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Abstract— An analysis is performed to study the thermal radiation and Ohmic heating effects on coupled heat and mass transfer 

by steady magnetohydrodynamic natural convective laminar boundary-layer flow of a viscous incompressible electrically 

conducting Newtonian fluid past a vertical permeable surface embedded in a Darcian porous medium. The heat equation includes 

the terms involving the radiative heat flux, Ohmic dissipation, viscous dissipation and the internal absorption whereas the mass 

transfer equation includes the effects of chemically reactive species of first-order. The non-linear coupled differential equations 

are solved analytically by perturbation technique. The numerical results are benchmarked with previously published studies and 

found to be in excellent agreement. Finally, the effects of the pertinent parameters which are of physical and engineering interest 

on the flow and heat transfer characteristics are presented graphically and in tabulated form. It is observed that the effect  of heat 

absorption is to decrease the velocity and temperature profiles in the boundary layer. 
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I.  INTRODUCTION 

The study of fluid flow problems associated with heat 
transfer is of widespread interest in almost all the fields of 
engineering as well as in astrophysics, biology, biomedicine, 
meteorology, physical chemistry, plasma physics, geophysics, 
oceanography and scores of other disciplines. Hydromagnetic 
flows and heat transfer in porous media have been considered 
extensively in recent years due to their occurrence in several 
engineering processes such as compact heat exchangers, 
metallurgy, casting, filtration of liquid metals, cooling of 
nuclear reactors high speed aerodynamics and magnetic 
braking technologies with fusion control [1-5]. Merkin [6] 
investigated a mixed convective boundary-layer flow on a 
semi-infinite vertical flat plate, when the buoyancy forces aid 
in the development of the boundary layer or prevent it. 
Watanabe [7] presented the effects of the surface mass transfer 
on a mixed convective flow on a permeable vertical surface. 
With the combined effect of heat transfer many challenging 
flow problems have been studied in magnetohydrodynamic 
convection flows with different suitable configurations. The 
effects of transversely applied magnetic field, on the flow of 
an electrically conducting fluid past an impulsively started 
infinite isothermal vertical plate studied by Soundalgekar et al. 
[8]. MHD effects on impulsively started vertical plate with 
variable temperature in the presence of transverse magnetic 
field were considered by Soundalgekar et al. [9]. Free 
convection flows in a porous media with chemical reaction 
have wide applications in geothermal and oil reservoir 
engineering as well as in chemical reactors of porous structure. 
Many transport processes exist in industrial applications in 
which the simultaneous heat and mass transfer occur as a 
result of combined buoyancy effects of diffusion of chemical 
species. Moreover, considerable interest has been evinced in 

radiation interaction with convection and chemical reaction for 
heat and mass transfer in fluids. This is due to the significant 
role of thermal radiation in the surface heat transfer when 
convection heat transfer is small, particularly, in free 
convection problems involving absorbing–emitting fluids. 
Khair and Bejan [10] studied heat and mass on flows past an 
isothermal flat plate. Lin and Wu [11] analyzed combined heat 
and mass transfer by laminar natural convection from a 
vertical plate. Yin [12] studied numerically the force 
convection effect on magnetohydrodynamics heat and mass 
transfer of a continuously moving permeable surface. Acharya 
et al. [13] have studied heat and mass transfer over an 
accelerating surface with heat source in the presence of suction 
and blowing. Muthucumaraswamy and Janakiraman [14] 
studied MHD and radiation effects on moving isothermal 
vertical plate with variable mass diffusion. Hossain et al. [15] 
investigated radiation effects on the free convection flow of an 
optically incompressible fluid along a uniformly heated 
vertical infinite plate with a constant suction. Orhan and Kaya 
[16] examined MHD mixed convective heat transfer along a 
permeable vertical infinite plate in the presence of radiation 
and solutions are derived using Kellar box scheme and 
accurate finite-difference scheme. Ahmed and Liu [17] 
examined the effects of mass transfer on a mixed convection 
three dimensional heat transfer flow of a viscous 
incompressible fluid past an infinite vertical porous plate in 
the presence of transverse periodic suction velocity. The 
problem of combined heat and mass transfer of an electrically 
conducting fluid in MHD natural convection adjacent to a 
vertical surface is analyzed by Chen [18] by taking into 
account the effects of Ohmic heating and viscous dissipation 
but neglected chemical reaction of the species. Chaudhury et 
al. [19] have analyzed the effect of radiation on heat transfer 
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in MHD mixed convection flow with simultaneous thermal 
and mass diffusion from an infinite vertical plate with viscous 
dissipation and Ohmic heating. The classical model introduced 
by Cogley et al. [20] is used for the radiation effect as it has 
the merit of simplicity and enables us to introduce linear term 
in temperature in the analysis for optically thin media. Ahmed 
and Zueco [21] studied the effect of the transverse magnetic 
field on a steady mixed convective heat and mass transfer flow 
of an incompressible viscous electrically conducting fluid past 
an infinite vertical isothermal porous plate taking into account 
the induced magnetic field, viscous and magnetic dissipations 
of energy in presence of chemical reaction of first order and 
heat generation/absorption, and the non-linear coupled 
equations are solved by network simulation technique. The 
thermal radiation and Darcian drag force MHD unsteady 
thermal-convection flow past a semi-infinite vertical plate 
immersed in a semi-infinite saturated porous regime with 
variable surface temperature in the presence of transversal 
uniform magnetic field have been discussed by Ahmed el al. 
[21]. A numerical analysis of conduction-radiation, porosity 
and chemical reaction on unsteady hydromagnetic free 
convection flow past an impulsively-started semi-infinite 
vertical plate embedded in a porous medium in presence of 
thermal radiation is presented by Ahmed [22]. 

