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A bound sets technique is developed for Floquet problems of Carathéodory dif-
ferential inclusions. It relies on the construction of either continuous or locally
Lipschitzian Lyapunov-like bounding functions. Proceeding sequentially, the ex-
istence of bounded trajectories is then obtained. Nontrivial examples are sup-
plied to illustrate our approach.

1. Introduction

This paper is mainly devoted to the investigation of bounded solutions of the
differential inclusion

x′ ∈ F(t,x), t ∈R. (1.1)

We will always consider a Carathéodory set-valued map F : R×RN �RN with
nonempty, compact, and convex values. We recall that F is said to be a
Carathéodory multifunction if F(·,x) is measurable for each x ∈ RN , and F(t,·)
is upper semicontinuous for almost all (a.a.) t ∈ R. For the definitions of these
standard notions, see, for example, [30].

Our main result is Theorem 4.2. It states the existence of a bounded solution
for (1.1). The technique employed in its proof is essentially split into two parts.

First, in Section 3 (see Theorem 3.2), given an arbitrary real interval [a,b], we
solve the Floquet boundary value problem

x′ ∈ F(t,x), for a.a. t ∈ [a,b],

x(b)=Mx(a),
(1.2)

where M is a regular N ×N matrix. We obtain its solvability by means of a con-
tinuation principle due to Andres et al. [7, Proposition 3.1] (see also [5, 8]).
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Such an approach requires, in particular, the existence of a bounded retract Q of
the Banach space C([a,b],RN ) satisfying suitable transversality conditions on its
boundary. Thanks to the bound sets technique used in order to guarantee those
conditions, we get a solution of (1.2) belonging to a given bounded subset of
C([a,b],RN ).

Then, in Section 4, we take [a,b]= [−n,n] for each n∈N, and by means of a
classical sequential approach (the diagonalization argument), we get a solution
of (1.1) which is bounded on the whole real line.

If the matrix M is the identity, then (1.2) essentially reduces to the study of
periodic solutions. This problem is well known and has been recently investi-
gated by several authors with different techniques.

We quote, in particular, the results by Macki et al. [37]; they used a topological
degree argument in order to obtain a periodic solution for the Carathéodory sys-
tem x′ +A(t)x ∈ F(t,x), under suitable growth conditions at zero and infinity.

Plaskacz [46] investigated (1.1) in the case of a globally measurable inclusion
F, upper semicontinuous on its state variable x; the technique employed was
again topological, involving the generalized Lefschetz fixed-point theorem.

In Górniewicz and Plaskacz [28], a Carathéodory inclusion is considered and
the existence of a periodic solution follows also by employing a C1-guiding func-
tion.

Castaing and Monteiro Marques [17, 18] obtained absolutely continuous and
BV periodic solutions for single- and multivalued perturbations of the sweeping
process of J. J. Moreau.

The bound sets theory was initiated by Gaines and Mawhin [27] (see also
[41]) with smooth Lyapunov-like functions, called bounding functions, for
studying boundary value problems in the single-valued case. Subsequently, it
was generalized by Zanolin [50] and Taddei [48] to the less regular case. We also
mention the contributions in [3, 5, 20, 21, 24, 25, 33, 35, 36, 40, 47] either for
equations or inclusions, but all with rather regular Lyapunov-like functions, that
is, at least locally Lipschitzian in x.

The authors recently proposed in [10] (see also Remark 2.5) a generalization
of this tool for the investigation of globally upper semicontinuous inclusions by
means of simply continuous bounding functions.

Recently, Mawhin and Ward Jr. [43] applied a bound set approach to study
the periodic boundary value problem for Carathéodory differential equations.
As shown in [43] in the single-valued case, when less regularity is assumed with
respect to the right-hand side (r.h.s.), some additional conditions must be im-
posed on the family of bounding functions in order to have a bound set (cf. also
[5]).

In Section 2 (see Theorems 2.2, 2.8, and 2.11), we generalize this bound sets
theory for the Floquet problem (1.2) when F is a Carathéodory multifunction
and the employed bounding functions are less regular. A subsequent discussion
(see Remark 2.4) is devoted to the case of C1-bounding functions. Moreover,
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comparisons are made with known results in the single-valued case as well as
with related results in the framework of the stability theory (see Remark 2.5).

The existence of bounded solutions of the second-order equation

x′′ + f (t,x)x′ + g(t,x)= 0 (1.3)

was extensively investigated both on the positive half line, that is, for t ∈ [0,+∞[,
as well as on the entire real line. Several recent results were obtained by means
of various methods.

Concerning the investigation on a half line, we refer to the paper of Granas
et al. [29], where they combine a sequential approach with the topological tra-
nsversality theorem for analyzing dynamics in semiconductor theory. We also
mention [38], where the existence of a bounded nontrivial solution with an as-
signed initial point is obtained, for a combustion model, by means of a shooting
method. For interesting related earlier papers, see [22, 23].

Existence results on the whole real line were found in the Landesman-Lazer
case in Ortega and Tineo [45] (see also [1, 26, 42, 44]). We refer, in addition,
to the results in [39], proposed for analyzing the waves equation in a reaction-
diffusion model and derived with a comparison-type technique. For the results
in abstract spaces, see, for example, [2, 32].

For systems of equations, recent existence results of bounded solutions were
obtained by Mawhin [41] with a similar method as in this paper, when combin-
ing a bound sets technique with a convergence result due to Krasnosel’skiı̆ [34];
see also [9, 25, 42].

Note that existence results for bounded solutions of inclusions are rare and
they were mostly obtained by means of the viability theory (see, e.g., [4, 6, 7, 8,
12, 13, 25, 30] and the references therein).

Given a point x ∈RN and a positive constant r throughout the paper, we will
denote by Br

x the closed ball centered in x and having the radius r.

2. Bound sets for the Floquet boundary value problem

Consider the Floquet boundary value problem (1.2), where M is a regular N ×N
matrix.

Let {K(t)}t∈[a,b] be a one-parameter family of nonempty, open, and uni-
formly bounded subsets of RN and denote by � and ∂K , respectively, the sets

�= {(t,x) : t ∈ [a,b], x ∈ K(t)
}
,

∂K = {(t,x) : t ∈ [a,b], x ∈ ∂K(t)
}
.

