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Abstract: Machining using industrial robots is currently limited to applications with low geometrical 

accuracies and soft materials. This paper analyzes the sources of errors in robotic machining and 

characterizes them in amplitude and frequency. Experiments under different conditions represent a typical 

set of industrial applications and allow a qualified evaluation. Based on this analysis a modular approach 

is proposed to overcome these obstacles, applied both during program generation (offline) and execution 

(online). Predictive offline compensation of machining errors is achieved by means of an innovative 

programming system, based on kinematic and dynamic robot models. Real-time adaptive machining error 

compensation is also provided by sensing the real robot positions with an innovative tracking system and 

corrective feedback to both the robot and an additional high dynamic compensation mechanism on piezo-

actuator basis. 
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1. Introduction 

Modern manufacturing industry requires production systems able to increase 

flexibility, to improve changeability and provide a high level of customization. In 

particular, reconfigurable manufacturing systems are a paradigm for production systems 

capable to deal with quick changes in product features, without compromising part 

quality, process reliability and life cycle costs [1]. Industrial robots are central to this 

paradigm. Nevertheless, industrial robots are traditionally used mainly for handling 

applications: according to the International Federation of Robotics (IFR) 72.7% of all 

industrial robots are used for handling and welding [2]. In fact, traditional industrial 

robots with six rotational axes enable high dexterity for complex manipulation tasks on 

a large work space. Only 2.0% of industrial robots are used for processes such as 

cutting, milling or grinding. 

This is due to their larger set of error sources compared to machine tools: Industrial 

robots at state of the art perform only a limited set of machining operations [3]. In 

particular, robot machining is currently used for parts characterized by low accuracy 

and processes characterized by low contact forces such as polishing, deburring and 

deflashing. Despite this, there is still an increasing interest in using industrial robots for 

the described processes and according to the IFR, the usage of industrial robots for 

mechanical contact processes such as deburring, grinding and milling has increased by 

41% from 2011 to 2012 [2]. In such scenario, despite their poor structural stiffness, 

industrial robots offer such a dexterity and cost to be competitive with a traditional 3 or 

5 axis machine tool. As soon as higher precision is needed, robots are replaced by 

traditional machine tools with three linear axes and eventually two rotational axes, that 

are especially designed for maximum accuracy and are optimized for the machining 

process by providing high stiffness, improved assembly and calibration.  

While industrial robots offer lower costs than a conventional machine tool, an 

exceptional flexibility and a big working area, more and more applications are identified 

in which industrial robots can perform machining operations [4]. Therefore, a much 

larger set of applications could be addressed by robots if the accuracy could be 

increased. This paper investigates the source of errors in robot machining and presents a 

modular approach for error compensation in order to improve the accuracy of industrial 

robots in machining operation.  



This paper is organized as follows. Section 1 describes the relevance of robot 

machining and the impact of the achieved accuracy. A survey on sources of errors is 

given in Section 2. Section 3 gives a detailed analysis of the characteristics of influences 

and provides dependencies. An overview on innovative methods for error compensation 

in Section 4 is followed by an outlook on demonstration presented in Section 5. The 

paper finishes with a discussion and conclusions of the presented analysis and methods 

in Section 6. 

2. Survey on Sources of Errors in Robot Machining 

Among the different performances related to the robot itself, precision is often used 

to describe its capabilities, and is further divided in: repeatability, accuracy and resolu-

tion. Repeatability and accuracy estimate the closeness between a set of attained 

positions and orientations of the TCP, when repeating the robot motions into the same 

commanded pose and their nominal values [5]. Resolution encompasses also pro-

gramming resolution. Since industrial robots were designed to execute repeatable 

operations, their accuracy is lower than their repeatability. Typical accuracies of 

industrial manipulators are in the range of ±1 mm [6], [7], but values of 0.3 mm can be 

reached with accurate compensation [8]. Repeatability ranges in 0.1 - 0.03 mm [9].  

In order to obtain a clarification of the sources, a first distinction can be carried out 

among sources of errors in the robot itself (its mechanical structure, foundation and 

control system) or robot dependent, sources external to the robot (cell and auxiliary 

devices) and process (or task) dependent sources.  

2.1. Environment Dependent Errors 

The real accuracy of a robot depends strongly on the full chain of components 

between the tool on the TCP and the floor. Starting from the environment the structure 

of the building has an impact on the behaviour of the robot. The presence of a basement 

changes the transmission from the environment on the robot. Especially, when 

measuring in the range of µm, those effects cannot be neglected. In Fig. 1 a typical 

situation for a production facility environment is considered, disturbances arising from a 

pallet truck and passing people are applied. The signals are the relative movement 

between a 1D-Lasersensor LK-G87 from Keyence, with an accuracy of 1 µm, and the 

robot which are both attached on the 14 tons machine bed (compare Fig. 5). An FFT of  

 



 

Fig. 1 Influence of disturbances measured on a 14 tons machine bed: Excitation by pallet truck and 

walking people  

 

the signals reveals the main resonances to be similar to the resonances of the robot. It 

can be concluded that the measured signal is a real movement of the robot due to 

disturbances from the environment.  

The chain of transmission of disturbances continues with the material of the floor and 

the fixture of the robot to the floor. Due to the big lever from the base to the tool small 

deformations in the base lead to big deviations on the tool. Moreover, an influence 

which must not be neglected is temperature. Different materials with different 

coefficients are used within an industrial robot which leads to a deformation which is 

hard to predict [10]. Also the tool holder and spindle support compliance must be taken 

into account. In general, their contributions to the compliance of the system cannot be 

neglected. Further, cell calibration is another important issue which directly effects the 

final quality achieved [11]. In robotic machining, the cell environment replaces the 

machine tool basement and the fixturing feature of the latter should be replaced with 

dedicated devices. In modern robotic cells, offline robot programming methods are used 

for complex robot tasks, such as milling or grinding. State of the art CAD/CAM 

software [12] for automatic path generation requires a close matching between the CAD 

representation of the work cell and its real environment. Current approaches are based 

on CAD knowledge of the cell, devices (e.g. tool holder) and robot, which provide 

extreme flexibility, but impose to adopt further calibration strategies to fulfil process 



accuracy requirements. Following the common approach of cell calibration position and 

orientation of cell components are computed using vision-based automated 

algorithms [13], [14]. 

