
Faculty of Computer Science Institute of Systems Architecture, Chair of Systems Engineering

Hardening High-Assurance Security
Systems with Trusted Computing
Wojciech Ozga

Dissertation
to achieve the academic degree
Doktoringenieur (Dr.-Ing.)

Advisor
Dr.-Ing. Silvio Dragone
Supervisor
Prof. Dr. Christof Fetzer

Submitted on: 01.11.2021Defended on: 29.06.2022

For my parents

Abstract
We are living in the time of the digital revolution in which the world we know changes beyondrecognition every decade. The positive aspect is that these changes also drive the progressin quality and availability of digital assets crucial for our societies. To name a few examples,these are broadly available communication channels allowing quick exchange of knowledgeover long distances, systems controlling automatic share and distribution of renewable en-ergy in international power grid networks, easily accessible applications for early diseasedetection enabling self-examination without burdening the health service, or governmentalsystems assisting citizens to settle official matters without leaving their homes. Unfortu-nately, however, digitalization also opens opportunities for malicious actors to threaten oursocieties if they gain control over these assets after successfully exploiting vulnerabilities inthe complex computing systems building them. Protecting these systems, which are called
high-assurance security systems, is therefore of utmost importance.For decades, humanity has struggled to find methods to protect high-assurance securitysystems. The advancements in the computing systems security domain led to the popular-ization of hardware-assisted security techniques, nowadays available in commodity comput-ers, that opened perspectives for building more sophisticated defense mechanisms at lowercosts. However, none of these techniques is a silver bullet. Each one targets particular usecases, suffers from limitations, and is vulnerable to specific attacks. I argue that someof thesetechniques are synergistic and help overcome limitations and mitigate specific attacks whenused together. My reasoning is supported by regulations that legally bind high-assurancesecurity systems’ owners to provide strong security guarantees. These requirements can befulfilled with the help of diverse technologies that have been standardized in the last years.In this thesis, I introduce new techniques for hardening high-assurance security systemsthat execute in remote execution environments, such as public and hybrid clouds. I im-plemented these techniques as part of a framework that provides technical assurance thathigh-assurance security systems execute in a specific data center, on top of a trustworthyoperating system, in a virtual machine controlled by a trustworthy hypervisor or in strongisolation from other software. I demonstrated the practicality of my approach by leveragingthe framework to harden real-world applications, such as machine learning applications inthe eHealth domain. The evaluation shows that the framework is practical. It induces lowperformance overhead (<6%), supports software updates, requires no changes to the legacyapplication’s source code, and can be tailored to individual trust boundaries with the help ofsecurity policies.

I

The framework consists of a decentralized monitoring system that offers better scalabilitythan traditional centralized monitoring systems. Each monitored machine runs a piece ofcode that verifies that the machine’s integrity and geolocation conform to the given secu-rity policy. This piece of code, which serves as a trusted anchor on that machine, executesinside the trusted execution environment, i.e., Intel software guard extensions (SGX) [45],to protect itself from the untrusted host, and uses trusted computing techniques, such astrusted platform module (TPM) [90], secure boot, and integrity measurement architecture(IMA) [225, 89], to attest to the load-time and runtime integrity of the surrounding operatingsystem running on a bare metal machine or inside a virtual machine. The trusted anchorimplements my novel, formally proven protocol, enabling detection of the TPM cuckoo at-tack [205].The framework also implements a key distribution protocol that, depending on the indi-vidual security requirements, shares cryptographic keys only with high-assurance securitysystems executing in the predefined security settings, i.e., inside the trusted execution envi-ronments or inside the integrity-enforced operating system. Such an approach is particularlyappealing in the context of machine learning systems where some algorithms, like the ma-
chine learning model training, require temporal access to large computing power. These algo-rithms can execute inside a dedicated, trusted data center at higher performance becausethey are not limited by security features required in the shared execution environment. Theevaluation of the framework showed that training of a machine learning model using real-world datasets achieved 0.96× native performance execution on the GPU and a speedup ofup to 1560× compared to the state-of-the-art SGX-based system.Finally, I tackled the problem of software updates, which makes the operating system’sintegritymonitoring unreliable due to false positives, i.e., software updatesmove the updatedsystem to an unknown (untrusted) state that is reported as an integrity violation. I solved thisproblem by introducing a proxy to a software repository that sanitizes software packages sothat they can be safely installed. The sanitization consists of predicting and certifying thefuture (after the specific updates are installed) operating system’s state. The evaluation ofthis approach showed that it supports 99.76% of the packages available in Alpine Linux®main and community repositories.The framework proposed in this thesis is a step forward in verifying and enforcing thathigh-assurance security systems execute in an environment compliant with regulations. Ianticipate that the framework might be further integrated with industry-standard securityinformation and event management (SIEM) tools as well as other security monitoring mech-anisms to provide a comprehensive solution hardening high-assurance security systems.

II

Acknowledgments
First and foremost, I would like to express themost immense gratitude tomy supervisor Prof.Christof Fetzer for giving me space to explore new ideas and concepts and for openness tomy individual decisions. I am sincerely thankful to Dr. Silvio Dragone for lighting the hiddencorridors of the IBM Zurich lab; without him, I would have undoubtedly missed the ones Ihave taken.I am grateful to the IBM Research GmbH, Zurich Research Laboratory, for building andproviding me with a thought-provoking working place. I thank my advisor Dr. Silvio Dragoneandmymanagers, Michael Osborne andDr. Marc Ph. Stoecklin, for opening a newdoor inmycareer despite the ongoing pandemic and related difficulties. Thanks to all the group and labmembers, particularly Dr. Patricia Sagmeister and Dr. Tamas Visegrady. I also thank Anne-Marie Cromack from the publication department of the IBM Research GmbH for reviewingthis thesis.At the same time, I would like to thank the members of the Systems Engineering Group atTU Dresden for their cooperation. Especially I am indebted to Do Le Quoc and Rasha Faqehfor their hard work put into our papers y a Gabriel Fernandez por fazer a vida em Dresdenmais colorida e agradável, obrigado! Special thanks to Robert Krahn for support and OleksiiOleksenko and Bohdan Trach for scientific discussions and advice. Last but not least, manythanks to Irina Karadschow, Claudia Einer, and Andrea Eulitz for building a level of indirectionbetween me and the depths of the university.I want to thank the reviewers of my thesis, especially Prof. Lianying (Viau) Zhao and Prof.Christof Fetzer, for their insightful comments and suggestions.Muchas gracias a Araceli, Andrzej por vuestro apoyo en seguir luchando con la tesis. Ichbedanke mich bei Larisa, Martin und alle Freunde in Halle (Saale) für die tolle Zeit, die vomharten akademischen Alltag ablenkte. Przede wszystkim dziękuję moim rodzicom, siostrom,oraz Izabeli za wsparcie, cierpliwość oraz motywację. Dzięki Wam miałem przywilej kierowaćmoje życie na różne ścieżki oraz robić krok wstecz by potemmóc zacząć jeszcze raz lecz tymrazem bogatszy o nowe doświadczenia.

III

Publications
The content of this thesis is based on the following publications.

(i) CHORS: Hardening High-assurance Security Systems With Trusted Computing. Woj-ciech Ozga, Rasha Faqeh, Do Le Quoc, Franz Gregor, Silvio Dragone, and Christof Fet-zer. In the Proceedings of the 37th ACM Symposium On Applied Computing (SAC ’22),2022.
(ii) TRIGLAV: Remote Attestation of the Virtual Machine’s Runtime Integrity in Public

Clouds. Wojciech Ozga, Do Le Quoc, and Christof Fetzer. In Proceedings of the 2021IEEE International Conference on Cloud Computing (CLOUD ’21), 2021.
(iii) PERUN: ConfidentialMulti-StakeholderMachine Learning FrameworkwithHardware

Acceleration Support. Wojciech Ozga, Do Le Quoc, and Christof Fetzer. In Proceed-ings of the 35th Annual IFIP Working Conference on Data and Applications Security andPrivacy (DBSec ’21), 2021.
(iv) A Practical Approach for Updating an Integrity-Enforced Operating System. Woj-ciech Ozga, Do Le Quoc, and Christof Fetzer. In Proceedings of the 21st InternationalACM/IFIP Middleware Conference (Middleware ’20), 2020.

IV

Contents
Abstract II

Publications IV

List of Figures X

List of Tables XI

Glossary XII

1 Introduction 11.1 Progressing Digitalization and Threats . 11.2 Regulations as a Remedy? . 21.3 Theory Meets Practice . 31.4 Establishing Trust in a Remote Computer . 31.5 Extending Trust to Virtual Machines . 41.6 Adding Support for Hardware Accelerators . 51.7 Enabling Updates of Integrity-Enforced Operating Systems 61.8 Scope and Goals . 61.9 Summary of Contributions . 81.10 Organization . 9
2 Background 112.1 Physical Protection of Computing Resources . 122.2 Trusted Computing Techniques . 122.2.1 Security Guarantees . 132.2.2 Trusted Platform Module (TPM) . 142.2.3 Secure Boot and Measured Boot . 162.2.4 Dynamic Root of Trust For Measurement 162.2.5 Operating System’s Runtime Integrity Measurement and Enforcement . 172.2.6 TPM Alternatives to Boot Code Integrity Protection 182.3 Trusted Execution Environment . 202.4 Intel SGX . 202.4.1 Security Guarantees . 21

V

Contents

2.4.2 Enclave Initialization and Execution . 222.4.3 Remote Attestation . 222.4.4 Sealing . 23
3 High-assurance Security Systems Integrity Monitoring and Enforcement 243.1 Problem Statement . 243.2 Contribution . 263.3 Threat Model . 273.4 Design Decisions . 273.5 CHORS architecture . 313.5.1 High-level Overview . 313.5.2 Policy . 323.5.3 Trusted Beacon . 333.5.4 Policy Verification Protocol . 343.6 Implementation . 353.6.1 Computer Bootstrap . 353.6.2 Establishing Trust . 353.6.3 Cache Updates . 363.6.4 Policy Verification . 363.7 Security Risk Assessment . 373.7.1 Preventing Physical and Hardware Attacks 373.7.2 Establishing Trust with the Agent . 373.7.3 Establishing Trust with the TPM . 383.7.4 Establishing Trust with the Operating System 383.8 Evaluation . 393.8.1 Protecting a Real-world eHealth Application 403.8.2 Security . 403.8.3 Performance . 423.9 Related Work . 443.10 Summary . 45
4 Remote Attestation of the Virtual Machine’s Runtime Integrity 464.1 Contribution . 474.2 Threat Model . 484.3 Background and Problem Statement . 484.3.1 Load-time Integrity Enforcement . 484.3.2 Runtime Integrity Enforcement . 494.3.3 Problems with Virtualized TPMs . 494.4 TRIGLAV Design . 514.4.1 High-level Overview . 514.4.2 Platform Bootstrap . 524.4.3 VM Launch . 524.4.4 Establishing Trust . 534.4.5 Policy Enforcement . 544.4.6 Tenant Isolation and Security Policy . 554.5 Implementation . 564.5.1 Technology Stack . 564.5.2 Prototype Architecture . 57

VI

Contents

4.5.3 Monotonic Counter Service . 584.5.4 TLS-based SGX Attestation . 584.5.5 VM Integrity Enforcement . 584.5.6 SSH Integration . 594.6 Evaluation . 594.6.1 Micro-benchmarks . 594.6.2 Macro-benchmarks . 614.7 Discussion . 644.7.1 Alternative TEEs . 644.7.2 Hardware-enforced VM Isolation . 644.7.3 Trusted Computing Base . 644.7.4 Integrity Measurements Management . 654.8 Related Work . 654.9 Summary . 66
5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support 675.1 Problem Statement . 675.2 Contribution . 695.3 Threat Model . 695.4 Design . 705.4.1 High-level Overview . 705.4.2 Keys Sharing . 715.4.3 Security Policy and Trade-offs . 715.4.4 Hardware ML Accelerators Support . 735.4.5 Zero Code Changes . 745.4.6 Policy Deployment and Updates . 745.5 Implementation . 755.5.1 Running ML Computations Inside Intel SGX 755.5.2 Sharing the Encryption Key . 755.5.3 Enabling GPU Support with Integrity Enforcement 765.6 Evaluation . 775.6.1 Attestation Latency . 785.6.2 Security and Performance Trade-off . 785.7 Related Work . 805.7.1 Secure Multi-party Computation . 805.7.2 Secure ML using TEEs . 805.7.3 Trusted GPUs . 815.8 Summary . 81
6 A Practical Approach For Updating an Integrity-enforced Operating System 826.1 Contribution . 836.2 Background . 846.2.1 Operating System Updates . 846.2.2 Package Managers . 856.3 Threat Model . 866.4 Problem Statement . 866.5 Approach: Trusted Software Repository . 886.5.1 Design . 89

VII

Contents

6.5.2 Solution to Problem 1: Sanitization . 896.5.3 Solution to Problem 2: Proxy . 926.5.4 Solution to Problem 3: Shielded Execution 926.5.5 Solution to Problem 4: Quorum . 936.6 Implementation . 946.6.1 Supported Package Formats . 956.6.2 Repository Initialization . 956.6.3 Package Sanitization . 956.6.4 Operating System Configuration . 966.6.5 Package Caching . 966.7 Evaluation . 976.7.1 Package Sanitization Overhead . 976.7.2 SGX Limitations . 1026.7.3 Tolerating Compromised Mirrors . 1026.8 Related Work . 1046.9 Summary . 105
7 Security Configuration Management and Monitoring 1067.1 Contribution . 1067.2 Design . 1077.2.1 Discovery of Provisioned Computers . 1077.2.2 Security Policy Configuration . 1087.2.3 Policy Deployment and Monitoring . 1087.3 Implementation . 1087.3.1 Auto-discovery . 1097.3.2 Policy Creation . 1097.4 Evaluation . 1117.4.1 Experiment Setup . 1127.4.2 Experiment Scenario . 1137.5 Related Work . 1137.6 Conclusion . 114
8 Conclusion and Future Work 1158.1 Summary of Results . 1158.1.1 Cuckoo Attack Defense Mechanism . 1168.1.2 Integrity Monitoring and Enforcement Framework 1168.1.3 Runtime Integrity-enforcement of Virtual Machines 1168.1.4 Multi-stakeholder Machine Learning Framework 1168.1.5 Support for Software Updates of Integrity-enforced Operating Systems 1178.2 Future Work . 1178.2.1 Policy-based Compliance Management 1178.2.2 Integrity Attestation of Mutable Files . 1178.2.3 Availability Guarantees . 1188.2.4 Integration with SIEM . 1188.2.5 Hardware-supported Virtual Machine Isolation 118
Bibliography XX

