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Abstract—This paper describes a method of enhancement of grayscale and color image in the frequency domain by the pair of two elliptic 

discrete Fourier transforms (EDFT). Unlike the traditional discrete Fourier transform (DFT), the EDFT is parameterized and the parameter 

defines ellipses (not circles) around which the input data are rotated. Methods of the traditional DFT are widely used in image enhancement, and 

the transform rotates data of images around the circles. The presented method of image enhancement proposes processing images on different set 

of ellipses for the direct and inverse transforms. Our preliminary experimental examples show effectiveness of the proposed method. The 

Illustrative examples of image enhancement are given.   

Keywords - Image enhancement,discrete Fourier transform, elliptic discrete Fourier transform, measure of enhancement. 
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I.  INTRODUCTION 

Transform-based image enhancement is one of the main 
classes of methods in enhancement [1]-[10], which is effective 
and simple in implementation because of using fast transforms 
[14]-[21]. The main transform in this class is the discrete 
Fourier transform (DFT), which allows not only for 
enhancement but filtration of images as well. As an example, 
we mention the known alpha-rooting method of image 
enhancement, when the only magnitude of the 2-D DFT of the 
image is changed, living the phase the same at each frequency-
points [11]-[13]. The phase is a very sensitive characteristic of 
the transform and the small changes in the phase may cause the 
big changes in images. Another method of image enhancement 
is the retinex algorithm, which uses the fast methods of the 2-D 
DFT for convoluting the image with Gaussian filters with 
different scales [27]. Methods of color image enhancement by 
the quaternion 2-D DFTs are also effectively used [28]-[30]. 

In this paper, we describe a simple method of image 
enhancement, by using the concept of the elliptic DFT. 
Considering the geometry of the traditional DFT, we can state 
that this transform rotates data around the circles, and 
manipulation with its coefficients can be described by a process 
of moving rotated points from circles to other circles. Then, the 
inverse DFT is rotated the obtained points on the new circles in 
opposite direction, namely clockwise. The parameter of the 
elliptic DFT defines the ellipses around which the data are 
rotated. Only using the direct and inverse EDFT with different 
values of this parameter changes the original image. In other 
words, it is the simplest image processing procedure in the 
frequency domain. The goal of our work is to show that the pair 
of the direct and inverse EDFT with different parameters may 
lead to effective enhancement of grayscale and color images.  

  

II. DFT IN MATRIX FORM 

Given a real or complex signal 𝑓𝑛  of length 𝑁, we consider 
the 𝑁-point DFT defined as  

 

𝐹𝑝 =  𝑓𝑛𝑊(𝑛, 𝑝) =  𝑓𝑛𝑊
𝑛𝑝 ,

𝑁−1

𝑛=0

𝑁−1

𝑛=0

                    (1) 

 

for 𝑝 = 0:  𝑁 − 1 .  
Here, the exponential kernel of the transform is defined as the 

set of 𝑁 equidistant points on the unit circle 

 

𝑊𝑛𝑝 = 𝑊𝑁
𝑛𝑝

= 𝑒−𝑖
2𝜋
𝑁

𝑛𝑝 = cos  
2𝜋

𝑁
𝑛𝑝 − 𝑖 sin  

2𝜋

𝑁
𝑛𝑝 .   

 

The matrix of the 𝑁-point DFT is 

 

[𝐹] =

 
 
 
 
 
 
1
1
1
1
1
1

1
𝑊1

𝑊2

⋮
𝑊𝑁−2

𝑊𝑁−1

1
𝑊2

𝑊4

⋮
𝑊𝑁−4

𝑊𝑁−2

1
𝑊3

𝑊6

⋮
𝑊𝑁−6

𝑊𝑁−3

1
⋮
⋮
⋮
⋮
⋮

1
𝑊𝑁−1

𝑊𝑁−2

⋮
𝑊2

𝑊1  
 
 
 
 
 

. 

 

Each product 𝑓𝑛𝑊
𝑛𝑝  in the sum of (1) represents the rotation, 

if we consider the complex number 𝑓𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛  as a point 

(𝑥𝑛 , 𝑦𝑛) in the two-dimension plane. Indeed, let 𝑘 = 𝑛𝑝, and 

let 𝑐𝑘 = cos 2𝜋𝑘/𝑁  and 𝑠𝑘 = sin 2𝜋𝑘/𝑁  , then 

 

𝑓𝑛𝑊
𝑘 =  𝑥𝑛 + 𝑖𝑦𝑛 (𝑐𝑘 − 𝑖𝑠𝑘)

= (𝑐𝑘𝑥𝑛 + 𝑠𝑘𝑦𝑛) + 𝑖 −𝑠𝑘𝑥𝑛 + 𝑐𝑦𝑛 . 
 

If we denote the real and imaginary part of 𝑓𝑛𝑊
𝑘  by 𝐴 and 𝐵, 

then in matrix form this product can be written as 

 

𝑓𝑛𝑊
𝑘 = (𝐴, 𝐵) →  

𝐴
𝐵
 =  

𝑐𝑘𝑥𝑛 + 𝑠𝑘𝑦𝑛

−𝑠𝑘𝑥𝑛 + 𝑐𝑦𝑛

 = 𝑇𝑘  
𝑥𝑛

𝑦𝑛
 . 

 

where the matrix  

 

𝑇𝑘 =  
𝑐𝑘 𝑠𝑘

−𝑠𝑘 𝑐𝑘
 =  

cos 𝜑𝑘    sin 𝜑𝑘 

−sin 𝜑𝑘    cos 𝜑𝑘 
 .           (2) 

 

This matrix is the matrix of elementary rotation, or the Givens 

rotation by the angle 𝜑𝑘 = 2𝜋𝑘/𝑁. Therefore denoting by 𝑅𝑝  

and 𝐼𝑝  the real and imaginary parts of 𝐹𝑝 , the 𝑁-point DFT at 

the frequency-point p can be written as 
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𝐹𝑝 =  𝑅𝑝 , 𝐼𝑝   →  
𝑅𝑝

𝐼𝑝  
 =  𝑇𝑛𝑝  

𝑥𝑛

𝑦𝑛
 .