In this paper, it is proposed to study the effects of viscous 
dissipation and Ohmic dissipation on steady two dimensional 
magnetohydrodynamic natural convection heat and mass 
transfer flow of a Newtonian, electrically conducting and 
viscous incompressible radiative fluid over a porous vertical 
plate embedded in a porous medium taking into the account of 
combined effects of buoyancy force and first-order chemical 
reaction. The present study may have useful applications in 
several transport processes as well as in processing magnetic 
materials. The analytical results for some particular cases are 
compared with those from [19] and are found to be in excellent 
agreement. The governing equations for this investigation are 
formulated and solved by using perturbation technique. 

 

II. MATHEMATICAL FORMULATION 

A two-dimensional laminar boundary layer flow of a 
viscous incompressible electrically conducting and heat 
absorbing fluid past a semi-infinite vertical permeable plate 
embedded in a uniform porous medium which is subject to 
thermal and concentration buoyancy effects has been 
presented. As shown in Fig. 1, x*-axis is along the plate and y* 
is perpendicular to the plate. The wall is maintained at a 
constant temperature Tw and concentration Cw higher than the 
ambient temperature T∞ and concentration C∞, respectively. 
Also, it is assumed that there exists a homogeneous chemical 
reaction of first-order with constant rate R between the 
diffusing species and the fluid. Under these assumptions, the 
governing equations of the Newtonian flow model of 
electrically conducting radiative and chemically reacting fluid 
through porous medium in presence of magnetic field with 
heat generation and viscous dissipative heat are 

𝑑𝑣∗

𝑑𝑦∗
= 0 ⇒ 𝑣∗ = −𝑣0  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  ,                    (1) 

𝑑𝑝∗

𝑑𝑦∗
= 0 ⇒ 𝑝∗ 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑦∗ ,                (2) 

𝜌𝑣∗
𝑑𝑢∗

𝑑𝑦∗
=  

𝜇
𝑑2𝑢∗

𝑑𝑦∗2
−  𝜎𝐵0

2 +
𝜇

𝐾∗
 𝑢∗

𝜌𝑔𝛽𝑇 𝑇
∗ − 𝑇∞ + 𝜌𝑔𝛽𝐶 𝐶

∗ − 𝐶∞ 

  ,    (3) 

 

𝜌𝐶𝑃𝑣
∗
𝑑𝑇∗

𝑑𝑦∗
= 𝛼

𝑑2𝑇∗

𝑑𝑦∗2
+  

𝜇  
𝑑𝑢∗

𝑑𝑦∗
 

2

−
𝜕𝑞∗

𝜕𝑦∗

+𝜎𝐵0
2𝑢∗2 − 𝑄0 𝑇

∗ − 𝑇∞ 

  ,    (4) 

𝑣∗
𝑑𝐶∗

𝑑𝑦∗
= 𝐷

𝑑2𝐶∗

𝑑𝑦∗2
− 𝑅 𝐶∗ − 𝐶∞  ,                    (5) 

The second and third terms on RHS of the momentum 
equation (3) denote the thermal and concentration buoyancy 
effects, respectively. Also second and fourth terms on the RHS 
of energy equation (4) represent the viscous dissipation and 
Ohmic dissipation, respectively. The third and fifth term on 
the RHS of equation (4) denote the inclusion of the effect of 
thermal radiation and heat absorption effects, respectively. 

