_5 \int_{\tilde{\Omega}_1(0, t_0)} \phi^2 |\nabla V - \nabla v|^2 \, dx \, dt
\]

and using Holder's inequality

\[
|I_2| \leq c_6 \int_{\tilde{\Omega}_1(0, t_0)} \phi |V - v||\nabla V| + |\nabla v||\nabla \phi| \, dx \, dt \\
\leq \varepsilon_2 \int_{\tilde{\Omega}_1(0, t_0)} \phi^2 (|\nabla V|^2 + |\nabla v|^2) \, dx \, dt + c_7 \int_{\tilde{\Omega}_1(0, t_0)} |V - v|^2 |\nabla \phi|^2 \, dx \, dt.
\]

Similarly, we also have

\[
|I_4| \leq \varepsilon_2 \int_{\tilde{\Omega}_1(0, t_0)} \phi^2 (|\nabla V|^2 + |\nabla v|^2) \, dx \, dt + c_8(\varepsilon_2) \int_{\tilde{\Omega}_1(0, t_0)} |V - v|^2 |\nabla \phi|^2 \, dx \, dt \\
+ c_8(\varepsilon_2) \int_{\tilde{\Omega}_1(0, t_0)} |F|^2 \phi^2 \, dx \, dt,
\]

and

\[
I_3 \leq \int_{\tilde{\Omega}_1(0, t_0)} \phi \phi (V - v)^2 \, dx \, dt \leq c_9 \int_{\tilde{\Omega}_{1/4}(0, t_0)} |V - v|^2 \, dx \, dt.
\]

Hence,

\[
\int_{\tilde{\Omega}_{1/4}(0, t_0)} |\nabla V - \nabla v|^2 \\
\leq c_{10} \varepsilon_2 \int_{\tilde{\Omega}_{1/4}(0, t_0)} (|\nabla V|^2 + |\nabla v|^2) + c_{11}(\varepsilon_2) \int_{\tilde{\Omega}_{1/4}(0, t_0)} (|V - v|^2 + |F|^2) \\
\leq c_{12} \varepsilon_2 + c_{13}(\varepsilon_2) \left(\varepsilon_1^2 + \int_{\tilde{\Omega}_{1/4}(0, t_0) \cap \{-45 < x_N < 0\}} |\nabla V(x', 0, t)|^2 \, dx \, dt \right) \\
\leq c_{12} \varepsilon_2 + c_{14}(\varepsilon_2) \left(\varepsilon_1^2 + \delta \right).
\]

Finally, for any \(\varepsilon > 0 \) by choosing \(\varepsilon_2, \varepsilon_1 \) and \(\delta \) appropriately we get (7.60). This completes the proof of Lemma.

Lemma 7.12 For any \(\varepsilon > 0 \) there exists a small \(\delta = \delta(N, \Lambda_1, \Lambda_2, \varepsilon) > 0 \) such that if \(v \in C(t_0 - \rho^2, t_0; L^2(\Omega \cap B_{\rho}(0))) \cap L^2(t_0 - \rho^2, t_0; H^1(\Omega \cap B_{\rho}(0))) \) is a solution of

\[
\begin{aligned}
v_t - \text{div} (\overline{A}_{B_1(0)}(t, \nabla v)) &= 0 \text{ in } \tilde{\Omega}_\rho(0) \\
v &= 0 \text{ on } \partial_t \tilde{\Omega}_\rho(0) \setminus (\Omega \times (-T, T))
\end{aligned}
\]

(7.62)
and
\[B_p^+(0) \subset \Omega \cap B_{\rho}(0) \subset B_{\rho}(0) \cap \{ x_N > -4\rho\delta \}. \]
(7.63)
then there exists a weak solution \(V \in C(t_0 - \rho^2, t_0; L^2(B_p^+(0)) \cap L^2(t_0 - \rho^2, t_0; H^1(B_p^+(0))) \) of (7.41), whose zero extension to \(Q_1(0, t_0) \) satisfies
\[
\left\| \nabla V \right\|_{L^\infty(Q_{1/4}(0, t_0))} \leq C \int_{Q_{1/4}(0, t_0)} \left| \nabla v \right|^2 \, dx \, dt
\quad \text{and}
\frac{\int_{Q_{1/4}(0, t_0)} \left| \nabla v - \nabla V \right|^2 \, dx \, dt}{\varepsilon^2 \int_{Q_{1/4}(0, t_0)} \left| \nabla v \right|^2 \, dx \, dt}.
\]
(7.64)
for some \(C = C(N, \Lambda_1, \Lambda_2) > 0 \).

Proof. We set
\[
A(x, t, \xi) = A(\rho x, t_0 + \rho^2(t - t_0), \kappa \xi)/\kappa
\quad \text{and}
\tilde{v}(x, t) = v(\rho x, t_0 + \rho^2(t - t_0))/\rho \kappa
\]
where \(\kappa = \left(\frac{1}{\Omega_{1/4}(0, t_0)} \int_{Q_{1/4}(0, t_0)} \left| \nabla v \right|^2 \, dx \, dt \right)^{1/2} \). Then \(A \) satisfies conditions (1.2) and (2.27) with the same constants \(\Lambda_1 \) and \(\Lambda_2 \). We can see that \(\tilde{v} \) is a solution of
\[
\left\{ \begin{array}{ll}
\tilde{v}_t - \text{div} (\mathcal{A}_{B_1}(0)(t, \nabla \tilde{v})) = 0 & \text{in } \tilde{\Omega}_1^0(0) \\
\tilde{v} = 0 & \text{on } \left((\Omega^0 \cap B_1(0)) \times (t_0 - 1, t_0) \right) \cup \left((\Omega^0 \cap B_1(0)) \times \{ t = t_0 - 1 \} \right)
\end{array} \right.
\]
(7.66)
where \(\Omega^0 = \{ z = x/\rho : x \in \Omega \} \) and satisfies \(\int_{Q_{1/4}(0, t_0)} \left| \nabla \tilde{v} \right|^2 \, dx \, dt = 1 \). We also have
\[
B_p^+(0) \subset \Omega^0 \cap B_1(0) \subset B_1(0) \cap \{ x_N > -4\delta \}.
\]
Therefore, applying Lemma 7.11 for any \(\varepsilon > 0 \), there exist a constant \(\delta = \delta(N, \Lambda_1, \Lambda_2, \varepsilon) > 0 \) and \(\tilde{V} \) satisfies
\[
\left\| \nabla \tilde{V} \right\|_{L^\infty(Q_{1/4}(0, t_0))} \leq c_1 \quad \text{and} \quad \int_{Q_{1/4}(0, t_0)} \left| \nabla \tilde{v} - \nabla \tilde{V} \right|^2 \, dx \, dt \leq \varepsilon^2.
\]
We complete the proof by choosing \(V(x, t) = k\rho \tilde{V}(x/\rho, t_0 + (t - t_0)/\rho^2) \).

\section*{Lemma 7.13}
Let \(s_2 \) be as in Lemma 7.7. For any \(\varepsilon > 0 \) there exists a small \(\bar{\delta} = \delta(N, \Lambda_1, \Lambda_2, \varepsilon) > 0 \) such that the following holds. If \(\Omega \) is a \((\delta, R_0)\)-Reifenberg flat domain and \(u \in C(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega)) \) is a solution to equation (2.4) with \(\mu \in L^\infty(\Omega \times (-T, T)) \) and \(u(-T) = 0 \), for \(x_0 \in \partial \Omega \), \(-T < t_0 < T \) and \(0 < R < R_0/6 \) then there is a function \(V \in L^2(t_0 - (R/9)^2, t_0; H^1(B_{R/9}(x_0))) \) such that
\[
\left\| \nabla V \right\|_{L^\infty(Q_{s_2}(x_0, t_0))} \leq c \int_{Q_{s_2}(x_0, t_0)} \left| \nabla u \right| \, dx \, dt + \frac{\left| \mu \right|_{Q_{s_2}(x_0, t_0)}}{R^{N+1}}
\]
(7.67)
and
\[
\int_{Q_{s_2}(x_0, t_0)} \left| \nabla u - \nabla V \right| \, dx \, dt \leq c(\varepsilon + |A|_{s_2} \int_{Q_{s_2}(x_0, t_0)} \left| \nabla u \right| \, dx \, dt + c(\varepsilon + 1 + |A|_{s_2} \left| \mu \right|_{Q_{s_2}(x_0, t_0)})/R^{N+1},
\]
(7.68)
for some \(c = c(N, \Lambda_1, \Lambda_2) > 0 \).

Proof. Let \(x_0 \in \partial \Omega \), \(-T < t_0 < T \) and \(\rho = R(1 - \bar{\delta}) \), we may assume that \(0 \in \Omega \), \(x_0 = (0, \ldots, -\rho/(1 - \bar{\delta})) \) and
\[
B_{\rho}(0) \subset \Omega \cap B_{\rho}(0) \subset B_{\rho}(0) \cap \{ x_N > -4\rho\delta \}.
\]
(7.69)
We also have
\[
Q_{\rho/\delta}(x_0, t_0) \subset Q_{\rho/4}(0, t_0) \subset Q_{\rho}(0, t_0) \subset Q_{6\rho}(0, t_0) \subset Q_{6R}(x_0, t_0),
\] (7.70)
provided that \(0 < \delta < 1/625\).

Let \(w\) and \(v\) be in Theorem 7.5 and Lemma 7.7. By Lemma 7.12 for any \(\varepsilon > 0\) we can find a small positive \(\delta = \delta(N, \alpha, \beta, \varepsilon) < 1/625\) such that there is a function \(V \in L^2(t_0 - \rho^2, t_0; H^1(B_{\rho}(0))) \cap L^\infty(t_0 - \rho^2, t_0; W^{1, \infty}(B_{\rho}(0)))\) satisfying
\[
||\nabla V||_{L^\infty(Q_{\rho/\delta}(0, t_0))} \leq c_1 \int_{Q_{\rho}(0, t_0)} |\nabla v|^2 \, dx \, dt \quad \text{and} \quad \int_{Q_{\rho/\delta}(0, t_0)} |\nabla v - \nabla V|^2 \leq \varepsilon^2 \int_{Q_{\rho}(0, t_0)} |\nabla v|^2 \, dx \, dt.
\]

Then, by (7.40) in Lemma 7.7 and (7.19) in Theorem 7.5 and (7.70) we get
\[
||\nabla V||_{L^\infty(Q_{\rho/\delta}(x_0, t_0))} \leq c_2 \left(\int_{Q_{\rho}(0, t_0)} |\nabla w|^2 \, dx \, dt \right)^{1/2} \leq c_3 \int_{Q_{6R}(x_0, t_0)} |\nabla w| \, dx \, dt
\] (7.71)
and
\[
\int_{Q_{\rho/\delta}(0, t_0)} |\nabla v - \nabla V| \, dx \, dt \leq c_4 \varepsilon \left(\int_{Q_{\rho}(0, t_0)} |\nabla w|^2 \, dx \, dt \right)^{1/2} \leq c_5 \varepsilon \int_{Q_{6R}(x_0, t_0)} |\nabla w| \, dx \, dt.
\] (7.72)

Therefore, from (7.18) in Theorem 7.5 and (7.71) we get (7.67).

Now we prove (7.68), we have
\[
\int_{Q_{\rho/\delta}(0, t_0)} |\nabla u - \nabla V| \, dx \, dt \leq c_6 \int_{Q_{\rho/\delta}(0, t_0)} |\nabla v - \nabla V| \, dx \, dt \leq c_6 \int_{Q_{\rho/\delta}(0, t_0)} |\nabla u - \nabla w| \, dx \, dt + c_6 \int_{Q_{\rho/\delta}(0, t_0)} |\nabla w - \nabla v| \, dx \, dt + c_8 \int_{Q_{\rho/\delta}(0, t_0)} |\nabla v - \nabla V| \, dx \, dt.
\]

From Lemma 7.7 and Theorem 7.5 and (7.72) it follows that
\[
\int_{Q_{\rho/\delta}(0, t_0)} |\nabla u - \nabla w| \, dx \, dt \leq c_7 \frac{|\mu|(Q_{6R}(x_0, t_0))}{R^{N+1}},
\]
\[
\int_{Q_{\rho/\delta}(0, t_0)} |\nabla v - \nabla w| \, dx \, dt \leq c_8 [A]_{L^2}^{R_0} \int_{Q_{6R}(0, t_0)} |\nabla w| \, dx \, dt \leq c_9 [A]_{L^2}^{R_0} \int_{Q_{6R}(x_0, t_0)} |\nabla w| \, dx \, dt \leq c_{10} [A]_{L^2}^{R_0} \left(\int_{Q_{6R}(x_0, t_0)} |\nabla u| \, dx \, dt + \frac{|\mu|(Q_{6R}(x_0, t_0))}{R^{N+1}} \right),
\]
and
\[
\int_{Q_{\rho/\delta}(0, t_0)} |\nabla v - \nabla V| \, dx \, dt \leq c_{11} \varepsilon \int_{Q_{6R}(x_0, t_0)} |\nabla w| \, dx \, dt \leq c_{12} \varepsilon \left(\int_{Q_{6R}(x_0, t_0)} |\nabla u| \, dx \, dt + \frac{|\mu|(Q_{6R}(x_0, t_0))}{R^{N+1}} \right).
\]
8 Global Integral Gradient Bounds for Parabolic equations

8.1 Global estimates on 2-Capacity uniform thickness domains

We use the Theorem 7.1 and 7.5 to prove the following theorem.

Theorem 8.1 Suppose that \(\mathbb{R}^N \setminus \Omega\) satisfies uniformly 2-thick with constants \(c_0, r_0\). Let \(\theta_1, \theta_2\) be in Theorem 7.1 and 7.5. Set \(\theta = \min\{\theta_1, \theta_2\}\) and \(T_0 = \text{diam}(\Omega) + T^{1/2}\). Let \(Q = B_{\text{diam}(\Omega)}(x_0) \times (0, T)\) that contains \(\Omega_T\). Let \(B_1 = Q_{R_1}(y_0, so), B_2 = 4B_1 := Q_{AR_1}(y_0, so)\) for \(R_1 > 0\). For \(\mu \in \mathcal{M}_0(\Omega_T), \sigma \in \mathcal{M}_0(\Omega), \) set \(\omega = |\mu| + |\sigma| \otimes \delta_{\{t=0\}}\), there exist a distribution solution \(u\) of equation (2.4) with data \(\mu, u_0 = \sigma\) and constants \(C_1 = C_1(N, \Lambda_1, \Lambda_2, c_0, T_0/r_0), \epsilon_2 > 0, \epsilon_1 = \epsilon_1(N, \Lambda_1, \Lambda_2, c_0) > 0\) such that

\[
|M(\nabla u)| > \epsilon^{-1/\theta} \lambda, M_1[\omega] \leq \epsilon_{1, \theta} \lambda \cap Q \leq C_1 \epsilon_1 M(\nabla u) > \lambda \cap Q, \quad (8.1)
\]

for all \(\lambda > 0, \epsilon \in (0, \epsilon_1)\) and

\[
|M(\nabla u)| > \epsilon^{-1/\theta} \lambda, M_1[\nabla \omega] \leq \epsilon_{1, \theta} \lambda \cap B_1 \leq C_1 \epsilon_1 M(\nabla u) > \lambda \cap B_1, \quad (8.2)
\]

for all \(\lambda > \epsilon^{-1+\theta/2} |\nabla u| L_{1}(\Omega_T \cap B_2) R_{2}^{-N-2}, \epsilon \in (0, \epsilon_2)\) with \(R_2 = \inf \{r_0, R_1\}/16\). Moreover, if \(\sigma \in L^1(\Omega)\) then \(u\) is a renormalized solution.

Proof of Theorem 8.1. Let \(\{\mu_n\} \subset C^\infty_c(\Omega_T), \{\sigma_n\} \subset C^\infty_c(\Omega)\) be as in the proof of Theorem 2.1. We have \(|\mu_n| \leq \varphi_n * |\mu|\) and \(|\sigma_n| \leq \varphi_{1,n} * |\sigma|\) for any \(n \in \mathbb{N}\), \(\{\varphi_n\}, \{\varphi_{1,n}\}\) are sequences of standard mollifiers in \(\mathbb{R}^{N+1}, \mathbb{R}^N\), respectively.

Let \(u_n\) be solution of equation

\[
\begin{align*}
(u_n)_t - \text{div}(A(x, t, \nabla u_n)) &= \mu_n \quad \text{in } \Omega_T, \\
\frac{\partial u_n}{\partial \nu} &= 0 \quad \text{on } \partial \Omega \times (0, T), \\
\frac{\partial u_n}{\partial n}(0) &= \sigma_n \quad \text{in } \Omega.
\end{align*}
\]

By Proposition 3.5 and Theorem 3.6, there exists a subsequence of \(\{u_n\}\), still denoted by \(\{u_n\}\) converging to a distribution solution \(u\) of (2.4) with data \(\mu \in \mathcal{M}_0(\Omega_T)\) and \(u_0 = \sigma\) such that \(u_n \to u\) in \(L^s(0, T, W_0^{1,s}(\Omega))\) for any \(s \in \left[1, \frac{N+2}{N+1}\right]\) and if \(\sigma \in L^1(\Omega)\) then \(u\) is a renormalized solution.

By Remark 3.3 and Theorem 3.6, a sequence \(\{u_{n,m}\}\) of solutions to equations

\[
\begin{align*}
(u_{n,m})_t - \text{div}(A(x, t, \nabla u_{n,m})) &= \mu_{n,m} \quad \text{in } \Omega \times (-T, T), \\
u_{n,m} &= 0 \quad \text{on } \partial \Omega \times (-T, T), \\
u_{n,m}(-T) &= 0 \quad \text{on } \Omega,
\end{align*}
\]

converges to \(\chi_{\Omega_T} u_n\) in \(L^s(-T, T, W_0^{1,s}(\Omega))\) for any \(s \in \left[1, \frac{N+2}{N+1}\right]\), where \(\mu_{n,m} = (g_{n,m})_t + \chi_{\Omega_T} \mu_n\), \(g_{n,m}(x, t) = \sigma_n(x) \int_{-T}^t \varphi_{2,m}(s) ds\) and \(\{\varphi_{2,m}\}\) is a sequence of mollifiers in \(\mathbb{R}\).