𝑁−1

𝑛=0

             (3) 

 

Considering the signal and its DFT as the column-vectors 

 

𝒇 =  𝑓0, 𝑓1, … , 𝑓𝑁−1 
′ =  𝑥0, 𝑦0 , 𝑥1 , 𝑦1 , … , 𝑥𝑁−1, 𝑦𝑁−1 

′  

 

and 

 

𝑭 =  𝐹0, 𝐹1, … , 𝐹𝑁−1 
′ =  𝑅0, 𝐼0 , 𝑅1 , 𝐼1 , … , 𝑅𝑁−1, 𝐼𝑁−1 

′ , 
 

we can write the 𝑁-point DFT in the following matrix form 

 

 
 
 
 
 
 
 

𝑅0

𝐼0

𝑅1

𝐼1
⋮

𝑅𝑁−1

𝐼𝑁−1  
 
 
 
 
 
 

=

 
 
 
 
 
 
 
𝐼 𝐼 𝐼 𝐼 … 𝐼 𝐼
𝐼 𝑇1 𝑇2 𝑇3 … 𝑇𝑁−2 𝑇𝑁−1

𝐼 𝑇2 𝑇4 𝑇6 … 𝑇𝑁−4 𝑇𝑁−2

𝐼 𝑇3 𝑇6 𝑇9 … 𝑇𝑁−6 𝑇𝑁−3

⋮ ⋮ ⋮ ⋮ … ⋮ ⋮
𝐼 𝑇𝑁−2 𝑇𝑁−4 𝑇𝑁−6 … 𝑇4 𝑇2

𝐼 𝑇𝑁−1 𝑇𝑁−2 𝑇𝑁−3 … 𝑇2 𝑇1  
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑥0

𝑦0

𝑥1

𝑦1

⋮
𝑥𝑁−1

𝑦𝑁−1 
 
 
 
 
 
 

. 

 

In this equation, the DFT in the real space 𝑅2𝑁   is described by 

the matrix   

 

𝑻 =

 
 
 
 
 
 
 
𝐼 𝐼 𝐼 𝐼 … 𝐼 𝐼
𝐼 𝑇1 𝑇2 𝑇3 … 𝑇𝑁−2 𝑇𝑁−1

𝐼 𝑇2 𝑇4 𝑇6 … 𝑇𝑁−4 𝑇𝑁−2

𝐼 𝑇3 𝑇6 𝑇9 … 𝑇𝑁−6 𝑇𝑁−3

⋮ ⋮ ⋮ ⋮ … ⋮ ⋮
𝐼 𝑇𝑁−2 𝑇𝑁−4 𝑇𝑁−6 … 𝑇4 𝑇2

𝐼 𝑇𝑁−1 𝑇𝑁−2 𝑇𝑁−3 … 𝑇2 𝑇1  
 
 
 
 
 
 

      (4) 

 

which is the 𝑁 × 𝑁 block-matrix, each block of which is the 

2 × 2 matrix of the Givens rotation. The matrix 𝐼 = 𝐼2  is the 

2 × 2 identity matrix. The 2 × 2  matrices of rotation are 

periodic, 

 

𝑇0 = 𝑇𝑁 = 𝐼,  𝑇𝑘 = 𝑇𝑘+𝑁 = 𝑇𝑘−𝑁 , 
 

for 𝑘 = 0:  𝑁 − 1 ,  and it is not difficult to see that 𝑇𝑘1+𝑘2 =
𝑇𝑘1𝑇𝑘2 , for any two integers 𝑘1 and 𝑘2. 

    Thus, in the 𝑁 -point DFT lies the idea of clock-wise 

rotating each value, or point of the input data 𝑓𝑛 = 𝑥𝑛 +

𝑖𝑦𝑛=(𝑥𝑛 , 𝑦𝑛) around the circle of radius 𝑟𝑛 =  𝑥𝑛
2 + 𝑦𝑛

2 by the 

corresponding angle 𝜑𝑛𝑝 = (2𝜋/𝑁)𝑛𝑝 = 𝑛𝑝𝜑1 .  The first 

value 𝑓0 = 𝑥0 + 𝑖𝑦0 = (𝑥0 , 𝑦0)  is not rotated; 𝜑0 = 0.  After 

rotating all input points, the rotated points are projected on the 

𝑋-axis and added together and then projected on the 𝑌-axes 

and added, too.  These sums represent the real and imaginary 

values of the component 𝐹𝑝 . It should be noted that, for the 

𝑝 = 0 case, all angles 𝜑𝑛0 = 0 and the calculation of the first 

component 𝐹0  is reduced to summing separately the 

coordinates of the input points (𝑥𝑛 , 𝑦𝑛), 𝑛 = 0: (𝑁 − 1).  

 

III. DFT WITH ROTATIONS AROUND ELLIPSES 

In this section, we consider the transform with the 𝑁 × 𝑁 

block-matrix that is similar to the matrix 𝑻 for the 𝑁 -point 

DFT, but which is composed not by matrices of the Givens 

rotations. We consider the rotations around ellipses.  

 

Instead of the Givens rotations, the Grigoryan rotations are 

considered, which are also the 𝑁th roots of the 2×2 identity 

matrix 𝐼 [22]-[24]. The matrices of such rotations are defined 

in the following way. Given the angle 𝜑 = 𝜑1 = 2𝜋 𝑁 ,  let 

𝐸 𝜑  be the matrix  

                                 

𝐺 = 𝐺 𝜑 =  
cos 𝜑 cos 𝜑 − 1

cos 𝜑 + 1 cos 𝜑 
 .             (5) 

 

It is not difficult to see that det(𝐺) = 1 the matrix E can be 

written as 

 

𝐺 = cos 𝜑 𝑈 + 𝑉 = cos 𝜑  
1 1
1 1

 +  
0 −1
1 0

 . 

 

Here, the matrices  

 

𝑈 =  
1 1
1 1

    and   𝑉 =  
0 −1
1 0

 . 

 

We also can consider the representation that is similar to the 

exponent  exp 𝑖𝜑 = cos 𝜑 + sin 𝜑 𝑖, namely, 

 

 𝐺 = cos 𝜑 𝐼 + sin 𝜑 𝑅,                          (6) 

 

where the parameterized matrix 

 

𝑅 = 𝑅 𝜑 =  
0 −tan⁡(𝜑 2 )

cot⁡(𝜑 2 ) 0
 .               (7) 

 

The determinant of this matrix is 1, det 𝑅 𝜑 = 1, and its 

square is  

𝑅2 𝜑 = −𝐼.                                        (8) 
 

It is not difficult to see that 𝐺𝑁 𝜑 = 𝐼 for any integer 𝑁.  
 