 

 
Fig. 1: Flow model of the problem 

For the radiative heat flux using the Cogley model [20] is 
given 

𝜕𝑞∗

𝜕𝑦∗
= 4 𝑇∗ − 𝑇∞ 𝐼∗,                              (6) 

where  𝐼∗ =  𝐾𝜆𝑤

𝜕𝑒𝑏𝜆

𝜕𝑇∗

∞

0

𝑑𝜆, 

𝐾𝜆𝑤  is the absorption coefficient at the wall and 𝑒𝑏𝜆  is 
Planck’s function. 

The appropriate boundary conditions for velocity, 
temperature and concentration fields are 

𝑦∗ = 0:     𝑢∗ = 0,   𝑇∗ = 𝑇𝑤 ,   𝐶
∗ = 𝐶𝑤 ,                 (7) 

𝑦∗ → ∞:     𝑢∗ → 0,   𝑇∗ → 𝑇∞ ,   𝐶
∗ → 𝐶∞ ,             (8) 

Introducing the following non-dimensional quantities: 
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𝜈
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𝜎𝐵0
2𝜈2

𝜇𝑣0
2 ,

𝜃 =
𝑇∗ − 𝑇∞

𝑇𝑤 –𝑇∞
,   𝜙 =

𝐶∗ − 𝐶∞

𝐶𝑤 – 𝐶∞
 ,   𝛾 =

𝑅𝜈

𝑣0
2   ,

𝐺𝑟 =
𝜌𝑔𝛽𝑇 𝑇𝑤 –𝑇∞ 

𝜇𝑣0
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3   ,
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𝜈

𝐷
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𝑄0𝜈

𝜌𝐶𝑃𝑣0
2  ,   𝐹 =

4𝜈𝐼′

𝜌𝐶𝑃𝑣0
2  ,

𝑃𝑟 =
𝜇𝐶𝑃

𝛼
 ,   𝐸𝑐 =

𝑣0
2

𝐶𝑃 𝑇𝑤 –𝑇∞ 
 ,   𝐾 =

𝐾∗𝑣0
2

𝜈2  
 
 
 
 
 
 
 
 
 
 
 

   (9) 

 
On using (6) and (9), the equations (3)–(5) reduce to the 

following non-dimensional equations:  

𝑑2𝑢

𝑑𝑦2
+

𝑑𝑢

𝑑𝑦
−  𝑀2 + 𝐾−1 𝑢 = 𝐺𝑟 𝜃 − 𝐺𝑚𝜙 ,           (10) 

𝑑2𝜃

𝑑𝑦2
+ 𝑃𝑟

𝑑𝜃

𝑑𝑦
+ 𝑃𝑟 𝐸  

𝑑𝑢

𝑑𝑦
 

2

=  
𝑃𝑟 𝐸 + 𝜓 𝜃

−𝑃𝑟𝐸𝑀2𝑢2
  ,    (11) 

𝑑2𝜙

𝑑𝑦2
+ 𝑆𝑐

𝑑𝜙

𝑑𝑦
− 𝑆𝑐𝛾𝜙 = 0 ,                          (12) 

The dimensionless form of the boundary conditions (7) and 
(8) are 

𝑦 = 0:     𝑢 = 0,   𝜃 = 1,   𝜙 = 1                     (13) 

𝑦 → ∞:     𝑢 → 0,   𝜃 → 0,   𝜙 → 0                   (14) 

III. METHOD OF SOLUTION 

Equations (10)–(12) represent a set of partial differential 
equations that cannot be solved in closed-form. However, 
these equations can be solved analytically after reducing them 
to a set of ordinary differential equations in dimensionless 
form. Thus we can represent the velocity u, temperature 𝜃 and 
concentration 𝜙 in terms of power of Eckert number 𝐸𝑐 as in 
the flow of an incompressible fluid Eckert number is always 
less than unity since the flow due to the Joules dissipation is 
super imposed on the main flow. Hence, we can assume 

 