Set

\[
\begin{align*}
E_{1, \varepsilon}^1 &= \{M(\nabla u) > \varepsilon^{-1/\theta} \lambda, M_1[\omega] \leq \varepsilon_{1, \theta} \lambda \cap Q, \\
E_{1, \varepsilon}^2 &= \{M(\nabla u) > \varepsilon^{-1/\theta} \lambda, M_1[\omega] \leq \varepsilon_{1, \theta} \lambda \cap B_1, \\
F_{1}^1 &= \{M(\nabla u) > \lambda \cap Q, \\
F_{1}^2 &= \{M(\nabla u) > \lambda \cap B_1, \\
&\text{for } \varepsilon \in (0, 1) \text{ and } \lambda > 0.
\end{align*}
\]

We verify that

\[
|E_{1, \varepsilon}^1| \leq c_1 |Q_{R_2}| \quad \forall \lambda > 0, \varepsilon \in (0, 1) \quad \text{and} \quad (8.4)
\]
\[|E_{\lambda,\varepsilon}^2| \leq c_2\varepsilon|\tilde{Q}_R| \quad \forall \lambda > \varepsilon^{-1+\frac{1}{2}}|\nabla u|_{L^1(\Omega_{r_0} \cap \Lambda)} R_2^{-N-2}, \varepsilon \in (0, 1) \quad (8.5) \]

for some \(c_1 = c_1(T_0/R_0), c_2 > 0 \) and \(R_3 = \inf\{r_0, T_0\}/16. \)

In fact, we can assume that \(E_{\lambda,\varepsilon}^1 \neq \emptyset \) so \((|\mu|(\Omega_T) + |\sigma|(\Omega)) \leq T_0^{N+1}\varepsilon^{-1+\frac{1}{2}}\lambda. \)

We have

\[|E_{\lambda,\varepsilon}^1| \leq \frac{c_3 c_4}{\varepsilon^{-1/\theta} \lambda} \int_{\Omega_T} |\nabla u| dxdt. \]

By Remark 3.2, \(\int_{\Omega_T} |\nabla u_n| dxdt \leq c_4 T_0 (|\mu|(\Omega_T) + |\sigma|(\Omega)) \) for all \(n. \) Letting \(n \to \infty \) we get

\[\int_{\Omega_T} |\nabla u| dxdt \leq c_4 T_0 (|\mu|(\Omega_T) + |\sigma|(\Omega)). \] Thus,

\[|E_{\lambda,\varepsilon}^1| \leq \frac{c_3 c_4}{\varepsilon^{-1/\theta} \lambda} \int_{\Omega_T} \chi_{B_2} |\nabla u| dxdt < c_2\varepsilon|\tilde{Q}_R|. \]

Hence, (8.4) holds with \(c_1 = c_5(T_0/R_0). \)

For any \(\lambda > \varepsilon^{-1+\frac{1}{2}}|\nabla u|_{L^1(\Omega_{r_0} \cap B_2)} R_2^{-N-2} \) we have

\[|E_{\lambda,\varepsilon}^2| \leq \frac{c_3}{\varepsilon^{-1/\theta} \lambda} \int_{\Omega_T} \chi_{B_2} |\nabla u| dxdt < c_2\varepsilon|\tilde{Q}_R|. \]

Hence, (8.5) holds.

Next we verify that for all \((x, t) \in Q \) and \(r \in (0, R_3] \) and \(\lambda > 0, \varepsilon \in (0, 1) \) we have \(\tilde{Q}_r(x, t) \cap Q \subset \tilde{F}_{\lambda}^1 \) if \(|E_{\lambda,\varepsilon}^1 \cap \tilde{Q}_r(x, t)| \geq c_6\varepsilon|\tilde{Q}_r(x, t)| \) where the constant \(c_6 \) does not depend on \(\lambda \) and \(\varepsilon. \)

Indeed, take \((x, t) \in Q \) and \(0 < r < R_3. \) Now assume that \(\tilde{Q}_r(x, t) \cap Q \cap (\tilde{F}_{\lambda}^1) \neq \emptyset \) and \(E_{\lambda,\varepsilon}^1 \cap \tilde{Q}_r(x, t) \neq \emptyset \) i.e., there exist \((x_1, t_1), (x_2, t_2) \in \tilde{Q}_r(x, t) \cap Q \) such that \(M(|\nabla u|)(x_1, t_1) \leq \lambda \) and \(M_{1[w]}(x_2, t_2) \leq \varepsilon^{-1+\frac{1}{2}}\lambda. \) We need to prove that

\[|E_{\lambda,\varepsilon}^1 \cap \tilde{Q}_r(x, t)| < c_6\varepsilon|\tilde{Q}_r(x, t)| \quad (8.6) \]

Obviously, we have for all \((y, s) \in \tilde{Q}_r(x, t) \) there holds

\[M(|\nabla u|)(y, s) \leq \max\{M \left(\chi_{\tilde{Q}_r(x, t)} \right) |\nabla u| \}(y, s), \lambda^N+2\lambda). \]

Leads to, for all \(\lambda > 0 \) and \(\varepsilon \in (0, \varepsilon_0) \) with \(\varepsilon_0 \leq 3^{-(N+2)\theta}, \)

\[E_{\lambda,\varepsilon}^1 \cap \tilde{Q}_r(x, t) = \{ M \left(\chi_{\tilde{Q}_r(x, t)} \right) |\nabla u| > \varepsilon^{-1/\theta} \lambda, M_{1[w]}(x) \leq \varepsilon^{-1+\frac{1}{2}}\lambda \} \cap Q \cap \tilde{Q}_r(x, t). \quad (8.7) \]

In particular, \(E_{\lambda,\varepsilon}^1 \cap \tilde{Q}_r(x, t) = \emptyset \) if \(\mathcal{B}_{4r}(x) \subset \Omega \). Thus, it is enough to consider the case \(\mathcal{B}_{4r}(x) \subset \Omega \) and \(\mathcal{B}_{4r}(x) \cap Q \neq \emptyset. \)

We consider the case \(\mathcal{B}_{4r}(x) \subset \Omega. \) Let \(w_{n,m} \) be as in Theorem 7.1 with \(Q_{2r} = Q_{4r}(x, t_0) \) and \(u = u_{n,m} \) where \(t_0 = \min\{t + 2r^2, T\}. \) We have

\[\int_{Q_{2r}(x, t_0)} |\nabla u_{n,m} - \nabla w_{n,m}| dxdt \leq c_7 \frac{|\mu_{n,m}|(Q_{4r}(x, t_0))}{p^{N+1}} \quad \text{and} \quad (8.8) \]

\[\int_{Q_{2r}(x, t_0)} |\nabla w_{n,m}|^\theta dxdt \leq c_8 \left(\int_{Q_{4r}(x, t_0)} |\nabla w_{n,m}| dxdt \right)^\theta. \quad (8.9) \]
From (8.7), we have
\[
|E^1_{\lambda, \varepsilon} \cap \tilde{Q}_r(x, t)| \leq \left(\int_{\tilde{Q}_r(x, t)} |\nabla u|dx dt \right)^{\theta} + c_{10} \varepsilon^{-\theta} |\tilde{Q}_r(x, t)| \left(\frac{\mu_{n,m}}{p^{N+1}} \right)^{\theta} + c_{10} \varepsilon^{1/\theta} |\tilde{Q}_r(x, t)| \left(\frac{\omega(Q_{4r}(x, t_0))}{p^{N+1}} \right)^{\theta} + c_{10} \varepsilon^{1/\theta} |\tilde{Q}_r(x, t)| \left(\frac{\omega(Q_{4r}(x, t_0))}{p^{N+1}} \right)^{\theta}.
\]

Thanks to (8.8) and (8.9) we can continue
\[
|E^1_{\lambda, \varepsilon} \cap \tilde{Q}_r(x, t)| \leq c_{10} \varepsilon^{-\theta} |\tilde{Q}_r(x, t)| \left(\int_{\tilde{Q}_r(x, t)} |\nabla u|dx dt \right)^{\theta} + c_{10} \varepsilon^{1/\theta} |\tilde{Q}_r(x, t)| \left(\frac{\mu_{n,m}}{p^{N+1}} \right)^{\theta} + c_{10} \varepsilon^{1/\theta} |\tilde{Q}_r(x, t)| \left(\frac{\omega(Q_{4r}(x, t_0))}{p^{N+1}} \right)^{\theta} + c_{10} \varepsilon^{1/\theta} |\tilde{Q}_r(x, t)| \left(\frac{\omega(Q_{4r}(x, t_0))}{p^{N+1}} \right)^{\theta}.
\]

Letting \(m \to \infty \) and \(n \to \infty \), we get
\[
|E^1_{\lambda, \varepsilon} \cap \tilde{Q}_r(x, t)| \leq c_{10} \varepsilon^{-\theta} |\tilde{Q}_r(x, t)| \left(\int_{\tilde{Q}_r(x, t)} |\nabla u|dx dt \right)^{\theta} + c_{10} \varepsilon^{1/\theta} |\tilde{Q}_r(x, t)| \left(\frac{\omega(Q_{4r}(x, t_0))}{p^{N+1}} \right)^{\theta} + c_{10} \varepsilon^{1/\theta} |\tilde{Q}_r(x, t)| \left(\frac{\omega(Q_{4r}(x, t_0))}{p^{N+1}} \right)^{\theta} + c_{10} \varepsilon^{1/\theta} |\tilde{Q}_r(x, t)| \left(\frac{\omega(Q_{4r}(x, t_0))}{p^{N+1}} \right)^{\theta}.
\]

Since, \(M(|\nabla u|)(x_1, t_1) \leq \lambda \) and \(M_1[\omega](x_2, t_2) \leq \varepsilon^{1-\theta/2} \lambda \) we have
\[
\int_{Q_{4r}(x, t_0)} |\nabla u|dx dt \leq \int_{\tilde{Q}_r(x, t)} |\nabla u|dx dt \leq \int_{\tilde{Q}_r(x_1, t_1)} |\nabla u|dx dt \leq |\tilde{Q}_r(x_1, t_1)| \lambda,
\]
and
\[
\omega(Q_{4r}(x, t_0)) \leq \omega(Q_{4r}(x, t)) \leq \omega(Q_{9r}(x_2, t_2)) \leq \varepsilon^{1-\theta/2} \lambda (9r)^{N+1}.
\]
Thus
\[
|E^1_{\lambda, \varepsilon} \cap \tilde{Q}_r(x, t)| \leq c_{11} \varepsilon |\tilde{Q}_r(x, t)|.
\]

Next, we consider the case \(B_{4r}(x) \cap \Omega \neq \emptyset \). Let \(x_3 \in \partial \Omega \) such that \(|x_3 - x| = \text{dist}(x, \partial \Omega) \). Let \(w_n \) be as in Theorem 7.5 with \(\Omega_{6r} = \Omega_{16r}(x_3, t_0) \) and \(u = u_{n,m} \) where \(t_0 = \min\{t + 2r^2, T\} \). We have \(Q_{12r}(x, t_0) \subset Q_{16r}(x_3, t_0) \)
\[
\int_{Q_{12r}(x, t_0)} |\nabla u_{n,m} - \nabla w_n| dx dt \leq c_{12} \frac{\mu_{n,m}}{p^{N+1}} \left(\Omega_{16r}(x_3, t_0) \right)^{\theta} \text{ and}
\]
\[
\left(\int_{Q_{12r}(x, t_0)} |\nabla w_n|^a dx dt \right)^{\frac{1}{a}} \leq c_{13} \int_{Q_{12r}(x, t_0)} |\nabla w_n| dx dt.
\]
As above we also obtain

\[|E_{\lambda,\varepsilon} \cap \tilde{Q}_r(x, t)| \leq c_{14} \varepsilon \lambda^{-\theta} |\tilde{Q}_r(x, t)| \left(\int_{\tilde{Q}_{2r}(x, t_0)} |\nabla u| dx dt \right)^{\theta/2} + c_{14} \varepsilon \lambda^{-\theta} |\tilde{Q}_r(x, t)| \left(\frac{\omega(Q_{16r}(x_3, t_0))}{r^{N+1}} \right)^{\theta/2} + c_{14} \varepsilon^{1/2} \lambda^{-1} |\tilde{Q}_r(x, t)| \left(\frac{\omega(Q_{16r}(x_3, t_0))}{r^{N+1}} \right). \]

Since, \(M(\|\nabla u\|(x_1, t_1)) \leq \lambda \) and \(M_1(\|\omega\|(x_2, t_2)) \leq \varepsilon^{1/2} \lambda \) we have

\[\int_{\tilde{Q}_{2r}(x_3, t_0)} |\nabla u| dx dt \leq \int_{\tilde{Q}_{2r}(x_3, t_0)} |\nabla u| dx dt \leq \int_{\tilde{Q}_{25r}(x_1, t_1)} |\nabla u| dx dt \leq |\tilde{Q}_{25r}(x_1, t_1)| \lambda \]

and

\[\omega(Q_{16r}(x_3, t_0)) \leq \omega(Q_{32r}(x_3, t)) \leq \omega(Q_{31r}(x, t)) \leq \omega(Q_{37r}(x_2, t_2)) \leq \varepsilon^{1/2} \lambda (37r)^{N+1}. \]

Thus

\[|E_{\lambda,\varepsilon} \cap \tilde{Q}_r(x, t)| \leq c_{15} \varepsilon |\tilde{Q}_r(x, t)|. \]

Hence, (8.6) holds with \(c_0 = 2 \max\{c_{11}, c_{15}\} \).

Similarly, we also prove that for all \((x, t) \in B_l \) and \(r \in (0, R_2) \) and \(\lambda > 0, \varepsilon \in (0, 1) \) we have \(\tilde{Q}_r(x, t) \cap B_l \leq F_\lambda^2 \) if \(|E_{\lambda,\varepsilon} \cap \tilde{Q}_r(x, t)| \geq c_{16} \varepsilon |\tilde{Q}_r(x, t)| \) where a constant \(c_{26} \) does not depend on \(\lambda \) and \(\varepsilon \). Now, choose \(\varepsilon_1 = (2 \max\{1, c_1, c_6\})^{-1} \) and \(\varepsilon_2 = (2 \max\{1, c_2, c_16\})^{-1} \). We apply Lemma 3.21 with \(E = \tilde{E}_{\lambda,\varepsilon, l}, F = \tilde{F}_\lambda, \) and \(\varepsilon \) is replaced by \(\max\{c_1, c_6, \varepsilon\} \) for any \(0 < \varepsilon < \varepsilon_1 \) and \(\lambda > 0 \) we get (8.1), for \(E = \tilde{E}_{\lambda,\varepsilon, l}, F = \tilde{F}_\lambda, \) and \(\varepsilon \) is replaced by \(\max\{c_1, c_6, \varepsilon\} \) for any \(0 < \varepsilon < \varepsilon_2 \) and \(\lambda > \varepsilon^{1/2} \lambda(37r)^{N+1} \).

This completes the proof of the Theorem. ■

Proof of Theorem 2.17. By theorem 8.1, there exist constants \(c_1 > 0, 0 < \varepsilon_0 < 1 \) and a renormalized solution \(u \) of equation (2.4) with data \(\mu, u_0 = \sigma \) such that for any \(\varepsilon \in (0, 1), \lambda > 0 \)

\[|\{ M(\|\nabla u\| > \varepsilon^{-1/2} \lambda, M_1(\|\omega\| \leq \varepsilon^{1/2} \lambda) \cap Q \} | \leq c_1 \varepsilon |\{ M(\|\nabla u\| > \lambda) \cap Q \} |. \]

Therefore, if \(0 < s < \infty \)

\[||M(\|\nabla u\|)||_{L^{p}(Q)} = \varepsilon^{s/2} \int_{0}^{\infty} \lambda^{s} \{ \{ (x, t) \in Q : M(\|\nabla u\|) > \varepsilon^{-1/2} \lambda \} \}^{s} \frac{d\lambda}{\lambda} \]

\[\leq c_{1} \varepsilon^{s/2} \int_{0}^{\infty} \lambda^{s} \{ \{ (x, t) \notin Q : M(\|\nabla u\|) > \lambda \} \}^{s} \frac{d\lambda}{\lambda} \]

\[+ \varepsilon^{s/2} \int_{0}^{\infty} \lambda^{s} \{ \{ (x, t) \notin Q : M_1(\|\omega\| | Q) > \varepsilon^{1/2} \lambda \} \}^{s} \frac{d\lambda}{\lambda} \]

\[= c_{1} \varepsilon^{s/2} \int_{0}^{\infty} \lambda^{s} ||M(\|\nabla u\|)||_{L^{p}(Q)}^{0} + \varepsilon^{s} ||M_1(\|\omega\| ||_{L^{p}(Q)}^{0}). \]

Since \(p < \theta \), we can choose \(0 < \varepsilon < \varepsilon_0 \) such that \(c_1 \varepsilon^{s/2} \int_{0}^{\infty} \lambda^{s} \leq 1/2 \) we get the result for case \(0 < s < \infty \). Similarly, we also get the result for case \(s = \infty \).

Also, we get (2.29) by using (4.16) in Proposition 4.8, (4.28) in Proposition 4.19. This completes the proof. ■

Remark 8.2 Thanks to Proposition 4.4 we have for any \(s \in \left(\frac{N+2}{N+1}, \frac{N+2+\theta}{N+2} \right) \) if \(\mu \in L_{\frac{r_{0}}{N+1}}^{(\infty)}(Q) \) and \(\sigma \equiv 0 \) then

\[|||\nabla u|||_{L_{\frac{r_{0}}{N+1}}^{(\infty)}(Q)} \leq c_2 |||\mu|||_{L_{\frac{r_{0}}{N+1}}^{(\infty)}(Q)} \],

where constant \(c_2 \) depends on \(N, \Lambda_1, \Lambda_2, s, \varepsilon_0, T_0/r_0 \).

As the proof of Theorem 8.1, we also get

92
Theorem 8.3 Suppose that $\mathbb{R}^N \setminus \Omega$ satisfies uniformly 2-thick with constants c_0, r_0. Let θ be as in Theorem 8.1. Let $1 \leq p < \theta$, $0 < s \leq \infty$ and $\mu \in \mathcal{M}_0(\Omega_T)$, $\sigma \in \mathcal{M}_0(\Omega)$, set $\omega = |\mu| + |\sigma| \otimes \delta_{t=0}$. There exist $C_1 = C_1(N, \Lambda_1, \Lambda_2, p, c_0) > 0$ and a distribution solution u of equation (2.4) with data μ and $u_0 = \sigma$ such that

$$
\|M(\chi_{\tilde{Q}_R(y_0,s_0)} \nabla u)\|_{L^{p-\gamma}(\tilde{Q}_R(y_0,s_0))} \leq C_1 R^{N-\frac{2}{p}} \inf \{r_0, R\}^{-\gamma} \|\nabla u\|_{L^1(\tilde{Q}_4R(y_0,s_0))}^N \|M_1(\chi_{\tilde{Q}_4R(y_0,s_0)} \omega)\|_{L^{p-\gamma}(\tilde{Q}_4R(y_0,s_0))},
$$

(8.10)

for any $\tilde{Q}_R(y_0,s_0) \subset \mathbb{R}^{N+1}$ and if $\sigma \in L^1(\Omega)$ then u is a renormalized solution.