2.2. Robot Dependent Errors 

Within the mechanical robot structure two categories of errors can be distinguished: 

Geometrical errors and non-geometrical errors [8]. The former encompasses all the 

deviation due to imperfect geometries, mating or assembly errors, and these errors exist 

whether the robot is moving or not. The latter include all the sources related to the 

dynamical behaviour of the robot. In addition, unlike the former, they are time-varying 

and change in magnitude during manipulator operations. The main effect of both of 

these sources is causing discrepancies between the real robot and its kinetostatic and 

dynamic model from which its characteristics are derived [15] and on which control is 

based [16]. 

a) Geometrical errors: Geometrical errors, which are generally compensated by 

calibration, arise from manufacturing or machining tolerances of robot components. 

Tolerances introduce variations in link geometry, as well as some variation in the 

orientation of the joints after link assembly and non-linearities in the reducers. Then 

these errors will propagate to cause inaccuracy in the pose of the TCP. Links tolerances 

are not the unique source of geometrical errors. Joint errors in the axes are produced 

during the assembly of the various joint components due to clearance in motor and 

geared transmission mechanisms, backlash and bearing run-out errors. Backlash effects 

are a function of the geometrical looseness of the reducers produced when they are 

mated together. These errors can make a significant contribution, even larger than that 

due to geometric tolerances, to robot positioning accuracy [17], [18]. Yet as in robot 

machining initially a cell calibration and a referencing procedure of the real position of 

the workpiece are performed, only nonlinearities of the gears are considered in this 

paper. As the robot locally shows a rather good accuracy the impact of most geometrical 

errors (except nonlinearities of gears) can be reduced to errors in tool calibration 

(transformation from tool to TCP of the robot), nonlinearities and measurement errors 

of the applied sensors. Yet these errors may vary depending on the individual 

circumstances as disturbances such as dust, conservation liquid and burrs of the 

workpiece may introduce additional errors. 

 



 
Fig. 2 Influence of compliance and backlash of axis 1. 

 

b) Non-geometrical errors: Non-geometric errors also occur in a local environment 

and therefore cannot be compensated for by cell calibration. They arise from structural 

deformations of load-transmitting components, links and energy-transforming devices 

as well as from wear and nonlinear effects such as nonlinear stiffness, stick-slip motion 

and hysteresis in servo drives [19], [20]. The compliance errors are due to the 

compliance of the links and joints under inertial and external load. In particular, joint 

compliance results from the torsional stiffness of the gearbox and the output drive shaft 

actuating the joint. Besides, the masses of the links cause an additional torque on the 

gears due to gravity effects. Especially during machining, forces add on the load of the 

gears and cause additional deflection. Link and joint compliance, causing the deflection 

of the links and finally the TCP, contribute up to 8-10% of the position and orientation 

errors of the TCP [8].  

In addition, joint, and to a less extent link, compliance causes vibrations of the robot 

structure during its movements. Especially, when the industrial robot is driven with high 

speed, the industrial robot has large vibrations caused by the speed reduction 

mechanism [21]. Moreover, when the load on the TCP changes rapidly, or robot is 

undergoing fast movement, the resonant phenomenon will appear. Compliance and 

backlash are the two most effective influences of a robot’s gears and drives. The natural 

damping of such systems is very low and yields to a slow decay characteristic of 

torsional oscillations [20], [22], [23]. In addition, backlash yields high torque impulses 



which can excite torsional vibrations. In Fig. 2 these effects of first axis measured on 

the TCP of a KR125 are demonstrated. Further measurements on the stiffness of joint 1 

allowed the identification of its compliance as well as the identification of the backlash 

value (see setup in Fig. 5). Forces and wrenches are captured with an ATI sensor theta 

SI-2500-400 on the TCP and transformed to the first joint. Lasertracker measurements 

capture deflections of joint 1 and are transformed to rotational deformations. Fig. 3 

shows a backlash of 1.59 10-4 rad, a compliance of 2.78*10-7 rad/Nm for negative 

torque and a compliance of 8.14*10-7 rad/Nm for positive torque. Assuming a lever of 

1.5 m a realistic load on the TCP of 300 N caused by a machining process would result 

in a torque of 450 Nm and a deflection of approximately 0.19-0.55 mm. Machining 

experiments in aluminum also show the great impact of backlash (see Fig. 4). 

In robotic machining processes, the force induced deflection of the robot structure is 

the single most dominant source of error. Even though all components of an industrial 

robot contain intrinsic compliance, the major compliance can be assigned to the gears. 

Other important sources of errors inside the mechanical structure are wear of the parts 

and the internal heat sources such as motors and bearings. Wear of the parts is strictly 

related to friction, in particular stiction, which in turn depends on temperature, joint 

applied torque and rotating speed [24]. 

 
Fig. 3 Compliance measurements of KR125 axis 1. 

 



 
Fig. 4 Impact of gears backlash when machining in aluminum. 

 

c) System Errors: Errors in this category include those caused by improper 

calibration, sensor measurement errors, control implementation errors and numerical 

round-off errors in the computer used for control. Sensor error is due to the joint angle 

sensor resolution and mounting. Due to the biggest lever axis 1 has the biggest impact 

on the TCP. When positioned in machining configuration minimal movements of 2 µm 

could be identified on the TCP. Control and algorithmic errors are related to the 

geometrical model implemented in the controller. Especially for model-based controls 

precise and accurate models of the nonlinearities are required [25]. Furthermore, also 

the controller sampling time contributes to these errors especially in a real-time 

context [26]. 