VIII

List of Figures
1.1 Overview of Research Problems Addressed in the Thesis 71.2 Overview of chapters . 9
2.1 Mechanisms to Protect High-assurance Security Systems 112.2 CHORS: Measured Boot and Chain of Trust . 162.3 CHORS: IMA Log Entry Format . 172.4 CHORS: Integrity Measurement Architecture (IMA) Overview 18
3.1 CHORS: Side-channel Attacks . 253.2 CHORS: The TPM Cuckoo Attack . 263.3 CHORS: Integrity Monitoring Systems Architecture 283.4 CHORS: Sharing a Secret with TPM . 303.5 CHORS: High-level Architecture . 313.6 CHORS: Trusted Beacon . 333.7 CHORS: Policy Verification Protocol . 343.8 CHORS: The Platform Boot Process . 363.9 CHORS: Policy Verification Throughput . 423.10 CHORS: Impact on Computer’s Boot Time . 44
4.1 TRIGLAV: Virtual TPM Weaknesses . 494.2 TRIGLAV: High-level Overview . 514.3 TRIGLAV: TPM Emulation Inside the trusted execution environment (TEE) 534.4 TRIGLAV: VM Attestation Protocol . 544.5 TRIGLAV: Multiple Tenants Interacting with TRIGLAV Concurrently 554.6 TRIGLAV: Prototype Implementation . 574.7 TRIGLAV: Performance Comparison of Different TPM Implementations 604.8 TRIGLAV: Linux IMA Impact on File Opening Time 614.9 TRIGLAV: Nginx Throughput/Latency . 624.10 TRIGLAV: Memcached Throughput/Latency . 624.11 TRIGLAV Scalability: Memcached Throughput/Latency 64
5.1 PERUN: Multi-stakeholder Machine Learning Computation 685.2 PERUN: Multi-stakeholder Machine Learning Computation 715.3 PERUN: High-level Architecture Overview . 74

IX

List of Figures

5.4 PERUN: Linux Integrity-enforcement Mechanism 775.5 PERUN: CIFAR-10 Training Latency Comparison Benchmark 795.6 PERUN: CIFAR-10 Training Speedup Benchmark 79
6.1 ROD: Software Update of Integrity-enforced Operating System 836.2 ROD: Software Update Process Overview . 846.3 ROD: Software Packaging Format . 856.4 ROD: Software Update and Integrity Monitoring Systems 876.5 ROD: Attacks on Software Update Servers . 876.6 ROD: High-level Architecture Overview . 896.7 ROD: Key Distribution Protocol . 946.8 ROD: Package Sanitization Time . 996.9 ROD: Increase of Package Size After Sanitization 1006.10 ROD: Package Download Latencies . 1006.11 ROD:End-to-end latency of installing software updates 1016.12 ROD: Intel SGX Overhead . 1026.13 ROD: Downloading Updates From Mirrors . 103
7.1 ZORZA: Design . 1077.2 ZORZA: Implementation Overview . 1097.3 ZORZA: Automatic Machine Discovery . 1097.4 ZORZA: The Machine Configuration . 1107.5 ZORZA: Security Policy Configuration . 1107.6 ZORZA: Trusted Beacon Configuration . 1117.7 ZORZA: The Machine Runtime Configuration . 111

X

List of Tables
3.1 CHORS: eHealth Application Benchmark . 393.2 CHORS: TPM Quote Read Latency . 413.3 CHORS: Linux IMA Read Latency . 413.4 CHORS: Remote Attestation Latency Comparison 423.5 CHORS: Policy Deployment Latency . 43
4.1 TRIGLAV: Discrete vs Integrated TPM Performance 604.2 TRIGLAV: VM Boot Time Depending on TPM Implementation 63
5.1 PERUN: Remote Attestation . 785.2 PERUN: ML Training Latency . 80
6.1 ROD: Alpine Linux Software Packages’ Scripts Analysis 906.2 ROD: Alpine Linux Repositories Analysis . 916.3 ROD: Initialization Time . 976.4 ROD: Correlations of Package- and Sanitization-specific Properties 98

XI

List of Tables

XII

Glossary
AI artificial intelligence. 67
AIK attestation key. 35, 43
API application programming interface. 36, 94, 95, 107
BIOS basic input/output system. 92
CA certificate authority. 29, 43, 53, 114
CDN content delivery network. 86
CICD continuous integration and continuous deployment. 94
CNN convolutional neural network. 78
CPU central processing unit. 97
DC data center. 25–27, 31, 33, 37, 44
DMA direct memory access. 17
DNN deep neural networks. 73
DRAM dynamic random-access memory. 14, 21
DRTM dynamic root of trust for measurements. 14–17, 24, 30, 44, 49, 52, 57, 113, 116
dTPM discrete TPM chip. 59, 60
ECDSA elliptic curve digital signature algorithm. 41, 60
EK endorsement key. 35
EPC enclave page cache. 21, 39, 59, 77, 79, 80, 97
EU European Union. 2

XIII

Glossary

FIPS federal information processing standard publication. 12
GDPR general data protection regulation. 2, 5, 67
GPU graphical processing unit. 68, 70, 72, 74
HMAC hash-based message authentication code. 41
HSM hardware security module. 12
IAS Intel attestation service. 23, 58
IBM ACS IBM TPM attestation client-server. 43, 114
IMA integrity measurement architecture. 17, 24, 28, 44, 46, 47, 49, 52, 56, 63, 69, 70, 73, 76,112, 114, 116, 117, II
Intel CIT Intel open cloud integrity technology. 43, 106, 113, 114
IOMMU input-output memory management unit. 49
IP intellectual property. 19
iTPM integrated TPM. 59, 60
KMS key management system. 37
KVM kernel-based virtual machine. 56, 115
LUKS Linux unified key setup. 19, 77
MC monotonic counter. 50, 53, 57, 58, 60, 96
MCS monotonic counter service. 57–60, 63
MitM man-in-the-middle. 50, 52–54
MKTME Intel multi-key total memory encryption. 64
ML machine learning. 40, 67, 70, 71, 81
MME memory management engine. 14
MPC multi-party computation. 68, 80
MRENCLAVE enclave hash measurement. 22, 23
NIC network interface card. 59, 97
NVRAM non-volatile random-access memory. 15
PAX portable archive exchange. 95
PCIe peripheral component interconnect express. 19

XIV

Glossary

PCR platform configuration register. 15, 29, 35, 36, 43, 49, 109
PEF IBM protected execution facility. 20, 47
PTT Intel platform trusted technology. 59
QEMU quick emulator. 59
REST representational state transfer. 36, 94, 95, 107
ROM read-only memory. 15, 16, 19
RSA Rivest-Shamir-Adleman. 41
SCMMS security configuration management and monitoring service. 107–110
SEV AMD secure encrypted virtualization. 20, 47, 64, 65
SGX Intel software guard extensions. 20–23, 30, 31, 35, 37, 46, 47, 56–60, 64, 70, 74, 84, 92,94, 96, 97, 112, 115, 116, II
SIEM security information and event management. 2, 32, 118, II
SLOC source lines of code. 64, 95
SMM system management mode. 21, 38
SoC system on chip. 19
SR-IOV single root input/output virtualization. 59
SSH secure shell. 47, 52, 54
SVM AMD secure virtual machine. 17
TCB trusted computing base. 6, 20, 21, 39, 56, 64, 72, 78, 80, 118
TCG Trusted Computing Group. 3, 14, 17, 43, 44, 114
TCTs trusted computing techniques. 12–14, 16, 20, 22, 69, 70, 76, 82, 115, 117
TDX Intel trust domain extensions. 20, 64, 65
TEE trusted execution environment. 11, 20, 24, 26, 37, 46, 47, 50–54, 56, 64, 65, 68, 84, 86,92, 105, 115–118
TLS transport layer security. 43, 50, 53, 58, 60, 65, 74
TOCTOU time of check to time of use. 96
TOFU trust on first use. 108–110
TPM trusted platform module. 4, 13–15, 24, 29, 36, 43, 44, 46, 48–50, 52, 53, 56, 58–60, 63,65, 70, 73, 89, 96, 109, 113–116, II
TPU tensor processing unit. 73

XV

Glossary

TXT Intel trusted execution technology. 17, 35, 57, 59, 75, 113
UEFI unified extensible firmware interface. 35
VM virtual machine. 46–54, 63, 65, 66
VPN virtual private network. 82
VT-d Intel virtualization technology for directed I/O. 59
vTPM virtual TPM. 46, 47, 49, 50

XVI

1 Introduction

1.1 Progressing Digitalization and Threats

These days computing systems support our everyday life on virtually every level. However,not all of us realize that our life, prosperity, and geopolitical stability heavily depend on someof these systems, further referred to as high-assurance security systems 1. Some examples ofthese are systems processing our medical health records [138], banking applications man-aging our money [144], key management systems protecting our credentials [37, 159, 88],or governmental systems storing privacy-sensitive citizens’ data. Data leaked from such sys-tems might be used for blackmail, identity theft, or manipulation of democratic electionswith the help of political preference profiling, just to name a few cases. Essentially, manyof these systems form part of our critical infrastructure, like computing systems controllinghospitals, nuclear plants, and traffic light systems; telecommunication systems providing thebackbone for security-critical information exchange; or water supply systems including se-cure water treatment plants and water distribution systems. Deviation from the expected,normal behavior of high-assurance security systems, resulting from sabotage or a successfulhacker attack, might result in a disaster exposing humans’ life to risk. Therefore, we must en-sure that we protect these systems in order to guarantee peace and stability to our societiesby harnessing all existing knowledge and technology.Due to the security- and safety-critical character of high-assurance security systems, theypresent an attractive target for malicious actors, such as cybercriminals and governmentallymotivated hackers. Cyber attacks against such systems have occurred in the past and willcontinue to occur, given the rapid digitalization of our societies. To name a few examples,in 2021, hackers successfully conducted a ransomware attack on a major US oil pipeline,which supplies 45% of the East Coast’s fuel [49]. The incident resulted in the pipeline shut-down and a shortage of fuel in the eastern part of the United States. Although protectionsagainst ransomware attacks emerged [284, 29], they proved not be efficient. Security ana-lytics predict that increasing popularity of ransomware attacks (20% of all incidents in 2019,23% in 2020) will persist through 2021 [114]. In 2017, hackers managed to tamper with theemergency shutdown system in a Saudi petrochemical plant [250]. Although the attack re-sulted only in the plant shut down, it could have led to an accident [59]. In recent years,
1I refer to the high-assurance security system as hardware, software, and workload providing security-sensitivefunctionality to society.

1

1 Introduction

malicious actors have attempted to infiltrate European and the United States nuclear powerstations [251, 219]. A control gained over software controlling nuclear power stations’ coolingsystems might have allowed the hackers, for example, to cause power plant failure or evennuclear disaster similar to the one in Fukushima [16]. Successful cyber attacks resulting inleakage of users’ data are not uncommon. Only in 2020, due to lack of proper protection,privacy-sensitive data of hundreds of millions of Brazilian citizens, including their sensitivehealth records, were leaked [30]. Yet another attack in 2020, this time against United Statesgovernment agencies and companies, happened due to malicious changes to the sourcecode of a network monitoring software distributed via a legitimate update procedure [247].It allowed attackers to penetrate American’s sensitive systems on an unprecedented scale.After many months, the scope of this attack is still unknown, but it is suspected that it couldlead to leakage of confidential data.

1.2 Regulations as a Remedy?

Governments force legal entities owning high-assurance security systems to follow strict reg-ulations [62, 249, 14, 61, 63, 77, 233] that define what security measures they must imple-ment to isolate high-assurance security systems frompotential threats; thus, preventing leak-age of confidential data and ensuring correct system behavior.For example, Germany defines protection mechanisms [77] that high-assurance securitysystems must implement to shield the privacy-sensitive data in the eHealth systems [76]. Inparticular, the high-assurance security system’s owner must protect physical resources byenclosing machines inside video monitored security cages in an access-controlled data cen-ter. At the software level, the operating system must employ techniques to ensure softwareintegrity. At the same time, the individual processes handling privacy-sensitive data mustrun in isolation from the operating system and the operator. Similarly, the European Union(EU) regulates the financial market and critical infrastructure [61, 62, 233]. The regulationsrequire restricting physical and remote access to machines to limited personnel. Network,software, and access control must be constantly monitored, allowing timely response in caseof anomaly detection. Moreover, a dedicated automated system, e.g., SIEM, must correlatenetwork and system alerts to detect multifaceted attacks.At the European level, the general data protection regulation (GDPR) [63] also restrictsthe geographical location where privacy-sensitive data can be processed, i.e., European citi-zens’ personal andmedical data must never leave the EU and cannot be disclosed to anyonewithout the citizen’s approval 2. Violating the regulations might result in a fine of up to 20Meuros or 4% of the company’s turnover in the preceding financial year. Like this, regulatorsforce system providers and operators to implement respective countermeasures that even-tually increase the resistance of high-assurance security systems to data leakage. However,ensuring that the software processing the data executes in the given geolocation, i.e., on acomputer in the specific data center, especially in the face of powerful adversaries that mighttrick the GPS signals, is not a straightforward task.Notably, regulators do not define how specific requirements must be implemented, leav-ing system providers freedom in selecting and adjusting the existing technologies to theirindividual use cases. From the security perspective, a naïve combination of different securitytechniques does not necessarily provide more protection than using them individually. This
2More precisely, the data can be exchanged with countries outside EU but these countries must provide atleast equivalent levels of data protection as the GDPR.

2

1 Introduction

is because of the differences in their designs, threatmodels, and offered security guarantees.It usually requires expert knowledge to determine if and how these technologies could becombined to meet certain security guarantees imposed by regulations. As such, regulationsare just a step in the right direction, but without reasonable design and implementation theyprovide little benefit.

1.3 Theory Meets Practice

The advancement of security techniques achieved within the last two decades has becomethe backbone for security solutions to meet the strict regulation requirements. The recenttechnologies known as trusted execution environments [169, 45, 184] are particularly impor-tant because they promise to protect individual applications against compromised operatingsystems controlled by rogue system administrators. It means that, at least theoretically, wemight execute high-assurance security systems inside the trusted execution environmentand stop worrying about the existing threats jeopardizing operating systems and the oper-ators controlling them. This is not enough in practice, however. An application executing inthe trusted execution environment by definition cannot exist without an operating system,which manages computing resources allocation and controls the application’s life cycle. Itmeans that an untrustworthy operating system might jeopardize the high-assurance secu-rity system executed in the trusted execution environment because it might shut down thesystem or run malware that would extract confidential data processed inside the applica-tion via microarchitectural or side-channel attacks [260, 277, 189]. Therefore, a trustworthy
operating system is a key element of each high-assurance security system because it pro-tects the application’s safety and security. Thus, despite being very attractive in terms ofperformance and security guarantees, I argue that trusted execution environments shouldbe accompanied by other security techniques that prevent or at least detect untrusted oper-ating system states. My reasoning was supported in October 2019 by German policymakerswho defined that German eHealth systems should rely on both concepts to protect Germancitizens’ data [77].A way to attest to the operating system’s trustworthiness is by benefiting from widelyadopted, standardized security techniques known as trusted computing [90, 235, 225] (not tobe confused with trusted execution or confidential computing) developed by the not-for-profitTrusted Computing Group [256] organization. Trusted computing techniques ensure thatonly legitimate, certified software executes on a computer. However, because of the differ-ences in designs, threat models, and security guarantees, it is an open question whether itis feasible and, if yes, how could the trusted execution environment integrate with trusted com-
puting techniques? Would their combination lead to increased security and at what cost?Addressing these questions nowadays becomes more and more important because of theincoming regulations, such as above-mentioned German eHealth regulations [77].