(2.1)

Definition 2.1. Say that {K(t)}t∈[a,b] is a bound set for the boundary value prob-
lem (1.2) if there is no solution x(t) of (1.2) such that x(t) ∈ K(t) for all t ∈
[a,b], and x(τ)∈ ∂K(τ) for some τ ∈ [a,b].
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In this section, we are interested in finding verifiable conditions assuring that
{K(t)}t∈[a,b] is a bound set for the boundary value problem (1.2). For this aim,
we will introduce a family of the so-called bounding functions {V(τ,ξ)}(τ,ξ)∈∂K ,
satisfying suitable transversality conditions. More precisely, given τ ∈ [a,b] and
ξ ∈ ∂K(τ), as usual, by a bounding function, we mean a continuous function
V(τ,ξ) : [a,b]×RN →R satisfying

V(τ,ξ)(τ,ξ)= 0,

V(τ,ξ)(t,x)≤ 0, ∀(t,x)∈�, in a neighbourhood of (τ,ξ).
(2.2)

We reason by a contradiction, that is, we assume the existence of a solution of
(1.2), having the graph entirely contained in � and touching ∂K at some point
(τ,x(τ)). Denoting by f the composed function V(τ,x(τ))(·,x(·)), we have, ac-
cording to (2.2), that f is nonpositive in a suitable neighbourhood of the point
τ and f (τ) = 0. Assuming various transversality conditions on the bounding
functions, we then get various monotonicity properties on f and this yields, in
all cases, the required contradiction with (2.2).

In particular, when the multifunction F is globally upper semicontinuous,
then a local monotonicity in τ is sufficient (see Remark 2.5 and [10]). On the
contrary, when F is Carathéodory, we need to assure the decreasing monotonic-
ity of f in a left neighbourhood of τ or the increasing monotonicity in a right
one. In conclusion, the theory of bound sets is based on the investigation of lo-
cal, that is, in one point, or global monotonicity properties of real continuous
functions.

Consider, as always in this work, a Carathéodory r.h.s. F. Again, when the
bounding functions V(τ,ξ)(t,x) are more regular, that is, at least locally
Lipschitzian in both variables (t,x), a sign condition on their Dini directional
derivatives, that is, (2.4), guarantees that {K(t)}t∈[a,b] is a bound set. We in-
vestigate this situation in Theorem 2.2. On the contrary, in the case of general
continuous bounding functions, we need to impose the growth restrictions on
F, for example, when assuming condition (2.31). We also need a monotonicity
result on continuous real functions (see [31, Theorem 5.2.3] and see also [49,
Theorem 55.10]) that we reformulate in Lemma 2.7, in our precise framework.
With these two ingredients, we are then able to show suitable general transver-
sality conditions, (2.32) and (2.33), on V(τ,ξ), again assuring that {K(t)}t∈[a,b]

is a bound set for the Floquet boundary value problem. Such a discussion is
contained in Theorem 2.8. Finally, when the growth restriction on F does not
depend on t, in particular, when F satisfies (2.42), then condition (2.33) can be
weakened and the existence of a bound set simply follows by sign conditions on
suitable contingent derivatives of V(τ,ξ), as shown in Theorem 2.11.

As usual in this setting, we introduce the following invariance condition:

M∂K(a)= {Mξ : ξ ∈ ∂K(a)
}= ∂K(b). (2.3)
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Theorem 2.2. Let {K(t)}t∈[a,b] be a family of nonempty, open, and uniformly
bounded subsets of RN , satisfying the invariance condition (2.3). Assume that, for
every (τ,ξ) ∈ ∂K , there is a function V(τ,ξ), locally Lipschitzian in both variables
(t,x) and satisfying (2.2).

Suppose, moreover, that for all τ ∈ ]a,b], t ≤ τ, x ∈ K(t), with (t,x) in a neigh-
bourhood of (τ,ξ),

liminf
h→0−

V(τ,ξ)(t+h,x+hw)−V(τ,ξ)(t,x)
h

< 0, ∀w ∈ F(t,x). (2.4)

Then {K(t)}t∈[a,b] is a bound set for (1.2).

Proof. Let x : [a,b]→ RN be a solution of (1.2) satisfying x(t) ∈ K(t) for every
t ∈ [a,b], and assume by a contradiction the existence of τ ∈ [a,b] such that
x(τ)∈ ∂K(τ).

According to the invariance condition (2.3), x(a)∈ ∂K(a) if and only if x(b)∈
∂K(b). Therefore, there is no loss of generality to assume that τ ∈ ]a,b].

Consider V(τ,x(τ)) and denote it throughout this proof simply by V . By (2.2)
and the absolute continuity both of V and of x, it follows the existence of h < 0
such that

0≤−V(τ +h,x(τ +h)
)=

∫ τ

τ+h

d

dt
V
(
s,x(s)

)
ds. (2.5)

Moreover, since x is a solution of (1.1), for almost every t ∈ [τ + h,τ], there
exist both a function ∆(h), which in fact depends on t, such that ∆(h)→ 0 when
h→ 0, and a vector w ∈ F(t,x(t)) satisfying, for h small enough,

x(t+h)= x(t) +h
[
w+∆(h)

]
. (2.6)

Hence, the local Lipschitzianity of V , combined with (2.4), implies that, for
almost every t ∈ [τ +h,τ],

d

dt
V
(
t,x(t)

)= lim
h→0−

V
(
t+h,x(t) +h

[
w+∆(h)

])−V
(
t,x(t)

)
h

= liminf
h→0−

V
(
t+h,x(t) +h

[
w+∆(h)

])−V
(
t,x(t)

)
h

≤ liminf
h→0−

[
V
(
t+h,x(t) +hw

)−V
(
t,x(t)

)
h

+L(τ,x(τ))
∣∣∆(h)

∣∣]

< 0,
(2.7)

and this leads to a contradiction with (2.5). �
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Remark 2.3. For τ < b, the conclusion of Theorem 2.2 also holds when replacing
assumption (2.4) by

limsup
h→0+

V(τ,ξ)(t+h,x+hw)−V(τ,ξ)(t,x)
h

> 0, ∀w ∈ F(t,x), (2.8)

for all t ≥ τ and x ∈ K(t), with (t,x) in a neighbourhood of (τ,ξ). It is in fact
possible to prove, similarly as in the previous theorem, that (2.8) implies the
increasing monotonicity of V(τ,x(τ))(·,x(·)) in a right neighbourhood of τ.

Remark 2.4. Notice that when V(τ,ξ) is a function from the class C1, then both
(2.4) and (2.8) reduce to

(∇V(τ,ξ)(t,x),(1,w)
) 	= 0, ∀w ∈ F(t,x). (2.9)

In [43, Theorem 2.1], an existence result for the periodic boundary value
problem associated to a Carathéodory differential equation is given by means of
a C1-guiding-like function. They consider an autonomous bound set defined as
the counter image of the negative real line through a unique bounding function
V : RN →R from the class C1 and they ask V to satisfy the following condition:

(∇V(x), f (t,x)
)
< 0, ∀(t,x)∈ [a,b]×V−1([−ε,0]

)
, (2.10)

where ε is a positive constant.
Since we can reformulate (2.9) as (∇V(x),w) 	= 0 for all t ∈ ]a,b], x ∈ K in a

neighbourhood of ∂K , and w ∈ F(t,x), (2.9) becomes trivially a generalization
of (2.10) to the multivalued case and to nonautonomous bound sets defined by
means of a family of bounding functions, instead of a guiding function.