Example 1: For the 𝑁 = 9 case, the angle = 2𝜋 9 , cos 𝜑 =
0.7660, and the matrix  

 

𝐺 = cos 𝜑  
1 1
1 1

 +  
0 −1
1 0

 =  
0.7660 −0.2340
1.7600 0.7660

 . 

 

We also have the following: 

  

𝑅 =  
0 −tan⁡(𝜑 2 )

cot⁡(𝜑 2 ) 0
 =  

0 −0.3640
2.7475 0

 , 

 

det 𝑅 = 1, and  

 𝐺 = 0.7660 𝐼 + 0.6428𝑅 =  
0.7660 −0.2340
1.7600 0.7660

 . 

 

The next eight powers of this matrix are 

 

𝐺2 =  
0.1736 −0.3584
2.7057 0.1736

 , 𝐺3 =  
−0.5 −0.3152

2.3794 −0.5
 , 

𝐺4 =  
−0.9397 −0.1245

0.9397 −0.9397
 , 𝐺5 =  

−0.9397 0.1245
−0.9397 −0.9397

 , 

𝐺6 =  
−0.5 0.3152

−2.3794 −0.5
 , 𝐺7 =  

0.1736 0.3584
−2.7057 0.1736

 , 

𝐺8 =  
0.7660 0.2340

−1.7600 0.7660
 , 𝐺9 =  

1 0
0 1

 .                        
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The list of these nine matrices includes their inverse matrices 

as well. Indeed, 

 

𝐺−1 = 𝐺8 , 𝐺−2 = 𝐺7 , 𝐺−3 = 𝐺6 , 𝐺−4 = 𝐺5 .           (9) 

 

This property can be written as 𝐺−𝑘 = 𝐺9−𝑘 , for 𝑘 = 1: 8. 

     Now, we consider the following 9 × 9 block matrix  

 

𝑴(𝐺) =

 
 
 
 
 
 
 
 
 
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼
𝐼 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6 𝐺7 𝐺8

𝐼 𝐺2 𝐺4 𝐺6 𝐺8 𝐺1 𝐺3 𝐺5 𝐺7

𝐼 𝐺3 𝐺6 𝐼 𝐺3 𝐺6 𝐼 𝐺3 𝐺6

𝐼 𝐺4 𝐺8 𝐺3 𝐺7 𝐺2 𝐺6 𝐺1 𝐺5

𝐼 𝐺5 𝐺1 𝐺6 𝐺2 𝐺7 𝐺3 𝐺8 𝐺4

𝐼 𝐺6 𝐺3 𝐼 𝐺6 𝐺3 𝐼 𝐺6 𝐺3

𝐼 𝐺7 𝐺5 𝐺3 𝐺1 𝐺8 𝐺6 𝐺4 𝐶2

𝐼 𝐺8 𝐺7 𝐺6 𝐺5 𝐺4 𝐺3 𝐺2 𝐺1 
 
 
 
 
 
 
 
 

. 

 

Considering the numbering by 𝑛 = 0: 8 along the rows and by 

𝑝 = 0: 8 along the columns, the (𝑛, 𝑚)-th block in this matrix 

is the 2 × 2  matrix 𝐺𝑛𝑝 = 𝐺𝑛𝑝  mod  9.  This matrix is 

symmetric, since 𝐺𝑛𝑝 = 𝐺𝑝𝑛 . 
      The determinant of this matrix is 387420489 = 99  and 

the 4
th

 power  𝑴4 𝐺 = 81𝐼18 . The same properties hold for 

the 9-point DFT. Indeed, if we construct the 9 × 9  block 

matrix 𝑴 𝑇 , by using the Givens rotation 𝑇 = 𝑇(𝜑), then the 

determinant of this matrix will also be 99 and 𝑴4 𝑇 = 81𝐼18 .  
     It is important to note that, if we compose the similar 9 × 9 

block matrix with the basic matrix  𝐺−1, i.e., (𝐺−1) , then we 

obtain the following equality: 

 

𝑴 𝐺 𝑴 𝐺−1 = 9𝑬. 
 

Here 𝑬 is the 18 × 18 identity matrix. Thus, the inverse matrix 

is 

𝑴−1 𝐺 =
1

9
𝑴 𝐺−1 ,                          (10) 

 

and using Eq. (9), we obtain 

 

𝑴−1 𝐺 =
1

9

 
 
 
 
 
 
 
 
 
𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼
𝐼 𝐺8 𝐺7 𝐺6 𝐺5 𝐺4 𝐺3 𝐺2 𝐺1

𝐼 𝐺7 𝐺5 𝐺3 𝐺1 𝐺8 𝐺6 𝐺4 𝐺2

𝐼 𝐺6 𝐺3 𝐼 𝐺6 𝐺3 𝐼 𝐺6 𝐺3

𝐼 𝐺5 𝐺1 𝐺6 𝐺2 𝐺7 𝐺3 𝐺8 𝐺4

𝐼 𝐺4 𝐺8 𝐺3 𝐺7 𝐺2 𝐺6 𝐺1 𝐺5

𝐼 𝐺3 𝐺6 𝐼 𝐺3 𝐺6 𝐼 𝐺3 𝐺6

𝐼 𝐺2 𝐺4 𝐺6 𝐺8 𝐺1 𝐺3 𝐺5 𝐺7

𝐼 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6 𝐺7 𝐺8 
 
 
 
 
 
 
 
 

. 

 

The transform with the 9 × 9 block matrix 𝑴(𝐺) is called the 

G-matrix generalized discrete transform (G-GDT). This 

transform is also called the 9-point elliptical discrete Fourier 

transform (EDFT), because during the transformations 

 

𝑧 → 𝐺𝑧 → 𝐺2𝑧 → 𝐺3𝑧 → 𝐺4𝑧 → ⋯ → 𝐺8𝑧 → 𝐺9𝑧 = 𝑧 
 

the point 𝑧 =  𝑥0, 𝑦0 = (1,0) moves around the ellipse that is 

described by the equation 

 

𝑥2 +
𝑦2

𝑏2
 = 1,                                        (11) 

 

where the semi-minor axis 𝑏 = cot(𝜑/2) = 2.7475.  When 

using the matrix 𝑇 instead of 𝐺, the point 𝑧 moves around the 

unit circle 𝑥2 + 𝑦2 = 1.  
     In the general case of integer 𝑁 > 1 , the 𝑁 × 𝑁  block 

matrix 𝑀 𝐺  composed by the basic 2 × 2 matrix 𝐺  given in 

Eq. (7) defines the 𝑁-point discrete transform that is called the 

elliptic discrete Fourier transformation of type I, or simply 𝑁-

point EDFT [24]. This transform has the following properties: 

 

det 𝑴 𝐺 = 𝑁𝑁 , 
𝑴4 𝐺 = 𝑁21𝐼2𝑁 ,                               (12) 

𝑴−1 𝐺 = 𝑴 𝐺−1 /𝑁. 
 