1.4 Establishing Trust in a Remote Computer

Before we provision a remote computer with the confidential data, we must ensure that thehigh-assurance security system, which will process these data, is controlled by the expectedoperating system running on a computer located in the desired data center, according tothe applicable legal regulations. This is not a trivial task as we cannot be sure that the com-

3

1 Introduction

puter, with which we are communicating, is not controlled by an attacker who impersonatesthe legitimate computer. An attacker could take over the control of the computer by ex-ploiting computer misconfiguration, using social engineering, or redirecting us to a machineunder her control. By controlling the operating system, she would have enough capabilitiesto convince us that we are interacting with a legitimate computer. Thus, we need a technicalassurance that the computer we communicate with is legitimate.In chapter 3, I tackle the problem of establishing trust in a remote computer. I show thattrusted computing techniques, which were designed to solve this problem, are not enoughbecause they are vulnerable to the cuckoo attack [205]. I introduce a novel, practical, andformally proven defense mechanism against the cuckoo attack that relies on trusted com-puting and trusted execution environment techniques. I implement this defensemechanismas part of the framework that monitors and enforces the integrity of high-assurance secu-rity systems distributed among computers in data centers. I evaluate the framework whileprotecting a real-world eHealth application (subsection 3.8.1).The framework establishes trust in a remote computer by first deploying a piece of trustedsoftware (agent) inside the trusted execution environment on a potentially malicious remotecomputer. The agent ensures that the computer is in the expected data center and thenestablishes trust with a secure element, like TPM [90], attached to this computer. With thehelp of the secure element, the agent extends trust to the operating system using trustedcomputing. Eventually, we establish trust with the agent, which certifies that the computeris legitimate. Only then, we execute the high-assurance security system and provide it withsecrets and confidential data. In chapter 7, I extend the framework with the configurationmanagement and integrity monitoring system that leverages this technique at scale, allowingsecurity officers to easily provision multiple computers, define expected integrity states, andcontinuously monitor the integrity state.The proposed approach gives us an important primitive. It allows for trust to be estab-lished in an operating system running on a remotely accessible bare-metal computer. How-ever, modern applications are frequently split into smaller services that execute inside dis-joined virtual machines to utilize computing resources more effectively and simplify theirmanagement. The natural question that arises is that since we can now establish trust inthe operating system running on a bare-metal computer, could we further extend trust insoftware executing inside virtual machines hosted on that computer?

1.5 Extending Trust to Virtual Machines

The cloud computing paradigm relies heavily on virtualization to dynamically allocate re-sources (in the form of virtual machines) on shared computing resources. It is beneficialfor applications that require disjoined execution environments hosted on a single physicalmachine or large computing power for a limited amount of time. For example, consider theeHealth application that provides the electronic receipt functionality, as defined in the Ger-man eRezept specification [76]. Such a system requires more computing resources duringthe day when it is used by doctors, patients, and pharmacies, than during the night when itis barely used. From the economic point of view, it makes little sense to keep all computingresources up and running during low activity time. Instead, the cloud computing paradigmallows computing resources to be dynamically acquired or released depending on the ap-plication’s needs and shares the resources with other systems or businesses that currentlyneed them.

4

1 Introduction

In chapter 4, I introduce a protocol to establish trust in a virtual machine running on aremote computer. In contrast to bare-metal computers, virtual machines require additionalsoftware managing computing resources. Such software, its configuration, and administra-tion remain under the control of the system administrator, who must be trusted to behavelegally. I show that by using the trusted computing techniques, I can effectively limit thesystem administrator’s capabilities while leveraging the trusted execution environment toestablish and maintain trust in the virtual machine runtime integrity of the software and itsconfiguration. The proposed protocol is transparent to the virtual machine configurationand setup. It performs an implicit attestation of virtual machines during a secure login andbinds the virtual machine integrity state with the secure connection. To demonstrate thepracticality of the approach and gain insight into the performance, I built its prototype usingstate-of-the-art technologies commonly used in the cloud. The evaluation performed on real-world applications shows that the approach is practical and incurs reasonable performanceoverhead (≤ 6%).So far, we have focused on scenarios where the combination of trusted computing and
trusted execution environment techniques is advantageous for systems requiring an increasedlevel of security. However, certain application owners, like businesses running compute-intensive artificial intelligence algorithms, might prefer to trade-off some security guaranteesto gain better performance. Thus, the practical approach should grant the flexibility to selectthe level of security. The open question is how to enable it for a general-purpose computa-tion?

1.6 Adding Support for Hardware Accelerators

Over the last few years, big data and artificial intelligence have received a lot of attentiondue to advancements in the development of high-performance computing systems. It led tothe creation of many valuable services enhancing our everyday life. For example, machinelearning algorithms support doctors in recognizing brain tumors from magnetic resonanceimaging scans [60], saving humans’ lives by reducing the probability of false negatives. Con-sidering that the European Union positions health and artificial intelligence as fundamentaltopics in its strategic plan for years 2021-2024 [64], we might expect similar systems to de-velop in the near future. For example, the EU4Health program focuses on improving cancerprevention, control, and care. At a large scale, these objectives might only be satisfied withthe help of digital systems directly exposed to patients because only such systems mightsupport a fast and inexpensive way to provide early detection of diseases. An example ofsuch an early prevention system would allow citizens to upload their skin photos directly toan eHealth service that would use artificial intelligence algorithms to verify against melanomacancer.Artificial intelligence algorithms must be trained on real data to build such services. It typi-cally requires access to large computing power but only for the duration of the computations.It is, therefore, reasonable to run such computations in the cloud, and only pay for the utilizedresources. However, the training algorithms in the eHealth domain fall under regulations,such as GDPR [63], because they operate on privacy-sensitive data. State-of-the-art solu-tions, such as fully homomorphic encryption [78] or trusted execution environments [167],preserve data confidentiality but suffer from large performance overhead, which limits theirpractical application [263, 199]. Specifically, trusted execution environments involve signifi-cant performance degradation while processing a large amount of data — a typical machine

5

1 Introduction

learning training model’s scenario. This is because of a limited amount of secure memoryavailable for the computation, lack of trusted input-output paths to hardware accelerators,and lack of support for respective trusted execution environments inside hardware accel-erators. I notice, however, that with the help of trusted computing techniques, users mightsecurely access hardware accelerators under additional security assumptions.In chapter 5, I introduce a framework that enables users to trade-off between securityand performance when executing machine learning computations. For example, a usercan execute compute-intensive machine learning training workloads on hardware accel-erators while relying on trusted computing to ensure the trustworthiness of the remotecomputer located in the trusted data center. Conversely, he would execute less compute-intensive workloads, such as inference, inside the trusted execution environment, and thusat a lower trusted computing base and stronger isolation. The evaluation shows that duringthe machine learning training on CIFAR-10 [157] and real-world medical datasets [236], theframework achieved a 161× to 1560× speedup compared to the pure trusted executionenvironment-based approach [167].

1.7 Enabling Updates of Integrity-Enforced Operating Systems

To enable the application of trusted computing techniques at scale, we must solve the prob-lem of software updates. Specifically, integrity-enforced operating systems running in pro-duction cannot be updated because the integrity monitoring becomes unreliable due to thehigh number of false positives. Software update triggers an integrity violation alarm becausethe monitoring system detects unknown integrity measurements corresponding to updatedsoftware.I address this problemby adding an extra level of indirection between the operating systemand software repositories. In chapter 6, I introduce a software update repository proxy thatovercomes the shortcomings of previous approaches by sanitizing software packages. Thesanitization consists of modifying unsafe installation scripts and adding digital signatures ina way that software packages can be installed in the operating system without violating its in-tegrity. The proposed solution is transparent to package managers and requires no changesin how the software packages are built and distributed. The evaluation shows that the ap-proach is practical. It supports 99.76% of packages available in the main and communityrepositories of Alpine Linux while increasing the total repository size by 3.6% and incurs lowperformance overhead when installing software updates.

1.8 Scope and Goals

Thesis Statement

State-of-the-art security technologies, such as trusted execution environments and trustedcomputing techniques, protect the confidentiality and integrity of high-assurance securitysystems’ execution and data by running them on top of a trustworthy operating system andin strong isolation from other software executing on the computer. However, these tech-nologies were designed for different use cases, operate under various threat models, andoffer distinct security guarantees. It is unclear whether their combination gives any securityadvantages and what possible security, performance, and usability trade-offs must be made

6

1 Introduction

remote computer
TPM

attestation

update
manager

install  
updates

establish trust with 
the virtual TPM

vTPM

virtual machine

high-assurance
security system

5

virtual machine 
attestation

8

establish trust  
with the  

local TPM

high-assurance
security system

3

geolocation

system owner

2 41

hardware
accelerator

high-assurance
security system

access 
hardware  

accelerator

7

share 
intellectual property  

(e.g., in eHealth)

stakeholderA stakeholderB

6

system owner

monitoring

configuration
and alerting

resource 
management and  

notifications

9

update repository

Figure 1.1. Research problems addressed in this thesis. The TPM stands for the trusted platformmodule, a secure element collecting integrity measurements of software executing on a computer.The vTPM stands for a virtual trusted platform module, a TPM emulator collecting virtual machineintegrity measurements.
to use them together. This thesis explores how high-assurance security systems can benefitfrom both trusted computing and trusted execution environments in a secure, practical, andefficient way.
Scope

In this thesis, I focus on leveraging well-established state-of-the-art security techniques tosolve existing problems in domains of remote attestation, secure remote computation, con-fidential computing, and secure multi-party computation (Figure 1.1).I start with a fundamental problem of how to verify that a remote computer I interact withis in the expected geographical location, i.e., inside a trusted data center (➊). Having a tech-nical assurance that a computer is in the specific data center is the first step in establishingtrust with that computer because it allows us to assume that the computer is protected fromphysical and hardware attacks. Next, I tackle the problem of verifying that this specific com-puter runs only the expected software in the expected configuration (➋). For that, I solvethe cuckoo attack problem that prevents from establishing trust with a secure element col-lecting software integrity measurements (➌). After that, I address the issue of how to verifythat the operating system running inside a virtual machine executes the expected softwarein the expected configuration (➍). For that, I analyze the existing state-of-the-art approachof virtualizing a security element compliant with the trusted platform module standard [90],and I propose how to improve it (➎).After solving the problems ➊-➎, I show how the proposed mechanisms might be usedin practice. I tackle the problem of how multiple stakeholders could cooperate to performcollaborative computation on remote computers (➏) and how they could trade-off betweensecurity and performance (➐). Specifically, how they might agree on which security mech-anisms they want to rely on to protect their workloads while gaining access to hardwareaccelerators.Finally, I deal with practical issues that limit the usage of integrity enforcement and moni-

7

1 Introduction

toring techniques in production. First, I investigate how to safely install software updates onan integrity-enforced operating system (➑), i.e., I look for a solution in which a remote verifierwho monitors the integrity of the operating system can ensure that the new integrity stateis a result of the trusted update and not of an attack. Second, I check how a system ownercould in practice manage a group of resources, i.e., define, configure, and monitor remotecomputers that differ in terms of running workloads and applied security mechanisms (➒).
Goals

The main goal of this thesis is to build a framework to harden high-assurance security sys-tems. The design goals are:
• Security. The framework should provide strong security guarantees to high-assurancesecurity systems. It should allow individual processes to be run in isolation from privi-leged software (under the trusted execution environment threat model) and on top ofa trustworthy operating system (under the trusted computing threat model).
• Attestation. The systemowner should obtain technical assurance that the high-assurancesecurity systems execute in well-defined geographic locations inside an execution en-vironment meeting his security requirements.
• Practicality. The framework must support running legacy systems without requiringsource code changes. It is acceptable to instrument source code at the compilationlevel or run inside virtual machines. It must also support software updates and incuracceptable, low (≤ 10%) performance overhead.
• Usability. The framework must be configurable to individual use cases by allowingusers to declaratively state their trust boundaries and make a trade-off between secu-rity and performance. It should permit central management (configuration distributionand notification collection) of multiple computing resources.

Limitations

This thesis does not tackle problems of how to ensure the runtime integrity of the processcode and data or how to ensure the control flow integrity of running processes. I assumethe existence of corresponding methods, like [143, 180], that might be implemented in thepresented solutions independently. I do not tackle the problem of how to ensure that thebinary corresponds to the expected source code certified by the user as correct, a problemknown as trusted compilation. I either consider problems of how to ensure that software isfree of vulnerabilities or how to ensure the system is free of misconfigurations. For that Iassume that corresponding techniques, such as fuzzing [281], formal proofs [287], unit andintegration testing, code reviews, automated verification of configuration compliance withexpected regulations [215], and other good programming practices are sufficient. Finally,I assume hardware implementation trustworthy, skipping the discussion on vulnerabilitiesof hardware-specific firmware [282], such as vulnerabilities in the Intel management engine(e.g., CVE-2017-5689, CVE-2017-5705) or in the microcode implementing CPU-specific fea-tures [154].

8

1 Introduction

1.9 Summary of Contributions

This thesis makes the following contributions:
(i) A protocol that verifies that the physical computer is in the expected data center (chap-ter 3).
(ii) A policy-based protocol that verifies the load-time and runtime integrity of the operat-ing system (chapter 3).
(iii) A novel, practical, and formally proven cuckoo attack defense mechanism that estab-lishes trust from the inside of the trusted execution environment to the secure elementcompatible with the trusted platform module standard (chapter 3).
(iv) A policy-based remote attestation protocol attesting to the virtual machine’s runtimeintegrity (chapter 4).
(v) A method that establishes trustworthy virtual TPMs for virtual machines (chapter 4).
(vi) A multi-stakeholder machine learning framework that enables selection of a trade-offbetween the security and performance, and usage of hardware accelerators (chap-ter 5).
(vii) A practical method enabling software updates of integrity-enforced operating systems(chapter 6).
(viii) The implementation of a web-based service enabling management of multiple com-puting resources, management and distribution of configurations, automatic resourceprovisioning, and alerting (chapter 7).

remote computer
TPM

attestation

update
manager

install  
updates

establish trust with 
the virtual TPM

vTPM

virtual machine

high-assurance
security system

5

virtual machine 
attestation

8

establish trust  
with the  

local TPM

high-assurance
security system

3

geolocation

system owner

2 41

hardware
accelerator

high-assurance
security system

access 
hardware  

accelerator

7

share 
intellectual property  

(e.g., in eHealth)

stakeholderA stakeholderB

6

system owner

monitoring

configuration
and alerting

resource 
management and  

notifications

9

update repository

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

Figure 1.2. Research problems addressed in differrent chapters in this thesis.