2.3. Process Dependent Errors 

In machining applications the most important source of position errors is the 

machining force. The machining force in an aluminium-milling process can be hundreds 

of Newton, consequently the force induced error reaches values up to 1 mm [27] 

(compare Fig. 6 and Fig. 7). The structure of the robot transmits this force to the 

workpiece according to its mechanical characteristics. The values of the machining 

forces depend on the process parameters: spindle speed, axial depth-of-cut, radial depth-

of-cut and chip load. They result in a specific value for the material removal rate value 

(MRR). In traditional machining application, feed is kept constant in spite of the 

variation of depth of cut and width of cut [28]. This will introduce a dramatic change of 

MRR, which would result in heavy changes in the machining force. The lubrication 

system is another important factor, especially for the final quality of the workpiece. The 

lubricating oil reduces the contact friction coefficient between the workpiece and the 

cutter, moreover this contributes to avoid the first type of chatter. The effects are 

measurable on the final quality surface of the machined part (e.g. roughness). Chatter is 

one of the major reasons preventing the adoption of robot for machining process [29]. 

At specific combinations of the foregoing parameters and due to thermo-mechanical 



effects on the chip formation (primary chatter) and regeneration of waviness of the 

surface of the workpiece caused by the vibration of the cutter (secondary chatter), the 

amplitude of cutting force increases and produces heavy vibrations on the robot and 

then on the TCP which interact with the workpiece [30]. As a result the surface of the 

workpiece becomes non-smooth. 

3. Analysis of Errors in Robot Machining 

Whereas the previous Section explained the sources of errors in robot machining in 

detail, this Section aims at describing the resulting effects. The mapping of sources and 

effects allows a final evaluation where the major errors in robot machining result from 

and which sources need to be addressed in order to improve quality when machining 

with industrial robots. 

 

Fig. 5 Experimental setup with machine bed, KUKA KR125 robot, ATI force/torque sensor, Chopper 

3300 spindle, Keyence LK-G87 1D-Lasersensor and 3D Leica Lasertracker. 



3.1. Experimental Setup 

A KR125 from KUKA is used for the experiments (see Fig. 5). It is driven by a 

Beckhoff TwinCAT CNC and therefore optimized for the machining process. A 

Chopper 3300 spindle from Alfred Jaeger is used together with an 8 mm end mill tool 

with four teeth from Hoffmann Group. A Leica Absolute Tracker AT901 is used to 

measure the robot behaviour and to determine parameters of the error sources. The 

tracker can perform three dimensional measurements at 1 kHz, with an error of 

ErrLT < 20 µm for the chosen area. A one-dimensional Keyence LK-G87 laser 

triangulation sensor is used in order to capture the influences of the surroundings on the 

robot. Robot and spindle are mounted on a 14 tons machine bed in order to decouple the 

cell from the surroundings. The lab is on the first floor over the basement. 

3.2. Robot in Machining Operation 

The robot in a machining operation is a complex system. The characteristic 

vibrations of the robot are combined with the oscillations due to the machining process. 

A machining example in ST-37 steel is chosen in order to demonstrate the typical 

effects in robot machining. The spindle speed is set to 10 000 rpm and the feed is 

defined as 1000 mm/min. Using a tool with four teeth, the process parameters allow to 

evaluate the fundamental tooth passing (or first harmonic) frequency which value is f = 

666.7 Hz. Machining is performed in full width cut. As the robot shows different 

properties when moving in different directions two experiments were performed: 

 Machining a straight line following the y-axis (robot base system) 

 Machining a straight line following the z-axis (robot base system) 

First of all, the deflection of the robot when entering the material should be pointed 

out. In full width cut process forces are most present in feed direction and orthogonal to 

feed [31]. Due to the limited stiffness and these process forces the robot is deflected 

from its targeted path (Fig. 6 and Fig. 7). As the robot in the used configuration is much 

more compliant in z-direction than in y-direction, the deflection orthogonal to path 

when machining in y direction is bigger. Secondly, the frequency analysis of the signal 

shows interesting results. As the attachment of the spindle is considered to have higher 

eigenfrequencies, due to greater stiffness and lower mass compared to the robot, all 

lower frequencies can be assigned to the robot. It is obvious that the dominant 

frequency can be found at 5.93 Hz and 23.77 Hz. As the two machining scenarios cover 

the most compliant and the stiffest configuration of the robot it can be concluded that  



 

Fig. 6 Position and FFT when machining in y-direction. 

 

Fig. 7 Position and FFT when machining in z-direction. 
 

the bandwidth of the robot varies between these two values depending on its 

configuration. Finally also the nonlinearities of the gears are clearly visible with an 

amplitude of ±0.1 mm. They do no change with the speed of the robot but they show up 

as a low frequency in the FFT in the experiment. However, they do not limit the 

bandwidth of the robot but influence only the accuracy of the robot. 



3.3. Robot in Free Space Motion 

In contrast to a robot in machining a robot in free space movement is normally not 

excited by external disturbances. When moving the TCP in z-direction the impact of 

compliance and backlash of all axes result in the characteristic eigenfrequencies already 

experienced in machining (compare Section 3). Fig. 8 shows position and frequency 

properties of the free space motion. It should be noted that not only frequencies but also 

amplitudes of the oscillations in machining and in free space motion are comparable. As 

expected the nonlinearities of the gears appear like in the machining experiment. 

3.4. Summary of Effects in Robotic Machining 

According to the previous Sections it can be concluded that the dominant frequencies 

in robot machining only depend on the mechanical properties of the robot. The effects 

can be traced back to the compliance and the backlash of the gears determining the 

frequency of position disturbances in the TCP. The results of all measurements 

describing the effects on the TCP are summarized in Table I. As expected, changing the 

configuration of the robot leads to different properties in terms of compliance and 

natural frequencies. This can be easily recognized in the final surface finishing 

(compare Fig. 4). 

 
Fig. 8 Position and FFT when moving in z-direction. 