The ellipse of rotation the point (1,0) is the same as in Eq. 

(10), with 𝑏 = cot(𝜑/2),  where the angle 𝜑 = 2𝜋/𝑁.  The 

point (1,0) is the first point on the unit circle. Therefore, the 

geometry of the EDFT will be described by the ellipse in Eq. 

11. Other points (𝑥0, 𝑦0) are moving around similar ellipses.  

IV. DIFFERENCE BETWEEN EDFT AND DFT 

      It should be noted that when the matrix is  

 

𝑅 𝜙 =  
0 1

−1 0
 , 

 
the matrix 𝐺(𝜑, 𝜙) is the matrix of the Givens rotation. This is 
the case, when tan⁡(𝜙 2) = −1,  or 𝜙 = 7𝜋/2. If we consider 
the 𝜙 = 𝜑 case, then from the condition 𝜑 = 2𝜋/𝑁 = 7𝜋/2, 
we obtain that 𝑁 should not be integer, but 4/7. We can obtain 
the rotation counter clock-wise around the circle for the 𝜙 = 𝜑 
case, when tan 𝜑 2  = 1, i.e., 𝜋/𝑁=𝜋/4 ; this is the 𝑁 = 4 
case.  
      The semi-minor axis 𝑏 = cot(𝜑/2)  grows up fast with 
large values of 𝑁 . Indeed, for the values of 𝑁 = 4: 10 , the 
values of 𝑏 equal 1, 1.3764, 1.7321, 2.0765, 2.4142, 2.7475, 
3.0777, respectively. As an example, we consider the rotation 
of integer numbers, when the 128-point EDFT is used. The 
geometry of this transform is described by the ellipse which is 
shown in Fig. 1. This ellipse has the semi-minor axis equal 
40.7355 and it is the orbit of the point (1,0). The unit circle for 
this point when using the traditional 128-point DFT is also 
shown for comparison.  
 

 
 

Figure 1. The elliptic orbit of the point (1,0) for the 128-point EDFT.  
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This example shows how much different the concepts of the 𝑁-
point DFT and EDFT. The orbit of the movement of a point, 
which is ellipse, changes with the order 𝑁  of the EDFT. 
Rotation of each point 𝑧 = (𝑥, 𝑦)  during calculation of the 
classical 𝑁-point DFT is accomplished around the same circle 
of radius |𝑧| . Because of the large semi-minor 𝑏 ≫ 1 , the 
changes in calculation of the EDFT occur much along the 
vertical. It means that the imaginary part of the EDFT can be 
much enhanced in comparison with the 𝑁-point DFT.  

     Also, it is important to note that in the definition of the 

basic transform 𝐶 in Eq. (6), we can consider other matrices 𝑅, 

for instance the matrices that are defined by angles 𝜙 ≠ 𝜑, 
 

𝑅 𝜙 =  
0 −tan⁡(𝜙 2 )

cot⁡(𝜙 2 ) 0
 .               (12) 

 

Indeed, det 𝑅 𝜙 = 1,  𝑅2 𝜙 = −𝐼 , and the parameterized 

matrix 𝐺 can be defined as  

 

 𝐺 = 𝐺(𝜑, 𝜙) = cos 𝜑 𝐼 + sin 𝜑 𝑅 𝜙               (13) 
 

or 
 

𝐺 =  
cos 𝜑 − sin 𝜑 tan⁡(𝜙 2 )

sin 𝜑 cot⁡(𝜙 2 ) cos 𝜑 
 . 

 

In this general case, we have the equality 𝐺𝑁 𝜑, 𝜙 = 𝐼, for 

any integer 𝑁 > 1. The same ellipse given in Eq. (10) with the 

semi-minor 𝑏 = cot(𝜙/2)  is the locus of all rotated points 

𝐺𝑛𝑧, when 𝑛 = 0: 𝑁 − 1. 

          To show the changes, when applying the basic matrix 

𝐺(𝜑, 𝜙)  in the 𝑁 -point EDFT for the angle 𝜙 ≠ 𝜑 , we 

consider the 𝑁 = 9  case and the movement of the point 

𝑧 = (1,0) under the transformations 𝐺𝑘 , when 𝑘 = 2: 8. Figure 

2(a) shows one orbit of the point 𝑧 in the 𝜙 = 𝜑 = 2𝜋/9 case 

and another orbit when 𝜙 = 𝜑 + 𝜋/9 . The addition angle 

+𝜋/9 shrinks the orbit inside the first orbit. The case when 

𝜙 = 𝜑 − 𝜋/9 is shown in part (b). The point 𝑧 moves along 

the greater orbit than the orbit of 𝑧 when 𝜙 = 𝜑.  

      

 
 
Figure 2. The orbits of the point (1,0) when (a) 𝜙 = 2𝜋/9 and 3𝜋/9 and 

(a) 𝜙 = 2𝜋/9 and 𝜋/9.  
 

The orbits of other points may intersect as well. As an 
example, Figure 3 shows two orbits of the point 𝑧 =  𝑥0 , 𝑦0 =
(1,2)  in the 𝜙 = 𝜑 = 2𝜋/9 and 𝜙 = 𝜑 + 𝜋/9  cases. This 
point is rotated around the ellipse that is described by  

𝑥2 +
𝑦2

𝑏2
 = 𝑟2 ,        𝑏 = cot(𝜙/2),            (14) 

 
 

 
 

Figure 3. The orbits of the point (1,2) when 𝜙 = 2𝜋/9 and 3𝜋/9. 
 

 

where the value of 𝑟2 is calculated by 
 

𝑟2 = 𝑥0
2 +

𝑦0
2

𝑏2
= 1 +

4

𝑏2
. 