9

1 Introduction

1.10 Organization

Figure 1.2 shows how the remainder of the thesis is organized.In chapter 2, I introduce existing concepts and technologies designed to protect comput-ing devices and software against physical or software attacks, and techniques to obtain acryptographical proof of software executing on a remote computer.In chapter 3, I show the design, implementation, and evaluation of CHORS, an integritymonitoring and enforcement framework that establishes trust with a remote computer. Thischapter tackles Problems ➊-➌.In chapter 4, I discuss the design, implementation, and evaluation of TRIGLAV, a techniqueextending CHORS, which verifies and enforces the runtime virtual machine integrity. Thischapter tackles Problems ➍-➎.In chapter 5, I present the design, implementation, and evaluation of PERUN, a frame-work for selecting the trade-off between security and performance when running multi-stakeholder computations. This chapter tackles Problems ➏-➐.In chapter 6, I show the design, implementation, and evaluation of ROD, a trusted softwarerepository enabling software updates of integrity-enforced operating systems. This chaptertackles Problem ➑.In chapter 7, I present the security configurationmanagement andmonitoring system thatsimplifies the security policy management, deployment, and monitoring of the computer’sintegrity. This chapter tackles Problem ➒.I conclude the work in chapter 8.

10

2 Background
High-assurance security systems are deployed as multiple services distributed across multi-ple computers to ensure high availability, fault tolerance, and resource scalability. As such,their architects, owners, and security officers face the problem of secure remote computa-
tion, i.e., how to ensure the confidentiality and integrity of data and code executing on aremote computer? This chapter explores existing techniques that allow users to establishtrust with a remote computer, attest to the integrity of software running on such a computer,and protect the integrity and confidentiality of individual applications’ code and data againstmalicious operating systems and administrators.Figure 2.1 shows existing defense mechanisms used to protect computing systems at dif-ferent levels. In section 2.1, I discuss general practices designed to protect computing de-vices against physical and hardware attacks. Next, in section 2.2, I dive into concepts thatallow verification of the operating system’s trustworthiness, i.e., the integrity of the computerboot process and the operating system’s runtime execution. Then, in section 2.3, I give abrief overview of the existing trusted execution environment technologies. I conclude insection 2.4, discussing the trusted execution technology that enables isolation of a single

physical protection 
server cages and  

tamper-responsive  
enclosures

trusted execution  
environment 

trusted computing 

Section 2.3-2.4: defense mechanisms  
 at the process level

high-assurance security system
for example, an eHealth system

surveillance camera 
data center monitoring  

and access control

geolocation 
physical location verification

TPM

Section 2.1: defense mechanisms at the data center level

Section 2.2: defense mechanisms at the operating  
 system level

CPU

a set of integrity  
enforcement and  

auditing techniquesCPU-supported process  
isolation

da
ta

code

state

Figure 2.1. Overview ofmechanisms protecting high-assurance security systems against a wide rangeof threats.

11

2 Background

process from an untrusted operating system and administrator.

2.1 Physical Protection of Computing Resources

An adversary with physical access to computing resources can perform awide range of physi-cal and hardware attacks to violate the security guarantees offered by software and hardwaremechanisms. She can mount attacks by (i) attaching malicious hardware devices to tam-per with the memory content [6]; (ii) hijacking of communications on buses connecting theCPU with peripheral devices in order to manipulate data read and written by the CPU [272];(iii) freezing thememory chip to retain secrets after the power is lost [100]; (iv) injecting faultsby supplying voltage out of the CPU operational range [189] or flipping individual bits withlaser beam [15] or heat [86] to bypass security checks; or (v) observing side effects of compu-tation, like power consumption [153] or computation duration [152] to extract cryptographickeys.The implementation of safeguards against physical and hardware attacks is difficult, costly,and therefore only performed in sophisticated devices, like hardware securitymodules (HSMs)used by governments, banks, or themilitary to guard access to cryptographic material. HSMsare not general-purpose computing devices, rather cryptographic coprocessor, sophisticatedsecure element, designed for very special use cases. For the sake of scalability and cost-effectiveness, general-purpose computing devices implement instead the defense in depthapproach that restricts access to the physical machine, thus protecting from these classesof attack.HSMsmeet the highest security level, according to the federal information processing stan-dard publication (FIPS) 140-2 level 4 or level 3 standards [120]. HSMs detect and respondto physical and hardware attacks in real-time. For example, IBM® 4769 Crypto Card [109] isenclosed in a dedicated tamper-responsive enclosure that actively detects physical and en-vironmental attacks, such as probe penetration, side-channel attacks, power or temperaturemanipulation, and many more. Specifically, it erases the security-relevant material once anattack attempt is detected. Due to the high costs of production, certification, and mainte-nance, this level of security does not apply to general-purpose computing devices.Instead, data center owners implement the defense in depth approach to protect comput-ing devices from malicious actors. First, they limit access to the data center and individualserver rooms to a limited number of employees. Second, computers requiring an additionallevel of security are locked inside electronically controlled security cages that are video mon-itored from inside the cages. Any maintenance work requires approval and execution ofdedicated security procedures that ensure the trustworthy behavior of the operator. Theuse of cages is primarily intended to mitigate attacks performed by malicious insiders [42],such as malicious data center operators.

2.2 Trusted Computing Techniques

Trusted computing techniques (TCTs) offer well-established, widely available methods tobuild the hardware-based computer’s identity, record and attest to software integrity, andprevent unauthorized changes to software configuration [93]. The crucial TCTs features are(i) remote attestation, i.e., auditing, of what software has executed on the computer, and

12

2 Background

(ii) integrity enforcement mechanisms ensuring that only expected software in the expectedconfiguration can execute on the computer.
2.2.1 Security Guarantees

TCTs define how to measure, store, enforce, and report the load-time integrity of firmwareand software that has been loaded to the computer’s memory since themoment a computerwas powered-up. The reporting capability (also referred to as auditing or remote attestation)allows verification that the operating system is in the expected, well-defined state, while the
enforcement capability prevents the operating system from moving into an untrusted stateby refusing to load an unknown, potentially malicious software to the memory. Crucially, thereporting capability verifies that the enforcement mechanism is enabled and certifies this toa remote entity with the help of the secure element.
Secure Element

The secure element is a cryptographic coprocessor compliant with the trusted platformmod-ule (TPM) standard [90], which defines security functionalities allowing for computer integrityauditing. The goal of having an independent 3 secure element is to make these security func-tionalities available for integrity measurements from the very first moment of the boot pro-cess and resist software-based attacks originating from the potentially malicious softwaretrying to tamper with its own measurements. Consider malware taking control over the op-erating system. Without the tamper-resistant storage provided by the secure element, mal-ware might vanish the proof of its existence (its integrity measurements) from the storage,thus successfully hiding its existence.
Hardware Attacks

The most popular secure element implementations are discrete TPM chips attachable toa motherboard. They are vulnerable to simple hardware attacks, however. An adversaryhijacks the packages transferred via the physical bus between the TPM and the CPU becausethe communication is neither integrity-protected nor authenticated. This allows him to inject,modify, drop, and read arbitrary data, gaining full control over the integrity measurementsstored and certified by the TPM [272, 270, 163, 142, 238, 50].TPM chips require additional, independent protection mechanisms guaranteeing that thehost computer is physically isolated from the adversary in order to maintain their promisedsecurity guarantees [25]. This is typically realized by locking servers inside security cagesin an access-controlled data center (see section 2.1). Other implementations, such as theTPM functionality directly integrated into the CPU chip [121] or firmware TPMs [213], mightresist some of the hardware attacks due to the physical protection offered by the CPU chippackaging or firmware isolation.

3The word ’independent’ refers to the architectural binding of the functionality and not physical implementa-tion or availability. Operations performed by the secure element can be processed in parallel to the codeexecuting on the main processor.

13

2 Background

Trusted Computing Base

The trusted computing base is a parameter defining all components responsible for provid-ing security guarantees to the computing system. The lower the trusted computing base,the better, because there are fewer components in which vulnerability exploitation or mis-behavior could lead to violation of the system’s security guarantees.TCTs have a large trusted computing base that includes all software executing on the com-puter, starting from firmware, bootloader, kernel, and operating system, finishing on applica-tions running in the operating system. TCTs provide tooling to verify that the software loadedto the memory is the expected (trusted) software in the expected configuration.TCTs define additional hardware-based mechanisms that reduce the trusted computingbase size. The dynamic root of trust for measurements (DRTM) [235], also referred to in theliterature as late launch, is a hardware CPU extension that allows a warm system reset. Itdynamically creates a clean execution environment regardless of what has been executedpreviously, e.g., firmware. I discuss this technology in more detail in subsection 2.2.4.
Load-time Integrity

TCTs are blind to changes occurring directly in thememory because they offer only load-timeintegrity guarantees. A load-time integrity measurement (or integrity hash or simply hash) isan output of a cryptographic hash function [210, 55] calculated over the software binary atthe time it is loaded to the memory. The integrity measurement is used as a fingerprint todistinguish between legitimate (allowed, known) and untrusted (unknown, possiblymalicious)software. Notably, the integrity measurement is calculated only once, at the time when thesoftware is loaded to the memory, because then the mapping of the process memory to adeterministic hash becomes difficult.Relying just on the load-time integrity has security implications because the legitimatesoftware loaded to the memory can be attacked using memory corruption vulnerability ex-ploits [195] or devices directly accessing the computer memory [6, 178]. Such attacks arenot detected by TCTs because they can be executed without running malware on the sameoperating system. Thus, a typical assumption of TCTs is that a legitimate software loaded tothe memory behaves legitimately during its entire life cycle.Additional techniques must be used to ensure the correct behavior of legitimate softwareduring runtime. The memory management engine (MME) 4 can transparently encrypt anddecrypt the data leaving and entering the CPU chip to prevent an adversary from readingand tampering with the data stored in the main memory, such as dynamic random-accessmemory (DRAM) [97, 140]. The memory corruption vulnerabilities can be mitigated with thecontrol flow integrity [143], fuzzing [281], use of dedicated compilation techniques (e.g., com-piling source code as position-independent executables together with stack-smashing pro-tection), usage of memory-safe languages (e.g., Rust [180]), or formally proving software im-plementation (e.g., seL4 [148] or EverCrypt [212]). In the rest of this document, I will referto the load-time integrity property as integrity, assuming that some of the countermeasuresmentioned above protect the runtime integrity of processes forming the trusted computingbase.

4Nowadays, the memory management engine (MME) is implemented inside the CPU package, as in the case ofIntel and AMD CPUs.

14

2 Background

2.2.2 Trusted Platform Module (TPM)

The TPM is the standard for security co-processors defined by the Trusted Computing Group(TCG) [256]. The newest version of the TPM specification, version 2.0 [90], was introducedin 2014 and brought new features and improvements, such as support for stronger cryp-tographic algorithms, internal source of time, platform reboot counter, and support for anend-to-end encrypted communication [12].The TPM chip, further referred to simply as the TPM, is a passive component that cannotinitialize communication with any external devices or perform any action without being re-quested, i.e., it is a coprocessor responding to the commands send by the processor. This de-sign implies the existence of ameasuring agent, a piece of software running on the computerthat performs the integrity measurements and sends them to the TPM. Themeasuring agentchanges due to the sequential nature of the computer boot process depicted in Figure 2.2.The consecutive firmware and software layers take control of the computer, becoming newmeasuring agents. The first agent, called the root of trust, is the first immutable piece of codeinitializing the computer boot procedure. It is loaded from the read-only memory (ROM) oris embedded directly in the CPU and must be explicitly trusted 5. It initializes the chain of
trust that allows the trust to be extended to consecutive measuring agents with the help ofdedicated tamper-resistant memory, called platform configuration register (PCR), providedby the TPM.
Platform Configuration Registers

The TPM 2.0 chip has a built-in protected memory which consists of non-volatile random-access memory (NVRAM) and platform configuration registers (PCRs). PCRs are tamper-resistant and are used to store integrity measurements of firmware and software that hasbeen executed on the computer.PCRs are divided into static and dynamic PCRs. Static PCRs can be initialized only with therestart of the computer. Dynamic PCRs can be initialized and extended during the warmsystem reset only by a trusted firmware executed in a certain locality [132], as defined bythe DRTM specification [235]. A PCR cannot be set to any arbitrary value, except for the ini-tial value set during the PCR initialization. Then, the PCR value can only be extended with anew value, as expressed in Equation 2.1. The PCR_extension function implements the crypto-graphic hash function, denoted as hash, to provide the tamper-resistant property.
PCR_extend = hash(PCR_old_value || data_to_extend) (2.1)

Remote Attestation Protocol

The TPM implements the TPM attestation protocol [91] defining how to read and certify thePCR values to a remote entity. Specifically, the TPM issues a digitally signed report (quote)that certifies the integrity measurements extended to PCRs by measuring agents, using asigning key embedded in the TPM.
5There are methods, like Intel’s Boot Guard [275], that ensure the integrity and authenticity of the code loadedfrom the ROM. The code stored in ROM is digitally signed by the manufacturer and the CPU verifies the sig-nature with the key burned into the chip’s e-fuses. This prevents bootstrapping the computer with untrustedcode.

15

2 Background

operating systemboot ROM

firmware boot loader

exec

trusted
platform
module
(TPM) execexec

kernel with IMA
Legend

measure the next
component
store the measurement

execute the next
component
root of trust

untrusted (subject of  
attestation)

Figure 2.2. The chain of trust: Each boot component measures the integrity of the next boot compo-nent before executing it. The measurements are stored inside the TPM chip. The boot ROM, which isthe first boot component, initializes the chain of trust. It is immutable and must be explicitly trusted.
The signing key is an asymmetric cryptographic key embedded in the TPM chip at theman-ufacturing time in a way it is only known to the TPM. The TPM also stores a digital certificatecontaining the public key corresponding to this signing key. The certificate is signed by amanufacturer or the computer owner. Consequently, it is possible to check that a genuineTPM chip produced the quote because the quote’s signature is verifiable using the public keyread from the certificate linked to a trusted entity.