Proof of Theorem 2.19. Let $\{u_{n,m}\}$ and $\mu_{n,m}$ be in the proof of Theorem 8.1. From Corollary 7.2 and 7.6 we assert: for $2 - \inf \{\beta_1, \beta_2\} < \gamma < N + 2$, there exists a constant $C = C(N, \Lambda_1, \Lambda_2, \rho, c_0, \gamma) > 0$ such that for any $0 < \rho \leq T_0$

$$
\int_{Q_{\rho}(y,s)} |\nabla u_{n,m}| dx dt \leq C(N, \Lambda_1, \Lambda_2, \gamma, c_0, T_0/r_0) \rho^{N+3-\gamma} \|\mu_{n,m}\|_{L^\infty(\Omega \times (0,T))},
$$

where β_1, β_2 are constants in Theorem 7.1 and Theorem 7.5. It is easy to see that

$$
\|\mu\|_{L^\infty(\Omega \times (0,T))} \leq \|\mu\|_{L^\infty(\Omega \times (0,T))} = \|\mu\|_{L^\infty(\Omega_T)},
$$

for any n, m large enough.

Letting $m \to \infty, n \to \infty$, yield

$$
\int_{Q_{\rho}(y,s)} |\nabla u| dx dt \leq C(N, \Lambda_1, \Lambda_2, \gamma, c_0, T_0/r_0) \rho^{N+3-\gamma} \|\mu\|_{L^\infty(\Omega_T)}
$$

By Theorem 8.3 we get

$$
\|\nabla u\|_{L^{p-\gamma}(\tilde{Q}_R(y_0,s_0) \cap \Omega_T)} \leq c_1(T_0/r_0) R^{\frac{2}{p} + \gamma - 1} \|\mu\|_{L^\infty(\Omega_T)}
$$

(8.11)

and

$$
R^{\frac{2}{p} + (\gamma - 1)p - N - 2} \|\mu\|_{L^{p-\gamma}(\tilde{Q}_R(y_0,s_0) \cap \Omega_T)} \leq c_2 \|\mu\|_{L^\infty(\Omega_T)}
$$

(8.12)

for any $\tilde{Q}_R(y_0,s_0) \subset \mathbb{R}^{N+1}$ and $0 < R \leq T_0$. It follows (2.30).

Finally, if $\mu \in L^1_{\ast}(\{\gamma\}^{\frac{1}{p} - 1}, \gamma - 1)^{\gamma - 1} R^{\ell_p(\Omega_T)}$ and $\sigma \equiv 0$, then clearly u is a unique renormalized solution. It suffices to show that

$$
\|\mu\|_{L^\infty(\Omega_T)} \leq c_3 \|\mu\|_{L^\infty(\Omega_T)}
$$

(8.13)

for any $\tilde{Q}_R(y_0,s_0) \subset \mathbb{R}^{N+1}$ and $0 < R \leq T_0$, where $c_3 = c_3(N, \Lambda_1, \Lambda_2, p, s, \gamma, c_0, T_0/r_0)$.

In fact, for $0 < \rho < T_0$ and $(x,t) \in \Omega_T$ we have

$$
\|\mu\|_{L^\infty(\Omega_T)} \leq c_4 \rho^{\frac{(\gamma - 1)p - N - 2}{p}} \|\mu\|_{L^{\frac{(\gamma - 1)p}{r}}(\tilde{Q}_\rho(x,t) \cap \Omega_T)}
$$

(8.14)

$$
\|\mu\|_{L^\infty(\Omega_T)} \leq c_4 \rho^{\frac{(\gamma - 1)p - N - 2}{p}} (\tilde{Q}_\rho(x,t) \cap \Omega_T)^{-1 + \frac{2}{\gamma - 1}} \|\mu\|_{L^{\frac{(\gamma - 1)p}{r}}(\tilde{Q}_\rho(x,t) \cap \Omega_T)}
$$

(8.15)

$$
\|\mu\|_{L^\infty(\Omega_T)} \leq c_5 \frac{|\tilde{Q}_\rho(x,t) \cap \Omega_T|}{\rho^{\gamma - 1}}
$$
which obviously implies (8.11).

Next, we note that
\[M_1 [\chi_{\bar{Q}_R(y_0, s_0)} | \mu |] \leq c_0 \left(M \left(\chi_{\bar{Q}_R(y_0, s_0)} | \mu | \right) (x, t) \right)^{1 - \frac{1}{p}} \left(\frac{\| \mu \|^p}{L_*} \right)^{\frac{1}{p}} (\bar{Q}_R(y_0, s_0)). \]

We derive
\[\frac{R^{(\gamma - 1) - N - 2}}{p} \left\| |M_1 [\chi_{\bar{Q}_R(y_0, s_0)} | \mu |] \|_{L^p} \right\|_{(\bar{Q}_R(y_0, s_0))} \]
\[\leq c_0 \frac{R^{(\gamma - 1) - N - 2}}{p} \left\| M \left(\chi_{\bar{Q}_R(y_0, s_0)} | \mu | \right) \right\|^{1 - \frac{1}{p}} (\bar{Q}_R(y_0, s_0)) \left(\frac{\| \mu \|^p}{L_*} \right)^{\frac{1}{p}} \left(\bar{Q}_R(y_0, s_0) \right). \]

Here we used the boundedness property of M in $L^{\frac{p(\gamma - 1)}{p - 1} (\mathbb{R}^{N+1})}$ for $\frac{(\gamma - 1) p}{\gamma} > 1$. Therefore, immediately we get (8.12). This completes the proof of theorem.

8.2 Global estimates on Reifenberg flat domains

Now we prove results for Reifenberg flat domain. First, we will use Lemma 7.4, 7.13 and Lemma 3.19 to get the following result.

Theorem 8.4 Suppose that A satisfies (2.27). Let s_1, s_2 be in Lemma 7.3 and 7.7, set $s_0 = \max\{s_1, s_2\}$. Let $w \in A_{\infty}$, $\mu \in \mathcal{M}(\Omega_T)$, $\sigma \in \mathcal{M}(\Omega)$, set $\omega = |\mu| + |\sigma| \circ \delta_{t=0}$. There exists a distribution solution of (2.4) with data μ and $u_0 = \sigma$ such that following holds. For any $\varepsilon > 0$, $R_0 > 0$ one finds $\delta_1 = \delta_1(N, A_1, \Lambda_2, \varepsilon, |w|_{A_{\infty}}) \in (0, 1)$ and $\delta_2 = \delta_2(N, A_1, \Lambda_2, \varepsilon, |w|_{A_{\infty}}, T_0/R_0) \in (0, 1)$ and $\Lambda = \Lambda(N, A_1, \Lambda_2) > 0$ such that if Ω is (δ_1, R_0)-Reifenberg flat domain and $|A|_{R_0} \leq \delta_1$ then
\[w(\mathcal{M}(\Omega_T)) > \Lambda \lambda, M_1 [\omega] \leq \delta_2 \lambda \cap \Omega_T \leq B \varepsilon w(\mathcal{M}(\Omega_T)) \cap \Omega_T \] (8.13)
for all $\lambda > 0$, where the constant B depends only on $N, A_1, \Lambda_2, T_0/R_0, |w|_{A_{\infty}}$.

Furthermore, if $\sigma \in L^1(\Omega)$ then u is a renormalized solution.

Proof. Let $\{u_n\}, \{\sigma_n\}, \{\mu_n, m\}, \{u_0, \}, \{u_{n, n, 0}\}, u$ be as in the proof of Theorem 8.1. Let ε be in $(0, 1)$. Set $E_{\lambda, \delta_2} = \mathcal{M}(\Omega_T) > \Lambda \lambda, M_1 [\omega] \leq \delta_2 \lambda \cap \Omega_T$ and $F_\lambda = \mathcal{M}(\Omega_T) > \Lambda \lambda \cap \Omega_T$ for $\varepsilon \in (0, 1)$ and $\lambda > 0$. Let $\{y_i\}_{i=1}^L \subset \Omega$ and a ball B_0 with radius $2T_0$ such that
\[\Omega \subset \bigcup_{i=1}^L B_{r_0}(y_i) \subset B_0 \]
where $r_0 = \min\{T_0/1080, T_0\}$. Let $s_j = T - j r_0^2/2$ for all $j = 0, 1, \ldots, [\frac{2T}{r_0^2}]$ and $Q_{2T_0} = B_0 \times (T - 4T_0^2, T)$. So,
\[\Omega_T \subset \bigcup_{i,j} Q_{r_0}(y_i, s_j) \subset Q_{2T_0}. \]

We verify that
\[w(E_{\lambda, \delta_2}) \leq \varepsilon w(Q_{r_0}(y_i, s_j)) \forall \lambda > 0 \] (8.14)
for some δ_2 small enough, depended on $n, p, A, B, \varepsilon, |w|_{A_{\infty}}, T_0/R_0$.

In fact, we can assume that $E_{\lambda, \delta_2} \neq \emptyset$ so $|\mu|(|\Omega_T| + |\sigma||| \leq T_0^{N+1} \delta_2 \lambda$. We have
\[|E_{\lambda, \delta_2}| \leq \frac{c_1}{\Lambda \lambda} \int_{\Omega_T} |\nabla u| dx dt. \]
We also have
\[
\int_{\Omega_T} |\nabla u| dx dt \leq c_2 T_0 (|\mu|(|\Omega_T|) + |\sigma|(|\Omega|)).
\]
Thus,
\[
|E_{\lambda,\delta}| \leq \frac{c_3}{\Lambda^2} T_0 (|\mu|(|\Omega_T|) + |\sigma|(|\Omega|)) \leq \frac{c_3}{\Lambda^2} T_0^{N+2} \delta_2 \lambda = c_4 \delta_2 |Q_{2T_0}|.
\]
which implies
\[
w(E_{\lambda,\delta}) \leq A \left(\frac{|E_{\lambda,\delta}|}{|Q_{2T_0}|} \right)^\nu w(Q_{2T_0}) \leq A (c_4 \delta_2)^\nu w(Q_{2T_0})
\]
where \((A, \nu)\) is a pair of \(A_\infty\) constants of \(w\). It is known that (see, e.g [33]) there exist \(A_1 = A_1(N, A, \nu)\) and \(\nu_2 = \nu_2(N, A, \nu)\) such that
\[
\frac{w(Q_{2T_0})}{w(Q_{\rho_0}(y_i, s_j))} \leq A_1 \left(\frac{|Q_{2T_0}|}{|Q_{\rho_0}(y_i, s_j)|} \right)^{\nu_1} \forall i, j.
\]
So,
\[
w(E_{\lambda,\delta}) \leq A (c_4 \delta_2)^\nu A_1 \left(\frac{|Q_{2T_0}|}{|Q_{\rho_0}(y_i, s_j)|} \right)^{\nu_1} w(Q_{\rho_0}(y_i, s_j)) < \varepsilon w(Q_{\rho_0}(y_i, s_j)) \forall i, j
\]
where \(\delta_2 \leq \left(\frac{2c_3 (T_0 r_0 \varepsilon^{1/(N+2)\nu_1})}{\varepsilon^{1/(N+2)}} \right)^{1/\nu}\). It follows (8.14).

Next we verify that for all \((x, t) \in \Omega_T\) and \(r \in [0, 2r_0]\) and \(\lambda > 0\) we have \(\bar{Q}_r(x, t) \cap \Omega_T \subset F_\lambda\)
if \(w(E_{\lambda,\delta} \cap \bar{Q}_r(x, t)) \geq \varepsilon w(Q_r(x, t))\) for some \(\delta_2 \leq \left(\frac{2c_3 (T_0 r_0 \varepsilon^{1/(N+2)\nu_1})}{\varepsilon^{1/(N+2)}} \right)^{1/\nu}\).

Indeed, take \((x, t) \in \Omega_T\) and \(0 < r \leq 2r_0\). Now assume that \(\bar{Q}_r(x, t) \cap \Omega_T \cap F_\lambda \neq \emptyset\) and \(E_{\lambda,\delta} \cap \bar{Q}_r(x, t) \neq \emptyset\) i.e there exist \((x_1, t_1), (x_2, t_2) \in \bar{Q}_r(x, t) \cap \Omega_T\) such that \(M(|\nabla u|)(x_1, t_1) \leq \lambda\) and \(M_1[\omega](x_2, t_2) \leq \delta_2 \lambda\). We need to prove that
\[
w(E_{\lambda,\delta} \cap \bar{Q}_r(x, t))) < \varepsilon w(\bar{Q}_r(x, t)). \tag{8.15}
\]

Clearly,
\[
M(|\nabla u|)(y, s) \leq \max \{M \left(\chi_{Q_{2r}(x, t)} |\nabla u| \right)(y, s), 3^{N+2}\lambda \} \forall (y, s) \in \bar{Q}_r(x, t).
\]
Therefore, for all \(\lambda > 0\) and \(\Lambda \geq 3^{N+2},
\]
\[
E_{\lambda,\delta} \cap \bar{Q}_r(x, t) = \{M \left(\chi_{Q_{2r}(x, t)} |\nabla u| \right) > \Lambda \lambda, M_1[\omega] \leq \delta_2 \lambda \cap \Omega_T \cap \bar{Q}_r(x, t). \tag{8.16}
\]

In particular, \(E_{\lambda,\delta} \cap \bar{Q}_r(x, t) = \emptyset\) if \(\bar{B}_{2\varepsilon}(x) \subset \subset \mathbb{R}^N \setminus \Omega\). Thus, it is enough to consider the case \(B_{2\varepsilon}(x) \subset \subset \Omega\) and \(\bar{B}_{2\varepsilon}(x) \cap \Omega \neq \emptyset\).

We consider the case \(B_{2\varepsilon}(x) \subset \subset \Omega\). Let \(v_{n,m}\) be as in Lemma 7.4 with \(Q_{2R} = Q_{\varepsilon}(x, t_0)\) and \(u = u_{n,m}\) where \(t_0 = \min\{t + 2r_0^2, T\}\). We have
\[
|\nabla u_{n,m}|_{L^\infty(Q_{2r}(x,t_0))} \leq c_6 \int_{Q_{2r}(x,t_0)} |\nabla u_{n,m}| dx dt + c_6 \frac{\mu_{n,m}[Q_{\varepsilon}(x,t_0)]}{r^{N+1}}. \tag{8.17}
\]
and
\[
\int_{Q_{2r}(x,t_0)} |\nabla u_{n,m} - \nabla v_{n,m}| dx dt \leq c_8 \frac{[\mu_{n,m}](Q_{\varepsilon}(x,t_0))}{r^{N+1}} + c_8[A]_{x_0} R_0 \left(\int_{Q_{\varepsilon}(x,t_0)} |\nabla u_{n,m}| dx dt \right)
+ \frac{[\mu_{n,m}](Q_{\varepsilon}(x,t_0))}{r^{N+1}}.
\]
Thanks to $\mathcal{M}(|\nabla u|)(x_1, t_1) \leq \lambda$ and $\mathbb{M}_1[\omega](x_2, t_2) \leq \delta_2 \lambda$ with $(x_1, t_1), (x_2, t_2) \in Q_r(x, t)$, we get
\[
\limsup_{n \to \infty} \limsup_{m \to \infty} ||\nabla v_{n,m}||_{L^\infty(Q_{2r}(x,t))} \leq c_9 \int_{Q_{17r/(x_1,t_1)}} |\nabla u| dx dt + c_9 \frac{\omega(Q_{17r}(x_2,t_2))}{r^{N+1}} \\
\leq c_9 \lambda + c_9 \delta_2 \lambda \\
\leq c_{10} \lambda,
\]
and
\[
\limsup_{n \to \infty} \limsup_{m \to \infty} \int_{Q_{4r}(x,t_0)} |\nabla u_n - \nabla v_n| dx dt \\
\leq c_{11} \frac{\omega(Q_{17r}(x_2,t_2))}{r^{N+1}} + c_{11} [A]_{R_0} \left(\int_{Q_{17r/(x_1,t_1)}} |\nabla u| dx dt + \frac{\omega(Q_{17r}(x_2,t_2))}{r^{N+1}} \right) \\
\leq c_{11} \delta_2 \lambda + c_{11} [A]_{R_0} (\lambda + \delta_2 \lambda) \\
\leq c_{11} (\delta_2 + \delta_1 (1 + \delta_2)) \lambda.
\]
Here we used $[A]_{R_0} \leq \delta_1$ in the last inequality.

So, we can find n_0 large enough and a sequence $\{k_n\}$ such that
\[
||\nabla v_{n,m}||_{L^\infty(\tilde{Q}_{2r}(x,t))} = ||\nabla v_{n,m}||_{L^\infty(Q_{2r}(x,t_0))} \leq 2c_{10} \lambda \quad \text{and} \quad (8.18)
\]
\[
\int_{Q_{4r}(x,t_0)} |\nabla u_n - \nabla v_n| dx dt \leq 2c_{11} (\delta_2 + \delta_1 (1 + \delta_2)) \lambda, \quad (8.19)
\]
for all $n \geq n_0$ and $m \geq k_n$.

In view of (8.18) we see that for $\Lambda = \max\{3^{N+2}, 8c_{10}\}$ and $n \geq n_0$, $m \geq k_n$,
\[
[\mathcal{M}(\chi_{\tilde{Q}_{2r}(x,t)}||\nabla v_{n,m}||)] > \Lambda \lambda/4 \cap \tilde{Q}_r(x,t) = 0.
\]

 Leads to
\[
|E_{\lambda, \delta_2} \cap \tilde{Q}_r(x,t)| \leq [\mathcal{M}(\chi_{\tilde{Q}_{2r}(x,t)}||\nabla u_n - \nabla v_n||)] > \Lambda \lambda/4 \cap \tilde{Q}_r(x,t) \\
+ [\mathcal{M}(\chi_{\tilde{Q}_{2r}(x,t)}||\nabla u_n - \nabla v_n||)] > \Lambda \lambda/4 \cap \tilde{Q}_r(x,t) \\
+ [\mathcal{M}(\chi_{\tilde{Q}_{2r}(x,t)}||\nabla u - \nabla u_n||)] > \Lambda \lambda/4 \cap \tilde{Q}_r(x,t).
\]

Therefore, by (8.19) and $\tilde{Q}_{2r}(x,t) \subset Q_{4r}(x,t_0)$ we obtain for any $n \geq n_0$ and $m \geq k_n$
\[
|E_{\lambda, \delta_2} \cap \tilde{Q}_r(x,t)| \leq \frac{c_{12}}{\lambda} \int_{Q_{2r}(x,t)} |\nabla u_{n,m} - \nabla v_{n,m}| dx dt \\
+ \frac{c_{12}}{\lambda} \int_{Q_{2r}(x,t)} |\nabla u_n - \nabla u_{n,m}| dx dt + \frac{c_{12}}{\lambda} \int_{Q_{2r}(x,t)} |\nabla u - \nabla u_n| dx dt \\
\leq c_{13} (\delta_2 + \delta_1 (1 + \delta_2)) |Q_r(x,t)| \\
+ \frac{c_{12}}{\lambda} \int_{Q_{2r}(x,t)} |\nabla u_n - \nabla u_{n,m}| dx dt + \frac{c_{12}}{\lambda} \int_{Q_{2r}(x,t)} |\nabla u - \nabla u_n| dx dt.
\]

Letting $m \to \infty$ and $n \to \infty$ we get
\[
|E_{\lambda, \delta_2} \cap \tilde{Q}_r(x,t)| \leq c_{13} (\delta_2 + \delta_1 (1 + \delta_2)) |\tilde{Q}_r(x,t)|.
\]

96
Thus,

\[w(E_{\lambda, \delta_2} \cap Q_{r}(x, t)) \leq C \left(\frac{|E_{\lambda, \delta_2} \cap Q_{r}(x, t)|}{|Q_{r}(x, t)|} \right)^{\nu} w(Q_{r}(x, t)) \]

\[\leq C \left(c_{13} (\delta_2 + \delta_1(1 + \delta_2))^{\nu} \right) w(Q_{r}(x, t)) \]

where \(\delta_2, \delta_1 \) are appropriately chosen. \((C, \nu) \) is a pair of \(A_{\infty} \) constants of \(w \).