Remark 2.5. In [10], the authors prove the existence of a bound set for the Flo-
quet problem (1.2) when F is globally upper semicontinuous. In Remark 3 of the
quoted paper, a bound set is obtained with assumption (2.4) of Theorem 2.2, re-
placed by

0 /∈
[

liminf
h→0+

V(τ,ξ)
(
τ +h,ξ +hw1

)
h

, limsup
h→0−

V(τ,ξ)
(
τ +h,ξ +hw2

)
h

]
, (2.11)

for all τ ∈ ]a,b[, ξ ∈ ∂K(τ), and w1,w2 ∈ F(τ,ξ), and by

0 /∈
[

liminf
h→0+

V(a,ξ)
(
a+h,ξ +hwa

)
h

, limsup
h→0−

V(b,Mξ)
(
b+h,Mξ +hwb

)
h

]
, (2.12)

for all ξ ∈ ∂K(a), wa ∈ F(a,ξ), and wb ∈ F(b,Mξ).
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In order to make a comparison of the above conditions in [10] with those in
Theorem 2.2, we should point out that, unlike in Theorem 2.2, the above con-
ditions are only assumed to hold in one point. On the other hand, if conditions
(2.4) and (2.8) are localized into one point, then they are implied by their ana-
logues in [10].

Locally Lipschitzian Lyapunov functions were used in [25, Proposition 14.1]
to obtain necessary and sufficient conditions for the strong stability of the zero
solution of a differential inclusion. For this aim, condition (2.4) is globally as-
sumed to guarantee the decreasing monotonicity of the Lyapunov functions
along all the solutions of the inclusion.

The same problem was recently analyzed by Bacciotti et al. [15] for auton-
omous continuous inclusions, possibly Lipschitz continuous. They provide a
characterization of the monotonicity of a Lyapunov function along all the trajec-
tories, both in terms of proximal subdifferential and of contingent derivatives.

Example 2.6. Consider the antiperiodic problem

x′ ∈ F(t,x),

x(b)=−x(a),
(2.13)

where F : [a,b]×RN �RN is a Carathéodory multifunction.
Assume that there exist positive constants ε and Rj , j = 1, . . . ,N , such that,

denoted by

K =ΠN
j=1

]−Rj,Rj
[

(2.14)

and by

∂Kj =
{
ξ ∈ ∂K : ξj =±Rj

}
, (2.15)

one has, for all j = 1, . . . ,N , ξ ∈ ∂Kj , x ∈ K ∩Bεξ , t > a, and w ∈ F(t,x), (signξj ·
wj) 	= 0. Consider for every j = 1, . . . ,N and ξ ∈ ∂Kj , the C1-function defined by
Vξ(x)= signξj · xj −Rj . We have Vξ(ξ)= 0, Vξ(x)≤ 0, for all x ∈ K . Moreover,
∇Vξ(x) ≡ signξj · ej . Hence, for every j = 1, . . . ,N , ξ ∈ ∂Kj , x ∈ K ∩ Bεξ , t > a,
and w ∈ F(t,x),

(∇Vξ(x),w
)= signξj ·wj 	= 0. (2.16)

Therefore, recalling also Remark 2.4, K satisfies all the hypotheses to be a bound
set for (2.13), because (2.3) is equivalent to the symmetry of ∂K with respect to
the origin.

We propose now a general theory on bound sets valid for arbitrary contin-
uous bounding functions. The following theorem, involving Dini derivatives, is
an appropriate version of a known result (see [31, Theorem 5.2.3], see also [49,
Theorem 55.10]) on monotonicity properties for real continuous functions.
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For this purpose, given a continuous function f : [a,b]→R and a point t0 ∈
]a,b[, we denote by

D− f
(
t0
)= liminf

h→0−

f
(
t0 +h

)− f
(
t0
)

h
,

D− f
(
t0
)= limsup

h→0−

f
(
t0 +h

)− f
(
t0
)

h
,

(2.17)

respectively, the lower and upper left Dini derivatives in t0. Similarly, letting
h→ 0+, we obtain the right Dini derivatives D+ f (t0) and D+ f (t0) of f in t0.

Lemma 2.7. Let f : [a,b]→R be a continuous function such that

D− f (t) < 0, for a.a. t, (2.18)

D− f (t) < +∞, ∀t except at most a countable set. (2.19)

Then f is monotone decreasing in [a,b].

Proof. Consider a positive real number ε and take n ∈ N. Then (2.18) implies
the existence of an open subset Zεn of [a,b] such that

{
t ∈ [a,b] : D− f (t)≥ 0

}⊂ Zεn , λ
(
Zεn
)
<
ε
2n

, (2.20)

where λ denotes the Lebesgue measure on [a,b]. The properties of λ yield, for
every t ∈ [a,b],

+∞∑
n=1

λ
(
[t,b]∩Zεn

)≤ +∞∑
n=1

λ
(
Zεn
)
<

+∞∑
n=1

ε
2n
= ε. (2.21)

Therefore, the function

Z : [a,b]−→R,

t −→ f (t) +
+∞∑
n=1

λ
(
[t,b]∩Zεn

) (2.22)

is well defined. Given δ > 0, take n such that

+∞∑
n=n+1

λ
(
Zεn
)≤ δ

2
. (2.23)
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For every t < t′, with t′ − t ≤ δ/2n, by the properties of the Lebesgue measure, it
follows that

0≤
+∞∑
n=1

λ
(
[t,b]∩Zεn

)− +∞∑
n=1

λ
(
[t′,b]∩Zεn

)= +∞∑
n=1

λ
(
[t, t′]∩Zεn

)

=
n∑

n=1

λ
(
[t, t′]∩Zεn

)
+

+∞∑
n=n+1

λ
(
[t, t′]∩Zεn

)≤ n(t′ − t) +
δ

2
≤ δ.

(2.24)

We have so proved that

∣∣∣∣∣
+∞∑
n=1

λ
(
[t,b]∩Zεn

)− +∞∑
n=1

λ
(
[t′,b]∩Zεn

)∣∣∣∣∣≤ δ, whenever |t− t′| ≤ δ

2n
. (2.25)

Consequently, the function t→∑+∞
n=1 λ([t,b]∩Zεn) is uniformly continuous on

[a,b] and, because of the continuity of f , this implies the continuity of Z.
Since, by the definition, t ∈ Zεn , for every t such that D− f (t) ≥ 0, and Zεn is

open, it follows that, for every n∈N, there exists hn < 0 such that [t+hn, t]⊂ Zεn
and hn→ 0− when n→ +∞.