2.2.3 Secure Boot and Measured Boot

The secure boot [269] (also known as verified boot) is the state-of-the-art technology enforc-ing that only trusted software bootstraps the computer. It follows the chain of trust concept(Figure 2.2) where each boot component (i.e., firmware, bootloader) calculates an integritymeasurement (a cryptographic hash) of the next boot component and executes this com-ponent only if its hash matches a corresponding digital signature issued by a trusted entity.I say that the secure boot enforces the boot integrity because the boot component abortsthe boot process when it fails verifying the signature of the next boot component. In otherwords, the secure boot process guarantees that the booted system has correct load-timeintegrity, assuming lack of physical or hardware attacks.The measured boot [254, 255] (also known as the trusted boot) complements the secureboot by enabling auditing of the boot process. The consecutive boot components extendhashes to TPM’s PCRs. The TPM then vouches for the load-time integrity state of the estab-lished execution environment by certifying PCRs values. Like this, a verifier gets a technicalassurance that indeed the expected boot components bootstrapped the computer. Pleasenote here that when the measured boot is not used with the secure boot, it is possible toload the system which load-time integrity is not valid. It is the responsibility of the remoteverifier to attest to the load-time integrity of the booted system before establishing trust withit.
2.2.4 Dynamic Root of Trust For Measurement

TCTs define a technology, called dynamic root of trust for measurements (DRTM) [235], thatallows for the establishment of a new, clean execution environment at an arbitrary point intime without the hard reset of the computer. A CPU implementing this technology halts theexecution of all cores except one, which then runs a vendor-provided trusted firmware. Thisfirmware resets a dedicated set of PCRs to their initial values and extends themwith themea-surement of the piece of code requested to be loaded and executed. The tboot project [127]

16

2 Background

 10 adef76c12e…fcfbffff ima-sig sha256:711...e38 /usr/sbin/nginx 030204000...f7cec0da

PCR  
number

hex-encoded log integrity digest

entry type a digest over  
the file content

a file name

hex-encoded digital signature  
issued over a file content

optional part depending on the entry type

Figure 2.3. IMA log entry format. The PCR number indicates to which TPM’s PCR the kernel extendedthe hash calculated over the entry content. Depending on the type of the entry, IMA log can storeadditional data related to themeasured file, such as the digital signature stored in the file’s extendedattributes. The hex-encoded hash over the entry is a hash calculated over the entire entry appendedto the IMA log, allowing for detection of tampering with the entry’s content. The hex-encoded hash
over the file content is the hash calculated by the kernel before loading the file to the memory.
is an example technology leveraging DRTM. It is a bootloader that securely measures, loads,and executes the Linux kernel and the minimalistic root filesystem (initramfs), regardless ofthe trustworthiness of the boot components used to bootstrap the computer.DRTM implements protection against software-based attacks by ensuring that the pieceof code requested to execute has exclusive control over the computer. When a privilegedsoftware requests launch of a piece of code in a DRTM, it invokes a dedicated CPU instruction(SKINIT for AMD-based CPU or SENTER for Intel-based CPU), providing a memory addresswhere a piece of code resides. The trusted DRTM firmware (a CPU’smicrocode implementingthe DRTM launch) disables direct memory access (DMA), interrupts, and debug capabilities.It halts all CPU cores except the main one [45, 184] that will execute the requested piece ofcode. It also initializes dynamic PCRs, a dedicated set of PCRs storing DRTM measurements,to which it sends the integrity measurements of the piece of code to be executed. Eventually,this piece of code executes in a clean environment with full control over hardware.DRTM relies on the TPM to store integrity measurements of the measured execution en-vironment and to report them to a remote party interested in the proof of the load-time in-tegrity of the code executed in DRTM. The TPM supports DRTMwith a custom set of registerscalled dynamic PCRs. These registers extend the standard PCR functionality with authoriza-tion of who and when can reset or extend the dynamic PCR. Specifically, the dynamic PCRscan be reset in runtime only by the trusted DRTM firmware.TheDRTM is implemented in Intel andAMDcommodity CPUs under the names Intel trustedexecution technology (TXT) [87] and AMD secure virtual machine (SVM) [3], respectively.Nowadays, DRTM is utilized by the cloud management software [128] to securely load a hy-pervisor irrespective of the trustworthiness of the firmware [127] or, as demonstrated by re-searchers, to run a single application in isolation from firmware and operating system [184].
2.2.5 Operating System’s Runtime Integrity Measurement and Enforcement

The Linux integrity measurement architecture (IMA) [225] is the implementation of the in-tegrity measurement architecture [89] proposed by the Trusted Computing Group [256].IMA extends the functionality of the measured and secure boot to the operating systemlevel. Specifically, IMA, which forms part of the kernel, measures and, optionally, enforcesfiles’ integrity before they are loaded to the memory during the operating system’s runtime.It also integrates with the TPM for auditing purposes.

17

2 Background

check 
signature

✓ accept ε

×
IMA appraisal

memory Ω
ε

ε ∈ Ω ∧ ψ ∉ Ω
TPM certifies:TPM

trust ?εexec ε load ε

trust ?ψexec ψ check 
signature reject ψ

kernel

Legend
data flow
record measurement in TPM
executables
trusted (measured boot)
adversary

Figure 2.4. Integrity measurement architecture (IMA) is part of the kernel. It approves software toexecute and provides reporting functionality to verify what software has been executed since theload of the kernel.

Auditing

The auditing is realized by maintaining a tamper-proof file called IMA log storing integritymeasurements of all files loaded to the memory since the load of the kernel. This file, theintegrity of which is certified by the TPM, can be transferred to an external entity as proofthat the kernel launched only expected software, i.e., executable, configuration files, dynamiclibraries. The tamper-proof property of the IMA log is maintained using a dedicated formatwhere a hash of each new entry is extended to the PCR, as depicted in Figure 2.3. Eachentry in the IMA log represents a single integrity measurement corresponding to a file (aconfiguration file, executable, or dynamic library) loaded by the kernel to the memory. Theintegrity of the IMA log file is verifiable by recalculating the integrity hashes over consecutiveentries and comparing the result with the PCR value certified by the TPM. Any tampering withthe IMA log, such as modifying the entry content, adding, removing, or reordering entries, isdetected.
Integrity enforcement

The IMA implementation in the Linux kernel comes with a built-in integrity enforcementmechanism called IMA-appraisal [101]. It ensures that the kernel loads only software whoseintegrity is certified with a digital signature. Figure 2.4 shows how the mechanism works.IMA reads the digital signature corresponding to the given executable from the file systemand verifies that the cryptographic hash over the executable (integrity measurement) matchesthe original integrity measurement signed by the trusted party. Typically, the owner of therunning operating system digitally signs only these files which he trusts to be correctly imple-mented software and configuration. For example, he would typically trust files that: (i) orig-inate from trusted places like the official Linux git repository, (ii) pass security analysis likefuzzing [281], and (iii) were generated using compilation techniques preventing the exploita-tion of memory vulnerabilities. Such techniques include compiling source code as position-independent executables together with stack-smashing protection as done with packages ofthe Alpine Linux [7].
2.2.6 TPM Alternatives to Boot Code Integrity Protection

Although the TPM standard is widely available in server and desktop computers, it suffersfrom limitations that led to the development of alternative technologies used to protect theboot integrity of computers in cloud data centers.The first problem (P1) is that the TPM is a passive device and, as such, cannot verify thefirst boot code integrity, so-called the core root of trust for measurements. Consequently, an

18

2 Background

adversary who successfully attacks the supply chain [220] or has physical access to the com-puter gains control on the first boot code initializing the computer. Like this, he can mitigatethe secure boot process to load an arbitrary, vulnerable operating system. The TPM doesnot help to detect the attack because it explicitly trusts the first piece of code, i.e., the firstmeasuring agent, starting the measured boot.A second problem (P2) with the TPM is that it is vulnerable to simple hardware attacks [272,270, 163, 142] because a discrete TPM chip communicates with the CPU via a communicationbus accessible to an adversary with physical access to the computer. Consequently, an ad-versary can tamper with the TPM by resetting it and replaying arbitrary measurements, over-coming the trusted boot protection used by BitLocker or Linux unified key setup (LUKS) [28].Cloudproviders addressed these problemsby introducing dedicated hardware-based pro-tection integrated directly in the processor (Microsoft Pluton) or as discrete hardware (GoogleTitan, Amazon Nitro).
Microsoft Pluton

Microsoft Pluton is an intellectual property (IP) security subsystem integrable with systemon chip (SoC) [241]. It provides hardware security features, such as hardware root of trust,random number generator, cryptographic functions implementation and their accelerators,system identity, and hardware-based attestation. The Pluton addresses P1 because it is thefirst processor coming out of reset that initializes other SoC components after it successfullyboots with the boot code loaded from the on-chip ROM. Internally, Pluton offers secure stor-age for integrity measurements and cryptographic keys to remotely attest to the measuredsoftware’s integrity – a functionality similar to the TPM. Because Pluton is directly integratedinto the SoC, it prevents simple hardware attacks, addressing P2. Moreover, Pluton emulatesthe TPM allowing computers not equipped with the TPM to leverage Pluton directly. Plutonis used to protect Microsoft Windows personal computers [268], the Azure cloud, and IoTdevices [241].
Google Titan

Google protects the boot integrity of computers by building the Google Cloud Platform witha dedicated, purpose-built chip called Titan [227]. Titan’s main goal is to ensure the integrityand authenticity of the first boot code loaded on the computer. To achieve this, it interposesthe communication between the CPU and the flash memory containing the boot code. Itverifies the authenticity and integrity of the boot code using public-key cryptography. Onlywhen the boot code is valid, Titan allows the rest of the machine to come out of reset. Titanaddresses P1 but does not address P2. This is because Titan focuses on usability: It can beeasily integrated with existing CPUs, although it lacks protection against hardware attacks.This is a reasonable approach because Titan is a proprietary solution dedicated to protectthe Google’s data center from software-level attacks or attacks from peripheral devices, whilehardware attacks are mitigated with access control mechanisms at the data center level.
Amazon Nitro

The Amazon cloud builds on the Amazon Nitro architecture, which decomposes the hyper-visor functionality into i) hardware-assisted services implemented on dedicated peripheralcomponent interconnect express (PCIe) cards, ii) a small software hypervisor performing

19

2 Background

memorymanagement, CPU scheduling, error handling, and iii) a security chip providing hard-ware root of trust.The security chip is integrated into the motherboard and traps all communication to non-volatile memory [102]. It prevents arbitrary changes to the memory storing the boot codeand only allows updates originated via the Nitro PCIe card. The security chip supports secureboot and measures the integrity of firmware, comparing it with the whitelist measurementsstored in the security chip [102]. The security chip addresses P1. Due to the lack of publiclyavailable technical details, it is hard to reason what security guarantees are offered againsthardware attacks.

2.3 Trusted Execution Environment

Trusted execution environment (TEE) is a mechanism that aims at creating dynamically dis-joined isolated execution environments, commonly referred to as enclaves, on the same com-puting resources. Unlike the process isolation mechanism provided by the operating sys-tem or virtual machine isolation mechanisms provided by the hypervisor and hardware, TEEpromises strong confidentiality and integrity guarantees to an application executing insidethe enclave in the face of the untrusted operating system, hypervisor, system administrator,and peripheral devices with direct memory access.Different TEE implementations exist. They differ in terms of offered security guarantees,the trusted computing base (TCB) size, performance, and the presence of certain securityfeatures, like remote attestation. In general, we can partition existing TEEs into ones thatisolate a single process and the ones that isolate the entire operating system executing in avirtual machine.The most known representative of the first group is Intel software guard extensions (SGX),a hardware-supported TEE mechanism present in modern Intel CPUs. This is also the TEEmechanism that I describe in more detail in this chapter because it is the TEE on which Iheavily rely in the rest of our work. Other TEEs that fall into this category are TIMBER-V [265],Sanctum [46], MultiZone [104].On the other spectrum, AMD secure encrypted virtualization (SEV) [116], Intel trust do-main extensions (TDX) [123], and IBM protected execution facility (PEF) [105] all allow fora complete virtual machine to be run inside an enclave. Their main advantage is that theytransparently support running legacy applications in virtual machines requiring zero sourcecode changes while protecting against the hypervisor and its operator. Compared to TEEsisolating a single process, they have much higher TCB because the entire operating systemrunning inside the virtual machinemust be trusted. Consequently, solutions relying on theseTEEs require TCTs mechanisms to enable the auditing and enforcement mechanisms of theruntime operating system integrity.

2.4 Intel SGX

Intel software guard extensions (SGX) [45, 185] is a TEE mechanism implemented on IntelCPUs, starting from the Skylake microarchitecture introduced in 2015. It permits the execu-tion of a single process inside an enclave. Still, it requires an operating system to maintainthe enclave’s lifecycle and manage the computing resources shared with other processesand peripheral devices. SGX operates under a threat model where supervisor software, i.e.,

20

2 Background

firmware, operating system, as well as a system administrator with physical and root accessto the computer and peripheral devices are untrusted.More formally, Intel SGX is an extension of the x86_64 architecture. It introduces newinstructions required to command the CPU tomanage the enclave, i.e., allocating a dedicatedprotectedmemory region, copying initial enclave code to that memory region, measuring theinitial code, switching context to and from the enclave, sealing data, paging, and generatinga cryptographical proof of the enclave’s identity for remote attestation.Virtually, an SGX enclave execution is similar to regular process execution. The enclaveexecution thread is interruptible and preemptible, allowing the operating system to retaincontrol over the CPU time scheduling and resource allocation, including enclave creation,destruction, and memory swapping. The Intel SGX design ensures that the enclave codeand data are isolated from other software, including during the enclave execution. The CPUguards access to the protected enclave memory, allowing only the enclave thread executedby the logical CPU in a dedicated CPU mode, called enclave mode, to access the protectedmemory regions containing the enclave’s own code and data.
2.4.1 Security Guarantees

SGX protects both confidentiality and integrity of the application’s code and data againstsoftware attacks launched from privileged software and other applications executing on thesame computing resources. The data confidentiality, integrity, and freshness are guaranteedduring runtime and at rest when the data resides in untrusted memory, such as DRAM or ahard drive. In such situations, the CPU cryptographically protects the data before it leaves theCPU package. SGX detects tampering with the enclave’s memory and prevents it or abortsthe enclave’s execution [185] once the tampering is detected. It is the enclave’s responsibil-ity to properly sanitize untrusted input received from the operating system to prevent Iagoattacks [39, 48].
Trusted Computing Base

The SGX design aims to minimize the TCB size. The application owner must trust the In-tel CPU’s, the SGX implementation, and that his own application implementation is free ofmemory-corruption vulnerabilities. The kernel, user space applications, systemmanagementmode (SMM), virtual machine monitor, and any other software and hardware are considereduntrusted. However, the operating system is essential from the enclave’s point of view. It con-trols the enclave’s lifecycle and access to computing resources and external devices. Thus,the enclave’s availability, which is out of the scope of the Intel SGX threat model, depends onthe trustworthiness of the operating system and system operator.
Memory Protection

SGX defines a dedicated memory region, called processor reserved memory, to which theCPU guards access. Inside this memory region, the CPU implements the enclave page cache(EPC) which stores the enclave’s code and data as well as SGX-specific structures [185]. Cru-cially, only enclaves can access this memory region; CPU denies access attempts from anyother software, even the most privileged ones on the x86 architecture, like SMM, and fromperipheral devices. Because the size of the EPC memory is limited, the operating system can

21

2 Background

evict EPC pages to the untrusted memory, like DRAM. Even in this situation, SGX maintainsthe confidentiality, integrity, and freshness guarantees because the pages leaving the EPCmemory are encrypted by the CPU, and only this specific CPU can decrypt them when theyare moved back from the untrusted memory into the EPC. The memory encryption engine,which is part of the CPU chip, implements the SGX memory protection mechanism.
Load-time and Runtime Integrity