Next we consider the case \(B_{\delta r}(x) \cap \Omega \neq \emptyset \). Let \(x_3 \in \partial \Omega \) such that \(|x_3 - x| = \text{dist}(x, \partial \Omega) \). Set \(t_0 = \min\{t + 2r^2, T\} \). We have

\[Q_{2r}(x, t_0) \subset Q_{10r}(x, t_0) \subset Q_{540r}(x, t_0) \subset \tilde{Q}_{1080r}(x, t) \subset \tilde{Q}_{1089r}(x_1, t_1) \]

(8.20) and

\[Q_{540r}(x_1, t_0) \subset \tilde{Q}_{1080r}(x_1, t) \subset \tilde{Q}_{1089r}(x_1, t_2) \]

(8.21)

Let \(v_{n,m} \) be as in Lemma 7.13 with \(Q_{6R} = Q_{540r}(x_3, t_0) \), \(u = u_{n,m} \) and \(\varepsilon = \delta_3 \in (0, 1) \). We have

\[||\nabla V_{n,m}||_{L^\infty(Q_{10r}(x_3, t_0))} \leq c_{14} \int_{Q_{540r}(x_3, t_0)} |\nabla u_{n,m}| dxdt + c_{14} \frac{\mu_{n,m}(Q_{540r}(x_3, t_0))}{R^{N+1}} \]

and

\[\int_{Q_{10r}(x_3, t_0)} |\nabla u_{n,m} - \nabla V_{n,m}| dxdt \]

\[\leq c_{15}(\delta_3 + [A]^{R_0}_{\alpha_0}) \int_{Q_{540r}(x_3, t_0)} |\nabla u_{n,m}| dxdt + c_{15}(\delta_3 + 1 + [A]^{R_0}_{\alpha_0}) \frac{\mu_{n,m}(Q_{540r}(x_3, t_0))}{R^{N+1}} \]

(8.20) (8.21) we get

\[\lim_{n \to \infty} \limsup_{m \to \infty} ||\nabla V_{n,m}||_{L^\infty(Q_{2r}(x, t_0))} \leq \lim_{n \to \infty} \limsup_{m \to \infty} ||\nabla V_{n,m}||_{L^\infty(Q_{10r}(x_3, t_0))} \]

\[\leq c_{14} \int_{Q_{540r}(x_3, t_0)} |\nabla u| dxdt + c_{14} \frac{\omega(Q_{540r}(x_3, t_0))}{R^{N+1}} \]

\[\leq c_{15} \int_{Q_{1089r}(x_1, t_1)} |\nabla u| dxdt + c_{15} \frac{\omega(Q_{1089r}(x_2, t_2))}{R^{N+1}} \]

(8.22)

\[\leq c_{16} \lambda + c_{16} \delta_2 \lambda \]

\[\leq c_{17} \lambda \]

and

\[\lim_{n \to \infty} \limsup_{m \to \infty} \int_{Q_{2r}(x_0)} |\nabla u_{n,m} - \nabla V_{n,m}| dxdt \]

\[\leq c_{18}(\delta_3 + [A]^{R_0}_{\alpha_0}) \int_{Q_{540r}(x_3, t_0)} |\nabla u| dxdt + c_{18}(\delta_3 + 1 + [A]^{R_0}_{\alpha_0}) \frac{\omega(Q_{540r}(x_3, t_0))}{R^{N+1}} \]

\[\leq c_{19}(\delta_3 + [A]^{R_0}_{\alpha_0}) \int_{Q_{1089r}(x_1, t_1)} |\nabla u| dxdt + c_{19}(\delta_3 + 1 + [A]^{R_0}_{\alpha_0}) \frac{\omega(Q_{1089r}(x_2, t_2))}{R^{N+1}} \]

\[\leq c_{20}(\delta_3 + [A]^{R_0}_{\alpha_0}) \lambda + c_{21}(\delta_3 + 1 + [A]^{R_0}_{\alpha_0}) \delta_2 \lambda \]

\[\leq c_{20}(\delta_3 + \delta_1 + (\delta_3 + 1 + \delta_1) \delta_2) \lambda \]

Here we used \([A]^{R_0}_{\alpha_0} \leq \delta_1 \) in the last inequality.

So, we can find \(R_0 \) large enough and a sequence \(\{k_n\} \) such that

\[||\nabla V_{n,m}||_{L^\infty(Q_{2r}(x, t))} \geq \frac{2}{18} \lambda \]
\[
\int_{Q_{2r}(x,t)} |\nabla u_{n,m} - \nabla V_{n,m}| dxdt \leq 2c_{21} ((\delta_3 + \delta_1) + (\delta_3 + 1 + \delta_1)\delta_2) \lambda,
\]
for all \(n \geq n_0 \) and \(m \geq k_n \).

Now set \(\Lambda = \max\{3^{N+2}, 8c_{10}, 8c_{17}\} \). As above we also have for \(n \geq n_0, m \geq k_n \)
\[
|E_{\lambda, \delta_2} \cap \tilde{Q}_r(x,t)| \leq \left[\min \left(\left\{ \right. \begin{array}{l}
M(\chi_{\tilde{Q}_r(x,t)}|\nabla u_{n,m} - \nabla V_{n,m}|) > \Lambda \lambda / 4 \right\} \right) \right] \cap \tilde{Q}_r(x,t)
+ \left[\min \left(\left\{ \right. \begin{array}{l}
M(\chi_{\tilde{Q}_r(x,t)}|\nabla u - \nabla u_n|) > \Lambda \lambda / 4 \right\} \right) \right] \cap \tilde{Q}_r(x,t)
+ \left[\min \left(\left\{ \right. \begin{array}{l}
M(\chi_{\tilde{Q}_r(x,t)}|\nabla u - \nabla u_n|) > \Lambda \lambda / 4 \right\} \right) \right] \cap \tilde{Q}_r(x,t) .
\]

Therefore from (8.23) we obtain
\[
|E_{\lambda, \delta_2} \cap \tilde{Q}_r(x,t)| \leq \frac{c_{22}}{\lambda} \int_{Q_{2r}(x,t)} |\nabla u_{n,m} - \nabla V_{n,m}| dxdt
+ \frac{c_{22}}{\lambda} \int_{Q_{2r}(x,t)} |\nabla u - \nabla u_n| dxdt
\leq c_{23} ((\delta_3 + \delta_1) + (\delta_3 + 1 + \delta_1)\delta_2) |\tilde{Q}_r(x,t)|
+ \frac{c_{22}}{\lambda} \int_{Q_{2r}(x,t)} |\nabla u - \nabla u_n| dxdt.
\]

Letting \(m \to \infty \) and \(n \to \infty \) we get
\[
|E_{\lambda, \delta_2} \cap \tilde{Q}_r(x,t)| \leq c_{22} ((\delta_3 + \delta_1) + (\delta_3 + 1 + \delta_1)\delta_2) |\tilde{Q}_r(x,t)| .
\]
Thus
\[
w(E_{\lambda, \delta_2} \cap \tilde{Q}_r(x,t)) \leq C \left(\frac{|E_{\lambda, \delta_2} \cap \tilde{Q}_r(x,t)|}{|\tilde{Q}_r(x,t)|} \right)^\nu w(\tilde{Q}_r(x,t))
\leq C (c_{22} ((\delta_3 + \delta_1) + (\delta_3 + 1 + \delta_1)\delta_2))^\nu w(\tilde{Q}_r(x,t))
< \varepsilon w(\tilde{Q}_r(x,t)),
\]

where \(\delta_3, \delta_1, \delta_2 \) are appropriately chosen, \((C, \nu)\) is a pair of \(A_\infty \) constants of \(w \).

Therefore, for all \((x,t) \in \Omega_T \) and \(r \in (0,2\pi] \) and \(\lambda > 0 \) if \(w(E_{\lambda, \delta_2} \cap \tilde{Q}_r(x,t)) \geq \varepsilon w(\tilde{Q}_r(x,t)) \) then \(\tilde{Q}_r(x,t) \cap \Omega_T \subset F_3 \) where \(\delta_1 = \delta_1 (N, \Lambda_1, \Lambda_2, \varepsilon, [w]_{A_{\infty}}) \in (0,1) \) and \(\delta_2 = \delta_2 (N, \Lambda_1, \Lambda_2, \varepsilon, [w]_{A_{\infty}}, T_0/R_0) \in (0,1) \). Applying Lemma 3.19 we get the result.

Proof of Theorem 2.20. As in the proof of Theorem 2.17, we can prove (2.32) by using estimate (8.13) in Theorem 8.4. In particular, thanks to Proposition 4.4 for \(q > \frac{N}{N+2} \), \(\mu \in L^{\frac{(N+2)(q-1)}{4}}(\Omega_T) \) and \(\sigma \equiv 0 \),
\[
|||\nabla u|||_{L^{\frac{(N+2)(q-1)}{4}}(\Omega_T)} \leq c |||u|||_{L^{\frac{(N+2)(q-1)}{4}}(\Omega_T)} ,
\]
where the constant \(c \) depends only on \(N, \Lambda_1, \Lambda_2, q \) and \(T_0/R_0 \).

Proof of Theorem 2.22. By Theorem 2.20, there exists a renormalized solution of (2.4) with data \(\mu, u(0) = \sigma \) satisfied
\[
\int_{\Omega_T} |\nabla u|^q dw \leq c_1 \int_{\Omega_T} (M_1[w])^q dw
\]
for any \(w \in A_{3\varepsilon} \), where \(c_1 = c_1 (N, \Lambda_1, \Lambda_2, q, T_0/R_0, [w]_{A_{\infty}}) \).

For \(0 < \delta < 1 \) we have \(M_1[w] \leq c_2 \|^{2T_0,\delta}[w] \) in \(\Omega_T \). Thus, (8.25) can be rewritten
\[
\int_{\Omega_T} |\nabla u|^q dw \leq c_1 c_2^q \int_{\Omega_T} \left(^{2T_0,\delta}[w] \right)^q dw.
\]
Proof of Theorem 2.21. We will consider only the case $s \neq \infty$ and leave the case $s = \infty$ to the readers. Take $\kappa_1 \in (0, \kappa)$. It is easy to see that for $(x_0, t_0) \in \Omega_T$ and $0 < \rho < \text{diam}(\Omega) + T^{1/2}$

$$w(x, t) = \min\{\rho^{-N-2+\kappa-\kappa_1}, \max\{|x - x_0|, \sqrt{2|t - t_0|}\}^{-N-2+\kappa-\kappa_1}\} \in A_\infty$$

where $[w]_{A_\infty}$ is independent of (x_0, t_0) and ρ. Thus, from (2.32) in Theorem 2.20 we have

$$||M((\nabla u))||_{L^{q,s}(\hat{Q}_\rho(x_0, t_0) \cap \Omega_T, dw)}^q \leq c_1 \rho^{\frac{(N+2+\kappa-\kappa_1)s}{q}} ||M((\nabla u))||_{L^{q,s}(\hat{Q}_\rho(x_0, t_0) \cap \Omega_T, du)}^q$$

$$= q c_1 \rho^{\frac{(N+2+\kappa-\kappa_1)s}{q}} \int_0^\infty (\lambda^q \int_0^\infty |\hat{Q}_\tau | \cap \Omega_T \cap \omega \cap \hat{Q}_\tau \cap \Omega_T | d\tau)^{\frac{q}{q}} d\lambda$$

$$= c_1 \rho^{\frac{(N+2+\kappa-\kappa_1)s}{q}} A. \quad (8.27)$$

Since $w \leq \rho^{-N-2+\kappa-\kappa_1}$ and $\{M_1[\omega] > \lambda, \omega > \tau\} \subset \{M_1[\omega] > \lambda\} \cap \hat{Q}_\tau \cap \Omega_T \cap \omega \cap \hat{Q}_\tau \cap \Omega_T | d\tau)^{\frac{q}{q}} d\lambda$$

We divide to two cases.

Case 1: $0 < s \leq q$. We can verify that for any nonincreasing function F in $(0, \infty)$ and $0 < a \leq 1$ we have

$$\left(\int_0^\infty F(\tau) d\tau \right)^a \leq 4 \int_0^\infty (\tau F(\tau))^a d\tau.$$

Hence,

$$A \leq 4q \int_0^\infty \int_0^{\rho^{-N-2+\kappa-\kappa_1}} (\lambda^q \int_0^\infty |\hat{Q}_\tau | \cap \Omega_T \cap \omega \cap \hat{Q}_\tau \cap \Omega_T | d\tau)^{\frac{q}{q}} d\lambda$$

$$= 4q \int_0^{\rho^{-N-2+\kappa-\kappa_1}} \int_0^\infty (\lambda^q |\hat{Q}_\tau | \cap \Omega_T \cap \omega \cap \hat{Q}_\tau \cap \Omega_T | d\tau)^{\frac{q}{q}} d\lambda$$

$$= 4 \int_0^{\rho^{-N-2+\kappa-\kappa_1}} ||M_1[\omega]||_{L^{q,s}(\hat{Q}_\rho(x_0, t_0) \cap \Omega_T, dw)}^q d\lambda$$

$$\leq 4 \int_0^{\rho^{-N-2+\kappa-\kappa_1}} ||M_1[\omega]||_{L^{q,s}(\hat{Q}_\rho(x_0, t_0) \cap \Omega_T, du)}^q d\lambda$$

$$= c_2 ||M_1[\omega]||_{L^{q,s}(\hat{Q}_\rho(x_0, t_0) \cap \Omega_T, du)}^q.$$
Using the Minkowski and the Hölder inequality, we discover that for a.e $s > q$

$$A \leq c_3 \left(\int_0^{\rho^{N-2+\vartheta_1}} \left(\int_0^\infty \left(\lambda^q |\{M_1[\omega] > \lambda\} \cap \hat{Q}_\omega \right) \frac{d\lambda}{\lambda} \right)^{\frac{1}{s}} \, dr \right)^s$$

$$= c_4 \left(\int_0^{\rho^{N-2+\vartheta_1}} \left(|||M_1[\omega]||_{L^{q,\vartheta_1}(\Omega_T)} \right)^{\frac{p}{N-2+\vartheta_1}} \, dr \right)^{\frac{1}{p}}$$

$$= c_5 \left| \{M_1[\omega] \} \right|_{L^{q,\vartheta_1}(\Omega_T)} \rho^{-\frac{q-1}{q}}.$$

Therefore, we always have

$$A \leq c_6 \left| \{M_1[\omega] \} \right|_{L^{q,\vartheta_1}(\Omega_T)} \rho^{-\frac{q-1}{q}}.$$

which implies (2.33) from (8.27).

Similarly, we obtain estimate (2.46) by adapting

$$w(x, t) = \min \{\rho^{-N+\vartheta_1} |x-x_0|^{-N+\vartheta_1} \} \in A_{\infty}$$

in above argument, where $0 < \vartheta_1 < \vartheta$, $x_0 \in \Omega$ and $0 < \rho < \text{diam}(\Omega)$ and $[w]_{A_{\infty}}$ is independent of x_0 and ρ.

Next, to archive (2.35) we need to show that for any ball $B_\rho \subset \mathbb{R}^N$

$$\left(\int_0^T \left| \text{osc}_{B_\rho} u(t) \right|^q \, dt \right)^{\frac{1}{q}} \leq c_7 \rho^{1-\frac{q}{N}} |||\nabla u|||_{L^{q,\vartheta_1}(\Omega_T)}$$

(8.28)

Since the extension of u over $(\Omega_T)^c$ is zero and $u \in L^1(0, T, W^{1,1}_0(\Omega))$ thus we have for a.e $t \in (0, T)$, $u(., t) \in W^{1,1}(\mathbb{R}^N)$. Applying [32, Lemma 7.16] to a ball $B_\rho \subset \mathbb{R}^N$, we get for a.e $t \in (0, T)$ and $x \in B_\rho$

$$|u(x, t) - u_{B_\rho}(t)| \leq \frac{2N}{|B_1(0)|} \int_{B_\rho} \frac{|\nabla u(y, t)|}{|x-y|^{N-1}} \, dy$$

$$\leq \frac{2N}{|B_1(0)|} \int_{B_{2r}(x)} \frac{|\nabla u(y, t)|}{|x-y|^{N-1}} \, dy$$

$$\leq c_8 \int_0^{2r} \int_{B_r(x)} |\nabla u(y, t)| \, dy \, dr \, r^{N-1}$$

$$\leq c_9 \int_0^{2r} \int_{B_r(x)} |\nabla u(y, t)| \, dy \, dr \, r^{N-1}$$

here $u_{B_\rho}(t)$ is the average of $u(., t)$ over B_ρ, i.e $u_{B_\rho}(t) = \frac{1}{|B_\rho|} \int_{B_\rho} u(x, t) \, dx$.