For every n∈N, define ρn =maxi=1,...,n hi and take h∈ [ρn,0[. It follows that

∑+∞
i=1 λ

(
[t+h,b]∩Zεi

)−∑+∞
i=1 λ

(
[t,b]∩Zεi

)
h

=
+∞∑
i=1

λ
(
[t+h,t]∩Zεi

)
h

≤
n∑
i=1

λ
(
[t+h,t]

)
h

=−n.
(2.26)

Therefore, since n is arbitrary, we have that

d

dt

+∞∑
i=1

λ
(
[t,b]∩Zεn

)
(t)=−∞, ∀t ∈ [a,b] : D− f (t)≥ 0. (2.27)

Hence, according to condition (2.19),

D−Z(t)=−∞, ∀t ∈ [a,b] : 0≤D− f (t) < +∞. (2.28)

Moreover, since the function t→∑+∞
n=1 λ([t,b]∩Zεn) is monotone nonincreasing,

recalling (2.19), it follows that D−Z(t) < 0 for all t ∈ [a,b] with the possible ex-
ception of a countable set, implying that {Z(t) : t ∈ [a,b], D−Z(t)≥ 0} is at most
countable.

Now suppose that there exists t1 < t2 satisfying Z(t1) < Z(t2). Since Z is con-
tinuous, the interval [Z(t1),Z(t2)] contains a continuum of points. Hence, it is
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then possible to find r ∈ [Z(t1),Z(t2)] and t ∈ [t1, t2] such that t = min{t ∈
[t1, t2] : Z(t)= r},

D−Z(t) < 0. (2.29)

Again, by the continuity of Z, it follows that Z(t) < r,∀t ∈ [t1, t], that is, D−Z(t)
≥ 0, which is a contradiction with (2.29).

Thus, Z is monotone nonincreasing, which yields, for every t1 < t2 and every
ε > 0,

f
(
t1
)− f

(
t2
)≥ +∞∑

n=1

λ
(
[t2,b]∩Zεn

)− +∞∑
n=1

λ
([
t1,b

]∩Zεn
)

=−
+∞∑
n=1

λ
([
t1, t2

]∩Zεn
)≥− +∞∑

n=1

λ
(
Zεn
)=−ε,

(2.30)

implying that f is monotone nonincreasing.
Finally, if there exists t1 < t2 such that f (t1) = f (t2), then f is constant in

[t1, t2] which contradicts (2.5), and so the proof is complete. �

We are now able to state our main result concerning the existence of bound
sets defined by means of continuous bounding functions.

For this aim, we need to assume certain growth conditions on the multifunc-
tion F, namely, the existence of c ∈ L1([a,b]) such that

∣∣F(t,x)
∣∣≤ c(t), ∀(t,x)∈�. (2.31)

Theorem 2.8. Let {K(t)}t∈[a,b] be a family of nonempty and open subsets of RN ,
uniformly bounded by BR

0 and satisfying the invariance condition (2.3). Assume
that, for every (τ,ξ)∈ ∂K , there is a continuous function V(τ,ξ) satisfying (2.2).

Suppose, moreover, that for all τ > a, t ≤ τ, and x ∈ K(t), with (t,x) in a neigh-
bourhood of (τ,ξ),

limsup
h→0−
v→w

V(τ,ξ)(t+h,x+hv)−V(τ,ξ)(t,x)
h

< 0, ∀w ∈ F(t,x), (2.32)

limsup
h→0−
y→x

|y−x|≤∫ tt+h c(s)ds

V(τ,ξ)(t+h, y)−V(τ,ξ)(t,x)
h

< +∞. (2.33)

Then {K(t)}t∈[a,b] is a bound set for (1.2) provided (2.31) holds.

Proof. Reasoning as in Theorem 2.2, if we suppose that there exists a solution x
of (1.2) whose graph is entirely contained in � and touches its boundary in τ,
we can assume, without any loss of generality, that τ ∈ ]a,b]. Take V(τ,x(τ)) and,
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for the sake of simplicity, denote it by V . From (2.32) and (2.6), we get

limsup
h→0−

V
(
t+h,x(t+h)

)−V
(
t,x(t)

)
h

= limsup
h→0−

V
(
t+h,x(t) +h

(
w+∆(h)

))−V
(
t,x(t)

)
h

≤ limsup
h→0−
v→w

V
(
t+h,x(t) +hv

)−V
(
t,x(t)

)
h

< 0,

(2.34)

for a.a. t ∈ [τ +h,τ] with h < 0 sufficiently small, implying

D−V
(
t,x(t)

)
< 0, for a.e. t ∈ [τ +h,τ]. (2.35)

Moreover, since x is a solution of (1.2) and x(t)∈ K(t), for all t ∈ [τ + h,τ] and
h small enough, it follows that

∣∣x(t+h)− x(t)
∣∣≤

∫ t

t+h

∣∣x′(s)∣∣ds≤
∫ t

t+h
c(s)ds. (2.36)

Thus,

limsup
h→0−

V
(
t+h,x(t+h)

)−V
(
t,x(t)

)
h

≤ limsup
h→0−
y→x

|y−x|≤∫ tt+h c(s)ds

V(t+h, y)−V(t,x)
h

< +∞,
(2.37)

because of (2.33).
We have so proved thatD−V(t,x(t)) < +∞,∀t ∈ [τ +h,τ]. Hence, Lemma 2.7

implies the decreasing monotonicity of t → V(t,x(t)) in a left neighbourhood
of τ which leads to a contradiction with (2.2). Therefore, x(t) ∈ K(t) for all
t ∈ [a,b]. �

Remark 2.9. Taken τ < b, the conclusion of Theorem 2.8 holds true also if we
replace assumptions (2.32) and (2.33) by

liminf
h→0+

v→w

V(τ,ξ)(t+h,x+hv)−V(τ,ξ)(t,x)
h

> 0, ∀w ∈ F(t,x), (2.38)

liminf
h→0+

y→x

|y−x|≤∫ tt+h c(s)ds

V(τ,ξ)(t+h, y)−V(τ,ξ)(t,x)
h

>−∞, (2.39)
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for all t ≥ τ and x ∈ K(t), with (t,x) in a neighbourhood of (τ,ξ). It is in fact
sufficient to make use of the increasing monotonicity of t→V(τ,x(τ))(t,x(t)) in a
right neighbourhood of τ.