 



As in machining the exciting frequencies are always higher than the eigenfrequencies 

of the robot (compare Section 3.2), the robot is very likely to oscillate with its 

eigenfrequencies. 

Table 1. Summary of effects in robot machining: Displacements and frequencies 

Experiment Displacement 
Dominant 

frequency 

Static displacement when machining in y 0.200 mm - 

Static displacement when machining in z 1.000 mm - 

Static displacement when moving freely in z - - 

Dynamics when machining y ±0.250 mm 23.77 Hz 

Dynamics when machining z ±0.050 mm 5.93 Hz 

Dynamics when moving freely in z ±0.070 mm 6.02 Hz 

Nonlinearities of gears when moving freely in z ±0.100 mm - 

Walking person passing ±0.020 mm - 

Pallet truck passing ±0.007 mm - 

4. The COMET Approach to Robotic Machining 

The outlined investigations show that because of existing errors the wide and extensive 

use of industrial robotics is finally limited to less demanding tasks with (very) low 

accuracy and low material removal rate. As described in [32] those tasks are mainly 

deburring, deflashing and finishing purposes. Industrial robots intrinsic re-

configurability and adaptiveness are in fact crucial to cope with the latest requirements 

of extreme responsiveness and flexibility in production [33], [34]. In order to leverage 

smart manufacturing new approaches are necessary.  

The COMET project addressed the robot machining challenge and developed a 

modular and configurable platform able to enhance the machining accuracy of standard 

industrial robots enabling cost-effective, first time right, robot machining [12]. As 

outlined in Section 2 the understanding of error sources was mandatory and used as 

foundation to formulate the design requirements.  

An effective industry oriented robot machining requires proper error compensation 

solutions able to overcome the intrinsic performance limitations of standard industrial 

robots respect to machine tools. The COMET approach is focused on a novel modular 

and configurable machining error compensation platform that can be customized for 

specific application fields with different accuracy and performance.  



4.1. Basic Concept 

In the COMET project two different adaptive error compensation approaches were 

developed: offline compensation based on the predictive calculation of the robot 

positioning errors and their consequent corrections, and online compensation based on 

the real-time measurement of the real robot TCP position for active compensation. The 

two approaches are based on four main modules, which address the influences discussed 

in Section 2: 

1. A unique Kinematic and DynaMic representation of each Industrial Robot entity 

(KDMIR), including a methodology to determine the respective required model 

parameters. The respective modelling and parameter identification procedures 

are separately described in [35] and [36]. 

2. An integrated Programming and Simulation environment for adaptive generation 

of the machining path for Industrial Robots (PSIR), which builds upon unique 

robot models. The implemented mechanisms for inclusion of different (robot) 

models into the CAM environment are discussed in [37]. 

3. An Adaptive Tracking system for Industrial Robots (ATIR), which detects 

deviations from the desired robot path and initiates real-time corrective actions 

towards the robot controller. 

4. A High Dynamic Compensation Mechanism (HDCM) which can perform 

additional positional corrections that exceed the robots mechanical bandwidth or 

its positional accuracy. The mechanism follows the idea of a 3D-piezo 

compensation mechanism previously presented in [38]. 

By combining these modules (summarized in Fig. 9), different configurations for the 

setup of the industrial robot machining cells are possible. The first important distinction 

has to be made between predictive error compensation applied offline during 

programming (KDMIR and PSIR) and the real-time compensation applied online during 

machining (ATIR and HDCM). Again for each subdivisions can be made, depending if 

certain sub-modules are integrated or not (e.g. online compensation only with feedback 

controlled robot or with superimposed control of robot and HDCM). These will be 

explained further in the Sections 4.2 and 4.3. With such modular platform it is possible 

to configure the robot cell optimizing the performance for a specific application. The 

cell layout can be designed with configurations where the robot moves the milling  



 

Fig. 9 Schematic summary of the COMET modules and overall approach [12] 

 

spindle or the workpiece. Furthermore, the overall approach by principle is of general 

use and robot vendor independent. 

4.2. Offline Compensation 

The PSIR aims at realizing a complete, first time right, robot machining path program, 

avoiding the need of long and complex commissioning on the real robot cell.  

The outcome of PSIR should be a complete and correct robot path, which does not 

require changes to be applied within the robot cell. This is an important requirement due 

to the usage for machining applications, where only an initial tool and workpiece 

calibration is possible (as also on regular CNC machines). Manual corrections of further 

points are not possible due to the huge number of tool path points. Workpiece based 

learning is often not acceptable due the long machining times and the high costs per 

workpiece. Therefore, the software needs to consider possible issues beforehand and 

either correct them directly or display them to the user for manual correction. In order to 

improve the achievable accuracy, robot dependent error sources (compare Section 2.2) 

have to be considered. The approach described in the following therefore aims at 

modelling and compensating not only geometrical and non-geometrical but also process 

dependent errors during robot program generation. The robot path is adapted according 

to the predicted deviations. Effectively the robot is not commanded to the desired pose, 

but to a pose that will end near the desired one, after all errors affected the robot arm. 

To foresee the positional errors of the robot, the robot is modelled with components 

reflecting the mechanical issues as described above, namely the optimized kinematic 

description and a coupled model of the robot joints, including backlash, friction and 



torsional stiffness for each joint. In order to utilize this robot model for compensation of 

the machining path, some additional information about the process is required to 

determine the forces acting on the tool during machining. Therefore, additional to the 

updated kinematic description and the joint-based robot model, a model to estimate the 

process forces is required, which again needs details from the CAM system about the 

material and tool as well as the engagement situation of the tool in order to give a valid 

output. Starting point of the offline compensation is a tool path defined within the CAM 

system. In contradiction to conventional machine tools this tool path – besides 

information about tool position and orientation – also includes information about the 

respective robot poses due to the additional degree-of-freedom. The subsequent chain of 

applied calculations after such a tool path has been generated is the following: 

 Within the CAM system an engagement angle calculation is executed in order 

to predict the engagement situation of the tool within the material for each 

point of the tool path. 