Using the Minkowski and the Hölder inequality, we discover that for a.e $x \in B_\rho$

$$\left(\int_0^T |u(x, t) - u_{B_\rho}(t)|^q \, dt \right)^{\frac{1}{q}} \leq c_8 \left(\int_0^T \left(\int_0^{2r} \int_{B_r(x)} |\nabla u(y, t)| \, dy \, dr \, r^{N-1} \right)^q \, dt \right)^{\frac{1}{q}}$$

$$\leq c_8 \int_0^T \int_{B_r(x)} \left(\int_0^T |\nabla u(y, t)|^q \, dt \right)^{\frac{1}{q}} \, dy \, dr \, r^{N-1}$$

$$\leq c_9 \int_0^{2r} \int_{B_r(x)} |\nabla u(y, t)| \, dy \, dr \, r^{N-1}$$

$$\leq c_9 |B_1(x)|^{\frac{q-1}{q}} \int_0^{2r} \int_{B_r(x)} |\nabla u(y, t)| \, dy \, dr \, r^{N-1}$$

$$\leq c_9 \left| \{M_1[\omega] \} \right|_{L^{q,\vartheta_1}(\Omega_T)} \rho^{-\frac{q-1}{q}} |||\nabla u|||_{L^{q,\vartheta_1}(\Omega_T)}.$$
Therefore, we find (8.28) with \(c_7 = 2c_9 \).

Proof of Proposition 2.28. Clearly, estimate (2.46) is followed by (4.12) in Proposition 4.7. We want to emphasize that almost every estimates in this proof will be used the Minkowski inequality. For a ball \(B_\rho \subset \mathbb{R}^N \), we have for a.e \(x \in \mathbb{R}^N \)

\[
\|I_1 \mu(x, \cdot)\|_{L^q(\mathbb{R})} = \left(\int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} \frac{\mu(Q_r(x,t))}{r^{N+1}} \frac{dr}{r} \right)^q dt \right)^{\frac{1}{q}}
\]

\[
\leq \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} (\mu(\bar{Q}_r(x,t)))^q dt \right)^{\frac{1}{q}} \frac{dr}{r^{N+2}}.
\]

(8.29)

Now, we need to estimate \(\int_{-\infty}^{+\infty} (\mu(\bar{Q}_r(x,t)))^q dt \)^{\frac{1}{q}}.

b. We have

\[
\left(\int_{-\infty}^{+\infty} (\mu(\bar{Q}_r(x,t)))^q dt \right)^{\frac{1}{q}} = \left(\int_{-\infty}^{+\infty} \left(\int_{\mathbb{R}^N+1} \chi \bar{Q}_r(x,t) d\mu(x,t) \right)^q dt \right)^{\frac{1}{q}}
\]

\[
\leq \int_{\mathbb{R}^N} \left(\int_{-\infty}^{+\infty} \chi \bar{Q}_r(x,t) dt \right)^{\frac{1}{q}} d\mu(x,t)
\]

\[
= \rho^\frac{1}{q} \mu_1(B_r(x))
\]

Combining this with (8.29) we obtain (2.47) and (2.49).

Thus, we also assert (2.49) from [1, Theorem 3.1].

c. Set \(d\mu_2(x) = ||\mu(x, \cdot)||_{L^q(\mathbb{R})} dx \). Using Holder’s inequality, yields

\[
\mu(\bar{Q}_r(x,t)) \leq r^{\frac{2(q-1)}{q_1}} \int_{B_r(x)} \left(\int_{t-2^k}^{t+2^k} (w(x,t_1))^{q_1} dt_1 \right)^{\frac{q_1}{q}} dx_1.
\]

Leads to

\[
\left(\int_{-\infty}^{+\infty} (\mu(\bar{Q}_r(x,t)))^q dt \right)^{\frac{1}{q}} \leq r^{\frac{2(q-1)}{q_1}} \int_{B_r(x)} \left(\int_{-\infty}^{+\infty} \left(\int_{t-2^k}^{t+2^k} (w(x,t_1))^{q_1} dt_1 \right)^{\frac{q_1}{q}} dt \right)^{\frac{q}{q}} dx_1.
\]

Note that

\[
\left(\int_{-\infty}^{+\infty} \left(\int_{t-2^k}^{t+2^k} (w(x,t_1))^{q_1} dt_1 \right)^{\frac{q_1}{q}} dt \right)^{\frac{q}{q_1}}
\]

\[
= \left(\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} \chi(t_1) (w(x,t_1))^{q_1} dt_1 \right)^{\frac{q_1}{q}} dt \right)^{\frac{q}{q_1}}
\]

\[
\leq \left(\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} \chi(t_1) dt \right)^{\frac{q_1}{q}} dt \right)^{\frac{q}{q_1}} (w(x,t_1))^{q_1} dt_1
\]

\[
= \rho^{\frac{1}{q}} \int_{-\infty}^{+\infty} (w(x,t_1))^{q_1} dt_1.
\]

Hence

\[
\left(\int_{-\infty}^{+\infty} (\mu(\bar{Q}_r(x,t)))^q dt \right)^{\frac{1}{q}} \leq r^{\frac{2(q-1)}{q_1} + \frac{q}{q_1}} \int_{B_r(x)} ||\mu(x, \cdot)||_{L^q(\mathbb{R})} dx_1
\]

\[
= r^{\frac{2(q-1)}{q_1} + \frac{q}{q_1}} \mu_2(B_r(x)).
\]
Consequently, since (8.29) we derive (2.50) and (2.51). We also obtain (2.52) from [1, Theorem 3.1].

8.3 Global estimates in $\mathbb{R}^N \times (0, \infty)$ and \mathbb{R}^{N+1}

Now, we present the proofs of Theorem 2.25 and 2.27.

Proof of Theorem 2.25 and Theorem 2.27. For any $n \geq 1$, it is easy to see that

i. $\mathbb{R}^N \setminus B_n(0)$ satisfies uniformly 2–thick with constants $c_0 = \frac{\text{Cap}_n(B_1(0), B_n(0))}{\text{Cap}_n(B_1(0), B_2(0))}$, $z_0 = (1/2, 0, \ldots, 0) \in \mathbb{R}^N$ and $r_0 = n$.

ii. for any $\delta \in (0, 1)$, $B_n(0)$ is a $(\delta, 2n\delta)$– Reifenberg flat domain.

iii. $[A]_{\text{loc}}^n \leq [A]_{\text{loc}}^\infty$.

Assume that $|||M_1[\omega]|||_{L^{p,s}(\mathbb{R}^{N+1})} < \infty$. Thus by Remark 2.26 we have

$$|||\nabla u_n|||_{L^{p,s}(\mathbb{R}^{N+1})} \leq c_1|||M_1[\chi_{B_n(0) \times (-n^{-1}, n^{-1})^2}]\omega|||_{L^{p,s}(\mathbb{R}^{N+1})}$$

In view of the proof of the Theorem 2.5 and applying Theorem 2.17 to $B_n(0) \times (-n^2, n^2)$ and with data $\lambda_{B_n(0) \times (-n^{-1}, n^{-1})^2} \omega$ for any $n \geq 2$, there exists a sequence renormalized solution $\{u_n\}$ (we will take its subsequence if need) of

$$\begin{cases}
(u_n) - div(A(x, t, \nabla u_n)) = \chi_{B_{n-1}(0) \times (-n^{-1}, n^{-1})^2} \omega & \text{in } B_n(0) \times (-n^2, n^2), \\
u_n = 0 & \text{on } \partial B_n(0) \times (-n^2, n^2), \\
u_n(-n^2) = 0 & \text{in } B_n(0),
\end{cases}$$

converging to a distribution solution u in $L^{\text{loc}}(\mathbb{R}; W^{1,1}_{\text{loc}}(\mathbb{R}^N))$ of 2.6 with data $\mu = \omega$ such that

$$|||\nabla u_n|||_{L^{p,s}(B_n(0) \times (-n^2, n^2))} \leq c_1|||M_1[\chi_{B_n(0) \times (-n^{-1}, n^{-1})^2}]\omega|||_{L^{p,s}(\mathbb{R}^{N+1})}.$$

Here $c_1 = c_1(N, \Lambda_1, \Lambda_2, p, s)$ is not depending on n since $\frac{r_n}{r_0} = \frac{2n+(1+n^2)^{1/2}}{n} \approx 1$.

Using Fatou Lemma, we get estimate (2.38).

As above, we also obtain (2.39).

And similarly, we can prove Theorem 2.27 by this way.

This completes the proof of Theorem.

Remark 8.5 (sharpness) The inequality (2.41) is in a sense optimal as follows:

$$C^{-1}|||M_1[\omega]|||_{L^{q}(\mathbb{R}^{N+1})} \leq |||\nabla H_2 \ast [\omega]|||_{L^{q}(\mathbb{R}^{N+1})} \leq C|||M_1[\omega]|||_{L^{q}(\mathbb{R}^{N+1})}$$

for every $q > 1$ where $C = C(N, q)$. Indeed, we have

$$\nabla H_2(x, t) = -\frac{C_0}{2} |x| \chi_{(0, \infty)}(t) \exp\left(-\frac{|x|^2}{4t}\right) \frac{x}{\sqrt{t}},$$

leads to

$$\frac{c_1}{t + \frac{x^2}{4}} \chi_{t > 0} \chi_{\frac{1}{2} < t \leq 2} \leq |\nabla H_2(x, t)| \leq \frac{c_1}{\max\{|x|, \sqrt{2/t}\}^{N+1}}.$$

Immediately, we get

$$c_2 \int_0^\infty \frac{\omega ((B_r(x)) \times (t - r^2, t - r^2/4))}{r^{N+1}} \frac{dr}{r} \leq |||\nabla H_2 \ast [\omega](x, t)|||_{L^{q}(\mathbb{R}^{N+1})} \leq c_2 I_1[\omega](x, t).$$

102
We have

By Theorem 4.2, gives the right-hand side inequality of (8.31). So, it is enough to show that

\[A := \int_{\mathbb{R}^{N+1}} \left(\int_{0}^{\infty} \frac{\omega \left((B_{r}(x) \setminus B_{r/2}(x)) \times (t - r^{2}, t - r^{2}/4) \right)}{r^{N+1}} \frac{dr}{r} \right)^{q} dx dt \geq c_{3} ||M_{1}||_{L^{q}(\mathbb{R}^{N+1})}^{q} \tag{8.32} \]

To do this, we take \(r_{k} = (3/2)^{k} \) for \(k \in \mathbb{Z} \),

\[\left(\int_{0}^{\infty} \frac{\omega \left((B_{r}(x) \setminus B_{r/2}(x)) \times (t - r^{2}, t - r^{2}/4) \right)}{r^{N+1}} \frac{dr}{r} \right)^{q} \geq c_{4} \sum_{k = -\infty}^{\infty} \left(\frac{\omega \left((B_{r_{k}}(x) \setminus B_{3r_{k}/4}(x)) \times (t - r_{k}^{2}, t - 9r_{k}^{2}/16) \right)}{r_{k}^{N+1}} \right)^{q}. \]

We deduce that

\[A \geq c_{4} \sum_{k = -\infty}^{\infty} \int_{\mathbb{R}^{N+1}} \left(\frac{\omega \left((B_{r_{k}}(x) \setminus B_{3r_{k}/4}(x)) \times (t - r_{k}^{2}, t - 9r_{k}^{2}/16) \right)}{r_{k}^{N+1}} \right)^{q} dx dt. \]

For any \(k \), put \(y = x + \frac{r_{k}}{2} r \) and \(s = t - \frac{25}{32} r_{k}^{2} \), so \(B_{r_{k}}(x) \setminus B_{3r_{k}/4}(x) \supset B_{r_{k}/8}(y) \) and

\[\int_{\mathbb{R}^{N+1}} \left(\frac{\omega \left((B_{r_{k}}(y) \setminus B_{3r_{k}/4}(y)) \times (s - 7r_{k}^{2}/32, t + 7r_{k}^{2}/32) \right)}{r_{k}^{N+1}} \right)^{q} dxdy \geq \int_{\mathbb{R}^{N+1}} \left(\frac{\omega \left(B_{r_{k}/8}(y) \times (s - 7r_{k}^{2}/32, t + 7r_{k}^{2}/32) \right)}{r_{k}^{N+1}} \right)^{q} dyds. \]

Consequently,

\[A \geq c_{4} \int_{\mathbb{R}^{N+1}} \sum_{k = -\infty}^{\infty} \left(\frac{\omega \left(B_{r_{k}/8}(y) \times (s - 7r_{k}^{2}/32, t + 7r_{k}^{2}/32) \right)}{r_{k}^{N+1}} \right)^{q} dyds. \]

It follows (8.32).

9 Quasilinear Riccati Type Parabolic Equations

9.1 Quasilinear Riccati Type Parabolic Equation in \(\Omega_{T} \)

We provide below only the proof of Theorem 2.30, 2.32 and 2.33. The proof of Theorem 2.31 can be proceeded by a similar argument.

Proof of Theorem 2.30. Let \(\{ \mu_{n} \} \subset C_{c}^{\infty}(\Omega_{T}) \) be as in the proof of Theorem 2.1. We have \(|\mu_{n}|(\Omega_{T}) \leq |\mu|(\Omega_{T}) \) for any \(n \in \mathbb{N} \). Let \(\sigma_{n} \in C_{c}^{\infty}(\Omega) \) be converging to \(\sigma \) in the narrow topology of measures and in \(L^{1}(\Omega) \) if \(\sigma \in L^{1}(\Omega) \) such that \(||\sigma_{n}||_{L^{1}(\Omega)} \leq ||\sigma||_{L^{1}(\Omega)} \). For \(n_{0} \in \mathbb{N} \), we prove that the problem (2.53) has a solution with data \(\mu = \mu_{n_{0}} \) and \(\sigma = \sigma_{n_{0}} \). Now we put

\[E_{\Lambda} = \{ u \in L^{1}(0, T, W^{1,1}_{0}(\Omega)) : |||\nabla u|||_{L^{\frac{N+2}{N+2}}(\Omega_{T})} \leq \Lambda \}, \]

where \(L^{\frac{N+2}{N+2}}(\Omega_{T}) \) is Lorent space with norm

\[||f||_{L^{\frac{N+2}{N+2}}(\Omega_{T})}^{\frac{N+2}{N+2}} := \sup_{0 < |D| < \infty} \left(|D|^{-\frac{N+2}{N+2}} \int_{D \cap \Omega_{T}} |f| \right). \]
By Fatou’s lemma, E_A is closed under the strong topology of $L^1(0, T, W_0^{1,1}(\Omega))$ and convex. We consider a map $S : E_A \to E_A$ defined for each $v \in E_A$ by $S(v) = u$, where $u \in L^1(0, T, W_0^{1,1}(\Omega))$ is the unique solution of

\[
\begin{cases}
 u_t - \text{div}(A(x, t, \nabla u)) = |\nabla v|^q + \mu_{n_0} \quad \text{in } \Omega_T, \\
 u = 0 \quad \text{on } \partial \Omega \times (0, T), \\
 u(0) = \sigma_{n_0}.
\end{cases}
\]

(9.1)

By Remark 3.2, we have

\[
|||\nabla u|||_{L^{\frac{N+2}{N+2}}(\Omega_T)} \leq c_1 (|||\nabla v|||_{L^1(\Omega_T)} + |\mu_{n_0}|(\Omega_T) + ||\sigma_{n_0}||_{L^1(\Omega)}),
\]

for some $c_1 = c_1(N, \Lambda_1, \Lambda_2)$. It leads to

\[
|||\nabla u|||_{L^{\frac{N+2}{N+1}}(\Omega_T)} \leq c_1 \left(c_2|\Omega_T|^{-1 + \frac{N+2}{N+1}}|||\nabla v|||_{L^{\frac{N+1}{N+2}}(\Omega_T)} + |\mu|(\Omega_T) + |\sigma|(\Omega)\right)
\]

\[
\leq c_1 \left(c_2|\Omega_T|^{-1 + \frac{N+2}{N+1}}\Lambda^q + |\mu|(\Omega_T) + |\sigma|(\Omega)\right),
\]

for some $c_2 = c_2(N, q) > 0$. Thus, we now suppose that

\[
|\Omega_T|^{-1 + \frac{N+2}{N+1}}(\mu(|\Omega_T|) + |\sigma|(\Omega)) \leq (2c_1)^{-q'} c_2^{-\frac{1}{q'}} - 1,
\]

then

\[
|||\nabla u|||_{L^{\frac{N+2}{N+1}}(\Omega_T)} \leq \Lambda := 2c_1(|\mu|(\Omega) + |\sigma|(\Omega)),
\]

which implies that S is well defined.

Now we show that S is continuous. Let $\{v_n\}$ be a sequence in E_A such that v_n converges strongly in $L^1(0, T, W_0^{1,1}(\Omega))$ to a function $v \in E_A$. Set $u_n = S(v_n)$. We need to show that $u_n \to S(v)$ in $L^1(0, T, W_0^{1,1}(\Omega))$. We have

\[
\begin{cases}
 (u_n)_t - \text{div}(A(x, t, \nabla u_n)) = |\nabla v_n|^q + \mu_{n_0} \quad \text{in } \Omega_T, \\
 u_n = 0 \quad \text{on } \partial \Omega \times (0, T), \\
 u_n(0) = \sigma_{n_0} \quad \text{in } \Omega.T,
\end{cases}
\]

(9.2)

satisfied

\[
|||\nabla v_n|||_{L^{\frac{N+2}{N+1}}(\Omega_T)} \leq \Lambda, \quad |||\nabla u_n|||_{L^{\frac{N+2}{N+1}}(\Omega_T)} \leq \Lambda.
\]

Thus, $|\nabla v_n|^q \to |\nabla v|^q$ in $L^1(\Omega_T)$. Therefore, it is easy to see that we get $u_n \to S(v)$ in $L^1(0, T, W_0^{1,1}(\Omega))$ by Theorem 3.6.

Next we show that S is pre-compact. Indeed if $\{u_n\} = \{S(v_n)\}$ is a sequence in $S(E_A)$. By Proposition 3.5, there exists a subsequence of $\{u_n\}$ converging to some u in $L^1(0, T, W_0^{1,1}(\Omega))$. Consequently, by Schauder Fixed Point Theorem, S has a fixed point on E_A this means: the problem (2.53) has a solution with data μ_{n_0}, σ_{n_0}.