SGX measures the application’s load-time integrity and ensures that the enclave’s memorycannot be modified by hardware or software outside the enclave’s trust boundary [185].However, SGX does not protect against flows in the application’s implementation. An ad-versary can exploit memory corruption vulnerabilities leading to control flow hijacking ortampering with the enclave’s memory. In such a case, the SGX will attest to the enclave’sintegrity with the enclave’s load-time integrity measurement that does not correspond tothe enclave’s runtime integrity. These attacks do not break the SGX threat model becauseit is the application’s owner’s responsibility to protect the application’s implementation withtechniques described in subsubsection 2.2.1. This is the same assumption as in TCTs, andmost of the already mentioned mitigation strategies can be used to protect the enclave’scode.
Side-channel and Hardware Attacks

SGX is vulnerable to side-channel and microarchitectural attacks [260, 231, 261, 262, 189,237] that violate the SGX confidentiality guarantees. Amalicious application sharing the samecomputing resources (CPU caches, CPU cores) as the victim application can learn some in-formation by exploiting side-channels, like cache access latency or transient execution. Themicroarchitectural attack allows the data in caches to be speculatively accessed before theCPU determines lack of permissions [260].
2.4.2 Enclave Initialization and Execution

The operating system initializes the enclave by requesting the CPU to copy the enclave codeand data from untrusted memory to the EPC pages. Once all enclave pages are copied, theenclave initialization is finished. The CPU disables any further ability to add new EPC pagesand measures the application’s integrity. The resulting hash is later used to certify the load-time integrity of software executing inside the enclave.The operating system controls the enclave’s lifecycle. It executes a dedicated CPU instruc-tion to switch the context to a protected mode in which the control flow is switched to theenclave code and state. It can interrupt the enclave’s execution at any time, causing contextswitch from the enclave mode back to the userspace and kernel mode. With the help of ad-ditional instruction, the operating system can evict the enclave’s memory pages to the disk,restart the enclave execution, or destroy it.
2.4.3 Remote Attestation

The SGX attestation is a protocol in which another software or application’s owner (verifier)ensures that the application runs inside an enclave on the SGX enabled platform. The ap-

22

2 Background

plication running inside the enclave generates a report using secure hardware, an Intel CPUwith SGX extension, which the verifier uses as proof that the expected application executesinside the enclave. The SGX local attestation defines a procedure in which one application en-sures that the application runs inside an enclave on the same CPU and has a specific enclavehash measurement (MRENCLAVE). Similarly, SGX remote attestation is a protocol where oneapplication learns that another application with specific MRENCLAVE runs inside an enclaveon a different genuine Intel CPU.During the enclave initialization, the CPU cryptographically hashes the enclave code anddata copied to EPC pages to obtain the MRENCLAVE. Once the initialization process is fin-ished, the CPU calculates the final hash representing the initial enclave state loaded to theEPC memory. This hash is used later during the attestation to prove to another entity theload-time integrity and identity of the application executing inside the enclave.At a high level, the SGX remote attestation involves three parties: (i) the remote verifierwilling to establish trust with his application executing in an enclave, (ii) the to-be-attestedapplication executing inside an enclave, and (iii) a privileged quoting enclave implementedby Intel that signs the attestation report. First, the remote verifier sends a challenge to theapplication, i.e., a unique random nonce that is used to ensure the liveness. Second, the ap-plication executing inside the enclave generates a manifest that includes this challenge andan individually generated public key. Third, it passes the hash over the manifest to the CPU,which knows the identity of the enclave, and generates the attestation report that includesthe enclave’s hash and the hash of the manifest. Finally, the application forwards the reportto the quoting enclave, a privileged enclave implemented by Intel that executes on the sameCPU and has access to the attestation key. The quoting enclave verifies that the report be-longs to an enclave executing on the same CPU and signs the report using an attestationkey. Eventually, the application sends back the report to the remote verifier, who validatesthe report’s signature and integrity and finally compares the challenge to ensure freshness.Once complete, the verifier can establish secure communication with the enclave becauseit has the enclave’s public key, and only the enclave knows the corresponding private keycryptographically protected by the CPU.Each Intel CPU has unique secrets fused in one-time programmable memory during themanufacturing time. These secrets are indirectly used to obtain an attestation key from theremote Intel’s provisioning service, and the attestation key is then used to sign the attestationreport. In more detail, Intel provides a dedicated privileged enclave, called provisioning en-

clave, that retrieves the provisioning key derived from the CPU secrets. This enclave identifiesitself with the help of the provisioning key to a remote Intel service, called Intel attestationservice (IAS) [133], and receives back the attestation key. IAS can verify that it communi-cates with the legitimate provisioning enclave because (i) only the provisioning enclave hasaccess to the provisioning key derived from the hardware-based provisioning key derivationprocess, and (ii) Intel stores part of the CPU secrets inside a database allowing derivationof the same provisioning key. The provisioning enclave shares the attestation key with thequoting enclave using dedicated sealing keys, which allow the migration of secrets betweenenclaves. For more details, I refer the reader to the official Intel documentation [133, 129]and research papers [45, 9].
2.4.4 Sealing

SGX offers a sealing [9] property that permits confidential data to be stored in the untrustedmemory, e.g., a hard drive, while maintaining confidentiality and integrity guarantees. The

23

2 Background

SGX sealing operation encrypts and signs the data leaving the enclave using a cryptographickey that is specific to the enclave and the CPU. Thus, only the same enclave running on thesame CPU can read the data.

24

3 High-assurance Security Systems
Integrity Monitoring and
Enforcement

3.1 Problem Statement

High-assurance security systems [76, 58, 159] leverage trusted execution environments (TEEs) [45,169, 172] because TEEs offer strong integrity and confidentiality guarantees in the face of un-trusted privileged software, i.e., firmware, hypervisors, operating system, and administrators.However, applications executing in a TEE cannot exist without the privileged software (oper-ating systemor hypervisor) thatmanages the computing resources and controls applications’life cycles. Thus, a trustworthy operating system is an essential element of each high-assurancesecurity system because it guarantees its safety and security. Otherwise, an untrustworthyoperating system might run malware that halts the victim application or steals secrets fromthe TEE via side-channel attacks [260, 277], as depicted in Figure 3.1. Germany introducedregulations requiring high-assurance security systems in the eHealth domain [76] to executeinside TEE on a trustworthy operating system [77]. State-of-the-art mechanisms to attestto the operating system’s trustworthiness rely on the trusted platform module (TPM) [90],a secure element storing and certifying integrity measurements of firmware and operatingsystem. Unfortunately, the TPM is vulnerable to the cuckoo attack (a.k.a relay attack) [205, 53]that makes the TPM attestation untrustworthy. We propose a novel defense mechanismagainst the TPM cuckoo attack, and we implement it as part of the framework responding tothe German eHealth systems regulations [77].The integrity measurement architecture (IMA) [89] and the dynamic root of trust for mea-surements (DRTM) [235] are state-of-the-art mechanisms providing operating system in-tegrity auditing and enforcement. The DRTM securely loads the kernel to the memory, andIMA, which is part of that kernel, ensures that the kernel loads only software whose integrityis certified with a digital signature. Both technologies, when used together, ensure the load-
time integrity of the kernel and software loaded to the memory during the operating systemruntime. Specifically, the DRTM, a hardware technology implemented in the CPU, stops allcores except one, disables interrupts, measures the to-be-loaded kernel, and executes thekernel with the IMA integrity enforcement mechanism. IMA restricts software loaded to the

25

3 High-assurance Security Systems Integrity Monitoring and Enforcement

vector attack: 
side-channels, resource 
management, etc.

encrypted data

trusted 

data

CPU caches

key observation:
 ε ∈ Ω ∧ ψ ∈ Ω

ε

ψ

 Ω Legend
data flow
executables
adversary
attack vector
trusted (SGX)
untrusted

operating system main memory

high-assurance
security system ε

 malware ψ

Figure 3.1. An adversary must run arbitrary software to mount a software side-channel attack thatcan compromise the confidentiality guarantee of Intel SGX.
memory by reading the digital signature corresponding to the given software from the filesystem and verifying that this software’s integrity measurement (a cryptographic hash overits binary) matches the original integrity measurement signed by a trusted party (Figure 2.4).Thus, only software certified by a trusted party can be loaded to the memory by the kernel.The TPM enables auditing of the kernel and software integrity because DRTM and IMAstore corresponding integrity measurements in the tamper-proof TPM memory. The TPMthen certifies the stored measurements to a verifier accordingly with the TPM remote attesta-

tion protocol. However, the TPM remote attestation is prone to the cuckoo attack, which isa security issue for TPM-based systems [80, 155, 38] 6. In this attack, an adversary certifiesthe software integrity of the underlying computer using certified measurements of anothercomputer (see Figure 3.2). A verifier connects to the compromised computer and commu-nicates with the TPM to check the computer software integrity (➊). The adversary preventsthe verifier from accessing the local TPM by redirecting communication to a remote TPM (➋).Consequently, the verifier reads the remote TPM, which attests to an arbitrary, trustworthystate (➌), not the state of the compromised computer accessed by the verifier.The existing defenses against the cuckoo attack have limited application in real-world datacenters (DCs). The first approach relies on the time side-channel [67, 234] in which a remoteTPM is unmasked by observing increased communication latency. This approach requirescalculation of hardware-specific statistics, is prone to false positives because the high TPMcommunication latency (including signature generation) makes the distance bounding infea-sible [205, 155], and requires stable measurement conditions in which extraneous operatingsystem services are suspended during the TPM communication [67] — impractical assump-tions for real-world DCs. Flicker [184] adapts another approach. It exploits DRTM to run anapplication in isolation from the untrusted operating system, allowing it to communicate withthe TPM directly. Flicker is insufficient for the targeted systems like [76] because i) it doesnot attest to the computer location, making the DRTM attestation untrustworthy because ofsimple hardware attacks [272] and cold-boot attacks [100] and ii) while it permits to split ap-plications in multiple services that run isolated, it does not support systems with moderatethroughput and latency requirements. In more detail, DRTM provides isolation in which theentire CPU executes only a single service at a time and a single context-switching takes 10-100s of milliseconds [184, 183]. It results in an estimated program execution’s throughputof about 1-10 requests per computer per second when running multiple eHealth services,like [77]. A practical solution requires that hundreds of services are processed in parallel percomputer. We require an improvement of at least one order of magnitude in throughputcompared to Flicker. Other approaches [51, 52] fall short in the context of the TPM becausei) the TPM is a passive device controlled by software that could counterfeit its communica-
6Please note that this attack is also valid for integrated TPMs and firmware TPMs because the communicationto the TPM is still routed via untrusted code

26

3 High-assurance Security Systems Integrity Monitoring and Enforcement

machine controlled by the adversary legitimate machine

verifier verifier requests the TPM
quote of a local TPM

redirects request
to a remote TPM

remote TPM certifies a 
remote machine

>_ malicious 
 TPM driver>_ TPM1 2 3

Legend
communication handled by OS
data flow

>_ proximity verification
trusted
untrusted (subject of attestation)

Figure 3.2. The cuckoo attack. The verifier connects to the compromisedmachine (left) and reads theTPM quote to verify its integrity. The quote is, however, retrieved from the remote TPM attached to alegitimate machine (right). The verifier cannot distinguish if the quote comes from the TPM attachedto the local or remote machine.
tionwith external devices and ii) theywould require human interaction during each computerboot.The limitations of the existing solutions motivate us to propose a new automatic, prac-tical at the data center-scale defense mechanism that deterministically detects the cuckooattack and allows for the processing of parallel requests. We demonstrate that despite thedifferences in their threat models and designs, TEE and TPM-based techniques complementeach other, allowing for mitigating the cuckoo attack. Consequently, high-assurance secu-rity systems executing inside TEE can attest to the operating system integrity. Our solutionbuilds trust in a remote computer starting from a piece of code executing inside the TEE,and then systematically extend it to the entire operating system. First, we leverage TEE tosettle a trusted piece of code on an untrusted remote computer. We use it to verify that thecomputer is in the correct DC and mitigate the cuckoo attack. This allows us to extend trustto the TPM, then to the loaded kernel and its integrity-enforcement mechanism and, finally,to software being executed during the operating system runtime.We implement this approach in an integrity monitoring and enforcement framework calledCHORS 7, which ensures that high-assurance security applications execute on correctly initial-ized and integrity-enforced operating system located in the expectedDC. The high-assurancesecurity systems conform to the TEE threat model, while they gain operating system integrityguarantees under a less rigorous threat model typical for TPM-based systems. We performsecurity risk analysis related to the use of these techniques in §3.7.

3.2 Contribution

In this chapter, wemake the following contributions: (i) We designed and implemented an in-tegrity monitoring and enforcement framework called CHORS that i) attests to the operatingsystem trustworthiness (§3.1,§3.4), ii) defends against the cuckoo attack (§3.6.1, §3.6.2), iii)provides a reliable approach to estimate the geolocation of physical servers beyond the sim-ple TPM geo-tagging (§3.5.3), iv) provides local attestation, allowing decentralization of themonitoring system (§3.5.1, §3.5.4), v) the service itself can be remotely attested (§3.6.4), vi)verifies the compliance of provisioned resources with a given policy (§3.5.2, §3.5.4). (ii) We as-sessed the security risk of CHORS (§3.7). (iii) We demonstrated CHORS protecting a real-worldapplication in the eHealth domain (§3.8.1). (iv) We evaluated its security and performance(§3.8).

7In the Slavic mythology, Chors is a Slavic god of sun, sometimes interpreted as a moon god [79].