 
When 𝜙 = 𝜑 = 2𝜋/9,  then 𝑏2 = 3  and 𝑟2 = 5/3 =
1.6667. In the 𝜙 = 3𝜋/9  case, 𝑏2 = 7.5486  and 𝑟2 =
1.5299.  

V. METHOD OF IMAGE ENHANCING BY EDFT       

      In this section, we apply the concept of the EDFT for image 
enhancement. The application is based on the reasoning given 
in Section IV. In the general definition of the 𝑁-point EDFT 
with the additional angle 𝜙, i.e., when using the basic matrix 
𝐺(𝜑, 𝜙), this additional angle 𝜙 allows for changing the orbits 
of movements of points for the same value of 𝑁.  

 The 2-D EDFT of the image of size 𝑁 × 𝑀 is defined as 
the separable transform, which means that 1-D 𝑀-point EDFTs 
are calculating first over each row of the image and, then, 1-D 
𝑁 -point EDFTs are calculated by columns of the obtained 
matrix/data. In matrix form this transform can be written as 

 
𝑴𝑁,𝑀 𝐺 𝒇 =  𝑃2𝑴𝑁 𝐺 𝑃1 𝒇𝑴𝑀 𝐺 𝑇 .              (15) 

 
Here, 𝑴𝑁 𝐺  and 𝑴𝑀 𝐺  denote the block matrices 𝑴(𝐺) of 
the 𝑁- and 𝑀-point EDFTs, respectively. The matrix 𝑴𝑀 𝐺  is 

of size 2𝑀 × 2𝑀  and the image with its components 𝑓𝑛,𝑚 =
(𝑟𝑛,𝑚 , 𝑖𝑛,𝑚 ) is written as the 𝑁 × 2𝑀 matrix 𝒇. After processing 

by rows, the obtained 𝑁 × 2𝑀 data are written by the operator 
of permutation 𝑃1 in form of 2𝑁 × 𝑀 matrix; each pair in rows 
of obtained elements is written as a column. Then, the 2𝑁 ×
2𝑁 matrix of the 𝑁-point EDFT is applied to each column of 
the permuted matrix. The result is the 2𝑁 × 𝑀 matrix that is 
permuted to the 𝑁 × 2𝑀 matrix by permutation 𝑃2 . Here, each 
two numbers in columns sequentially are recorded as two 
numbers in rows. 
      For the 𝑁 -point EDFT, the angle 𝜑  of the basic matrix 
𝐺(𝜑, 𝜙) is calculated uniquely as 𝜑 = 2𝜋/𝑁 . Therefore, we 
can write briefly 𝐺(𝜑, 𝜙) as 𝐺 𝜙 . In the definition of the 2-D 
EDFT that is given in Eq. 15, it is assumed that the same 
second angle 𝜙 is used for both 𝑁- and 𝑀-point EDFTs.  
      Now, we consider the following method of image 

processing 𝒇 → 𝒇  in the frequency domain:  
 

𝒇 → 𝒈 = 𝑴𝑁,𝑀 𝐺 𝜙1  𝒇 → 𝒇 = 𝑴𝑁,𝑀 𝐺−1(𝜙2) 𝒈,   (16) 

 
where 𝜙1  and 𝜙2  are two given angles. If these angles are 

equal, then the result of processing is 𝒇 = 𝒇. If the angles are 
different, the inverse 2-D EDFT changes the orbits when 
rotating back the data of the first 2-D EDFT of the image 𝒇.  
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When we applying the concept of the EDFT to signals, the 
transform increases much the amplitude of the imaginary part 
and leaves the real part of the rotated point in the same range. 
For the integer-valued input, it is not difficult to analyze the 
rotation of integer points. The integer points (𝑥, 0) are rotated 
by similar ellipses with large values of semi-minor axes. Figure 
4 shows the ellipses around which the points (1,0), (2,0), (3,0), 
(4,0), and (5,0) are rotated, for the 𝜙 = 𝜑 = 2𝜋/128 case.  
 

 
 

Figure 4. The orbits of five points (𝑥, 0), 𝑥 = 1: 5, for the 128-point EDFT.  

 
 
     When the second angle 𝜙 > 𝜑 = 2𝜋/𝑁 = 𝜋/64, the semi-
minor axis as the function 𝑏 = cot(𝜙/2)  decreases, which 
mean that the rotation of the data presenting the direct 2-D 
EDFT will be moved from all orbits to lover orbits and it 
changes values of the transform. Thus, this parameter 𝜙 
controls the sizes of orbits of rotations in the process of 
calculation of the EDFT. As an example, Fig. 5 shows new 
orbits (or ellipses) of the same five points (𝑥, 0), when the 
second angle is changed a little as 𝜙 = 𝜑 + 0.05 , i.e., plus 

about 3°. 
 
 

 
 
 Figure 5. The orbits of five points (𝑥, 0), 𝑥 = 1: 5, for the 128-point EDFT 
with 𝜙 = 𝜑 + 0.05 = 𝜋/64 + 0.05. 

 
 
Now, we consider the special case when 𝐺 = 𝐺 𝜑 ,  i.e., 
𝜙 = 𝜑 = 2𝜋/𝑁, and input data for the elliptical DFT are real. 
When applying the 𝑁 -point EDFT on the real data, the 
transform differs from the traditional DFT in the imaginary 
part; the real parts are the same. Indeed, the Givens rotations by 
the angle 𝑛𝜑 = 2𝜋𝑛/𝑁 are described by matrices  
 

𝑇𝑛𝜑 =  
   cos 𝑛𝜑 sin 𝑛𝜑 

−sin 𝑛𝜑 cos 𝑛𝜑 
 . 

 
Therefore, the real vector (𝑥, 0) is rotated as   
 

𝑇𝑛𝜑  
𝑥
0
 =  

   𝑥 cos 𝑛𝜑 

−𝑥 sin 𝑛𝜑 
 . 

 
It is not difficult to verify, that the same coefficients cos 𝑛𝜑  
lies on the main diagonal of the matrix 
 

𝐺𝑛𝑝 =  
cos 𝜑 − sin 𝜑 tan⁡(𝜙 2 )

sin 𝜑 cot⁡(𝜙 2 ) cos 𝜑 
 
𝑛𝑝

. 

 
For instance, 
 

𝐺2 =  
cos 2𝜑 − sin 2𝜑 tan(𝜙 2 )

sin 2𝜑 cot(𝜙 2 ) cos 2𝜑 
 . 