Therefore, for any $n \in \mathbb{N}$, there exists a renormalized solution u_n of

\[
\begin{cases}
 (u_n)_t - \text{div}(A(x, t, \nabla u_n)) = |\nabla u_n|^q + \mu_n \quad \text{in } \Omega_T, \\
 u = 0 \quad \text{on } \partial \Omega \times (0, T), \\
 u_n(0) = \sigma_n,
\end{cases}
\]

(9.3)

which satisfies

\[
|||\nabla u_n|||_{L^{\frac{N+2}{N+1}}(\Omega_T)} \leq 2c_1(|\mu|(\Omega) + |\sigma|(\Omega)).
\]

Thanks to Proposition 3.5, there exists a subsequence of $\{u_n\}$ converging to u in $L^1(0, T, W_0^{1,1}(\Omega))$. So, $|||\nabla v|||_{L^{\frac{N+2}{N+1}}(\Omega_T)} \leq 2c_1(|\mu|(\Omega) + |\sigma|(\Omega))$ and $|\nabla u_n|^q \to |\nabla u|^q$ in $L^1(\Omega)$ since $|\nabla u_n|^q$ is equi-integrable. It follows the results by Proposition 3.5 and Theorem 3.6.

\[\Box\]
Proof of Theorem 2.32. Case a. A is linear operator. By Theorem 2.22, there exist $\delta = \delta(N, \Lambda_1, \Lambda_2, q) \in (0, 1)$ and $s_0 = s_0(N, \Lambda_1, \Lambda_2) > 0$ such that Ω is (δ, R_0)-Reifenberg flat domain and $[A]_{R_0} \leq \delta$ for some R_0 and a sequence $\{u_n\}_n$ as distribution solutions of

\[
\begin{align*}
(u_1)_{t} - \text{div}(A(x, t, \nabla u_1)) &= \mu \text{ in } \Omega_T, \\
u_1 &= 0 \text{ on } \partial \Omega \times (0, T), \\
u_1(0) &= \sigma \text{ in } \Omega,
\end{align*}
\]

and

\[
\begin{align*}
(u_{n+1})_{t} - \text{div}(A(x, t, \nabla u_{n+1})) &= |\nabla u_n|^q + \mu \text{ in } \Omega_T, \\
u_{n+1} &= 0 \text{ on } \partial \Omega \times (0, T), \\
u_{n+1}(0) &= \sigma \text{ in } \Omega,
\end{align*}
\]

which satisfy

\[
[|\nabla u_{n+1}|^q]_{2G_{q^*}} \leq c_1[|\nabla u_n|^q + \omega]_{2G_{q^*}}^{q^*} \forall n \geq 0 \tag{9.4}
\]

where $u_0 \equiv 0$ and constant c_1 depends only on $N, \Lambda_1, \Lambda_2, q$ and $T_0/R_0, T_0$. Moreover, if $\sigma \in L^1(\Omega)$ then $\{u_n\}$ is the sequence of renormalized solutions.

i. Suppose

\[
[\omega]_{2G_{q^*}} \leq (q-1)^{\frac{1}{2}}(qc_12^{q-1})^{-\frac{1}{q-1}}, \tag{9.5}
\]

we prove that

\[
[|\nabla u_n|^q]_{2G_{q^*}} \leq \frac{qc_12^{q-1}}{q-1}[\omega]_{2G_{q^*}}^{q^*} \forall n \geq 1. \tag{9.6}
\]

Indeed, clearly, we have (9.6) when $n = 1$. Now assume that (9.6) is true with $n = m$, that is,

\[
[|\nabla u_m|^q]_{2G_{q^*}} \leq \frac{qc_12^{q-1}}{q-1}[\omega]_{2G_{q^*}}^{q^*}.
\]

From (9.4) we obtain

\[
[|\nabla u_{m+1}|^q]_{2G_{q^*}} \leq c_1[|\nabla u_m|^q + \omega]_{2G_{q^*}}^{q^*}
\]

\[
\leq c_12^{q-1} \left(\frac{[|\nabla u_m|^q]_{2G_{q^*}}^{q^*} + [\omega]_{2G_{q^*}}^{q^*}}{q-1} \right)
\]

\[
\leq c_12^{q-1} \left(\frac{qc_12^{q-1}}{q-1} \right)^q \frac{[\omega]_{2G_{q^*}}^{q^*}}{q-1} + 1 \right) [\omega]_{2G_{q^*}}^{q^*}
\]

\[
\leq \frac{qc_12^{q-1}}{q-1}[\omega]_{2G_{q^*}}^{q^*}.
\]

Here, the last inequality is obtained by using (9.5). So, (9.6) is also true with $n = m + 1$. Thus, (9.6) is true for all $n \geq 1$.

ii. Clearly, $u_{n+1} - u_n$ is the unique renormalized solution of

\[
\begin{align*}
u_t - \text{div} \left(A(x, t, \nabla u) \right) &= |\nabla u_n|^q - |\nabla u_{n-1}|^q \text{ in } \Omega_T, \\
u &= 0 \text{ on } \partial \Omega \times (0, T), \\
u(0) &= 0 \text{ in } \Omega.
\end{align*}
\]

So, we have

\[
[|\nabla u_{n+1} - \nabla u_n|^q]_{2G_{q^*}} \leq c_1[|\nabla u_n|^q - |\nabla u_{n-1}|^q]_{2G_{q^*}}^{q^*} \forall n \geq 1.
\]
Since, $|s_2^2 - s_2^2| \leq q|s_1 - s_2| \max\{s_1, s_2\}^{q-1}$ for any $s_1, s_2 \geq 0$ and using Holder inequality, we get
\[
\left\| \nabla u_{n+1} - \nabla u_n \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}} \leq c_1 q^q \left\| \nabla u_n - \nabla u_{n-1} \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}} \left[\max\{\|\nabla u_n\|, \|\nabla u_{n-1}\|\} \right]^{q-1}_{\mathcal{B}^q_{\mathcal{V}_1, q}}
\]
\[
\leq c_1 q^q \left\| \nabla u_n - \nabla u_{n-1} \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}} \left(\left\| \nabla u_n \right\|_{\mathcal{B}^q_{\mathcal{V}_1, q}} + \left\| \nabla u_{n-1} \right\|_{\mathcal{B}^q_{\mathcal{V}_1, q}} \right)^{q-1}
\]
which follows from (9.6),
\[
\left\| \nabla u_{n+1} - \nabla u_n \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}} \leq C \left\| \nabla u_n - \nabla u_{n-1} \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}} \ \forall \ n \geq 1
\]
where
\[
C = c_1 q^q \left(\frac{qc_1}{q-1} \right)^{q-1} \left[\omega \right]^{q(q-1)}_{\mathcal{B}^q_{\mathcal{V}_1, q}}.
\]
Hence, if $C < 1$ then u_n converges to $u = u_1 + \sum_{n=1}^{\infty} (u_{n+1} - u_n)$ in $L^q(0, T, W^{1,q}_0(\Omega))$ and satisfies
\[
\left\| \nabla u \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}} \leq \frac{qc_1}{q-1} \left[\omega \right]^{q}_2_{\mathcal{B}^q_{\mathcal{V}_1, q}}.
\]
Note that $C < 1$ is equivalent to
\[
\left[\omega \right]_{\mathcal{B}^q_{\mathcal{V}_1, q}} \leq (c_1 q^q)^{-\frac{1}{q-1}} \left(\frac{qc_1}{q-1} \right)^{\frac{1}{q-1}}.
\]
Combining this with (9.5) and using Theorem 3.6, we conclude that the problem (2.53) has a distribution solution u (a renormalized if $\sigma \in L^1(\Omega)$), if
\[
\left[\omega \right]_{\mathcal{B}^q_{\mathcal{V}_1, q}} \leq \min \left\{ (q-1)^{\frac{1}{q}} (qc_1 2q^{-1})^{-\frac{1}{q-1}}, (c_1 q^q)^{-\frac{1}{q-1}} \left(\frac{qc_1}{q-1} \right)^{\frac{1}{q-1}} \right\}.
\]
Next, we will prove Case b. and Case c..

Let $\mu_n \in C^\infty_c(\Omega_T), \sigma_n \in C^\infty(\Omega)$ be as in the proof of Theorem 2.1. We have $|\mu_n| \leq \varphi_n * |\mu|, |\sigma_n| \leq \varphi_{1,n} \ast |\sigma|$ for any $n \in \mathbb{N}, \{\varphi_n\}, \{\varphi_{1,n}\}$ are sequences of standard mollifiers in $\mathbb{R}^{N+1}, \mathbb{R}^N$ respectively. Set $\omega_n = |\mu_n| + |\sigma_n| \otimes \delta_{\{x=0\}}$ and $\omega = |\mu| + |\sigma| \otimes \delta_{\{x=0\}}$.

Case b. For $n_0 \in \mathbb{N}$, $\varepsilon > 0$, we prove that the problem (2.53) has a solution with data $\mu = \mu_{n_0}, \sigma = \sigma_{n_0}$. Now we put
\[
\mathbf{E}_A = \{ u \in L^1(0, T, W^{1,q}_0(\Omega)) : \left\| \nabla u \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon} \leq \Lambda \}.
\]

By Fatou’s lemma, \mathbf{E}_A is closed under the strong topology of $L^1(0, T, W^{1,q}_0(\Omega))$ and convex. We consider a map $\mathcal{S} : \mathbf{E}_A \to \mathbf{E}_A$ defined for each $v \in \mathbf{E}_A$ by $\mathcal{S}(v) = u$, where $u \in L^1(0, T, W^{1,q}_0(\Omega))$ is the unique solution of problem (9.1). By Theorem 2.22, there exist $\delta = \delta(N, \Lambda_1, \Lambda_2, q + \varepsilon) \in (0, 1)$ and $s_0 = s_0(N, \Lambda_1, \Lambda_2) > 0$ such that Ω is (δ, R_0)-Reifenberg flat domain and $|A|_{s_0} \leq \delta$ for some R_0 we have
\[
\left\| \nabla u \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon} \leq c_2 \left\| \nabla u \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon},
\]
where $c_2 = c_2(N, \Lambda_1, \Lambda_2, q + \varepsilon, T_0/R_0, T_0)$. By Remark 4.33, we deduce that
\[
\left\| \nabla u \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon} \leq c_3 \left\| \nabla u \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon},
\]
where a constant c_3 depends on $N, q + \varepsilon$.

Thus,
\[
\left\| \nabla u \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon} \leq c_2 \left(\left\| \nabla u \right\|^q_{\mathcal{B}^q_{\mathcal{V}_1, q}} + \left[\omega_{n_0} \right]_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon} \right)^{q+\varepsilon}
\]
\[
\leq c_2 \left(\left[\omega \right]_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon} + \left[\omega_{n_0} \right]_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon} \right)^{q+\varepsilon}
\]
\[
\leq c_3 \left[\omega \right]_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon} + \left[\omega_{n_0} \right]_{\mathcal{B}^q_{\mathcal{V}_1, q}}^{q+\varepsilon} \leq \Lambda,
\]
provided that \(|\omega_{n|\mathbb{R}^{n}_{+}(q+\varepsilon)}| \leq c_{4} := 2^{-q} c_{2} \frac{\mathcal{A}}{c_{1}} \), and \(\Lambda := 2^{q+1} c_{2} |\omega_{n|\mathbb{R}^{n}_{+}(q+\varepsilon)}| \). This implies that \(S \) is well defined with \(|\omega_{n|\mathbb{R}^{n}_{+}(q+\varepsilon)}| \leq c_{4} \).

Now we show that \(S \) is continuous. Let \(\{v_{n}\} \) be a sequence in \(E_{\Lambda} \) such that \(v_{n} \) converges strongly in \(L^{1}(0, T, W_{0}^{1,1}(\Omega)) \) to a function \(v \in E_{\Lambda} \). Set \(u_{n} = S(v_{n}) \). We need to show that \(u_{n} \to S(v) \) in \(L^{1}(0, T, W_{0}^{1,1}(\Omega)) \). We have \(u_{n} \) satisfied (9.2) and

\[
|| \nabla u_{n} ||_{|\mathbb{R}^{n}_{+}(q+\varepsilon)} \leq \Lambda, \quad || \nabla v_{n} ||_{|\mathbb{R}^{n}_{+}(q+\varepsilon)} \leq \Lambda
\]

In particular, \(|| \nabla u_{n} ||_{L^{q+\varepsilon}(\Omega_{T})} \leq \Lambda \text{Cap}_{q+\varepsilon}(\Omega_{T}) \) for all \(n \). Thus, \(|| \nabla u_{n} ||_{q+\varepsilon} \to || \nabla v ||_{q+\varepsilon} \) in \(L^{1}(\Omega_{T}) \). Therefore, it is easy to see that we get \(u_{n} \to S(v) \) in \(L^{1}(0, T, W_{0}^{1,1}(\Omega)) \) by Theorem 3.6. On the other hand, \(S \) is pre-compact. Therefore, by Schauder Fixed Point Theorem, \(S \) has a fixed point on \(E_{\Lambda} \). Hence the problem (2.53) has a solution with data \(\mu = \mu_{n_{0}}, \sigma = \sigma_{n_{0}} \). Thanks to Corollary 4.39 and Remark 4.40 we get

\[
|\omega_{n|\mathbb{R}^{n}_{+}(q+\varepsilon)}| \leq C_{0} |\omega_{n|\mathbb{R}^{n}_{+}(q+\varepsilon)}| \quad \forall \, n \in \mathbb{N}, \tag{9.8}
\]

where \(C_{0} = C_{0}(N, q+\varepsilon, T_{0}) \).

Assume that \(|\omega_{n|\mathbb{R}^{n}_{+}(q+\varepsilon)}| \leq c_{4}^{-1} C_{0} \). So \(|\omega_{n|\mathbb{R}^{n}_{+}(q+\varepsilon)}| \leq c_{4} \) for all \(n \).

Therefore, for any \(n \in \mathbb{N} \), there exists a renormalized solution \(u_{n} \) of problem (9.3) which satisfies

\[
|| \nabla u_{n} ||_{|\mathbb{R}^{n}_{+}(q+\varepsilon)} \leq 2^{q+\varepsilon} c_{2} |\omega_{n|\mathbb{R}^{n}_{+}(q+\varepsilon)}| \leq 2^{q+\varepsilon} c_{2}^{2} [\omega_{n|\mathbb{R}^{n}_{+}(q+\varepsilon)}].
\]

By Proposition 3.5, there exists a subsequence of \(\{u_{n}\} \) converging to \(u \) in \(L^{1}(0, T, W_{0}^{1,1}(\Omega)) \). So, \(|| \nabla u_{\varepsilon} ||_{|\mathbb{R}^{n}_{+}(q+\varepsilon)} \leq 2^{q+\varepsilon} c_{2}^{2} [\omega_{n|\mathbb{R}^{n}_{+}(q+\varepsilon)}] \text{Cap}_{q+\varepsilon}(\Omega_{T}) \) and \(\nabla u_{\varepsilon} \to \nabla u \) in \(L^{1}(\Omega) \).

Case c. For \(n_{0} \in \mathbb{N} \). We prove that the problem (2.53) has a solution with data \(\mu = \mu_{n_{0}}, \sigma = \sigma_{n_{0}} \). Now we put

\[E_{\Lambda} = \{ u \in L^{1}(0, T, W_{0}^{1,1}(\Omega)) : || \nabla u ||_{L^{(N+2)(q-1),\infty}(\Omega_{T})} \leq \Lambda \}, \]

where \(L^{(N+2)(q-1),\infty}(\Omega_{T}) \) is Lorentz space with norm

\[|| f ||_{L^{(N+2)(q-1),\infty}(\Omega_{T})} := \sup_{0 < |D| < \infty} \left(|D|^{-\frac{1}{q-1}} \int_{|D| \Omega_{T}} |f| |dx| \right). \]

By Fatou’s lemma, \(E_{\Lambda} \) is closed under the strong topology of \(L^{1}(0, T, W_{0}^{1,1}(\Omega)) \) and convex. We consider a map \(S : E_{\Lambda} \to E_{\Lambda} \) defined for each \(v \in E_{\Lambda} \) by \(S(v) = u_{n} \) where \(u \in L^{1}(0, T, W_{0}^{1,1}(\Omega)) \) is the unique solution of problem (9.1). By Theorem 2.20, there exist \(\delta = \delta(N, \Lambda_{1}, \Lambda_{2}, q) \in (0, 1) \) and \(s_{0} = s_{0}(N, \Lambda_{1}, \Lambda_{2}) > 0 \) such that \(\Omega = (\delta, R_{0}) \)-Reifenberg flat domain and \(|A|_{R_{0}} \leq \delta \) for some \(R_{0} \) we have

\[|| \nabla u ||_{L^{(N+2)(q-1),\infty}(\Omega_{T})} \leq c_{6} || \mathbb{M}_{1} || \nabla v_{\varepsilon} || + || \mathbb{W}_{n_{0}} ||_{L^{(N+2)(q-1),\infty}(\Omega_{T})}, \]

where \(c_{6} = c_{6}(N, \Lambda_{1}, \Lambda_{2}, q, T_{0}/R_{0}) \) and \(T_{0} = \text{diam}(\Omega) + T^{1/2} \).

By Proposition 4.4 we have

\[|| \mathbb{M}_{1} || \nabla v_{\varepsilon} ||_{L^{(N+2)(q-1),\infty}(\mathbb{R}^{n+1})} \leq c_{7} \| \mathbb{M}_{1} \nabla v_{\varepsilon} \|_{L^{(N+2)(q-1),\infty}(\mathbb{R}^{n+1})} \]

where a constant \(c_{8} \) only depends on \(N, q \). Thus,

\[|| \nabla u ||_{L^{(N+2)(q-1),\infty}(\Omega_{T})} \leq c_{6} \left(\| \mathbb{M}_{1} \nabla v_{\varepsilon} \|_{L^{(N+2)(q-1),\infty}(\Omega_{T})} + \| \mathbb{M}_{1} \mathbb{W}_{n_{0}} \|_{L^{(N+2)(q-1),\infty}(\Omega_{T})} \right) \]

107
which implies that S is well defined with $\|M_1[\omega_n]\|_{L^1(N^2(\Omega_T))} \leq c_9 := (2c_0)^{-\epsilon}c_8^{-\frac{1}{\epsilon+1}}$.

As in Case b we can show that $S : E_\Lambda \to E_\Lambda$ is continuous and $S(E_\Lambda)$ is pre-compact, thus by Schauder Fixed Point Theorem, S has a fixed point on E_Λ. Hence the problem (2.53) has a solution with data $\mu = \mu_{n_0}, \sigma = \sigma_{n_0}$.

To continue, we need to show that
\[
\|M_1[\omega_n]\|_{L^1(N^2(\Omega_T))} \leq c_{10} \|\mu\|_{L^1(N^2(\Omega_T))} + c_{10} \|\sigma\|_{L^1(N^2(\Omega_T))},
\]
for every $n \geq k_0$. Where k_0 is a constant large enough and $c_{10} = c_{10}(N, q)$ Indeed, we have $M_1[\omega_n] \leq c_{11} \|\varphi_n * |\mu|\|_{L^1(N^2(\Omega_T))} + c_{11} \|\varphi_n * |\sigma|\|_{L^1(N^2(\Omega_T))}$. Thus, by Proposition 4.19 we deduce
\[
\|M_1[\omega_n]\|_{L^1(N^2(\Omega_T))} \leq c_{11} \|\varphi_n * |\mu|\|_{L^1(N^2(\Omega_T))} + c_{11} \|\varphi_n * |\sigma|\|_{L^1(N^2(\Omega_T))} \to c_{11} \|\mu\|_{L^1(N^2(\Omega_T))} + c_{12} \|\sigma\|_{L^1(N^2(\Omega_T))} \text{ as } n \to \infty.
\]
It implies (9.9).

