Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB

Thomas Sonnweber,1 David Nachbaur,2 Andrea Schroll,1 Manfred Naier,1 Markus Seifert,1 Egon Demetz,1 David Haschka,1 Anna-Maria Mitterstöller,1 Axel Kleinsasser,3 Martin Burtscher,4 Susanne Trübsbach,3 Anthony T Murphy,5 Victor Wroblewski,2 Derrick R Witcher,3 Katarzyna Mięczko-Sanecka,6 Chiara Vecchi,7 Martina U Muckenthaler,6 Antonello Pietrangelo,6 Igor Theurl,1 Günter Weiss3

ABSTRACT
Objective Hypoxia affects body iron homeostasis; however, the underlying mechanisms are incompletely understood.

Design Using a standardised hypoxia chamber, 23 healthy volunteers were subjected to hypoxia conditions, equivalent to an altitude of 3600 m, for 6 h. Subsequent experiments were performed in C57BL/6 mice, CREB-H knockout mice, primary hepatocytes and HepG2 cells.

Results Exposure of subjects to hypoxia resulted in a significant decrease of serum levels of the master regulator of iron homeostasis hepcidin and elevated concentrations of platelet derived growth factor (PDGF)-BB. Using correlation analysis, we identified PDGF-BB to be associated with hypoxia mediated hepcidin repression in humans. We then exposed mice to hypoxia using a standardised chamber and observed downregulation of hepatic hepcidin mRNA expression that was paralleled by elevated serum PDGF-BB protein concentrations and higher serum iron levels as compared with mice housed under normoxic conditions. PDGF-BB treatment in vitro and in vivo resulted in suppression of both steady state and BMP6 inducible hepcidin expression. Mechanically, PDGF-BB inhibits hepcidin transcription by downregulating the protein expression of the transcription factors CREB and CREB-H, and pharmacological blockade or genetic ablation of these pathways abrogated the effects of PDGF-BB toward hepcidin expression.

Conclusions Hypoxia decreases hepatic hepcidin expression by a novel regulatory pathway exerted via PDGF-BB, leading to increased availability of circulating iron that can be used for erythropoiesis.

INTRODUCTION
Hypoxic stress commonly occurs as a consequence of environmental or pathological disturbances resulting in reduced oxygen tension in the blood or in tissues.4 As compensation, the body tries to expand the oxygen transport capacities as reflected by a rapid increase in circulating erythropoietin (EPO) levels and stimulation of erythropoiesis during hypoxic stress.2,4 A prerequisite for efficient erythropoiesis is a sufficient supply of iron that is needed for the synthesis of haemoglobin.2,4 The higher iron needs for erythropoiesis during hypoxic stress are met by mobilisation of the metal from bone iron stores and increased duodenal iron absorption.5,6 It has been suggested that such adaptations of body iron homeostasis require regulation of the master regulator of iron homeostasis, hepcidin, a mainly liver derived 25-amino acid peptide.7-9

Hepcidin controls iron metabolism by binding to the only known cellular iron exporter ferroportin (also known as SLC40A1 or Ireg1), thereby inducing its internalisation and degradation. Accordingly, high circulating hepcidin levels—as they are seen in transfusional iron overload or inflammation—block duodenal iron absorption and iron egress from macrophages/morocytes,9,10