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Supporting	Information	1.	Binding	specificity		

The	QCM	is	a	piezoelectric	sensor,	based	on	the	measurement	of	the	frequency	variation	

(∆f	in	Hz)	of	the	quartz	crystal.	The	frequency	variation	depends	on	the	propagation	of	

the	 acoustic	 wave	 at	 the	 interface	 quartz	 crystal/solution.	 In	 the	 reported	 study,	 the	

DNA	was	first	immobilized	by	its	3’OH	single	strand	extremity	onto	the	modified	quartz	

crystal	surfaces,	and	kept	in	solution.	The	protein	is	then	injected	into	the	solution.	The	

resulting	 frequency	 variation	 corresponds	 to	 a	 modification	 of	 the	 acoustic	 wave	

propagation.	Beyond	the	analysis	of	the	frequency	variation	(by	Sauerbrey’s	law)	made	

in	 the	 main	 text,	 the	 resonant	 resistance	 (R	 in	 Ohm)	 of	 the	 quartz	 crystal	 can	 be	

measured	during	 the	assays.	The	variation	of	R	 in	 function	of	∆f	 (frequency	variation)	

allows	characterizing	the	origin	of	the	frequency	variation.	R	was	plotted	as	a	function	of	

the	 frequency	 variation	 when	 MOS1	 was	 added	 to	 a	 surface	 graphed	 with	 a	 double	

strand	 DNA	 that	 contained	 the	Mos1	 3’ITR	 (in	 red)	 and	 when	MOS1	 was	 added	 to	 a	

surface	 graphed	with	 a	 double	 strand	DNA	 that	 did	 not	 contained	 the	Mos1	 3’ITR	 (in	

black).	In	the	first	case,	we	reported	a	linear	variation	of	R	with	∆f	of	0.03	Ohm/Hz.		

	

This	 quasi‐non	 variation	 of	 R	with	 the	 frequency	 variation	 is	 characteristic	 to	 a	 pure	

elastic	event,	indicating	no	variation	of	the	solution	viscosity	at	the	crystal	surface	upon	

the	protein	injection.	Consequently,	the	frequency	variation	only	corresponds	to	a	mass	

variation	due	to	the	interaction	between	the	protein	and	the	DNA	grafted	at	the	quartz	

crystal	 surface.	 The	 black	 “spot”	 obtained	 in	 the	 second	 case	 (no	 binding	 expected)	

confirms	this.	

	 	



Supporting	Information	2.	b‐MOS1	and	e‐MOS1	dimerization	

Different	 research	 teams	 (including	 ours)	 have	 previously	 shown	 that	 mariner	

transposases	 are	 produced	 and	 purified	 as	 dimers.	 This	 concerns	 transposases	

produced	from	E.	coli,	with	or	without	MBP‐tag	(references	in	the	main	text).	In	contrast,	

the	dimeric	status	of	MBP‐MOS1	produced	and	purified	from	insect	cells	(e‐MOS1	in	the	

main	text)	has	not	been	investigated.	We	still	know	that	MOS1	dimerization	is	needed	to	

translocate	it	into	the	nucleus	(Demattei	et	al,	2011).	We	also	know	that	PEC	assembly	

and	 transposition	rates	are	quite	 the	same	 for	e‐MOS1	and	b‐MOS1	(references	 in	 the	

main	text),	suggesting	that	e‐MOS1	is	produced	and	purified	as	a	dimer,	as	does	b‐MOS1.	

In	 an	 attempt	 to	 verify	 this	 point,	 we	 first	 performed	 gel	 filtration	 analyses	 as	 we	

previously	 and	 successfully	 done	 for	 b‐MOS1	 (6).	 After	 having	 sacrificed	 two	 gel	

filtration	columns,	it	was	necessary	to	admit	that	e‐MOS1	behaviour	did	not	allow	such	

an	 analysis,	 whatever	 the	 pH,	 the	 buffer,	 the	 salt	 conditions	 and	 the	 protein	

concentration	used.	e‐MOS1	never	eluted	 from	the	column.	Another	strategy	was	 then	

adapted,	 involving	 a	 new	 method	 known	 as	 Blue	 Native	 PAGE	 (Niepmann	 &	 Zheng,	

2006)	that	allows	the	separation	of	proteins	according	to	their	size,	oligomeric	state,	and	

shape.	 This	 gel	 system	 combined	 the	 addition	 of	 negative	 charges	 to	 the	 proteins	 by	

brillant	Blue	G	with	a	discontinuous	buffer	system	and	gradient	gels.		