Now assume that
\[
\|M_1[\omega_n]\|_{L^1(N^2(\Omega_T))} \leq c_9 \|\mu\|_{L^1(N^2(\Omega_T))},
\]
then $\|M_1[\omega_n]\|_{L^1(N^2(\Omega_T))} \leq c_9$ for all $n \geq k_0$. Consequently, there exists a renormalized solution u_n of problem (9.3) satisfied
\[
\|\nabla u_n\|_{L^1(N^2(\Omega_T))} \leq 2c_0 \|M_1[\omega_n]\|_{L^1(N^2(\Omega_T))} \leq 2c_0 \|\mu\|_{L^1(N^2(\Omega_T))} \to \|\mu\|_{L^1(N^2(\Omega_T))} \leq C
\]
for any $n \geq k_0$. Thanks to Proposition 3.5, there exists a subsequence of $\{u_n\}$ converging to u in $L^1(0, T, W^{1,1}_0(\Omega))$. So, $\|\nabla u\|_{L^1(N^2(\Omega_T))} \leq C$ and $\|\nabla u_n\|_{L^1(N^2(\Omega_T))}$ is equi-integrable.

It follows the result by Proposition 3.5 and Theorem 3.6. This completes the proof.

Proof of Theorem 2.33. Let $\{\mu_n\} \subset C^\infty_c(\Omega_T), \sigma_n \subset C^\infty_c(\Omega)$ be as in the proof of Theorem 2.1. We have $|\mu_n| \leq \varphi_n * |\mu|, |\sigma_n| \leq \varphi_n * |\sigma|$ for any $n \in \mathbb{N}, \{\varphi_n\}, \{\varphi_n\}$ are sequences of standard mollifiers in $\mathbb{R}^{N+1}, \mathbb{R}^{N}$ respectively. We can assume that $\text{supp}(\mu_n) \subset (\Omega' + B_{d/4}(0)) \times [0, T]$ and $\text{supp}(\sigma_n) \subset (\Omega' + B_{d/4}(0))$ for any $n \in \mathbb{N}$. Set $\omega_n = |\mu_n| + |\sigma_n| \delta_{\{t=0\}}$ and $\omega = |\mu| + |\sigma| \delta_{\{t=0\}}$.

First, we prove that the problem (2.53) has a solution with data $\mu = \mu_{n_0}, \sigma = \sigma_{n_0}$ for $n_0 \in \mathbb{N}$. By Corollary 4.39 and Remark 4.40, we have
\[
|\omega_n|_{L^2(\mathbb{R}^{2d+1}, \psi)} \leq c_1 \epsilon_0 \forall n \in \mathbb{N},
\]
where $c_1 = c_1(N, q, T_0)$ and $\epsilon_0 = |\omega_n|_{L^2(\mathbb{R}^{2d+1}, \psi)}$. By Proposition 4.36 and Remark 4.37, we have
\[
\|M_1[\omega_n]\|_{L^1(N^2(\Omega_T))} \leq c_2 \epsilon_0^{\frac{1}{2} - \delta} I_1[\omega_n] \quad \text{a.e. in } \mathbb{R}^{N+1}
\]
and
\[
\|M_1[\omega_n]\|_{L^1(N^2(\Omega_T))} \leq c_2 \epsilon_0^{\frac{1}{2} - \delta} I_2[\omega_n] \quad \text{a.e. in } \mathbb{R}^{N+1},
\]
for any $n \in \mathbb{N}$, where $c_2 = c_2(N, \delta, q, T_0)$ and $0 < \delta < 1$. We set
\[
E_\Lambda = \{u \in L^1(0, T, W^{1,1}_0(\Omega)) : |\nabla u| \leq \Lambda^1[2T_0, \delta][\omega_n] \}.
\]
Clearly, E_{Λ} is closed under the strong topology of $L^1(0, T, W^{1,1}_0(\Omega))$ and convex. We consider a map $S : E_{\Lambda} \rightarrow L^1(0, T, W^{1,1}_0(\Omega))$ defined for each $v \in E_{\Lambda}$ by $S(v) = u$, where $u \in L^1(0, T, W^{1,1}_0(\Omega))$ is the unique renormalized solution of problem (9.1). We will show that $S(E_{\Lambda})$ is subset of E_{Λ} for some $\Lambda > 0$ and c_0 small enough.

We have

$$|\nabla v| \leq \Lambda I_1[\omega_{n_0}]. \quad (9.13)$$

In particular, $|||\nabla v|||_{L^\infty(0,d/2\times(0,T))} \leq \Lambda(N + 1)^{-1}(d/2)^{-N-1}\omega_{n_0}(\overline{\Omega_T})$, where $\Omega_{d/2} = \{ x \in \Omega : d(x, \partial \Omega) \leq d/2 \}$.

From (9.11) and (9.12) lead to

$$\| I^q_{1} ||\nabla v||^{q} \leq \Lambda I^q_{2} \left[\left(\frac{q^2 T_0}{2} [\omega_{n_0}] \right)^q \right] \leq c_2 \Lambda^q \epsilon_0^{q-1} I^q_{1} [\omega_{n_0}] \quad \text{and} \quad ||\nabla v||^{q} \leq \Lambda \left[\left(\frac{q^2 T_0}{2} [\omega_{n_0}] \right)^q \right] \leq c_2 \Lambda^q \epsilon_0^{q-1} I^q_{1} [\omega_{n_0}].$$

Clearly, from [27, Theorem 1.2], we have for any $Q_r(x, t) \subset \Omega \times (-\infty, T)$ with $r \leq r_0$

$$|\nabla u(x, t)| \leq c_3 \int_{Q_r(x, t)} |\nabla u|dydt + c_3 \| I^q_{1} ||\nabla v||^{q} + \omega_{n_0}(x, t) \leq c_3 \int_{Q_r(x, t)} |\nabla u|dydt + c_3 \| I^q_{1} ||\nabla v||^{q}(x, t) + c_3 \| I^q_{1} [\omega_{n_0}](x, t) \leq c_3 \int_{Q_r(x, t)} |\nabla u|dydt + c_3 \left(c_2 \Lambda^q \epsilon_0^{q-1} + 1 \right) \| I^q_{1} [\omega_{n_0}](x, t), \quad (9.14)$$

where $c_3 = c_3(N, \Lambda_1)$ and $r_0 = r_0(N, \Lambda_1, \Lambda_2, \Lambda_3, \beta) > 0$.

Since $|||\nabla u|||_{L^1(\Omega_T)} \leq c_4 T_0 \left(|||\nabla v|||_{L^q(\Omega_T)} + \omega_{n_0}(\overline{\Omega_T}) \right)$, for any $(x, t) \in (\Omega \setminus \Omega_{d/4}) \times (-\infty, T)$ where $\Omega_{d/4} = \{ x \in \Omega : d(x, \partial \Omega) \leq d/4 \}$, we have

$$\frac{1}{|Q_{d_0}(x, t)|} \int_{Q_{d_0}(x, t)} |\nabla u|dydt \leq c_6 d_0^{-2-N} T_0 \left(|||\nabla v|||_{L^q(\Omega_T)} + \omega_{n_0}(\overline{\Omega_T}) \right) \leq c_6 \| I^q_{1} ||\nabla v||^{q} + \omega_{n_0}(x, t) \leq c_6 \left(c_2 \Lambda^q \epsilon_0^{q-1} + 1 \right) \| I^q_{1} [\omega_{n_0}](x, t), \quad (9.15)$$

where $d_0 = \min\{d/8, r_0\}$ and $c_6 = c_6(N, p, \Lambda_1, \Lambda_2, T_0/d_0)$.

By regularity theory, we have

$$|||\nabla u|||_{L^\infty(\partial \Omega_{d/4} \times (0,T))} \leq c_7 (|||u|||_{L^\infty(\partial \Omega_{d/2} \times (0,T))} + |||\nabla v|||_{L^\infty(\partial \Omega_{d/2} \times (0,T))}),$$

where $c_7 = c_7(N, \Lambda_1, \Lambda_2, \Lambda_4, \Omega, T)$.

a. Estimate $|||\nabla v|||_{L^\infty(\partial \Omega_{d/4} \times (0,T))}$. Thanks to (9.13),

$$|||\nabla v|||_{L^\infty(\partial \Omega_{d/4} \times (0,T))} \leq \left(\Lambda (d/2)^{-N} (\omega_{n_0}(\overline{\Omega_T})) \right)^q.$$

Since $\omega_{n_0}(\overline{\Omega_T}) \leq c_8 \epsilon_0 \text{Cap}_{\partial \Omega}(T_0)(Q_{T_0}(x_0, t_0)) = c_8(N, q, p, T_0) \epsilon_0$ with $(x_0, t_0) \in \Omega_T$, thus

$$|||\nabla v|||_{L^\infty(\partial \Omega_{d/2} \times (0,T))} \leq c_9 \Lambda^q \epsilon_0^{q-1} I^q_{1} [\omega_{n_0}](x, t) \forall (x, t) \in \Omega_T,$$

where $c_9 = c_9(N, \Lambda_1, \Lambda_2, \Lambda_4, \Omega, T)$.

b. Estimate $||u||_{L^\infty(\partial \Omega_{d/2})}$. By Theorem 2.1 we have

$$|u(x, t)| \leq c_{10} \| I^q_{2} ||\nabla v||^{q} + \omega_{n_0}(x, t) \forall (x, t) \in \Omega_T,$$

where $c_{10} = c_{10}(N, \Lambda_1, \Lambda_2)$.

Thus,

$$|u(x, t)| \leq c_{10} \| I^q_{2} ||\nabla v||^{q} + \omega_{n_0}(x, t) \leq c_{10} \left(c_2 \Lambda^q \epsilon_0^{q-1} + 1 \right) I^q_{2} [\omega_{n_0}](x, t),$$

109
which implies
\[\|u\|_{L^\infty(\Omega_d) \times (0,T)} \leq c_{11} \left(c_2 A^q \varepsilon_0^{-q-1} + 1 \right) d^{-N} \omega_n(\Omega_T) \leq c_{12} \left(c_2 A^q \varepsilon_0^{-q-1} + 1 \right) \|I_1^{2T_\delta}[\omega_n](x,t)\| \forall (x,t) \in \Omega_T, \]
where \(c_{12} = c_{12}(N, A_1, A_2, A_3, q, T_0/d) \). Therefore,
\[\|\nabla u\|_{L^\infty(\Omega_d) \times (0,T)} \leq c_{13} \left(c_{14} A^q \varepsilon_0^{-q-1} + 1 \right) \inf_{(x,t) \in \Omega_T} \|I_1^{2T_\delta}[\omega_n](x,t)\|. \quad (9.16) \]
where \(c_{13} = c_{13}(N, A_1, A_2, A_3, q, d, \Omega, T) \). Finally from (9.15) (9.16) and (9.14) we get for all \((x,t) \in \Omega_T\)
\[|\nabla u(x,t)| \leq c_{14} \left(c_{15} A^q \varepsilon_0^{-q-1} + 1 \right) \|I_1^{2T_\delta}[\omega_n](x,t)\|. \]
where \(c_{14} = c_{14}(N, A_1, A_2, A_3, q, d, \Omega, T) \) and \(c_{15} = c_{15}(N, \delta, q) \).
So, we suppose that \(\Lambda = 2c_{14} \) and \(\varepsilon_0 \leq c_{15} \delta^{-1} (2c_{14})^{-1} \), it is equivalent to (2.61), (2.62) holding for some \(C > 0 \). Then for any \((x,t) \in \Omega_T\)
\[|\nabla u(x,t)| \leq \Lambda I_1^{2T_\delta}[\omega_n](x,t), \]
and \(S \) is well defined.
On the other hand, we can see that \(S : E_\Lambda \rightarrow E_\Lambda \) is continuous and \(S(E) \) is pre-compact under the strong topology of \(L^1(0,T; W^{1,1}_0(\Omega)) \).
Thus, by Schauder Fixed Point Theorem, \(S \) has a fixed point on \(E_\Lambda \). This means: the problem (2.53) has a solution with data \(\mu = \mu_{\text{ref}} \), \(\sigma = \sigma_{\text{ref}} \).
Therefore, for any \(n \in \mathbb{N} \), there exists a renormalized solution \(u_n \) of problem (9.3) which satisfies
\[|\nabla u_n(x,t)| \leq \Lambda I_1^{2T_\delta}[\omega_n](x,t) \forall (x,t) \in \Omega_T. \]
Since \(I_1^{2T_\delta}[\omega_n](x,t) \leq \varphi_n \ast I_1^{2T_\delta}[\mu](x,t) + \varphi_{1,n} \ast I_1^{2T_\delta}[\sigma](t,\Omega) \) \((9.15) \), \(A_n \) converges to \(A \) in \(L^1(\mathbb{R}^{N+1}) \), thus \(\nabla u_n \) is equi-integrable. As in the proof of Theorem 2.32, we get the result by using Proposition 3.5 and Theorem 3.6. This completes the proof.

9.2 Quasilinear Riccati Type Parabolic Equation in \(\mathbb{R}^N \times (0,\infty) \) and \(\mathbb{R}^{N+1} \)

In this subsection, we provide the proofs of Theorem 2.37 and 2.38. In the same way, we can prove Theorem 2.36.

Proof of Theorem 2.37. As in the proof of Theorem 2.25 and Theorem 2.27, we can apply Theorem 2.32 to obtain: there exists a constant \(c_1 = c_1(N, A_1, A_2, q) \) that if \(|A|_{\text{loc}} \leq \delta \)
and (2.64) holds with constant \(c_1 \) then we can find a sequence of renormalized solutions \(\{ u_{n_k} \} \) of
\[\begin{cases} (u_{n_k})_t - \text{div}(A(x,t,\nabla u_{n_k})) = |\nabla u_{n_k}|^q + \chi D_{n_k-1} \omega \text{ in } D_{n_k}, \\ u_{n_k} = 0 \text{ on } \partial D_{n_k}(0) \times (-n_k^2, n_k^2), \\ u_{n_k}(-n_k^2) = 0 \text{ on } B_{n_k}(0). \end{cases} \]
converging to some \(u \) in \(L^1_{\text{loc}}(\mathbb{R}; W^{1,1}_{\text{loc}}(\mathbb{R}^N)) \) and satisfying
\[\|\nabla u_{n_k}\|_{L^{(q-1)/(N+2)}(D_{n_k})} \leq c_2 \|\nabla \omega\|_{L^{(q-1)/(N+2)}(\mathbb{R}^{N+1})}, \]

110
for some $c_2 = c_2(N, \Lambda_1, \Lambda_2, q)$, where $D_n = B_n(0) \times (-n^2, n^2)$. It follows $|\nabla u_{n_k}|^q \to |\nabla u|^q$ in $L^1_{\text{loc}}(\mathbb{R}^{N+1})$. Thus, u is a distribution solution of (2.55) which satisfies (2.63).

Furthermore, if $\omega = \mu + \sigma \delta_{(t=0)}$ with $\mu \in \mathcal{M}(\mathbb{R}^N \times (0, \infty))$ and $\sigma \in \mathcal{M}(\mathbb{R}^N)$, then $u_{n_k} = 0$ in $B_{n_k}(0) \times (-n^2_k, 0)$. So, $u = 0$ in $\mathbb{R}^N \times (-\infty, 0)$. Therefore, clearly $u|_{\mathbb{R}^N \times [0, \infty)}$ is a distribution solution to (2.54).

\section*{Proof of Theorem 2.38}

Let $\omega_n = \phi_n^*(\chi_{D_{n-1}} \omega)$ for any $n \geq 2$. We have $\mu_n \in C^\infty_c(\mathbb{R}^{N+1})$ with $\text{supp}(\omega_n) \subset D_n$ and $\omega_n \to \omega$ weakly in $\mathcal{M}(\mathbb{R}^{N+1})$.

According to Corollary 4.39 and Remark 4.40, we have

$$[\omega_n]_{\mathcal{M}^{N+1}} \leq c_1 \varepsilon_0 \quad \forall n \in \mathbb{N}$$

where $c_1 = c_1(N, q)$ and $[\omega]_{\mathcal{M}^{N+1}} \leq \varepsilon_0$. Thus, thanks to Theorem 1.3 we get

$$I_1 (I_1 [\omega_n])^q \leq c_2 \varepsilon_0^{q-1} I_1 [\omega_n] \quad \text{and} \quad I_2 (I_1 [\omega_n])^q \leq c_2 \varepsilon_0^{q-1} I_2 [\omega_n],$$

\section*{Proof of Theorem 2.9}

By using estimate (5.8) in Remark 5.3, we can apply the argument of the proof of Theorem 2.9, with problem (6.9) replaced by

$$\begin{cases}
 u_t - \text{div}(A(t, \nabla u)) = \chi_{B_{n/4}(0) \times (-n^2, n^2)} |\nabla v|^q + \omega_n \quad \text{in} \quad D_n, \\
 u = 0 \quad \text{on} \quad \partial B_n(0) \times (-n^2, n^2), \\
 u(-n^2) = 0 \quad \text{in} \quad B_n(0),
\end{cases}$$

to obtain: the operator S (in the proof of Theorem 2.9) has a fixed point on E_A for some $\Lambda = \Lambda(N, \Lambda_1, \Lambda_2, q) > 0$ and $\varepsilon_0 = \varepsilon_0(N, \Lambda_1, \Lambda_2, q) > 0$. Therefore, for any $n \in \mathbb{N}$ there exists a solution u_n of problem

$$\begin{cases}
 (u_{n,k} - \text{div}(A(t, \nabla u_{n,k})) = \chi_{B_{n/4}(0) \times (-n^2, n^2)} |\nabla u_{n,k}|^q + \omega_n \quad \text{in} \quad D_n, \\
 u_n = 0 \quad \text{on} \quad \partial B_n(0) \times (-n^2, n^2), \\
 u_n(-n^2) = 0 \quad \text{in} \quad B_n(0),
\end{cases}$$

which satisfies

$$|\nabla u_n(x, t)| \leq \Lambda I_1 [\omega_n](x, t) \quad \forall (x, t) \in B_{n/4}(0) \times (-n^2, n^2).$$

Moreover, combining this with (9.18) and Theorem 2.1 we also obtain

$$|u_n(x, t)| \leq \Lambda I_2 \left[|\nabla u_{n,k}|^q + |\omega_n|\right](x, t) \leq \Lambda I_2 \left[I_1 [\omega_n]^q + K I_2 [\omega_n]\right](x, t) \leq c_3 I_2 [\omega_n](x, t),$$

for any $(x, t) \in B_n(0) \times (-n^2, n^2)$.