27

3 High-assurance Security Systems Integrity Monitoring and Enforcement

3.3 Threat Model

We adopt the threat model of organizations, such as governments, banks, and health, legallybound to protect the security-sensitive data they process. In particular, we assume theyexecute high-assurance security systems in their own DCs or in the hybrid cloud in whichsecurity-critical resources are provisioned on-premises. This implies limited andwell-controlledaccess to DCs, allowing us to assume that an adversary, e.g., a rogue operator, cannot per-formphysical or hardware attacks. To ensure that a high-assurance security system executesinside the DC, we only presume that dedicated computers, called trusted beacons, are locatedinside that DC and cannot be physically moved outside (§3.5.3).Initially, we only trust the CPU (including its hardware features TEE and DRTM) and a smallpiece of code (the agent). Using the TEE attestation protocol, we ensure that the legitimateagent executes inside the TEE on a genuine CPU on some computer. Then, we use the agentto verify that the computer is located in the correct DC by measuring the proximity to thetrusted beacon via a round-trip time distance-bounding protocol. Once we ensure that theagent runs in the expected DC, we use it to establish trust with the local TPM with the help ofour protocol formally proved to be resistant to the cuckoo attack [203]. At this point, we usethe TPM to extend the trust to the kernel and its built-in integrity-enforcement mechanism,IMA. Eventually, we use IMA to expand trust to the software loaded during the operatingsystem runtime.High-assurance security systems executing inside the TEE follow the TEE threat model,
i.e., operating system, firmware, other software, and system administrator are untrusted.The additional guarantees of the operating system integrity follow the threat model of TPM-based systems, i.e., software whose integrity is enforced at load-time behaves in a trust-worthy way also during its execution. The runtime integrity of the process can be enforcedusing existing techniques, such as control-flow integrity enforcement [143], fuzzing [281],formal proofs [287], memory-safe languages [180], or memory corruption mitigation tech-niques (position-independent executables, stack-smashing protection, relocation read-onlytechniques). Please note that many of these techniques are applied nowadays by defaultduring the software packaging process, as in the case of Alpine Linux [7].We assume a financially or governmentally motivated adversary who might gain root ac-cess to selected computers inside a DC by exploiting network or operating systemmisconfig-urations, exploiting vulnerabilities in the operating system, or using social engineering. Hergoal is to extract security-sensitive or privacy-sensitive data, e.g., personal data, credentials,or cryptographic material. She can stop or halt individual computers or processes, but shecannot stop all central monitoring service instances responsible for reporting security inci-dents.We consider an untrusted network where an adversary can view, inject, drop, and altermessages. She can call the API with any parameters and configure the routing, forcing pack-ages to choose faster or slower routes. Our network model is consistent with the classicDolev-Yao adversary model [56]. We rely on the soundness of the employed cryptographicprimitives used within software and hardware components.

3.4 Design Decisions

Our objective is to provide a design that:

28

3 High-assurance Security Systems Integrity Monitoring and Enforcement

node

notifyaggregator (e.g., a database)

driver

TPM

. . .

verification
pull

IMA

agent

ε
node

driver

TPM

IMA

agent

node

driver

TPM

IMA

agent

’ε ’’ε

Legend

ε

security officer
data/communication flow
security-sensitive software
trusted (root of trust)
initially untrusted  
(subject to attest.)
adversary

Figure 3.3. The architecture of existing integrity monitoring systems. The security officer uses amonitoring system to verify that high-assurance security systems execute on hosts running trustedsoftware.
• enforces that only trusted software is executed on a computer;
• monitors the remote computer operating system to verify compliance to integrity re-quirements;
• allows high-assurance security systems to get insights into the operating system in-tegrity.

We start by introducing the existing integrity monitoring systems architecture [125, 111,128] and adjust it to meet the security guarantees required by high-assurance security sys-tems. Figure 3.3 shows the integrity monitoring architecture where a central server pulls in-tegritymeasurements from computers by communicating with dedicated software, the agent.The agent on each computer collects data from the underlying security and auditing subsys-tems that measure and enforce the operating system’s integrity. Central servers aggregatethe data in databases, verify it against whitelists, and notify the security officer about integrityviolations. Such architecture relies on the TPM as a root of trust.
Enforce the load-time integrity with secure boot and operating system integrity
enforcement.

Secure boot [269] is the state-of-the-art technology to enforce that only trusted softwarebootstraps a computer. It relies on the chain of trust where each component measures theintegrity (calculates a cryptographic hash) of the next component and executes it only if thehashmatches a corresponding digital signature. Themeasured boot [254, 255] complementsit by storing hashes in the TPM, thus enabling auditing.The integrity measurement architecture (IMA) [225, 89] extends the functionality of mea-sured boot and secure boot to the operating system level. IMA is part of the kernel andverifies all files’ integrity (i.e., executables, configuration files, dynamic libraries) before theyare loaded to the memory. In particular, IMA-appraisal [101] enforces that the kernel loadsfiles whose hashes are certified with digital signatures stored in the file system (Figure 2.4).The application execution is halted until a dynamic library is loaded, and fails if the library failsthe integrity check. IMA enables auditing by maintaining an IMA log, a dedicated file storinghashes of all files loaded to the memory since the kernel load. It adds each file to the IMA logand stores a hash over it in the TPM before the file is loaded to the memory. Any tamperingof the IMA log is detectable because the IMA log’s integrity hashmust match the value storedin the TPM.

29

3 High-assurance Security Systems Integrity Monitoring and Enforcement

Enable remote attestation to prove that secure boot and integrity enforcement are
enabled.

The TPM remote attestation protocol [91] delivers a technical assurance of the computer’sintegrity. The TPM chip digitally signs a report (quote) certifying hashes recorded since thecomputer boot. The hashes reflect loaded firmware and kernel and prove that integrity en-forcement mechanisms are enabled. The verifier can check that the quote has not beenmanipulated because the TPM signs the quote with a signing key that is embedded in theTPM and linked to the certificate authority (CA) of the TPMmanufacturer. However, the mon-itoring system cannot merely rely on the TPM attestation protocol because the protocol isvulnerable to the cuckoo attack [205]. It is indistinguishable whether an untrusted operatingsystem proves its integrity presenting a quote from a local TPM or impersonates a trustwor-thy operating system presenting a quote from a remote TPM.
Detect the cuckoo attack by authenticating the TPM with a secret random number.

The monitoring system must ensure that the quote originated from the local TPM, i.e., theTPM that collected integrity measurements from the software components that booted theoperating system on the underlying computer. We propose to extend the agent with thefunctionality of checking that it communicates with the local TPM. The general idea consistsof sharing a randomly generated secret φ with the local TPM to identify it uniquely and thenuse the secret to authenticate the TPM (Figure 3.4). The main challenge is how to generatea secret and share it with the local TPM without revealing it to the adversary. Otherwise, theadversary can mount the cuckoo attack by sharing it with a remote TPM.
Protect the secret in the TPM by relying on the one-way cryptographic hash function.

The TPMcontains dedicatedmemory registers, called platform configuration registers (PCRs),that have important properties; they cannot be written directly, but they can only be ex-tended with a new value using a cryptographic one-way hash function. The operation canbe expressed as: PCR_extend(n,value): pcr[n] = hash(pcr[n]||value). We propose to extend thesecret φ on top of the existing measurements stored in the PCR to achieve the followingproperties: (i) an adversary cannot extract the secret from the PCR value after the secretis extended to the PCR because the hash function result is not invertible; (ii) an adversarycannot reproduce the PCR value in another TPM without knowing the secret, or finding acollision in the hash function; (iii) after extending the TPM with the secret, the secret is nolonger needed to identify the TPM because the PCR value extended with the secret is unique.
Leverage DRTM technology to provide a trusted and measured environment to
access the local TPM.

We must ensure that the secret is shared with the local TPM securely. We do it in a trustedenvironment established by hardware technologies available inmodern CPUs because thesetechnologies also permit verification of the established execution environment’s load-timeintegrity. Therefore, they allow detecting (post-factum) any secret extraction attempt, in-cluding software side-channel attacks, because such attacks require violating the kernel orinitramfs load-time integrity.

30

3 High-assurance Security Systems Integrity Monitoring and Enforcement

initramfs

operating system

firmwarei-1

firmwarei TPM

se
cu

re
 b

oo
t

PCRS = ℏ(ℏ(ℏ(ℏ(…) | |σi) | |σbl) | |ϕ)

σbl

agent
PCRs = ℏ(… ∥ ϕ)?

ϕ agent secret ϕTP
M

dr

iv
erbootloader

σi

DRTM launch

TP
M

dr

iv
er

Legend
communication with TPM
store the measurement
boot order flow
hash function
trusted (root of trust)
trusted (SGX)
initially untrusted

σinitramfs

PCRD = ℏ(ℏ(…) | |σinitramfs) PCRD = ℏ(… ∥ σinitramfs)?

Figure 3.4. Defense against the cuckoo attack. The agent shares with the TPM a randomly generatedsecret φ, which is used later to authenticate the TPM. Platform configuration register (PCR) is TPMtamper-resistant memory.
We propose generating the secret and extending it to PCRs inside the initramfs8 becauseDRTMallows for later verification of the kernel and initramfs integrity. Specifically, theDRTM [235],which is a hardware technology that establishes an isolated execution environment to runcode on a potentially untrusted computer, can be used during the boot process (i.e., bytboot [127]) to provide a measured load of the Linux kernel and initramfs.The integritymeasurements performedbyDRTM cannot be forged because the TPMoffersa dedicated range of PCRs (dynamic PCRs) that can only be reset or extendedwhen the TPM isin a certain locality [132]; Only the code executed by DRTM can enter such locality. Therefore,the presence of measurements in dynamic PCRs confirms that the DRTM was executed, andthe comparison of PCRs with the golden values confirms that the secret was shared with thelocal TPM because the correct TPM driver was used.

Leverage Intel SGX to transfer the golden TPM PCR value to the operating system
runtime securely.

Once the secret is shared with the TPM, we must expose the unique local TPM’s identifier(PCR value extended with the secret) to the agent running in the operating system. To doso, we leverage Intel software guard extensions (SGX) [45], a hardware CPU extension thatprovides confidentiality and integrity guarantees to the code executed in so-called enclavesin the presence of an adversary with root access to the computer. It offers a sealing [9]property that permits storing a secret on an untrusted disk where only the same enclaverunning on the same CPU can read it. The sealing and its revert operation unsealing use aCPU- and an enclave-specific key to encrypt and sign data in untrusted storage. We proposeto communicate with the TPM from the inside of an enclave. First, the enclave executes in theinitramfs where it shares a secret with the local TPM and seals the expected value of the TPMPCR to the disk. Then, it executes in the untrusted operating system, where it authenticatesthe TPM using the PCR value unsealed from the disk.
Leverage the SGX local and remote attestation to expose integrity measurements to
the verifiers.

SGX offers local and remote attestation protocols [133]. While both protocols allow verifyingthat the expected code runs on a genuine Intel CPU, the SGX local attestation also permits
8The initramfs is a minimalistic root filesystem that provides a user space to perform initialization tasks, likeloading device drivers, mounting network file systems, or decrypting a filesystem [207], before the operatingsystem is loaded.

31

3 High-assurance Security Systems Integrity Monitoring and Enforcement

two enclaves to learn that they execute on the same CPU. We rely on this property to per-mit high-assurance security systems to establish trust with the agent running on the samecomputer. Like this, high-assurance security systems gain access to integrity measurementsof the surrounding operating system. Similarly, central monitoring services leverage the SGXremote attestation to establish trust with agents.

3.5 CHORS architecture

3.5.1 High-level Overview

Figure 3.5 shows a high-level overview of the CHORS architecture, which consists of five enti-ties. A security officer (➊) uses a controller (➋) to define security policies describing correct(trusted) operating system configurations. The controller communicates with agents (➌) run-ning on every computer to check whether high-assurance security systems (➍) are executedin a trusted environment defined in security policies. Both the controller (➋) and the high-assurance security system executing inside SGX (➍) systematically query the agent to check ifthe operating system’s integrity conforms to the criteria defined inside a security policy. Notethat the integrity measurements are not aggregated or verified centrally. Instead, agents ag-gregate them and verify them locally on computers. Agents verify their location using trustedbeacons (➎), services running in a known geographical location, i.e., specific DCs.We distinguish between two types of verifiers communicating with agents: local and re-mote verifiers. A local verifier is a high-assurance security system that requires strong con-fidentiality guarantees (➍). An example of such a service is a key management system [37,159, 88] that executes inside an SGX enclave to protect integrity and confidentiality againstprivileged adversaries. The local verifier detects violations of the operating system’s integrityby communicating with the agent running on the same host.A remote verifier, e.g., (➋), is an application running on a different computer than the agent.It aims to verify that the remote computer is located in the specific DC and its operatingsystem is in the expected state. Typically, a remote verifier checks the integrity of the dis-tributed system’s deployment, i.e., various services distributed over machines, data centers,and availability zones. The controller has broader knowledge about the network load, ma-chine failures, service migrations, software updates. It helps the security officer to manage

Figure 3.5. CHORS high-level architecture. The agent provides integrity measurements certified bythe local TPM. The agent detects the cuckoo attack. High-assurance security system ε and the moni-toring controller query the agent to ensure the integrity enforcement is enabled, thus, prevent soft-ware side-channel attacks. Agents use the trusted beacon to verify their geolocation.

32

3 High-assurance Security Systems Integrity Monitoring and Enforcement

the deployment while relying on individual services to react autonomously to integrity viola-tions. The controller might be part of the security information and event management (SIEM)system that correlates system behavior to detect multi-faceted attacks [24].
Listing 3.1: Example of the CHORS’s security policy

1 chain: |−
2 −−−−−BEGIN CERTIFICATE−−−−−
3 # TPM manufacturer certificates
4 −−−−−END CERTIFICATE−−−−−
5 whitelist:
6 − pcrs:
7 # secure boot / measured boot, PCRs 0−9
8 − {id: 0, sha256: ff0c...e3}
9 − {id: 3, sha256: e850...3e}
10 # trusted boot (DRTM) PCRs, 17−19
11 − {id: 18, sha256: f9d0...cb}
12 − {id: 19, sha256: a1e7...00}
13 runtime:
14 certificate: |−
15 −−−−−BEGIN CERTIFICATE−−−−−
16 # IMA uses this certificate to verify signatures
17 −−−−−END CERTIFICATE−−−−−
18 software:
19 − name: agent−0.8.0
20 whitelist:
21 840f...72: /bin/agent
22 − name: AppArmour
23 whitelist:
24 # hash of the executable
25 1e73...f6: /sbin/apparmour
26 # hash of the configuration file
27 c39e...34: /etc/apparmour
28 location:
29 − host: https://datacenter:10000/beacon
30 max_latency: 10 # in milliseconds
31 chain: |−
32 −−−−−BEGIN CERTIFICATE−−−−−
33 # TLS certificate chain of the trusted beacon
34 −−−−−END CERTIFICATE−−−−−

3.5.2 Policy

The security officer defines security policies (e.g., Listing 3.1) to declaratively state what soft-ware and dynamic libraries are permitted to run on the computer and what is the properoperating system configuration. He creates distinct security policies for each high-assurancesecurity system. For example, a key management system has a different policy than a systemprocessing medical data because they use different dynamic libraries, software, and operat-

33

3 High-assurance Security Systems Integrity Monitoring and Enforcement

computer

agent

physical isolation

trusted beacon

computer

agent

tend

Δ ≤ λ

inside data center

 latency ≤ λ

outside data center 
latency > λ

Δ > λ

Δ = tstart − tend

delay

tstart…

tend

tstart…

t1t2t3

t4t5t6

Legend

Δ

asymmetric keys and
certificates
network communication

communication latency

subject of attestation via  
measured boot + IMA + TXT
trusted (SGX)
untrusted

Figure 3.6. Trusted beacons. Agents rely on the trusted beacon to check that they are located in theexpected data center. Only machines located inside the same data centers can achieve very lownetwork latency required to prove their proximity.
ing system configurations. The monitoring controller reduces the burden of creating policiesby allowing defining templates that can be combined to build individual policies with over-lapping configurations. For example, services running on the same type of operating systemshare the same template that describes software and configuration specific to that operatingsystem.The agent uses the security policy to verify the operating system’s integrity. The operatingsystem is trusted if and only if the load-time integrity measurements of the kernel and theload-time integrity measurements of files loaded to thememory during the operating systemruntime are declared on the whitelist or their corresponding digital signatures are verifiableusing the certificate declared in the policy.In more detail, the agent uses the TPM manufacturer’s CA certificate chain to verify thatthe TPM chip attached to the computer is legitimate (line 1). The integrity of firmware andits configuration is represented as a whitelist of static PCRs (lines 8-9), while the integrity ofthe Linux kernel and the initramfs is specified as a whitelist of dynamic PCRs (lines 11-12).Trusted configuration files, executables, and dynamic libraries are defined in the form ofhashes (lines 18-27) and a signing certificate (line 14). Software updates are supported viacomplementary solutions [204, 23] and require specification of additional certificate in thepolicy (line 14).
3.5.3 Trusted Beacon