Remark 2.10. Observe that if V(τ,ξ) is locally Lipschitzian in both variables (t,x),
it is possible to prove, as in [10, Remark 3], that (2.4) and (2.8) are, respectively,
weaker than (2.32) and (2.38). Moreover, (2.33) and (2.39) are not necessary to
get a bound set, as Theorem 2.2 shows.

In [10, Theorem 3], a bound set is obtained without requiring hypothesis
(2.33) and with assumption (2.32) replaced by the conditions

0 /∈
[

liminf
v→w1
h→0+

V(τ,ξ)(τ +h,ξ +hv)
h

, limsup
v→w2
h→0−

V(τ,ξ)(τ +h,ξ +hv)
h

]
, (2.40)

for all τ ∈ ]a,b[, ξ ∈ ∂K(τ), and w1,w2 ∈ F(τ,ξ), and

0 /∈
[

liminf
v→wa
h→0+

V(a,ξ)(a+h,ξ +hv)
h

, limsup
v→wb
h→0−

V(b,Mξ)(b+h,Mξ +hv)
h

]
, (2.41)

for all ξ ∈ ∂K(a), wa ∈ F(a,ξ), and wb ∈ F(b,Mξ).
Notice that both (2.32) and (2.38) imply the above assumptions. Hence, in

the globally upper semicontinuous case, conditions weaker than those required
in Theorem 2.8 allow us to get the existence of a bound set.

If the growth conditions imposed on F do not depend on t; precisely, and if
there exists a real constant c such that

∣∣F(t,x)
∣∣≤ c, ∀(t,x)∈ [a,b]×�, (2.42)

then (2.33) can be weakened as shown by the following result.

Theorem 2.11. Let {K(t)}t∈[a,b] be a family of nonempty and open subsets of RN ,
uniformly bounded by BR

0 and satisfying the invariance condition (2.3). Assume
that, for every (τ,ξ)∈ ∂K , there is a continuous function V(τ,ξ) satisfying (2.2).

Suppose, moreover, that for all τ > a, t ≤ τ, and x ∈ K(t), with (t,x) in a neigh-
bourhood of (τ,ξ), (2.32) holds jointly with

limsup
h→0−
v→w

V(τ,ξ)(t+h,x+hv)−V(τ,ξ)(t,x)
h

< +∞, ∀w ∈ Bc
0. (2.43)

Then {K(t)}t∈[a,b] is a bound set for (1.2).
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Proof. Reasoning as in the proof of Theorem 2.8, if x is a solution of (1.2) whose
graph entirely lays in � and touches its boundary in τ ∈ ]a,b], we get a suffi-
ciently small negative h such that

D−V(τ,x(τ))
(
t,x(t)

)
< 0, for a.a. t ∈ [τ +h,τ]. (2.44)

Moreover, according to the growth condition (2.42), it holds that |x′(t)| ≤ c,
implying that x is a Lipschitzian function with the Lipschitz constant c.

Take t ∈ [τ + h,τ], {hn}n∈N ⊂ [τ − t + h,0[ with hn → 0−, and consider the
sequence

{
x
(
t+hn

)− x(t)
hn

}
n∈N

. (2.45)

Since every bounded sequence has a convergent subsequence, again denoted
as the sequence, there exist {∆n}n∈N, with ∆n → 0 as n→ +∞, and w ∈ Bc

0 such
that

x
(
t+hn

)= x(t) +hn
[
w+∆n

]
, ∀n∈N. (2.46)

Therefore, (2.43) yields

limsup
n→+∞

V(τ,x(τ))
(
t+hn,x

(
t+hn

))−V(τ,x(τ))
(
t,x(t)

)
hn

≤ limsup
h→0−
v→w

V(τ,x(τ))
(
t+h,x(t) +hv

)−V(τ,x(τ))
(
t,x(t)

)
h

< +∞,
(2.47)

that is,

D−V(τ,x(τ))
(
t,x(t)

)
< +∞, ∀t ∈ [τ +h,τ]. (2.48)

Hence, Lemma 2.7 implies the decreasing monotonicity of t → V(τ,x(τ))(t,x(t))
in [τ +h,τ] which leads to a contradiction with (2.2). Therefore, x(t)∈ K(t) for
all t ∈ [a,b]. �

Remark 2.12. Observe that condition (2.33) is, under hypothesis (2.42), equiva-
lent to

limsup
(h,v)→(0−,x)
|y−x|≤hc

V(τ,ξ)(t+h, y)−V(τ,ξ)(t,x)
h

< +∞. (2.49)
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Therefore, since, for every w ∈ Bc
0,

limsup
h→0−
v→w

V(τ,ξ)(t+h,x+hv)−V(τ,ξ)(t,x)
h

≤ limsup
h→0−
y→x

|y−x|≤hc

V(τ,ξ)(t+h, y)−V(τ,ξ)(t,x)
h

,
(2.50)

the previous theorem shows that if we assume a stronger condition on the growth
behaviour of the multifunction, it is possible to get the existence of a bound set
by means of weaker assumptions on the bounding functions.

Remark 2.13. Notice that the conclusion of Theorem 2.11 also holds if we replace
(2.32) and (2.43) by (2.38) and

liminf
h→0+

v→w

V(τ,ξ)(t+h,x+hv)−V(τ,ξ)(t,x)
h

>−∞, ∀w ∈ Bc
0. (2.51)

Moreover, if V(τ,ξ) is locally Lipschitzian in (t,x), with the Lipschitz constant
L, for w ∈ Bc

0 and v ∈ B1
w, then one has that

∣∣∣∣V(τ,ξ)(t+h,x+hv)−V(τ,ξ)(t,x)
h

∣∣∣∣≤ L
∣∣(1,v)

∣∣≤ L
(
1 + |v|)≤ L(2 + c). (2.52)

Hence, all the contingent derivatives are finite and, in particular, condition (2.43)
trivially holds.

Nevertheless, in the locally Lipschitzian case, the conditions of Theorem 2.2
are weaker than those required in the previous theorem (see Remark 2.10).

If V(τ,ξ) is only locally Lipschitzian in x, uniformly with respect to t, then
(2.43) or (2.51) reduces to

limsup
h→0−

V(τ,ξ)(t+h,x)−V(τ,ξ)(t,x)
h

< +∞ (2.53)

or

liminf
h→0+

V(τ,ξ)(t+h,x)−V(τ,ξ)(t,x)
h

>−∞. (2.54)

Thus, (2.43) or (2.51) is implied by (2.32) or (2.38), respectively.