 Based on the predicted engagement situation of the tool, a 3D process force 

vector is calculated, predicting the magnitude and direction of the force 

working on the tool tip (for more information on the force calculation based 

on Kienzle [39] the reader is referred to [35]). The force calculation considers 

both the machined material as well as the tool geometry. The calculated force 

is the force affecting the robot, either directly (if the robot is moving the 

spindle) or indirectly as reaction force (if the robot is moving the work piece). 

 With the combined information on how the robot should move according to 

the CAM and which forces affect the tool (and thus the robot) an external 

simulation using the robot model on joint basis can be run. It determines first 

how the robot would actually move due to the joint based effects in particular 

geometric and non-geometric errors like backlash and friction in the gears or 

compliance of the joints) and consecutively generates altered program points 

to compensate for these effects. 

 In a last step, a kinematic calibration is applied, which again alters the points 

of the tool path, using both the nominal kinematic values (which also the 

robot controller uses internally) and optimized parameters based on 

measurements (which reflect the real kinematic structure). 



At the end, a regular robot program is generated using a post-processor for the used 

robot brand. As all compensations are done by adapting the Cartesian points in the robot 

program and no additional information has to be transferred towards the robot, 

application of this approach is independent of the robot brand. Disadvantage of the 

compensation per program point is the hereby limited resolution [37]. Resolution 

enhancement is only possible up to certain limits, determined e.g. by controller memory 

or cycle time. Although internally the separate simulations can be run with higher 

resolutions, but for the post-processed program these limits persist. The described 

program generation chain cannot only be used to generate compensated robot paths, but 

alternatively can also be used to simulate the behaviour of the robot without 

compensation. In combination with a material removal simulation the machining 

outcome when using the uncompensated robot can be visualised in order to determine 

potential geometrical errors and the overall achievable machining accuracy. 

In order to apply the offline compensation on a certain robot, different model 

parameters have to be determined first, which are then stored in a so-called Robot 

Signature file (this file is created for each unique robot and can be accessed by the CAM 

system to load the respective model parameters). Different measurement and parameter 

identification methods have been developed or utilized. The optimized kinematic 

parameters are identified using an optical tracking system and measurements of the end 

effector in free space movements. For the determination of the joint based parameters an 

identification method for kinematic parameters [40] (based on the idea of generating a 

closed kinematic chain by rigidly clamping the robot to the environment) was applied to 

the identification of joint properties [36], [41]. For the identification of the material and 

tool dependent parameters a method which processes force data captured during 

machining of a test workpiece was developed [35]. 

4.3. Online Compensation 

This Section describes an approach for the online error compensation in the range of 

micrometers during machining tasks of industrial robots. The concept takes into account 

data acquisition, sophisticated data fusion and external compensation using a parallel 

3D-piezo-actuator compensation mechanism (HDCM). In this case the robot positions 

the workpiece relative to the tool. The tool is mounted on the HDCM which allows the 

adjustment of the tool in the working range of the HDCM. 



    
Fig. 10 (a) Experimental set-up for online compensation at Fraunhofer IPA, (b) Measured frames of the 

set-up 

 

Considering the compensation idea there are two mechanical systems for 

compensation. Firstly, the robot which is comparably slow but has a large work space. 

The second system, the HDCM, provides conversely to the robot fast movements in a 

limited geometric work space of approximately 0.5 mm. As a result the deviation 

between nominal end-effector frame and dynamic end-effector frame relative to the 

dynamic tool frame needs to be adjusted. This determines the control error, which 

summarizes robot dependent as well as process dependent errors. To fully understand 

the set-up the deviation is depicted in Fig. 10. The online measurements are obtained by 

using a metrological tracking system. Therefore, path deflections of the robot e.g. 

generated by the backlash or compliance can be measured [42]. For instance, the Nikon 

Metrology K600 system allows simultaneous tracking of two frames. First results of the 

usage of the tracking system for robot control in machining applications have been 

published in [43]. In addition to the dynamic measurements the previously outlined cell 

calibration is initially performed. As a result the nominal set-up for programming is 

matched with the actual set-up based on the usage of metrological tracking system. One 

could obtain values of static frames from CAD. But in practice, despite accurate 

construction geometrical and system errors could still exist. Therefore, a manual probe 

is used to measure all static frames as references. Flashing LEDs as parts of the K600 

system are attached to HDCM and robot to obtain the moving frames. This allows the 

detection of the dynamic end-effector frame and the dynamic tool frame. Taking into 

account that the HDCM is designed for fast but small compensations, the saturation of 

each axis of the HDCM has to be avoided. Therefore the determined error is partitioned 

between robot and HDCM. As robot and HDCM behaves differently smart splitting 

between both systems is introduced. This is realized in [44] using a mid-ranging control 



approach of a fast manipulator with limited work space (HDCM, referred to as micro 

manipulator) and a slow manipulator with big work space (robot, referred to as macro 

manipulator). 

In order to fulfil the criteria of high dynamic compensation a progressive design is 

implemented based on the experiences described in [45], [46]. As shown in [38] piezo-

actuators combined with elastic solid state joint-lever-mechanisms are appropriate for 

smooth movements. Opposed to conventional bearings friction, play and backlash are 

significantly reduced. The chosen approach uses instead of a serial mechanism a parallel 

actuation to improve the dynamical behaviour [46]. The reduction of the moved mass 

allows to improve the dynamics. Furthermore, the real achievable working range 

depends strongly on the stiffness of the transmission system. In particular, the piezo 

actuators only allow actuation up to a certain force, because of its bounded stiffness. 