𝑢 𝑦 = 𝑢0 𝑦 + 𝐸𝑐𝑢1 𝑦 + 𝑜 𝐸𝑐2 

𝜃 𝑦 = 𝜃0 𝑦 + 𝐸𝑐𝜃1 𝑦 + 𝑜 𝐸𝑐2 

𝜙 𝑦 = 𝜙0 𝑦 + 𝐸𝑐𝜙1 𝑦 + 𝑜 𝐸𝑐2 

                (15) 

Substituting (15) in equations (10)–(12) and equating the 
coefficient of zeroth powers of 𝐸𝑐 (𝑖. 𝑒. 𝑂 𝐸𝑐0 ), we get the 
following set of equations: 

𝑢0
′′ + 𝑢0

′ − Ν𝑢0 = −𝐺𝑟𝜃0 − 𝐺𝑚𝜙0 ,     (16) 

𝜃0
′′ + 𝑃𝑟𝜃0

′ − Pr⁡(𝐹 + 𝜓)𝜃0 = 0 ,                 (17) 

𝜙0
′′ + 𝑆𝑐𝜙0

′ − Scγ𝜙0 = 0 ,                        (18) 

The coefficients of first-order of 𝐸𝑐 (𝑖. 𝑒. 𝑂 𝐸𝑐1 ),  we 
obtain 

𝑢1
′′ + 𝑢1

′ − Ν𝑢1 = −𝐺𝑟𝜃1 − 𝐺𝑚𝜙1  ,   (19) 

𝜃1
′′ + 𝑃𝑟𝜃1

′ − 𝑃 𝑟 𝐹 + 𝜓 𝜃1 + 𝑃𝑟𝑢0
2′

+ 𝑃𝑟𝑀2𝑢0
2 = 0,  (20) 

𝜙1
′′ + 𝑆𝑐𝜙1

′ − Scγ𝜙1 = 0 ,            (21) 

where  𝑁 = 𝑀2 + 𝐾−1 . 

𝑦 = 0:  
𝑢0 = 0,   𝑢1 = 0,   𝜃0 = 1,   
𝜃0 = 0 ,   𝜙0 = 1 ,    𝜙0 = 0

                   (20) 

𝑦 → ∞:   
𝑢0 → 0,   𝑢1 → 0,   𝜃0 → 0,   
𝜃1 → 0,   𝜙0 → 0 ,   𝜙1 → 0

           (21) 

The solution of velocity, temperature and concentration fields 
have restricted up to 𝑂 𝐸𝑐  and neglected the higher order of 
𝑂 𝐸𝑐2  as the value of 𝐸𝑐 ≪ 1. The solutions of equations 
(16)–(21) with the help of boundary conditions (22) and (23) 
are obtained as follows: 

𝑢0 = 𝐴5 𝑒
−𝐴4𝑦 − 𝑒−𝐴1𝑦 + 𝐴6 𝑒

−𝐴4𝑦 − 𝑒−𝑚1𝑦 ,        (24) 

𝜃0 = 𝑒−𝐴1𝑦 ,        (25) 

𝜙0 = 𝑒−𝑚1𝑦 ,         (26) 

𝑢1 =  

𝐴17𝑒
−𝐴4𝑦 − 𝐵10𝑒

−𝐴1𝑦 + 𝐵11𝑒
−2𝐴1𝑦

+𝐵12𝑒
−2𝐴4𝑦 − 𝐵13𝑒

−𝐴10𝑦 + 𝐵14𝑒
−2𝑚1𝑦

−𝐵15𝑒
−𝐵1𝑦 + 𝐵16𝑒

−𝐵2𝑦

 ,     (27) 

𝜃1 =  
𝐵9𝑒

−𝐴1𝑦 − 𝐵3𝑒
−2𝐴1𝑦 − 𝐵4𝑒

−2𝐴4𝑦 + 𝐵5𝑒
−𝐴10𝑦

−𝐵6𝑒
−2𝑚1𝑦 + 𝐵7𝑒

−𝐵1𝑦 − 𝐵8𝑒
−𝐵2𝑦

 ,  (28) 

𝜙1 = 0                               (29) 

The physical quantities of interest are the wall shear stress 
𝜏𝑤  is given by 

𝜏𝑤 =  𝜇
𝜕𝑢∗

𝜕𝑦∗
 
𝑦 ∗=0

 ,                                   (30) 

𝐶𝑓𝑥 =
𝜏𝑤

𝜌𝑣0
2 = 𝑢′ 0  .                                (31) 