3. Solutions of the Floquet boundary value problem

Now, we consider the Floquet boundary value problem

x′ +A(t)x ∈ F(t,x), for a.a. t ∈ [a,b],

x(b)=Mx(a),
(3.1)
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where F : [a,b]×RN � RN is a Carathéodory multifunction with nonempty,
compact, and convex values, A : [a,b]→RN ×RN is a continuous N ×N matrix,
and M is a regular N ×N matrix.

In this section, we combine the bound sets approach, developed in the previ-
ous one, with the following appropriate modification of a continuation principle
by Andres et al. (see [7, Theorem 2.33]) in order to solve (3.1).

Proposition 3.1 (see [5, Theorem 1]). Consider the boundary value problem

x′ ∈ F(t,x), for a.a. t ∈ [a,b],

x ∈ S,
(3.2)

where F : [a,b]×RN �RN is a Carathéodory multifunction with nonempty, com-
pact, and convex values and S⊂ AC([a,b],RN ).

LetG : [a,b]×RN ×RN × [0,1]�RN be a Carathéodory map, with nonempty,
compact, and convex values such that

G(t, p, p,1)⊂ F(t, p), ∀(t, p)∈ [a,b]×R
N . (3.3)

Assume that

(1) there exist a bounded retract Q of C([a,b],RN ) such that Q\∂Q is nonempty
and a closed bounded subset S1 of S such that the associated problem

x′ ∈G
(
t,x,q(t),λ

)
, for a.a. t ∈ [a,b],

x ∈ S1,
(3.4)

is solvable with Rδ-sets (for the definition, see, e.g., [30]) of solutions, for
each (q,λ)∈Q× [0,1];

(2) there exists an integrable function c : [a,b]→R such that

∣∣G(t,x(t),q(t),λ
)∣∣≤ c(t), a.e. in [a,b], (3.5)

for any (q,λ,x)∈ ΓT , where T denotes the map which assigns to any (q,λ)∈
Q× [0,1] the set of solutions of (3.4) and ΓT its graph;

(3) T(Q×{0})⊂Q;
(4) the map T has no fixed points on the boundary ∂Q of Q, for every (q,λ) ∈

Q× [0,1].

Then (3.2) admits a solution.

As usual in this setting, we will proceed by the following way to construct the
set Q,

Q = {q ∈ C
(
[a,b],RN

)
: q(t)∈ K(t), ∀t ∈ [a,b]

}
. (3.6)
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We recall [10, Proposition 2] for sufficient conditions in order that Q is a retract
of C([a,b],RN ).

We are now able to state a result about the solvability of (3.1).

Theorem 3.2. Consider the Floquet boundary value problem (3.1).
Assume that

(1) the associated homogeneous problem

x′ +A(t)x = 0, for a.a. t ∈ [a,b],

x(b)=Mx(a)
(3.7)

has only the trivial solution;
(2) there exists a Carathéodory multifunction G : [a,b]×RN ×RN × [0,1]�

RN with nonempty, compact, and convex values such that

G(t, p, p,1)⊂ F(t, p), ∀(t, p)∈ [a,b]×R
N ; (3.8)

(3) there exists a family {K(t)}t∈[a,b] of nonempty and open subsets of RN , uni-
formly bounded by BR

0 , such that � is a retract of [a,b]×RN with a retrac-
tion φ : [a,b]×RN →� which is the identity on its first component, that is,
φ(t,x)= (t, φ̃(t,x)) and ∂K is closed;

(4) G(t,·,q,λ) is Lipschitzian with a sufficiently small Lipschitz constant, for
each (t,λ)∈ [a,b]× [0,1] and q ∈ K(t);

(5) there exists an integrable function c : [a,b]→R such that
∣∣G(t,x(t),q(t),λ

)∣∣≤ c(t), a.e. in [a,b], (3.9)

for any (q,λ,x)∈ΓT , whereQ = {q ∈ C([a,b],RN ) : q(t)∈ K(t), for all t ∈
[a,b]}, T denotes the map which assigns to any (q,λ)∈Q× [0,1] the set of
solutions of

x′ +A(t)x ∈G
(
t,x,q(t),λ

)
, for a.a. t ∈ [a,b],

x(b)=Mx(a),
(3.10)

and ΓT its graph;
(6) T(Q×{0})⊂Q and ∂Q is fixed point free, that is, {q ∈Q : q ∈ T(q,0)}∩

∂Q =∅;
(7) for every (τ,ξ)∈ ∂K , there exists a function V(τ,ξ) : [a,b]×RN →R, locally

Lipschitzian in (t,x) and satisfying (2.2);
(8) for every τ ∈ ]a,b], ξ ∈ ∂K(τ), t ≤ τ, x ∈ K(t), with (t,x) in a neighbour-

hood of (τ,ξ),(q,λ)∈Q× ]0,1], one has

liminf
h→0−

V(τ,ξ)(t+h,x+hw)
h

< 0, ∀w ∈G
(
t,x,q(t),λ

)−A(t)x; (3.11)

(9) M∂K(a)= {Mξ : ξ ∈ ∂K(a)} = ∂K(b).

Then (3.1) admits a solution.
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Proof. Define Q as in (5). Hence, Q is a closed, bounded subset of C([a,b],RN ).
From assumption (3) and [10, Proposition 2], we get that Q is a bounded retract
of C([a,b],RN ). In addition, since ∂K is closed, we can reason as in the proof
of [10, Theorem 4] and obtain that q ∈ ∂Q if and only if q(t)∈ ∂K(t), for some
t ∈ [a,b]. Thus, Q\∂Q is nonempty.

According to conditions (1), (2), and (4), we are able to apply [14, Theorem
4] to problem (3.10), with q ∈Q and λ∈ [0,1], in order to assure its solvability
with an Rδ-set of solutions. In particular, each solution set lies in some ball B

ρ
0 .

Moreover, it follows from the proof of [14, Theorem 4] that B
ρ
0 can be taken the

same for all q ∈Q. Therefore, defining

S1 = B
ρ
0 ∩

{
x ∈ AC

(
[a,b],RN

)
: x(b)=Mx(a)

}
, (3.12)

we obtain that S1 is bounded.
Thanks to Theorem 2.2, assumptions (7), (8), and (9) guarantee that

{K(t)}t∈[a,b] is a bound set for each problem (3.10) with q ∈ Q and λ ∈]0,1].
Hence, any solution x ∈ Q of (3.10) satisfies x(t) ∈ K(t), for all t ∈ [a,b], so
x /∈ ∂Q. Therefore, T is fixed-point free on ∂Q, for all λ 	= 0. By assumption (6),
T is also fixed-point free on ∂Q, for λ= 0.