Since $I_2[|\omega(x_0, t_0)|] = \infty$ for some $(x_0, t_0) \in \mathbb{R}^{N+1}$, thus $\sup_n \int_{D_n} |\chi_{D_n} u_{n,k}|^q dx dt = \infty$ for all $n \in \mathbb{N}$, $1 < q_0 < \frac{N+2}{N}$. In addition, since $I_2[|\omega|] < \infty$, $I_1 [\chi_{D_{n-1}} \omega] \to I_1 [\omega]$ in $L^q_{\text{loc}}(\mathbb{R}^{N+1})$ and $\{\chi_{B_{n/4}(0) \times (-n^2, n^2)} |\nabla u_{n,k}|^q\}$ is equi integrable in \mathbb{R}^{N+1}. Therefore, we can apply Corollary 3.18 to obtain: $u_n \to u$ in $L^1_{\text{loc}}(\mathbb{R}; W^{1,1}_{\text{loc}}(\mathbb{R}^N))$ (we will
take its subsequence if need) and \(u \) satisfies (2.66). Also, \(|\nabla u_n|^q \to |\nabla u|^q \) in \(L_{loc}^1(\mathbb{R}^{N+1}) \). Finally, we can conclude that \(u \) is a distribution solution of problem (2.65). Note that the assumption \(\{\omega_m\}_{m=1}^{\infty} \) of Theorem 3.10 extending to higher \(C = \varepsilon_0 \). Furthermore, if \(\omega = \mu + \sigma \otimes \delta_{(t_0 = 0)} \) with \(\mu \in \mathcal{M}(\mathbb{R}^{N} \times \{0, \infty\}) \) and \(\sigma \in \mathcal{M}(\mathbb{R}^N) \), then \(u_n = 0 \) in \(B_r(0) \times (-n^2, a_n) \) where \(\text{supp}(\omega_n) \subset \mathbb{R}^N \times (a_n, \infty) \) and \(a_n \to 0^- \) as \(n \to \infty \). So, \(u = 0 \) in \(\mathbb{R}^N \times (-\infty, 0) \). Therefore, clearly \(u|_{\mathbb{R}^N \times [0, \infty)} \) is a distribution solution to (2.68).

This completes the proof of the Theorem.

10 Appendix

Proof of the Remark 2.27. For \(\omega \in \mathcal{M}^+(\mathbb{R}^{N+1}) \), \(0 < \alpha < N + 2 \) if \(\mathbb{I}_0[\omega](x_0, t_0) < \infty \) for some \((x_0, t_0) \in \mathbb{R}^{N+1} \) then for any \(0 < \beta \leq \alpha \), \(\mathcal{I}_{\beta}[\omega] \in L_{loc}^1(\mathbb{R}^{N+1}) \) for any \(0 < s < \frac{N+2}{N+2-\beta} \).

Indeed, by Remark 4.28 we have \(\mathcal{I}_0[\omega] \in L_{loc}^1(\mathbb{R}^{N+1}) \) for any \(0 < s < \frac{N+2}{N+2-\beta} \). Take \(0 < \beta \leq \alpha \) and \(0 < s < \frac{N+2}{N+2-\beta} \). For \(R > 0 \), by Proposition 4.4 we have \(\mathcal{I}_{\beta}[\chi Q_2(x)^s(0)] \in L_{loc}^1(\mathbb{R}^{N+1}) \). Thus,

\[
\int_{Q_2(x)}^{\infty} (\mathcal{I}_{\beta}[\omega](x, t))^s \, dx dt \\
\leq c_1 \int_{Q_2(x)}^{\infty} (\mathcal{I}_{\beta}[\chi Q_2(x)^s(0)] \omega(x, t))^s \, dx dt \\
\leq c_1 \int_{Q_2(x)}^{\infty} (\mathcal{I}_{\beta}[\chi Q_2(x)^s(0)] \omega(x, t))^s \, dx dt \\
< \infty.
\]

For \(0 < \beta < \alpha < N + 2 \), we consider

\[
\omega(x, t) = \sum_{k=4}^{\infty} \frac{a_k}{|Q_{k+1}(0, 0)|} \chi Q_{k+1}(0, 0) \backslash Q_k(0, 0),
\]

where \(a_k = 2^{(N+2-\theta)} \) if \(k = 2^n \) and \(a_k = 0 \) otherwise with \(\theta \in (\beta, \alpha) \).

It is easy to see that \(\mathcal{I}_0[\omega] = \infty \) and \(\mathcal{I}_{\beta}[\omega] < \infty \) in \(\mathbb{R}^{N+1} \).

Proof of the Remark 2.26. For \(\omega \in \mathcal{M}^+(\mathbb{R}^{N+1}) \), since \(\mathbb{I}_1[\omega] \leq c_1 \mathcal{I}_0[\mathcal{I}_1[\omega]] \) thus:

If \(\mathbb{I}_1[\omega] \in L_{\infty}(\mathbb{R}^{N+1}) \) with \(1 < s < N + 2 \), then by Proposition 4.4 in next section

\[
||\mathbb{I}_2[\omega]||_{L^{s(N+1)+1}(\mathbb{R}^{N+1})} \leq c_1 ||\mathbb{I}_1[\omega]||_{L^{s}(\mathbb{R}^{N+1})} < \infty
\]

If \(\mathbb{I}_1[\omega] \in L^{N+2, \infty}(\mathbb{R}^{N+1}) \), then by Theorem 4.3,

\[
\|\mathbb{I}_2[\omega]\|_{L^{n_0}(\mathbb{R}^{N+1})} \leq c_1 \mathbb{I}_1[\omega] < \infty
\]

So, \(\mathbb{I}_2[\omega] \) is \(\infty \) a.e. in \(\mathbb{R}^{N+1} \) if \(\mathbb{I}_1[\omega] \in L_{\infty}(\mathbb{R}^{N+1}) \) with \(1 < s \leq N + 2 \).

For \(s > N + 2 \), there exists \(\omega \in \mathcal{M}^+(\mathbb{R}^{N+1}) \) such that \(\mathbb{I}_2[\omega] = \infty \) in \(\mathbb{R}^{N+1} \) and \(\mathbb{I}_1[\omega] \in L^{s}(\mathbb{R}^{N+1}) \). Indeed, consider

\[
\omega(x, t) = \sum_{k=1}^{\infty} \frac{k^{N-1}}{|Q_{k+1}(0, 0)|} \chi Q_{k+1}(0, 0) \backslash Q_k(0, 0).
\]
We have for \((x, t) \in \mathbb{R}^{N+1}\) and \(n_0 \in \mathbb{N}\) with \(n_0 > \log_2(\max\{|x|, \sqrt{2t}l|\})\)
\[
\|\omega(x, t)\|_2 \geq c_2 \sum_{n_0}^{\infty} \frac{\omega(\hat{Q}_{2^n}(x, t))}{2^n N} \geq c_2 \sum_{n_0}^{\infty} \frac{\omega(\hat{Q}_{2^{n-1}}(0, 0))}{2^n N} \geq c_2 \sum_{k=1}^{\infty} \frac{2^{n-1} - k^{N-1}}{2^n N} = c_2 \sum_{k=1}^{\infty} \left(\sum_{n_k \leq 2^{n-1} - 1} \frac{1}{2^n N} \right) k^{N-1} \geq c_4 \sum_{k=n_0}^{\infty} k^{-1} = \infty.
\]

On the other hand, for \(s_1 > \frac{N+2}{2}\)
\[
\int_{\mathbb{R}^{N+1}} \omega^{s_1} dx dt = c_5 \sum_{k=1}^{\infty} \frac{k^{s(N-1)}}{(k+1)^{N+2} - k^{N+2}) s_1 - 1} \leq c_0 \sum_{k=1}^{\infty} \frac{k^{s_1(N-1)}}{k^{s_1-1)(N+1)} < \infty,
\]
since \((s_1 - 1)(N + 1) - s_1(N - 1) > 1\). Thus,
\[
\|\|\|\omega\|\|_{L^1(\mathbb{R}^{N+1})} \leq c_7 \|\omega\|_{L^1(\mathbb{R}^{N+1})} < \infty.
\]

Proof of the Proposition 3.16. We will use an idea in [9, 10] to prove 3.14. For \(S' \in W^{1, \infty}(\mathbb{R})\) with \(S(0) = 0, S'(t) \geq 0, S'(\tau) \geq 0\) for all \(\tau \in \mathbb{R}\) and \(\|S'\|_{L^\infty(\mathbb{R})} \leq 1\) we have
\[
- \int_D \eta_i S(u)dx dt + \int_D S'(u) A(x, t, \nabla u) \nabla \eta dx dt
+ \int_D S''(u) \eta A(x, t, \nabla u) \nabla u dx dt + \int_D S'(u) \eta L(u) dx dt = \int_D S'(u) \eta dx dt.
\]
Thus,
\[
\begin{align*}
\Lambda_2 & \int_D S''(u) \eta |\nabla u|^2 dx dt \\
& + \int_D S'(u) \eta L(u) dx dt \leq \Lambda_1 \int_D |\nabla u| |\nabla \eta| dx dt + \int_D \eta dx dt + \int_D |\eta_i| u dx dt.
\end{align*}
\]
a. Choose \(S' \equiv \varepsilon^{-1} T_\varepsilon\) for \(\varepsilon > 0\) and let \(\varepsilon \to 0\) we will obtain
\[
\int_D \eta |L(u)| dx dt \leq \Lambda_1 \int_D |\nabla u| |\nabla \eta| dx dt + \int_D \eta dx dt + \int_D |\eta_i| u dx dt.
\]
b. for \(S''(u) = (1 - (|u| + 1)^{-\alpha}) \text{sign}(u)\) for \(\alpha > 0\) then
\[
\int_D (|u| + 1)^{\alpha+1} \eta u dx dt \leq c_1 \left(\int_D |\nabla u| |\nabla \eta| dx dt + \int_D \eta dx dt + \int_D |\eta_i| u dx dt \right).
\]
Using Holder’s inequality, we have
\[
\int_D |\nabla u| |\nabla \eta| dx dt \leq \frac{1}{2c_1} \int_D (|u| + 1)^{\alpha+1} \eta u dx dt + c_2 \int_D (|u| + 1)^{\alpha} \eta dx dt + c_2 \int_D |\nabla \eta|^{1/\alpha} |\eta|^{\alpha} dx dt.
\]
Hence,
\[
\int_D |\nabla u| |\nabla \eta| dx dt + \int_D (|u| + 1)^{\alpha+1} \eta u dx dt \leq c_3 B.
\]

113
c. for $S'(u) = -\frac{k + 4 + |u|}{2\delta} \text{sgn}(u)\chi_{k - \delta < |u| < k + \delta} + \text{sgn}(u)\chi_{|u| \geq k + \delta}$, $0 < \delta \leq k$

$$\frac{1}{2\delta} \int_{k - \delta < |u| < k + \delta} |\nabla u|^2 \eta \, dx \, dt \leq c_4 \left(\int_D |\nabla u| |\nabla \eta| \, dx \, dt + \int_D \eta d|\mu| + \int_D |\eta||u| \, dx \, dt \right). \quad (10.3)$$

In particular,

$$\frac{1}{k} \int_D |\nabla T_k(u)|^2 \eta \, dx \, dt \leq c_5 \left(\int_D |\nabla u| |\nabla \eta| \, dx \, dt + \int_D \eta d|\mu| + \int_D |\eta||u| \, dx \, dt \right) \quad \forall k > 0. \quad (10.4)$$

Consequently, we deduce (3.14) from (10.1)-(10.4).

Next, take $\varphi \in C^\infty_c(D)$ and $S'(u) = \chi_{|u| \leq k - \delta} + \frac{k + 4 + |u|}{2\delta} \chi_{k - \delta < |u| < k + \delta}$, $S(0) = 0$ we have

$$- \int_D \varphi \eta S(u) \, dx \, dt = \int_D S'(u) \eta A(x, t, \nabla u) \nabla \varphi \, dx \, dt + \int_D S'(u) \varphi A(x, t, \nabla u) \nabla \eta \, dx \, dt$$

$$- \frac{1}{2\delta} \int_{k - \delta < |u| < k + \delta} \text{sgn}(u) \varphi \eta A(x, t, \nabla u) \nabla u \, dx \, dt + \int_D S'(u) \varphi \eta L(u) \, dx \, dt$$

$$= \int_D S'(u) \varphi \eta \mu + \int_D \varphi \eta \varphi \, dx \, dt.$$
Thus, \(\{U_{m,n}\}_{n \geq m+1} \) is relatively compact in \(L^1(D_m) \). On the other hand, for any \(n_1, n_2 \geq m+1 \)

\[
\|u_{n_1} - u_{n_2}\|_{L^1(D_m)} \leq \frac{1}{k} \|u_{n_1}\|_{L^1(D_m)} + \frac{1}{\lambda} \|\eta_m S_k(u_{n_1}) - \eta_m S_k(u_{n_2})\|_{L^1(D_m)}
\]

and \(h_n \) is convergent in \(\mathcal{L}^1_{\text{loc}}(\mathbb{R}^{N+1}) \). So, for any \(m \in \mathbb{N} \) there is a subsequence of \(\{u_n\} \), still denoted by \(\{u_n\} \), such that \(\{u_n\} \) is a Cauchy sequence (in measure) in \(D_m \). Therefore, there is a subsequence of \(\{u_n\} \), still denoted by \(\{u_n\} \), such that \(\{u_n\} \) converges to \(u \) a.e in \(\mathbb{R}^{N+1} \) for some \(u \). Clearly, \(u \in L^1_{\text{loc}}(\mathbb{R}; W^{1,1}_{\text{loc}}(\mathbb{R}^N)) \). Now, we prove that \(\nabla u_n \to \nabla u \) a.e in \(\mathbb{R}^{N+1} \).

From (3.15) with \(D = D_{m+2}, \eta = \eta_m \) and \(T_k(w) = T_k(\eta_{m+1}u) \) we have

\[
\nu \int_{D_{m+2}} \eta_m (T_k(\eta_{m+1}u) - \langle T_k(\eta_{m+1}u)\rangle) T_k(u) - \langle T_k(\eta_{m+1}u)\rangleT_k(u) \frac{dxdt}{D_{m+2}} + \int_{D_{m+2}} \eta_m A(x, t, \nabla T_k(u)) \nabla T_k(u) - \langle T_k(\eta_{m+1}u)\rangleT_k(u) \frac{dxdt}{D_{m+2}} \leq c_1 \varepsilon (1 + k) B(n, m) \quad \forall \, n \geq m + 2,
\]

(10.5)

where

\[
B(n, m) = \left\| (\eta_m)_t (|u_n| + 1) \right\|_{L^1(D_{m+2})} + \int_{D_{m+2}} (|u_n| + 1)^{q_0} \eta_m dxdt + \int_{D_{m+2}} |\nabla \eta_m^{1/q_1}| \eta_m dxdt + \int_{D_{m+2}} \eta_m d|\mu_n|,
\]

with \(q_1 < \frac{2\beta - 1}{2q_0} \). By the assumption, we verify that the right hand side of (10.5) is bounded by \(c_2 \varepsilon \), where \(c_2 \) does not depend on \(n \).

Since \(\{\eta_m T_k(u_n)\}_{n \geq m+2} \) is bounded in \(L^2(-(m+2)^2, (m+2)^2; H^1_0(B_{m+2}(0))) \), thus there is a subsequence of \(\{u_n\} \), still denoted by \(\{u_n\} \) such that

\[
\lim_{n \to \infty} \int_{[T_k(u_n) - \langle T_k(\eta_{m+1}u)\rangle, \varepsilon]} \eta_m A(x, t, \nabla T_k(u)) \nabla (T_k(u_n) - T_k(u)) \, dxdt = 0.
\]

Therefore, thanks to \(u_n \to u \) a.e in \(D_{m+2} \) and \(\langle T_k(\eta_{m+1}u)\rangle \to T_k(\eta_{m+1}u) \) in \(L^2(-(m+2)^2, (m+2)^2; H^1_0(B_{m+2}(0))) \), we get

\[
\limsup_{\nu \to \infty} \limsup_{n \to \infty} \int_{[T_k(u_n) - \langle T_k(\eta_{m+1}u)\rangle, \varepsilon]} \eta_{1,m} \Phi_{n,k} \, dxdt \leq c_2 \varepsilon \quad \forall \, \varepsilon \in (0, 1),
\]
where $\Phi_{n,k} = (A(x,t,T_k(u_n)) - A(x,t,T_k(u))) \nabla (T_k(u_n) - T_k(u))$. Using H"older inequality,

\[
\int_{D_{m+2}} \eta_m \Phi_{k,n}^{1/2} dxdt = \int_{D_{m+2}} \eta_m \Phi_{k,n}^{1/2} \chi_{|T_k(u_n) - T_k(u_{m+1})| \leq \varepsilon} dxdt \\
+ \int_{D_{m+2}} \eta_m \Phi_{k,n}^{1/2} \chi_{|T_k(u_n) - T_k(u_{m+1})| > \varepsilon} dxdt \leq \left(\int_{D_{m+2}} \eta_m \Phi_{k,n} dxdt \right)^{1/2} \\
+ \left(\int_{D_{m+2}} \eta_m \Phi_{k,n} dxdt \right)^{1/2} \left(\int_{D_{m+2}} \eta_m \Phi_{k,n} dxdt \right)^{1/2} \\
= A_{n,\nu,\varepsilon}.
\]

Clearly, $\limsup_{\varepsilon \to 0} \limsup_{\nu \to \infty} \limsup_{n \to \infty} A_{n,\nu,\varepsilon} = 0$. It follows

\[
\limsup_{n \to \infty} \int_{D_{m+2}} \eta_m \Phi_{k,n}^{1/2} dxdt = 0.
\]

Since $\Phi_{n,k} \geq \Lambda_2 |\nabla T_k(u_n) - \nabla T_k(u)|^2$, thus $\nabla T_k(u_n) \to \nabla T_k(u)$ in $L^1(D_m)$.

Note that

\[
|\{|\nabla u_n - \nabla u_n| > \lambda \} \cap D_m| \leq \frac{1}{k} \left(\|u_n\|_{L^1(D_m)} + \|u_n\|_{L^1(D_m)} \right) \\
+ \frac{1}{\lambda} \|\nabla T_k(u_n) - \nabla T_k(u_n)\|_{L^1(D_m)} \\
\leq \frac{2M_m}{k} + \frac{1}{\lambda} \|\nabla T_k(u_n) - \nabla T_k(u_n)\|_{L^1(D_m)}.
\]

Thus, we can show that there is a subsequence of $\{\nabla u_n\}$ still denoted by $\{\nabla u_n\}$ converging ∇u a.e in \mathbb{R}^{N+1}.

References