Using	this	system,	b‐MOS1	and	e‐MOS1	electrophoretic	mobility	were	compared,	

assuming	 that	obtaining	 identical	or	very	similar	profiles	 indicate	a	similar	oligomeric	

organization.	Briefly,	20µl	of	protein	samples	(5µg)	were	mixed	to	10µl	of	loading	buffer	

(100mM	 Tris‐Cl	 pH	 8,	 40%	 glycerol,	 0,5%	 Coomassie	 brillant	 blue	 G250	 Merck)	 and	

incubated	 10	 min	 at	 RT.	 5µg	 of	 conalbumin	 (75	 kDa,	 GE‐Healthcare)	 or	 10µg	 of	

glyceraldehyde‐3phosphate‐dehydrogenase	 (GAPDH,	 143	 kDa,	 Sigma)	 were	 used	 as	

molecular	 mass	 standards.	 Pre‐stained	 protein	 ladder	 (PageRuler,	 10‐170	 kDa,	

Fermentas	Life	 Sciences)	without	 loading	buffer	were	used	 as	 landmark.	 The	 samples	

were	 applied	 to	 a	 4‐15%	 polyacrylamide	 gradient	 gel	 (BioRad).	 The	 cathode	 buffer	

contained	 100	mM	Histidine	 (adjusted	 to	 pH	 8	 using	 Tris	 base	without	 chloride)	 and	

0,002%	G‐250.	The	anode	buffer	contained	100	mM	Tris‐Cl	pH	8.8.	The	gel	was	run	at	

4°C	 and	100V	 for	3h.	After	 the	half	 of	 the	 time,	 the	 cathode	buffer	was	 changed	 for	 a	

buffer	without	G‐250.	Proteins	are	directly	detected	after	electrophoresis	since	they	are	

blue‐coloured	and	the	gels	were	scanned.	



To	detect	 the	DNA	(that	could	co‐purified	upon	the	purification	of	DNA‐binding	

proteins),	gels	were	incubated	in	a	10	μg/ml	BET	solution	for	a	few	minutes	and	imaged	

under	 UV‐light.	 After	 electrophoresis,	 gels	 were	 transferred	 onto	 nitrocellulose	

membrane	(Hybond	ECL,	GE‐Healthcare)	in	liquid	conditions	at	4°C	and	70V	for	1h30	in	

Tris	 buffer	 (Tris	 base	 25	 mM,	 Glycine	 192	 mM,	 SDS	 0,01%,	 Ethanol	 20%).	 The	

membrane	was	 then	 hybridized	with	 an	 anti‐MBP	 antibody	 (BioLabs)	 using	 standard	

procedures.	

1:	PageRuler	
2:	GAPDH	(143	kDA)	
3:	Conalbumine	(75	kDa)	
b‐M:	b‐MOS1	
e‐M:	e‐MOS1	
DP:	degradation	products	

	
	

In	 the	 blue	 native	 PAGE,	 GAPDH	 (lane	 2)	 and	 Conalbumine	 (lane	 3)	 give	 the	

approximated	positions	expected	 for	MOS1	dimers	(166	kDA	due	to	 the	MBP‐tag)	and	

monomers	(83	kDA)	respectively.	 	We	note	that	the	positions	in	the	gel	are	likewise	in	

agreement	 with	 the	 electrophoretic	 profile	 of	 the	 PageRuler	 (lane	 1),	 which	 was	 not	

obligatory	 expected.	 The	 BET‐stained	 gel	 confirms	 that	 DNA	might	 be	 present	 in	 the	

protein	 preparation,	 giving	 bands	 of	 high	molecular	weight.	 For	 the	 bacterial	 sample,	

these	bands	 (*)	 contain	both	DNA	and	MBP‐MOS1,	probably	coming	 from	non‐specific	

interactions.	The	anti‐MBP	immuno‐blot	allows	identifying	the	various	conformations	of	

MBP‐MOS1	detected	 in	 the	 blue	 native	PAGE.	Dimers	 and	monomers	 are	 detected	 for	

both	 samples,	 and	 the	 bacterial	 sample	 also	 contains	 degradation	 products	 (DP)	 as	

previously	 shown	 (ref	14	of	 the	main	 text).	Traces	of	higher	order	oligomers	 are	 also	

detected.	 The	 relative	 proportion	 of	 monomers	 and	 dimers	 are	 the	 same	 for	 both	

samples	(bacterial	versus	eukaryotic),	indicating	that	MOS1	dimerization	is	not	affected	



by	 the	 kind	 of	 producing	 cell.	 This	 is	 in	 agreement	 with	 what	 we	 know	 about	MOS1	

behaviour	 in	 eukaryotic	 cells,	 in	 which	 dimerization	 is	 needed	 to	 allow	 nuclear	

translocation	and	further	activity	(Demattei	et	al.	PlosOne,	2011).	

	

	