In conclusion, all the requirements of Proposition 3.1 are satisfied and (3.1)
has a solution x such that x(t)∈ K(t), for each t ∈ [a,b]. �

Remark 3.3. Since all the sets K(t) are uniformly bounded, in the previous the-
orem, we can replace assumption (5) with the following one:

∣∣G(t,x(t),q(t),λ
)∣∣≤ d(t)

(
1 + |x(t)|), (3.13)

for all t ∈ [a,b], (q,λ,x)∈ ΓT , and with d : [a,b]→R integrable.
Similar versions of Theorem 3.2 hold when we consider continuous bound-

ing functions. In this case, condition (3.11) should be replaced by (2.32) and
(2.33) or by (2.32) and (2.43) and the existence of a bound set is derived, respec-
tively, from Theorems 2.8 and 2.11. Notice, in particular, that when using (2.32)
and (2.43), we need to replace assumption (5) by

∣∣G(t,x(t),q(t),λ
)| ≤ c, (3.14)

for all t ∈ [a,b] and (q,λ,x) ∈ ΓT , where c is a positive constant. Alternatively,
we can take condition (3.13) but with d(t)≡ d, that is constant.

4. Bounded solutions

In this section, we combine Theorem 3.2 with a classical sequential approach in
order to obtain the existence of a solution for inclusion (1.1) which is bounded
on all the real line. Throughout this section, we will assume the multifunction F
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to satisfy the growth assumption

∣∣F(t,x)
∣∣≤ c(t), ∀(t,x)∈R×BR

0 , (4.1)

where c ∈ L1
loc(R).

For this aim, we extend to multifunctions the known convergence result for
sequences of uniformly bounded solutions of differential equations due to Kras-
nosel’skiı̆ [34]. For the sake of completeness, we also provide its proof which is
based on the combination of classical techniques (see, e.g., [13, 19]).

Lemma 4.1. Let F : R×RN � RN be a Carathéodory set-valued map with non-
empty, compact, and convex values satisfying (4.1) and let {xn}n be a sequence of
absolutely continuous functions such that

(1) for every n∈N, xn is a solution of (1.1) defined in [−n,n];
(2) sup{|xn(t)| : n∈N, t ∈ [−n,n]} = R < +∞.

Then (1.1) has a bounded solution on R whose values are contained in BR
0 .

Proof. For every n∈N, denote by x̃n a suitable continuous extension of xn to R

which is constant outside [−n,n]. Inequality (4.1) and (1), (2) imply that

∣∣x̃′n(t)
∣∣≤ c(t), (4.2)

for all n∈N and t ∈R.
Hence, since c ∈ L1

loc(R), {x̃′n}n is bounded in L1
loc(R). Thus, the Banach-

Alaoglu-Bourbaki’s theorem (see, e.g., [13, 30]) yields the existence of a sub-
sequence, again denoted as the sequence, which locally weakly converges into
L1

loc(R).
Moreover, since c ∈ L1

loc(R), and each x̃n is locally absolutely continuous, for
every ε > 0, there exists δ > 0 such that, for all t and t′ with |t− t′| ≤ δ,

∣∣x̃n(t′)− x̃n(t)
∣∣=

∣∣∣∣
∫ t′

t
x̃′n(s)ds

∣∣∣∣≤
∫ t′

t
c(s)ds≤ ε. (4.3)

It follows that {x̃n}n is locally equicontinuous in C(R).
Then, because of (2), by the Ascoli-Arzelà lemma, we get the existence of a

locally absolutely continuous function x : R→ BR
0 such that {x̃n}n has a subse-

quence, again denoted as the sequence, which uniformly converges to x on the
compact subsets of R.

Therefore, since, for every t ∈R,

x̃n(t)− x̃n(0)=
∫ t

0
x̃′n(s)ds−→

∫ t

0
w(s)ds,

x̃n(t)− x̃n(0)−→ x(t)− x(0)=
∫ t

0
x′(s)ds,

(4.4)

it follows that x′ =w a.e. in R, that is, {x̃′n}n→ x′, locally weakly in L1
loc(R).
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By Mazur’s convexity theorem (see, e.g., [30]), for each n ∈ N, there exists
a convex combination zn of {x̃′m}m≥n such that {zn}n → x′ locally in L1

loc(R).
Hence, passing to a subsequence, again denoted as the sequence, {zn}n → x′,
locally a.e. in R.

Recalling (1), consider now M ⊂R, with λ(M)= 0, such that {zn(t)}n→ x′(t)
locally, and x̃′n(t)∈ F(t, x̃n(t)), for every t /∈M and n≥ |t|.

Fix t /∈M. Given ε > 0, since F is a Carathéodory map, it is then possible to
find δ > 0 satisfying F(t, y)⊂ F(t,x(t)) +Bε0 , for all y ∈ Bδ

x(t).
Take now n≥ |t| such that, for every n≥ n, |x̃n(t)− x(t)| ≤ δ, which is locally

possible, because x̃n(t)→ x(t).
Notice that, for all n ≥ n, x̃n(t) = xn(t) and this yields x̃′n(t) ∈ F(t, x̃n(t)) ⊂

F(t,x(t)) +Bε0 . Consequently,

⋃
m≥n

x̃′m(t)∈ F
(
t,x(t)

)
+Bε0 . (4.5)

Since F is convex-valued, it implies that, for n≥ n,

conv

( ⋃
m≥n

x̃′m(t)

)
⊂ F

(
t,x(t)

)
+Bε0 , (4.6)

and so, F, being also compact-valued,

⋂
n∈N

conv

( ⋃
m≥n

x̃′m(t)

)
⊂ F

(
t,x(t)

)
+Bε0 . (4.7)

Thus, for the arbitrariness of ε,

⋂
n∈N

conv

( ⋃
m≥n

x̃′m(t)

)
⊂ F

(
t,x(t)

)
. (4.8)

Finally, since locally {zn(t)}n→x′(t) and, by definition, zm(t)∈conv(∪p≥nx̃′p(t)),
for every m≥ n, we obtain that, for every n∈N,

x′(t)∈ conv

( ⋃
m≥n

x̃′m(t)

)
. (4.9)

Therefore,

x′(t)∈
⋂
n∈N

conv

( ⋃
m≥n

x̃′m(t)

)
⊂ F

(
t,x(t)

)
, (4.10)

for every t /∈M, and the result is proven. �

Now, we give sufficient conditions for the existence of a bounded solution of
(1.1).
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Theorem 4.2. Consider inclusion (1.1). Assume that

(1) there exists a bounded, nonempty, and open set K ⊂RN such that K is sym-
metric with respect to the origin and K is a retract of RN ; for every ξ ∈ ∂K ,
there exists a locally Lipschitzian function Vξ : RN →R satisfying