 
The application of this matrix on the real vector (𝑥, 0) is  
 

𝐺2  
𝑥
0
 =  

   𝑥 cos 2𝜑 

𝑥 sin 2𝜑 cot(𝜙 2 )
 , 

 
and cot 𝜙 2  > 1  for small angles, like 𝜙 = 𝜑 = 2𝜋/𝑁, 
when 𝑁 > 8 . Therefore, the 𝑁 -point EDFT changes the 
component of the DFT (𝑅𝑝 , 𝐼𝑝) at the frequency-point 𝑝 as  

 

 𝑅𝑝 , 𝐼𝑝 →  𝑅𝑝 , −𝐼𝑁−𝑝cot 𝜙 2   ,                     (17) 

 
where 𝑝 = 1: (𝑁 − 1). 
     As an example, we consider the 𝑁 = 36  case with the 
discrete signal 
 
𝑥 𝑡 = 5 + 0.1 cos 2𝜔0𝑡 + 0.2 cos 5𝜔0𝑡 + 4 sin 6𝜔0𝑡  

 
that is sampled in the time-interval  0,2𝜋 . Here, the frequency 
𝜔0 = 0.4. Figure 6 shows the discrete signal 𝑥(𝑛) in part (a) 
and the real part of the 36-point EDFT is part (b). The 
transform is cyclically shifted to the center.   
 
 

 
                         (a)                                                                      (b) 
 

    Figure 6. (a) The real signal and (b) the real part of the 36-point EDFT.  
 
 

The imaginary part of the EDFF of the signal is shown in Fig. 7 
in part (a), together with the imaginary part of the DFT of the 
signal in part (b). The semi-minor axis 𝑏 = 11.4103; the range 
of the imaginary part of the transform in part (a) is 𝑏  times 
larger than the imaginary part of the DFT. 
 
 

 
                            (a)                                                                 (b) 
 

    Figure 7. The imaginary part of (a) the 36-point EDFT and (b) the 36-point 
DFT.  
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Figure 8 shows the magnitude  𝑅𝑝
2 + 𝐼𝑝

2, 𝑝 = −18: 17, of the 

36-point EDFT in part (a) and the magnitude of the 36-point 
DFT of the signal in part (b).  One can note that the EDFT 
enhances the low-frequency components.    
 

 
                            (a)                                                                 (b) 
 

Figure 8. The magnitude (a) of the 36-point EDFT and (b) of the 36-point DFT.  
 

     When applying the 2-D EDFT to real images, the 1-D 
EDFTs with real inputs are used by rows and then, on the 
second stage of calculation, the 1-D EDFTs are used along the 
columns which represent complex inputs. To demonstrate the 
EDFT on the complex signal, we consider the complex signal 
𝑓(𝑛) = 𝑥𝑟(𝑛) + 𝑖𝑥𝑖(𝑛) of length 36, where the real part 𝑥𝑟 𝑛  
is the signal  
 
𝑥𝑟 𝑡 = 5 + 0.1 cos 2𝜔0𝑡 + 0.2 cos 5𝜔0𝑡 + 4 sin 6𝜔0𝑡 , 

 
with the frequency 𝜔0 = 2𝜋/36, and the imaginary part 
𝑥𝑖(𝑛) is calculated from the signal  
 

𝑥𝑖 𝑡 = 1 − 0.5 sin 6𝜔0𝑡 − 4; 
 
both signals are sampled in the same time-interval  0,2𝜋 .  This 
complex signal is shown in Fig. 9. 
 

 
 

Figure 9. Two components of the complex signal of length 36. 
 
 

Figure 10 shows the real and imaginary parts of the 36-point 
EDFT of the complex signal in parts (a) and (b), respectively.  
 

 
                             (a)                                                                 (b) 
 

Figure 10. (a) The real part and (b) the imaginary part of the 36-point EDFT. 
 
 

Figure 11 shows the magnitude of the 36-point EDFT in part 
(a). The magnitude of the 36-point DFT of this signal is shown 
in part (b), for comparison. One can notice that while 

preserving the value at frequency-point 𝑝 = 0, the components 
of the EDFT at frequency-points 𝑝 = −1,1, and 2 have larger 
magnitudes, when comparing with the DFT. The DC 
coefficient, i.e., the component 𝐹0, is the same, 183.97.  
     Now we describe the proposed method of image processing 
in Eq. 16 for 1-D signals:  
 

𝒇 → 𝒈 = 𝑴𝑁 𝐺 𝜙1  𝒇 → 𝒇 = 𝑴𝑁 𝐺−1(𝜙2) 𝒈,       (18) 

 
where 𝜙1 and 𝜙2 are two given angles. Here, 𝒇 stands for the 

input signal 𝑓(𝑛) = 𝑥𝑟(𝑛) + 𝑖𝑥𝑖(𝑛) and 𝒇  for the output signal 

𝑓  𝑛 = 𝑦𝑟 𝑛 + 𝑖𝑦𝑖 𝑛 .  
 

 
                              (a)                                                                 (b) 
 

Figure 11. The magnitude (a) of the 36-point EDFT and (b) of the 36-point 
DFT.  
 
 

    We consider an example of processing a complex signal by 
the model described in Eq. 18. Figure 12 shows the original 

complex signal 𝒇 in part (a) and the processed signal 𝒇  in part 
(b). In this case, the angles 𝜙1 = 𝜑 = 2𝜋/36 and 𝜙2 = 𝜙1 +
0.1. 
 

 
                              (a)                                                                 (b) 
 

Figure 12. The complex signal (a) before and (b) after processing. 
 
 

    Also, we illustrate the 𝜙2 < 𝜙1  case, namely, when the 
angles 𝜙1 = 𝜑 = 2𝜋/36 and 𝜙2 = 𝜙1 − 0.1. Figure 13 shows 

the original signal 𝒇 and processed signal 𝒇  in parts (a) and (b), 
respectively.  
 

 
                                (a)                                                                 (b) 
 

Figure 13. The complex signal (a) before and (b) after processing. 
 

 
One can notice that in both considered cases the values of the 
first and last points of the signals are preserved. For other 
points, we can say the following. In the first case, when 
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𝜙2 > 𝜙1, the amplitude of the real part of the output signal is 
larger and the amplitude of the imaginary part is smaller than 
the input signal has. In the second case when 𝜙2 < 𝜙1 , the 
amplitude of the imaginary part becomes larger and the 
amplitude of the real part of the signal is smaller than the 
original signal has. Thus, the angles 𝜙1  and 𝜙2  of two 1-D 
EDFTs that are used in the described signal processing are 
control parameters that allow to manipulate the real and 
imaginary parts of the transform.   
 