The additional load, therefore, influences the working range. Piezo-actuators are 

equipped with strain gauge sensors. Additional capacitive sensors are placed underneath 

the movable plate. Those capacitive sensors are aligned with the axes directions. Thus, 

each capacitive sensor allows the tracking of the movable plate in one compensation 

direction. A feedback control approach realizes the automatized positioning of each 

axis, respectively. Input voltage is set deforming the piezo-actuator. The proposed 

control scheme for each compensation axis takes into account: 

 Inner PID controller for feedback from strain gauge sensors in piezo-

actuators for handling parameter uncertainties and disturbances. 

 Outer model based controller for position control of the end-effector plate 

where the machining spindle is attached. The control of a piezo-actuated 

high-dynamic compensation mechanism is presented in [47], [48]. The 

control variable is measured by the capacitive sensors. 

5. Cell Setups and Demonstration Strategy 

Experimental validation was made in a total of eight demonstration setups, covering 

different basic setups (spindle on robot or on fixture), different robot brands (ABB, 

KUKA, YASKAWA Motoman) and different application cases. Depending on the 

requirements of the respective demo application, a specific set of the modules as 

described in Section 4.1 was applied using the PSIR as basic component for all cells. 

Applications range from manufacturing of aero and automotive components (complete  



Fig. 11 (a) Test features used for validation of the different compensations, (b) Machining of an 

industrial demonstration part (mould-and-die) 

 

machining and finishing processes for aluminium and Inconel parts) to mould making 

(complete machining in hardened steel, requiring high accuracies). First tests were made 

with simplified geometries on test workpieces (see Fig. 11a) to show the general 

feasibility to machine the requested materials and to validate the developed 

compensation modules (see Table 2). Further details on the experimental conditions and 

components are described in [37], [44]. Depending on the complexity of the 

compensation, this validation was carried out in several subsequent steps, e.g. different 

calculation steps for offline compensation (as described in Sec. 4.2) were first tested 

separately before validating the complete compensation chain. Secondly the developed 

methods and components were used to machine industrial parts from the various 

industrial sectors, highlighting the combination possibilities of the modular approach. 

Fig. 11b shows such a demonstration part (with rough machining on the sides and semi-

finishing in the middle) made from hardened steel (X37CrMoV5-1). For the shown 

demo part (depending on applied compensation) a geometrical accuracy of < 0.4 mm 

can be achieved. 

Although the COMET approach is designed robot brand independently, certain 

restrictions for some robot cells limit the applicability of the developed compensation 

methods. This is either due to missing access to (controller) parameters required during 

the identification of the model parameters or as consequence of missing possibilities to 

feedback correctional values for the online compensation in sufficient cycle time. 

The machining of the industrial parts shows that machining with industrial robots can 

be an alternative to the use of dedicated machine tools, although the actual benefits are 



clearly depending on the specific use-case and material. For soft materials machining 

results comparable to machine tools are possible, but also for more challenging 

materials like hardened steel, robots can be a viable alternative. The applied 

compensation approaches allow manufacturing within tolerances which are sufficient 

for roughing and semi-finishing for hard materials, so that capacities can be taken off 

the costly machine tools for these steps where their high accuracy is not required. The 

biggest remaining geometrical deviations occur where process conditions change 

rapidly (e.g. for material entry or exit). For less demanding materials complete 

machining of the industrial parts is possible. 

Table 2. Summary of benefits with respect to proposed approaches [37], [43], [44] 

   Approach    Material Machined geometry 

Experimentally 

determined 

deviations [mm] 

Uncompensated Aluminium  
Pocket: length 70 mm, 

width 37.5 mm 

0.500 

-0.240 

Offline compensation (K) Aluminium  
Pocket: length 70 mm, 

width 37.5 mm 

0.20 

0.46 

Offline compensation (JB) Aluminium  
Pocket: length 70 mm, 

width 37.5 mm 

0.07 

0.05 

    

Uncompensated Steel Circle (diameter 70 mm) ±0.60  

Online compensation (ATIR) Steel Circle (diameter 70 mm) ±0.20 

Online compensation (ATIR+HDCM) Steel Circle (diameter 70 mm) ±0.10 

 

Another conclusion that can be drawn is that – besides the improvements possible 

with compensations – a fair amount of quality can be gained already by selection of 

appropriate machining strategies. Not only that a proper strategy can already enhance 

the workpiece quality, the resulting – more stable and predictable – cutting process 

offers a much more reliable basis for application of the compensations. 

6. Discussion and Conclusions  

The presented paper analyses the relevant sources of errors when machining with 

industrial robots. The full mechanical chain from the environment to the flange and the 

robot controller are considered. The most important sources are identified and 

characterized. Experiments in machining and experiments in free space motion show 



that compliance and backlash are the most dominant sources. However, when trying to 

achieve an accuracy of < 100 µm also the disturbances from the environment and errors 

from cell calibration need to be taken into account. Position and frequency analysis 

demonstrate the dependency on the robot configuration and identify the stiffest 

configuration of the robot. Based on the analysis a compensation of compliance and 

backlash can be identified as being most effective. Calibration of the robot kinematics 

and the calibration of the work cell can improve positioning accuracy and results also in 

better precision in machining. Proper decoupling of the cell components from the 

environment and from each other can reduce process disturbances further. The intrinsic 

oscillation of a serial robotic system can only be eliminated by external devices. 

From the machining experiments so far it can be concluded that, besides the 

improvements that can be achieved using the different proposed compensation methods, 

also the general cell setup and the selected machining strategy have an important 

influence both on the achievable geometrical accuracy and the resulting surface quality. 

Ensuring stable cutting conditions is the foundation for reliable application of the 

compensation approaches. While the general proposed approach is robot brand 

independent, the implementation at the demo cells showed differences in applicability 

depending on the respective brand but also differences between different types of the 

same brand. The heterogenic situation on the robot market therefore still is an obstacle 

for each solution aiming at improving robot machining accuracy. 

Further work is required on the combination of the compensations applied offline 

and online. Up to this point only one group of compensations can be used at once. 

Obstacles here are the need to transfer both the compensated and the nominal path 

throughout the whole process chain, as well as the synchronization between the 

different representations of machining processes in general (ideal and actual movements 

and forces) and the tool path in particular (point-based in the robot program, but 

required time-based for the online compensation). 