Using (24), (27) and (30) in (31), we get 

𝐶𝑓𝑥 =  
𝐴6 𝑚1 − 𝐴4 + 𝐴5 𝐴1 − 𝐴4 

−𝐸𝑐  
𝐵17𝐴4 − 𝐵10𝐴1 + 2𝐵11𝐴1 + 2𝐵12𝐴4

−𝐵13𝐴10 + 2𝐵14𝑚1 − 𝐵15𝐵1 + 𝐵16𝐵2
 
       (32) 

The local surface heat flux is given by 

𝑞𝑤 =  −𝜅
𝜕𝑇∗

𝜕𝑦∗
 
𝑦 ∗=0

                                       (33) 

The Local Nusselt number 

𝑁𝑢𝑥 = 𝑥𝑞𝑤/𝜅(𝑇𝑤 − 𝑇∞)             (34) 

Using (25), (28) and (33) in (34), then the Local Nusselt 
number can be written as 

𝑁𝑢𝑥

𝑅𝑒𝑥
= 𝜃′  0 =  

−𝐴1 1 + 𝐸𝑐𝐵9 

+𝐸𝑐  
2𝐵3𝐴1 + 2𝐵4𝐴4 − 𝐵5𝐴10

+2𝐵6𝑚1 − 𝐵1𝐵7 + 𝐵2𝐵8
 
   (35) 

where 𝑅𝑒𝑥 = 𝑣0𝑥/𝜈 is the local Reynolds number. 
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IV. VALIDATION 

Validation of the analysis has been performed by 
comparing the present results with those available in the open 
literature [19] and a very good agreement has been established, 

when K=∞, =0.0, =0.0. In order to verify the accuracy of the 
present results, we have considered the analytical solutions 
obtained by Chaudhary et al. [19] and computed these solutions 
for various physical parameters for skin-friction coefficient and 
local Nusselt number.  

Table 1: Comparison of present results with those of 
Chaudhary et al. [19] with different values of F for Cfx and 
Nux/Rex; at Pr = 0.71, Sc = 0.78, M = 5.0, Gr = 5.0, Gm = 5.0, 
Ec = 0.05. 
 

Chaudhary et al. [19] Present results 

F Cfx Nux/Rex F Cfx Nu 

1.0 1.82701 1.52710 1.0 1.82981 1.52803 

2.0 1.77315 1.82047 2.0 1.77918 1.82209 

3.0 1.73182 2.17602 3.0 1.73423 2.17803 

4.0 1.60718 2.32635 4.0 1.60817 2.32725 

5.0 1.52541 2.50981 5.0 1.52598 2.51083 

 

V. RESULTS AND DISCUSSION 

To get a physical insight into the problem the numerical 
evaluation of the analytical results reported in the previous 
section was performed and a set of results is reported 
graphically in Figures 2-7 for the cases cooling Gr>0 of the 
plate i.e. free convection currents convey heat away from the 
plate into the boundary layer. During the numerical 
calculations the physical parameters are considered as Pr=0.71 
(diffusing air), Gr=5 (thermal buoyancy forces are dominant 
over the viscous hydrodynamic forces in the boundary layer), 
F=5>1(thermal radiation is dominant over the thermal 
conduction), Ec=0.05≤ 1(Enthalpy difference is dominant over 
the kinetic energy). 

Figs. 2 and 3 illustrate the influence of the heat absorption 

and porosity parameters  and K, respectively on the flow 
velocity. The effect is observed on velocity profile by 

increasing the value of the heat absorption parameter , and 
the boundary layer thickness decreases with increase in the 
absorption parameter as shown in Fig. 2, which is expected. 
The opposite trend is observed in Fig. 3 for the case when the 
value of the porous permeability is increased. As depicted in 
this figure, the effect of increasing the value of porous 
permeability is to increase the value of the velocity component 
in the boundary layer due to the fact that drag is reduced by 
increasing the value of the porous permeability on the fluid 
flow which results in increased velocity. Fig. 4 depicts the 
effect of radiation on the flow velocity. We note from this 
figure that there is decrease in the value of flow velocity with 
increase in radiation parameter F which shows the fact that 
increase in radiation parameter decrease the velocity in the 
boundary layer due to decrease in the boundary layer 

thickness. The effect of chemical reaction parameter  is 
highlighted in Fig. 5 which shows that the velocity decreases 

with increasing the rate of chemical reaction . Hence increase 
in the chemical reaction rate parameter leads to a fall in the 
momentum boundary layer. The trend of the velocity profile in 
this figure is same as shown in Fig. 4. The effect of absorption 

parameter () on fluid temperature () is presented in Fig. 6. 