A. Analytical formula for processing images by two different 

2-D EDFTs 

     In the matrix 𝑴 𝐺 = 𝑴 𝐺 𝜙  , each (𝑛, 𝑝)-th block is the 

2 × 2  matrix 𝐺𝑛𝑝 = cos 2𝜋𝑛𝑝/𝑁 𝐼 + sin 2𝜋𝑛𝑝/𝑁 𝑅 𝜙 . 
Therefore, if we denote by 𝑪  the 𝑁 × 𝑁  matrix of cosine 
coefficients {cos 2𝜋𝑛𝑝/𝑁 ; 𝑛, 𝑝 = 0: (𝑁 − 1)}  and by 𝑺  the 
𝑁 × 𝑁  matrix of sine coefficients {sin 2𝜋𝑛𝑝/𝑁 ; 𝑛, 𝑝 =
0:(𝑁−1)}, the 2𝑁×2𝑁 matrix 𝑴(𝐺) can be written as 
 

𝑴 𝐺 = 𝑪⨂𝐼+𝑺⨂𝑅 𝜙 .                              (19) 
 
Here, ⨂ denotes the tensor product of matrices. Thus, the N-
point EDFT can be calculated by fast algorithms of the DFT. 
      It should be noted that the cosine and sine waves 
𝑐𝑝1

 𝑛 = cos 2𝜋𝑛𝑝1/𝑁  and 𝑠𝑝2
 𝑛 = cos 2𝜋𝑛𝑝2/𝑁  are 

orthogonal functions. Here, 𝑝2 ≠ 𝑝1  are integers in the interval 
[0, 𝑁 − 1]. In other words, 
 

 𝑐𝑝1
 𝑛 

𝑁−1

𝑛=0

𝑐𝑝2
 𝑛 =  𝑠𝑝1

 𝑛 

𝑁−1

𝑛=0

𝑠𝑝2
 𝑛 = 0,  

 
when 𝑝2 ≠ 𝑝1 and  
 

 𝑐𝑝1
 𝑛 

𝑁−1

𝑛=0

𝑠𝑝2
 𝑛 = 0.   

 
Therefore, the product of matrices 𝑪  and 𝑺  is zero, i.e., 
𝑪𝑺 = 𝑺𝑪 = 𝟎. The inverse matrix 𝑴(𝐺)−1 can be written as 
 

𝑴(𝐺)−1  =
1

𝑁
 𝑪⨂𝐼 − 𝑺⨂𝑅 𝜙  .                 (20) 

 
Indeed, the following calculations hold: 
  

 𝑪⨂𝐼 + 𝑺⨂𝑅 𝜙   𝑪⨂𝐼 − 𝑺⨂𝑅 𝜙  = 𝑪2⨂𝐼 −
−𝑺2⨂𝑅 𝜙 = 𝑪2⨂𝐼 − 𝑺2⨂𝑅2 𝜙 = 𝑪2⨂𝐼 + 𝑺2⨂𝐼 =
 𝑪2 + 𝑺2 = 𝑰⨂𝐼 = 𝑬. 
 
Here, 𝐼  is the 2 × 2  identity matrix, 𝑰  is the 𝑁 × 𝑁 identity 
matrix, and  𝑬 is the 2𝑁 × 2𝑁 identity matrix. In calculation of 
the inverse 𝑁-point EDFT, the rotation of data is accomplished 
in opposite direction, i.e., all angles of rotations change the 
signs, 𝜑𝑛𝑝 → −𝜑𝑛𝑝 , therefore 𝑪 → 𝑪  and 𝑺 → −𝑺.  Then, Eq. 

(17) leads to Eq. (18) with the normalized factor of 𝑁. 
     In the model of image processing in Eq. (16), the 1-D 
EDFTs with different second angles 𝜙1and 𝜙2 are used for the 
direct and inverse 2-D EDFTs, respectively. The matrices of 
these 1-D EDFTs can be written as 
 

𝑴 𝐺 = 𝑴 𝐺 𝜙1  = 𝑪⨂𝐼+𝑺⨂𝑅 𝜙1 ,          (21) 

𝑴(𝐺)−1 = 𝑴(𝐺 𝜙2 )−1 =
1

𝑁
 𝑪⨂𝐼 − 𝑺⨂𝑅 𝜙2  .     (22) 

 
The same matrices are used in the 1-D version of this model 
described by Eq. (18). Therefore, the processing of the 1-D data 
in this model can be described by the transform with the matrix 
that is calculated as follows: 
 

𝑨 𝜙1, 𝜙2 =
1

𝑁
  𝑪⨂𝐼 − 𝑺⨂𝑅 𝜙2    𝑪⨂𝐼 + 𝑺⨂𝑅 𝜙1       

=
1

𝑁
 𝑪2⨂𝐼 − 𝑺2⨂𝑅 𝜙2 𝑅 𝜙1  .                (23) 

 
Here, we mention that 𝑅 𝜙2 𝑅 𝜙1 ≠ 𝑅 𝜙1 𝑅 𝜙2 .  
 

VI. THE PRELIMINARY EXPERIMENTAL RESULTS 

In this section, a few examples of image enhancement are 
illustrated, by using the model given in Eq. 16. The 
enhancement of grayscale images is estimated by the 
quantitative measure of image enhancement that is known as 
the EME measure. This measure is defined as follows [25]-
[27]. The image 𝑓𝑛,𝑚  of size 𝑁 × 𝑀 is divided by small blocks, 

let say of size 7×7 each. The measure of the image after 

enhancement, 𝑓𝑛,𝑚 → 𝑓 𝑛,𝑚 , is calculated by 

 

𝐸𝑀𝐸 𝑓  =
1

𝑘1𝑘2

  20ln
max
𝑘,𝑙

 𝑓  

min
𝑘,𝑙

 𝑓  

𝑘2

𝑙=1

𝑘1

𝑘=1

.                   24  

 

Here, 𝑘1  and 𝑘2  are the numbers of blocks along two 

dimensions, i.e.,  𝑘1 =  𝑁/7  and 𝑘2 =  𝑀/7  with the floor 

rounding. The operations max𝑘,𝑙(𝑓 )  and min𝑘,𝑙(𝑓 )  are the 

maximum and minimum of the image 𝑓 𝑛,𝑚  inside the (𝑘, 𝑙)th 

block, respectively. 