Finally, future works may address the deeper integration with robot vendor’s 

controllers for real-time feedback loops through external sensors, actually felt as the 

main performance limit. Furthermore, the analysis of the on-going tests final results will 

stimulate future development guidelines on the COMET approach basis. 



ACKNOWLEDGMENTS 

The research work reported here was supported by the European Commission under 

the Seventh Framework Programme (FP7/2007-2013) within the project COMET under 

grant agreement #258769.  

References 

[1] Tolio T, Urgo M (2013) Design of flexible transfer lines: A case-based reconfiguration cost 

assessment. In: Journal of Manufacturing Systems 32 (2): 325-334. 

[2] International Federation of Robotics (2013) World Robotics 2012, Statistical Yearbook. 

[3] Liang J, Bi S (2010) Design and experimental study of an end effector for robotic drilling. In: 

International Journal of Advanced Manufacturing Technology 50 (1-4): 399-407. 

[4] Schneider U, Ansaloni M, Drust M, Leali F, Verl A (2013) Experimental investigation of error 

sources in robot machining. In: International Conference on Flexible Automation and Intelligent 

Manufacturing (FAIM), pp. 14-26, Porto, Portugal. 

[5] Standard ISO 9283 (1998) Manipulating industrial robots – Performance criteria and related test 

methods. 

[6] Siciliano B, Khatib O (2008) Handbook of Robotics. New York: Springer. 

[7] Shiakolas PS, Conrad KL, Yih TC (2002) On the accuracy, repeatability, and degree of influence of 

kinematics parameters for industrial robots. In: International Journal of Modeling and Simulation 22: 

245-254. 

[8] Mustafa SK, Pey YT, Yang G, Chen I (2010) A Geometrical Approach for Online Error 

Compensation of Industrial Manipulator. In: IEEE/ASME International Conference on Advanced 

Intelligent Mechatronics, pp. 738-743, July 6-9, Montreal, Canada. 

[9] Breth JF, Vasselin E, Lefebvre D, Dakyo B (2005) Determination of the Repeatability of a Kuka 

Robot Using the Stochastic Ellipsoid Approach. In: IEEE International Conference on Robotics and 

Automation, pp. 4339-4344, Barcelona, Spain. 

[10] Heisel U, Richter F, Wurst K-H (1997) Thermal behavior of industrial robots and possibilities for 

errors compensation. In: CIRP Annals – Manufacturing Technology 46: 283-286. 

[11] Zhan Q, Wang X (2012) Hand-eye calibration and positioning for a robot drilling system. In: 

International Journal of Advanced Manufacturing Technology 61(5-8): 691-701. 

[12] Lehmann C, Pellicciari M, Drust M, Gunnink JW (2013) Machining with industrial robots: the 

COMET project approach. In: International Conference on Flexible Automation and Intelligent 

Manufacturing (FAIM), pp. 27-36, Porto, Portugal. 

[13] Pan Z, Polden J, Larkin N, Van Duin S, Norrish J (2012) Recent progress on programming methods 

for industrial robots. In: Robotics and Computer-Integrated Manufacturing 28: 87-94. 

[14] Tarn TJ, Song M, Xi M, Ghosh BJ (1996) Multi-Sensor Fusion Scheme for Calibration-Free Stereo 

Vision in a Manufacturing Workcell. In: IEEE International Conference on Multisensor Fusion and 

Integration for Intelligent Systems, pp. 416-423, Washington DC, USA. 



[15] Legnani G, Tosi D, Fassi I, Giberti I, Cinquemani S (2010) The “point of isotropy” and other 

properties of serial and parallel manipulators. In: Mechanism and Machine Theory 45: 1407-1423. 

[16] Dietz T, Schneider U, Barho M, Oberer-Treitz S, Drust M, Hollmann R, Hägele M (2012) 

Programming System for Efficient Use of Robots for Deburring in SME Environments. In: 7th 

German Conference on Robotics (Robotik), Munich, Germany. 

[17] Oh YT (2011) Influence of the joint angular characteristics on the accuracy of industrial robots. In: 

Industrial Robot38:406-418. 

[18] Erkaya S (2012) Investigation of joint clearance effects on welding robot manipulators. In: Robotics 

and Computer-Integrated Manufacturing 28:449-457. 

[19] Gong C, Yuan J, Ni J (2000) Nongeometric error identification and compensation for robotic system 

by inverse calibration. In: International Journal of Machine Tools and Manufacture 40: 2119-2137. 

[20] Ruderman M, Hoffmann F, Bertram T (2009) Modeling and Identification of Elastic Robot Joints 

with Hysteresis and Backlash. In: IEEE Transactions on Industrial Electronics 56: 3840-3847. 

[21] Kumagai S, Ohishi K, Miyazaki T (2009) High Performance Robot Motion Control Based on Zero 

Phase Error Notch Filter and D-PD Control. In: IEEE International Conference on Mechatronics, pp. 

1-6, Malaga, Spain. 

[22] Marton L, Lantos B (2009) Friction and backlash measurement and identification method for robotic 

arms. In: IEEE International Conference on Advanced Robotics, pp. 1-6, Munich, Germany. 

[23] Thomsen S, Fuchs,FW (2009) Speed Control of Torsional Drive Systems with Backlash. In: 13 th 

European Conference on Power Electronics and Applications, pp. 1-10, Barcelona, Spain. 

[24] Carvalho Bittencourt A, Wernholt E, Sander-Tavallaey S, Brogardh T (2010) An Extended Friction 

Model to capture Load and Temperature effects in Robot Joints. In: IEEE International Conference 

on Intelligent Robots and Systems, pp. 6161-6167, Taipei, Taiwan. 