This is due to the fact that the thermal boundary layer absorbs 
energy which causes the temperature fall considerably with 
increasing the value of internal heat absorption parameter. The 

effect the reaction rate parameter ( on the species 

concentration profiles () for generative chemical reaction is 
shown in Fig. 7. It is noticed from the graphs that there is a 
decreasing effect on concentration distribution with increasing 
the value of the chemical reaction rate parameter in the 
boundary layer. 

In Table 1, it has been observed that the skin friction 
coefficient decreases and local Nusselt number raises sharply 
due to the increase of radiation parameter F. 

VI. CONCLUSIONS 

A theoretical analysis of the steady magnetohydrodynamic 
flow and natural convection heat and mass transfer in a 
viscous, incompressible, electrically-conducting fluid along a 
semi-infinite vertical plate immersed in a porous medium with 
thermal radiation has been conducted. The flow model has 
been setup for homogeneous chemical reaction of first-order in 
the presence of Ohmic heating and viscous dissipation. The 
nonlinear and coupled governing equations are solved 
analytically by perturbation technique. Analytical solutions 
using the method of complex variables have been derived. 
Above investigation reveals the following facts: 

 It is seen that the velocity starts from minimum value 
of zero at the surface and increases till it attains the 
peak value and then starts decreasing until it reaches 
the minimum value at the end of the boundary layer. 

 Increasing heat absorption acts to decelerate the flow 
velocity in the boundary layer.  

 Flow velocity is accelerated with increasing porosity 
parameter in the porous regime. 

 It is seen that with an increase in heat absorption of 
the steady motion, the temperatures are decreased 

For the steady state case, there is a strong reduction in the 
concentration distribution for the effect of generative chemical 
reaction. 

NOMENCLATURE 

𝐵0 Uniform magnetic field 

C* Species concentration (Kg. m


) 

𝐶𝑃 Specific heat at constant pressure (J. kg


. K)  

C∞   Species concentration in the free stream (Kg.m


) 

Cw   Species concentration at the surface (Kg.m


) 

𝐷  Chemical molecular diffusivity (m
2
.s


) 
𝐸𝑐 Eckert number/dissipative heat 
F radiation parameter 

𝑔  Acceleration due to gravity (m.s


) 
𝐺𝑟 Thermal Grashof number 
𝐺𝑚 Mass Grashof number 

 Chemical reaction parameter 
K porosity parameter 
𝑀 Hartmann number/Magnetic parameter  
𝑁𝑢𝑥  Local Nusselt number 
𝑃𝑟 Prandtl number 
q*           Heat flux per unit area 
Rex Local Reynolds number 
𝑆𝑐 Schmidt number 
T* Temperature (K) 
T∞ Fluid temperature at the surface (K) 
T∞ Fluid temperature in the free stream (K) 
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𝑢   Dimensionless velocity component in x-direction (m. 

s


) 
u* dimensional velocity along x* direction 
v* dimensional velocity along y* direction 

𝑣0 Dimensionless suction velocity (m. s


) 
Greek symbols 

  fluid thermal diffusivity 

𝛽𝑇 coeff. of volume expansion for heat transfer (K


), 

𝛽𝐶    coeff. of volume expansion for mass transfer (


) 

 Chemical reaction parameter 
𝜃   Dimensionless fluid temperature (K), 

𝜅 Thermal conductivity (W. m


. K


), 

𝜇 Coefficient of viscosity (kg. m


) 

𝜈 Kinematic viscosity (m
2
.s


),  

𝜎 Electrical conductivity (VA


 m


), 

𝜏𝑤  wall shearing stress (N. m


)  

𝜙 Dimensionless species concentration (Kg.m



𝜓 heat source parameter
Subscripts 
w conditions on the wall 
  conditions at the free stream 
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    Fig. 2: Velocity distribution for heat absorption (    3: Velocity distribution for porosity (K



            
             Fig. 4: Velocity distribution for radiation (F Fig. 5: Velocity distribution for chemical reaction (

 

           
                    Fig. 6: Temperature for heat absorption (Fig. 7: Temperature for chemical reaction ( 
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