Vξ(ξ)= 0,

Vξ(x)≤ 0, ∀x ∈ K in a neighbourhood of ξ;
(4.11)

(2) there exists a Carathéodory multifunction G : R×RN ×RN × [0,1]� RN

with nonempty, compact, and convex values such that

G(t, p, p,1)⊂ F(t, p), ∀(t, p)∈R×R
N ; (4.12)

(3) for every t ∈ R, q ∈ K , and λ ∈ [0,1], G(t,·,q,λ) is Lipschitzian with a
sufficiently small Lipschitz constant;

(4) there exists a locally integrable function c : R→R satisfying

∣∣G(t,x, y,λ)
∣∣≤ c(t)

(
1 + |x|), ∀(t,x, y,λ)∈R×R

N ×K × [0,1], (4.13)

where c ∈ L1
loc(R);

(5) for every n∈N,Tn(Q×{0})⊂Q, whereQ={q ∈ C(R,RN ) : q(t)∈ K, for
all t}, Tn denotes the map which assigns to all (q,λ) ∈ Q× [0,1] the set of
solutions of

x′ ∈G
(
t,x,q(t),λ

)
, for a.a. t ∈ [−n,n],

x(−n)=−x(n),
(4.14)

and ∂Q is fixed point free, that is, {q ∈Q : q ∈ Tn(q,0)}∩ ∂Q=∅;
(6) for every t ∈ R, ξ ∈ ∂K , x ∈ K in a neighbourhood of ξ, and (q,λ) ∈ Q×

]0,1], one has

liminf
h→0−

Vξ(x+hw)−Vξ(x)
h

< 0, ∀w ∈G
(
t,x,q(t),λ

)
. (4.15)

Then (1.1) admits a bounded solution.

Proof. Given n ∈ N, consider the following antiperiodic boundary value prob-
lem on [−n,n]:

x′ ∈ F(t,x), for a.a. t ∈ [−n,n],

x(−n)=−x(n),
(4.16)

that is, problem (3.1) with M = −I and A ≡ 0, whose associated homogeneous
problem has only the trivial solution.

Since �= [−n,n]×K is a retract of [−n,n]×RN by condition (1), and ∂K =
[−n,n]× ∂K is closed, then K is an autonomous bound set for (4.16), for each



Jan Andres et al. 567

n ∈ N, because (2.3) is equivalent to the symmetry of ∂K with respect to the
origin.

Therefore, Theorem 3.2, whose condition (5) follows immediately from the
present assumption (4) by means of the arguments in the proof of [14, Theo-
rem 4], implies the existence of a solution of (4.16), that is, in particular, of an
absolutely continuous function xn : [−n,n]→R, satisfying (1.1).

Moreover, xn(t)∈ K , for each n∈N and t ∈ [−n,n], and the conclusion fol-
lows by Lemma 4.1, because K is bounded. �

Remark 4.3. In line with Remark 3.3, we leave to the reader the formulation of
an existence result of bounded solutions of (1.1) using continuous bounding
functions.

Remark 4.4. Similar results can be obtained sequentially when replacing the an-
tiperiodic boundary value problems by a one-parameter family of different Flo-
quet problems.

Remark 4.5. In the globally upper semicontinuous case, condition (6) can be
replaced by those recalled in Remark 2.5 which are only localized in one point.

Example 4.6. Consider the differential inclusion

x′ ∈ F1(t,x) +F2(t,x), (4.17)

where F1,F2 : R×RN � RN are Carathéodory multifunctions with nonempty,
convex, and compact values such that there exist c1, c2 ∈ L1

loc(R), satisfying

∣∣F1(t,0)
∣∣≤ c1(t), ∀t ∈R,∣∣F2(t,x)
∣∣≤ c2(t), ∀(t,x)∈R×K

(4.18)

(K is defined below) and F1(t,·) is Lipschitzian, with a sufficiently small Lips-
chitz constant L, for all t∈R (⇒|F1(t,x)|N+1≤ L|x|+ |F1(t,0)| ≤ L|x|+ c1(t)≤
(L+ c1(t))(1 + |x|)∀(t,x)∈R).

Assume, furthermore, the existence of positive constants ε and Rj , j = 1, . . . ,
N , such that

K =ΠN
j=1

]−Rj,Rj
[
, ∂Kj =

{
ξ ∈ ∂K : ξj =±Rj

}
,

Q = {q ∈ C(R) : q(t)∈ K ∀t ∈R
}
,

(4.19)

and take, for all j=1, . . . ,N , ξ ∈ ∂Kj , x ∈ K ∩Bεξ , t ∈R, q ∈Q, andw ∈ F1(t,x) +
F2(t,q(t)), satisfying (signξj · wj) 	= 0. Consider the family of multifunctions
defined as G(t,x,q,λ) = λ(F1(t,x) + F2(t,q)), which, recalling the growth con-
ditions imposed on F1 , F2, and the boundedness of K , satisfies assumptions (2),
(3), and (4) of Theorem 4.2, with c(t)= L+ c1(t) + c2(t). Moreover, assumption
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(5) is trivially satisfied because the only solution of

x′ = 0,

x(−n)=−x(n)
(4.20)

is x ≡ 0∈ intQ.
Finally, recalling Example 2.6, K is a bound set for each problem

x′ ∈G
(
t,x,q(t),λ

)
, for a.a. t ∈ [−n,n],

x(−n)=−x(n),
(4.21)

with λ ∈ ]0,1], and we get the existence of a bounded solution for (4.17) by
Theorem 4.2.

5. Concluding remarks

The existence of bounded solutions of a rather general class of differential inclu-
sions was investigated in Euclidean spaces.

The crucial step in our investigation consists in solving a one-parameter fam-
ily of Floquet problems by means of a bound sets technique.

We took into account both locally Lipschitzian as well as continuous bound-
ing functions. We also considered separately the cases of globally upper semi-
continuous as well as Carathéodory right-hand sides.

On each level of regularity, the required conditions occurred to be specific.
Hence, jointly with the previous paper [10] by the same authors, we have devel-
oped a rather complete theory of bound sets for inclusions.

In [6], we have recently made an extension of Proposition 3.1 in Banach
spaces. On the other hand, it is known (see, e.g., [11, pages 120–125] and [16])
that typical bounding functions can be constructed neither in general Banach
nor in Hilbert spaces, but only in L2-spaces. So, a natural question arises about
a generalization of our results into L2-spaces. We will treat this elsewhere.

Another interesting class of problems might be related to retarded functional
differential inclusions. The nontrivial examples of application of our methods to
concrete differential equations and inclusions deserve our future interest as well.
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