As an example, Figure 14 shows the grayscale image of 

size 236×236 in part (a) and image enhanced by two 2-D 

EDFTs with parameters 𝜙1 = 𝜑 = 2𝜋/236  and 𝜙2 = 𝜙1 +
0.0066 in part (b). A very small change is done in the angle 

𝜙1.  The enhancement measure of the image is 𝐸𝑀𝐸 𝑓 =

15.56 and 𝐸𝑀𝐸 𝑓  = 20.31, after processing. Thus, the image 

is enhanced by ∆𝐸𝑀𝐸 = 20.31 − 15.56 = 4.75. 
 

 
                                (a)                                                               (b) 

 
Figure 14. The grayscale image (a) before and (b) after enhancement by the 2-D 
EDFTs. 

 
    The image can also be processed by parts, for instance by 
parts of size 8 × 8, 16 × 16, or 32 × 32 each. As an example, 
we consider the “boat” image of size 512 × 512, that is shown 
in Fig. 15 in part (a). The image processed block-wise by two 
2-D EDFTs with angles 𝜙1 = 𝜋/6 and 𝜙2 = 1.75𝜙1 is shown 
in part (b). The block size is 8 × 8, and the image enhancement 
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measure of the original and processed images equals 10.9487 
and  13.9737.   
 

 
                         (a)                                                               (b)                                  
 

Figure 15. (a) The original „boat‟ image and (b) the image enhanced block-
wise by the 2-D EDFTs .  

 
Figure 16 shows the 512 × 512  image in part (a). The 

image processed by blocks of size 32 × 32  and two 2-D 
EDFTs with angles 𝜙1 = 𝜋/6 and 𝜙2 = 1.75𝜙1  is shown in 
part (b). The image enhancement measure of the original equals 
15.63 and for the processed image is 23.79.   

 

 
                           (a)                                                             (b)                
 

Figure 16. The grayscale image (a) before and (b) after enhancement 
block-wise by the 2-D EDFTs. 

 

Figure 17 shows the “Goldhill” image of size 512 × 512 in 

part (a). The image enhancement by two 2-D EDFTs with the 

same angles is shown in parts (b) and (c), when blocks of size 

8 × 8  and 16 × 16 were used, respectively. For the original 

image, the measure EME is 10.14 and, for enhanced images in 

parts (b) and (c), the measure equals 16.69 and 17.36, 

respectively.   

 

 
        (a)                                          (b)                                           (c)                
 

Figure 17. (a) The grayscale image and (b) image enhancement by 8 × 8  
blocks and (c) by 16 × 16  blocks.  

 

A. Color Image Processing 

When processing a color image, for instance in the RGB 

color model, the red, green, and blue components of the image 

𝑓 =  𝑓𝑅 , 𝑓𝐺 , 𝑓𝐵  as grayscale images can be processed 

separately and the EME measure can be calculated for each 

color. However, the color enhancement measure known as 

EMEC can also be used [28,29,31,32]. This measure is similar 

to EME and is calculated by  
 

𝐸𝑀𝐸𝐶 𝑓  =
1

𝑘1𝑘2

  20log10  
max𝑘,𝑙 𝑓 𝑅 , 𝑓 𝐺 , 𝑓 𝐵 

min𝑘,𝑙 𝑓 𝑅 , 𝑓 𝐺 , 𝑓 𝐵 
 

𝑘2

𝑙=1

𝑘1

𝑘=1

.  (25) 

 

 Here, the maximum of the image in the (𝑘, 𝑙)-th block is 

calculated component-wise as max   𝑓 𝑅 𝑛,𝑚
,  𝑓 𝐺 𝑛,𝑚

,  𝑓 𝐵 𝑛,𝑚
 . 

The minimum in the block is calculated similarly. To avoid 

zeros in the denominator in Eq. (25), the constant 1 can be 

added to each color component of the image.  

Figure 18 shows the result of image enhancement, when all 

three color components of the image are processed by the same 

values of parameters 𝜙1 and 𝜙2, that are used for the image in 

Fig. 14. The original color image is shown in Fig. 18 in part (a) 

and the enhanced image in part (b). The enhancement measure 

for the original color image is 𝐸𝑀𝐸𝐶 𝑓 = 32.29 and for the 

enhanced image is 𝐸𝑀𝐸𝐶 𝑓  =37.25. Thus, the color image is 

enhanced by ∆𝐸𝑀𝐸𝐶 = 37.25 − 32.29 = 4.96. 
 

 
                         (a)                                                             (b)                
 

Figure 18. (a) The original color image and (b) the image enhanced 
channel-wise by two 2-D EDFTs with angles 𝜙1 = 2𝜋/236 and 𝜙2 = 𝜙1 +
0.0066.  

  
Figure 16 shows all color components of the image before 

and after enhancement. One can notice that all colors were 
enhanced. 
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                         (a)                                                             (b)                
 

Figure 19. The red, green, and blue components of the color image (a) 
before and (b) after processing. 

 
Figure 17 shows another color image of size 428 × 428 in 

part (a) and its enhancement in part (b). In this image 
enhancement, for direct 2-D EDFT the 1-D EDFT is used with 

the matrix 𝑴 𝐺 𝜋/6  , and for the inverse 2-D EDFT the 1-D 

EDFT is used with matrix 𝑴 𝐺 𝜋/4  . 
 

 
                         (a)                                                             (b)                
 

Figure 17. (a) The original color image and (b) the image enhanced 
channel-wise by the 2-D EDFTs with angles 𝜙1 = 𝜋/6 and 𝜙2 = 𝜋/4.  

 
 
The above examples show that, by only manipulating with 

the second angles 𝜙1 and 𝜙2, grayscale and color images can 
be enhanced in the proposed model. However, a criterion for 
automatic selection of these angles for image enhancement 
with desired outcomes is not clear yet. This problem for color 
images is complex since each color component can be 
processed with different 2-D EDFTs.  

The elliptic DFTs represent a class of transforms that do not 
include the traditional DFT that allows rotating input data only 
around circles. The rotation of data in the elliptic DFTs is 
accomplished around ellipses not circles. We believe that new 
methods with these transforms will be found and effectively 
used in imaging.  
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