[25] Jin M, Jin Y, Chang PH, Choi C (2009) High-Accuracy Trajectory Tracking of Industrial Robot 

Manipulators Using Time Delay Estimation and Terminal Sliding Mode. In: 35th Annual Conference 

of IEEE Industrial Electronics, pp. 3095-3099, Porto, Portugal. 

[26] Merlet JP (2009) Interval analysis for certified numerical solution of problems in robotics. In: 

International Journal of Applied Mathematics and Computer Science 19: 399-412. 

[27] Zhang H, Wang J, Zhang G, Gan Z, Pan Z, Cui H, Zhu Z (2005) Machining with Flexible 

Manipulator: Toward Improving Robotic Machining Performance. In: IEEE International Conference 

on Advanced Intelligent Mechatronics, pp. 1127-1132, Monterey, California, USA. 

[28] Zhang H, Pan Z (2008) Robotic Machining: Material Removal Rate Control with a Flexible 

Manipulator. In: IEEE Conference on Robotics, Automation and Mechatronics, pp. 30-35, Chengdu, 

China. 

[29] Pan Z, Zhang H, Zhu Z, Wang J (2006) Chatter analysis of robotic machining process. In: Journal of 

materials processing technology 173: 301-309. 

[30] Quintana G, Ciurana J (2011) Chatter in machining processes: A review. In: International Journal of 

Machine Tools and Manufacture 51: 363-376. 



[31] Liu X-W, Cheng K, Webb D, Longstaf AP, Widiyarto MH (2004) Improved dynamic cutting force 

model in peripheral milling. Part II: experimental verification and prediction. In: International 

Journal of Advanced Manufacturing Technology 24: 794-805 

[32] Surdilovic C, Dragoljub Zhao H, Schreck G, Krueger J (2012) Advanced methods for small batch 

robotic machining of hard materials. In: 7th German Conference on Robotics (Robotik), pp.1-6, 21-

22 May, Munich, Germany. 

[33] Tolio T, Ceglarek D, ElMaraghy HA, Fischer A, Hu SJ, Laperrière L, Newman ST, Váncza J (2010) 

SPECIES – Coevolution of products, processes and production systems. In: CIRP Annals – 

Manufacturing Technology 59 (2): 672-693, 10.1016/j.cirp.2010.05.008. 

[34] Pellicciari M, Leali F, Andrisano AO, Pini F (2012) Enhancing Changeability of Automotive Hybrid 

Reconfigurable Systems in Digital Environments. In: International Journal on Interactive Design and 

Manufacturing 6: 251-263. 

[35] Lehmann C, Halbauer M, Euhus D, Overbeck D (2012) Milling with industrial robots: Strategies to 

reduce and compensate process force induced accuracy influences. In: 17th IEEE International 

Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1-4, Kraków, Poland. 

[36] Lehmann C, Olofsson B, Nilsson K, Halbauer M, Haage M, Robertsson A, Sörnmo O, Berger U 

(2013) Robot Joint Modeling and Parameter Identification Using the Clamping Method. In: IFAC 

Conference on Manufacturing Modeling, Management and Control (MIM), pp. 813-818, Saint 

Petersburg, Russia. 

[37] Lehmann C, Halbauer M, van der Zwaag J, Schneider U, Berger U (2013) Offline Path 

Compensation to Improve Accuracy of Industrial Robots for Machining Applications. In: 

Proceedings of 14th Automation Congress, VDI-report 2209, pp. 147-152, Baden-Baden, Germany. 

[38] Puzik A (2011) Genauigkeitssteigerung bei der spanenden Bearbeitung mit Industrierobotern durch 

Fehlerkompensation mit 3D Ausgleichsaktorik, Dissertation, University Stuttgart, Fraunhofer IPA. 

[39] Kienzle O (1952) Bestimmung von Kräften an Werkzeugmaschinen. In: VDI-Z 94: 29-05. 

[40] Bennett D, Hollerbach J, Henri P (1992) Kinematic calibration by direct estimation of the Jacobian 

matrix. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 351-357, Nice, 

France. 

[41] Nilsson K (2012) Patent Application SE-1251196-0: Method and System for Determination of at 

least one Property of a Manipulator. 

[42] Wang Z, Mastrogiacomo L, Franceschini F, Maropoulos P (2011) Experimental comparison of 

dynamic tracking performance of iGPS and laser tracker. In: International Journal of Advanced 

Manufacturing Technology 56 (1-4): 205-213. 

[43] Schneider U, Diaz Posada JR, Drust M, Verl A (2013) Position control of an industrial robot using an 

optical measurement system for machining purposes. In: International Conference on Manufacturing 

Research (ICMR), pp. 307-312, Cranfield University, United Kingdom. 

[44] Schneider U, Oloffson B, Sörnmo O, Drust M, Robertsson A, Hägele M, Johansson R (2013) 

Integrated Approach to Robotic Machining with Macro/Micro Actuation. In: International Journal of 

Robotics and Computer-Integrated Manufacturing, submitted. 



[45] Puzik A, Meyer C, Verl A (2010) Industrial Robots for Machining Processes in Combination with a 

3D-Piezo-Compensation-Mechanism. In: 7th CIRP International Conference on Intelligent 

Computation in Manufacturing Engineering (ICME), Capri, Italy. 

[46] Schneider U, Drust M, Puzik A, Verl A (2013) Compensation of Errors in Robot Machining With a 

Parallel 3D-Piezo Compensation Mechanism. In: 46th CIRP Conference on Manufacturing Systems, 

pp. 305-310, Sesimbra, Portugal. 

[47] Olofsson B, Sörnmo O, Schneider U, Robertsson A, Puzik A, Johansson R (2011) Modeling and 

control of a piezo-actuated high-dynamic compensation mechanism for industrial robots. In: 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4704-4709. 

[48] Sörnmo O, Olofsson B, Schneider U, Robertsson A, Johansson R (2012) Increasing the milling 

accuracy for industrial robots using a piezo-actuated high-dynamic micro manipulator. In: 

IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp.104-110, 

Kaohsiung, Taiwan. 