A policy might constrain the computers’ proximity to the well-known trusted beacons de-ployed in DCs (lines 29-34). A trusted beacon is a network service that responds to agents’requests with the current timestamp. The agent can then estimate the physical machine’sproximity by measuring the network communication’s round-trip times. The adversary can-not accelerate network packets enough to achieve a very short round-trip time achievableonly between machines in the same local network.Figure 3.6 shows a high-level view of the trusted beacon proximity verification protocol.The trusted beacon contains the asymmetric keypair with a certificate issued by a trustedauthority, e.g., a DC owner. These credentials, known only to the trusted beacon, prove thatthe DC owner placed the trusted beacon in the DC, and the trusted beacon executes in atrusted environment. The agent establishes trust with the trusted beacon by reading times-tamps signed by the trusted beacon. The agent then estimates the network latency by cal-culating a trimmed mean from the differences between timestamps obtained from pairs of

34

3 High-assurance Security Systems Integrity Monitoring and Enforcement

establishes trust
agent

2
SGX attestation

3

4

deploys 
the 

policy

verifies 
the 

policy

reads integrity 
measurements

1

verifies  
the policy

verifies  
the policy

agent's cache

reads 
measurements

5

TPM + IMA

reads integrity 
measurements

reads integrity 
measurements

 verifier (e.g.,)ε

POST /policy

HTTP 200 ”ok”

{policy_id}
GET /policy/{policy_id}

policy

policy
reads 

measurements

reads integrity 
measurements

Legend

time line

communication flow

subject of attestation via  
measured boot + IMA + TXT
trusted (SGX)

Figure 3.7. CHORS policy verification protocol. The agent maintains a separate thread (agent’s cache)to constantly read the platform’s fresh integrity measurements. Verifiers query the agent in parallelto ensure the compliance of the platform to the policy.
consecutive requests. A trimmed mean allows for tolerating network latency fluctuationsbecause it excludes outliers.Our design does not restrict what security mechanisms must protect the trusted beacon.In particular, the trusted beacon could be a network-accessible hardware security module(HSM) [109] returning signed timestamps. HSM is a crypto coprocessor offering the high-est level of security against software and hardware attacks. It is embedded in a tamperresponsive enclosure to actively detect physical and hardware attacks and protect againstside-channel attacks. A cheaper but less secure alternative might run a TEE-based applica-tion implementing the abovementioned protocol over TLS. Related work [53] demonstratedthat the network communication round-trip time between two SGX enclaves located in thesame network take in average 264μs, a latency not achievable from the outside of the datacenter.
3.5.4 Policy Verification Protocol

We designed the agent to act as a facade between the verifier and the TPM to enable multi-ple verifiers to check the operating system’s integrity concurrently. Figure 3.7 shows how averifier uses the policy verification protocol to attest to the operating system’s integrity. Theagent regularly reads the list of new software loaded by the operating system, the quote,and persists it into the cache that reduces the policy verification latency for future requests(➊). The local or remote verifier perform the SGX local or remote attestation [133] to verifythe agent’s identity and integrity and the CPU genuineness. The local attestation also provesthat the agent runs on the same CPU (➋). Once the verifier deploys the policy (➌), the agentchecks that the computer complies with the policy, stores the policy, and returns the corre-sponding policy_id (➍). The verifier uses the policy_id to re-evaluate the policy during futurehealth checks (➎).

35

3 High-assurance Security Systems Integrity Monitoring and Enforcement

3.6 Implementation

We implemented CHORS on top of the Linux kernel. We use existing integrity enforcementmechanisms built in the Linux kernel, i.e., IMA-appraisal, kernel module signature verifica-tion, and AppArmor. We rely on the support for the secure boot built-in the underlyingfirmware. We developed remote attestation components, i.e., the agent in memory-safe lan-guage Rust [180]. We implemented the cuckoo attack detection mechanism and the policyverification protocol inside the agent. The monitoring controller allows defining policies, ver-ifying the remote computer system’s integrity, and alerting about integrity violations. We relyon the SCONE framework [11] and the SCONE cross-compiler to run CHORS inside the SGXenclave.
3.6.1 Computer Bootstrap

Figure 3.8 illustrates the bootstrap of a computer where the agent collects information re-quired to detect the cuckoo attack. Consecutive unified extensible firmware interface (UEFI)components execute in the chain of trust; their integrity measurements are extended instatic PCRs (➊). UEFI loads the bootloader, which starts the tboot (➋). The tboot leveragesIntel trusted execution technology (TXT) [87, 44]–which implements DRTM on Intel CPUs–toestablish a trusted environment. The tboot measures the integrity of the Linux kernel andinitramfs, extends these measurements to dynamic PCRs (➌), and executes them (➍).The initramfs has two essential properties; its integrity is reflected in dynamic PCRs, andfailures during initramfs execution prevent machine booting. We rely on these properties toverify that the agent completed its execution. We refer to the agent execution inside initramfsas agent initialization (➎).During the agent initialization, the agent requests the TPM to create a new attestation key(AIK), return the TPM’s endorsement key (EK) certificate, and return the quote certifying PCRs(➏). The agent performs the activation of credential procedure ([12] p. 109-111) to verify thatthe AIK was created by the TPM, which possesses the private key associated with the EKcertificate. The agent then obfuscates static PCRs by extending them with a random numbergenerated inside the SGX enclave (➐). To ensure that the obfuscation succeeded and theboot process to continue, the agent reads PCRs again and compares them to the expectedpre-computed hashes. After all, the AIK, the EK certificate, the TPM clock (includes computerreboot counter), and PCRs (original and obfuscated) are persisted in the file system in theSGX sealed configuration file (➑). The initramfs handles control to the operating system (➒),after the agent initialization finishes. The operating system executes the agent together withstartup services. We refer to the agent execution after the operating system executes asagent runtime.
3.6.2 Establishing Trust

During the agent runtime, the agent verifies that there was no cuckoo attack during agentinitialization and agent runtime by ensuring that the following conditions are fulfilled:
Condition 1: the agent is able to unseal the configuration file (➓). Relying on the propertiesof the SGX unseal, we conclude that the configuration file was created by the agent enclaverunning the same binary, and both enclaves were executed on the same SGX processor.

36

3 High-assurance Security Systems Integrity Monitoring and Enforcement

extends  
dynamic  

PCRs

integrity-
enforced

OS

initramfs

agent
runtime

HDD
SGX seal 
config file

SGX unseal

config.file

42 9

TPM
108

tb
oo

t

UE
FI

bo
ot

RO

M

TPM attestation
bo

ot
-

lo
ad

er

3
extends  

static  
PCRs

1

6

extends static PCRs 
with random number ϕ

agent
initialization

5

7

Legend
data flow
boot order flow
subject of attestation via  
measured boot + IMA + TXT
trusted (SGX)
untrusted

Figure 3.8. The platform boot process. To make the cuckoo attack detectable, the agent executestwice. First, in agent initialization, the agent executes in the measured environment where it sharesa secret with the TPM. Second, in agent runtime, the agent establishes trust with the local TPM ordetects the cuckoo attack.
Condition 2: a successfulmatch between dynamic PCRs read from the TPMand the goldendynamic PCRs. It proves that during agent initialization, the agent enclave was executed inthe trusted environment (Linux kernel, initramfs, and correct TPM driver), and it successfullyobfuscated the TPM.
Condition 3: a successful match of static PCRs read from the TPM with obfuscated staticPCRs read from the configuration file. It proves that the configuration file contains the infor-mation gathered earlier from the same TPM.
Condition 4: a successfulmatch of the reboots counter stored in the configurationwith thereboots counter value read from the fresh quote proves that the computer did not rebootsince the agent initialization.Finally, considering conditions 1, 2, 3, 4, and what they indicate once fulfilled, we concludethat the quote was issued by the TPM that collected software measurements during thecomputer bootstrap. [203] formally proves this claim.

3.6.3 Cache Updates

To decrease the policy verification latency, the agent starts a separate thread reading thecomputer state to validate it against future policy verification requests. The agent recurrentlyretrieves the quote and verifies that the quote certifies PCRs values read during the agentinitialization, and it repeatedly reads new events from the IMA log.Hashes of all events are stored in the enclave’s memory, together with the number of bytesread (B), and the last value of IMA PCR (D). To read new events, the agent first retrieves thequote and opens the IMA log file skipping B bytes. It then reads a new event from the file andrecalculates the integrity hash by extending D with the event’s hash. This process is repeatedfor each new event and finishes when the integrity hash is equal to the hash of the IMA PCRretrieved from the quote. If the agent reaches the end of the IMA log and the integrity hashdoes not match the hash in the IMA PCR, it detects the tampering of the IMA log and theoperating system is considered compromised.
3.6.4 Policy Verification

The agent exposes the policy verification functionality via a TLS-protected representationalstate transfer (REST) application programming interface (API) endpoint to simplify the com-

37

3 High-assurance Security Systems Integrity Monitoring and Enforcement

munication interface between verifiers and agents. It is enough for verifiers to check theagent’s identity by verifying its X.509 certificate presented during a TLS-handshake. Currently,TLS credentials are delivered to the agent via a key management system (KMS) [88]. As fu-ture work, the agent will create a self-signed certificate via sgx-ra-tls [149], thus excludingthe KMS from the trusted computing base. The verifier can also rely on the SGX remoteattestation [133] to ensure the agent’s identity and integrity.The agent stores a once deployed policy in the in-memory key-valuemapunder a randomlygenerated key policy_id to permit tenants to verify the same policy again. The agent canbe queried with the policy_id to verify that the operating system integrity has not changedsince the last verification. An adversary cannot change once deployed policy because SGXprotects the agent’s memory from tampering, i.e., SGX guarantees integrity, confidentiality,and freshness of data.

3.7 Security Risk Assessment

CHORS combines different security techniques to build a framework providing technical as-surance that applications execute inside TEE on the trustworthy operating system. However,each technique operates under a different threat model, and a careful analysis of existingattacks is required to claim security guarantees.
3.7.1 Preventing Physical and Hardware Attacks

First of all, applied techniques usually do not protect against hardware and physical attacks.The TPM is vulnerable to simple hardware attacks on the communication bus with the CPUthat allows an adversary to reset the TPM [142], reply to arbitrary measurements [238], in-cluding measurements corresponding to the DRTM launch [272]. Similarly, Intel SGX is vul-nerable to clock speed and voltage manipulation [189]. Direct memory access attacks [178]or cold-boot attacks [100] can compromise the entire operating system and applicationsthat store data in the main memory in plaintext. To prevent these kinds of attacks, unlikeother works [283, 95], we propose to attest to the physical location of the computer. Regula-tors require that DCs are access controlled and place computers inside security cages [77].We argue that these techniques provide enough security to consider physical and hardwareattacks inside the trusted data center negligible.We use the concept of a trusted beacon to verify that the computer is located in the trustedDC. In the real-world, the trusted beacon functionality could be provided by a hardware secu-rity module [109] or a trusted timestamping authority running on a computer with formallyproved software [148, 212]. The only assumption is that trusted beacons must be securelyplaced inside the DC and then be protected from being moved.
3.7.2 Establishing Trust with the Agent

To verify that the computer is indeed located in the expected DC, we must rely on the agentexecuting on a potentially untrusted computer exposed to physical and hardware attacks. Toauthenticate the agent and verify that it executes on a genuine Intel SGX CPU, we leverageIntel SGX remote attestation [133]. In the past, researchers managed to extract Intel SGXattestation keys [262, 260] that allowed impersonating a genuine SGX CPU. The availablemitigations are: i) relying on on-premise data center attestationmechanism [228], ii) checking

38

3 High-assurance Security Systems Integrity Monitoring and Enforcement

for revoked SGX attestation keys, and iii) verifying that the agent runs in the proximity of atrusted device to ensure that it is in the correct data center composed of legitimate SGXmachines [53]. In all cases, we must trust the CPU manufacturer, SGX design, cryptographicprimitives, and CPU implementation. We consider these assumptions practical because theyare common industry practices.
3.7.3 Establishing Trust with the TPM

CHORS relies on TXT, SGX, and TPM to detect the cuckoo attack. Researchers demonstratedthat malware placed in the system management mode (SMM) could survive the TXT latelaunch [273]. To mitigate attacks on SMM, Intel introduced an SMI transfer monitor thatconstrains the system management interrupt handler mitigating this class of attacks en-tirely [191]. Other TXT-related and tboot vulnerabilities [274, 103] were related to memoryvulnerabilities in Intel’s firmware and tboot implementations. These vulnerabilities have beenpatched as part of a software update release cycle.Intel SGX is vulnerable tomicroarchitectural and side-channel attacks that violate SGX con-fidentiality guarantees [260]. Some of these attacks led to the leakage of Intel attestation keyswhich might be used to forge the SGX attestation [260]. Intel constantly patches the vulner-abilities with microcode updates or hardware changes. The presence of microcode updatesis reflected in the SGX attestation quote, allowing the verifier to check that the enclave exe-cutes on the patched processor. Intel also invalidates attestation keys that might have beenleaked, preventing usage of these keys for attestation. Nonetheless, we do consider theseattacks as a real threat because of their severity and the multitude of variants that appear.These attacks do not impact CHORS guarantees because they only affect SGX confiden-tiality and not integrity, assuming leaked attestation keys are properly revoked by Intel oron-premise data center attestation mechanisms [260, 228]. The only security-sensitive datathat might be used to compromise CHORS is the secret shared between the agent and theTPM. However, the secret lives only during the agent initialization, where the presence ofmalware is detected. In more detail, an adversary can extract the secret shared between theagent and the TPM during the agent initialization to mount the cuckoo attack by sharing thesecret with an arbitrary TPM.We formally proved [203] that the CHORS protocol is immune tothese kinds of attacks because the agent detects that the secret was leaked once it executesin the agent runtime. The agent detects that malware was present during the agent initializa-tion because both initramfs and kernel are measured by DRTM, and their measurements aresecurely transferred to the agent in the agent runtime via SGX sealing. An adversary cannottamper with the sealed data because only the same enclave running on the same CPU canseal and unseal the data. Thus, the presence of malware and secret leakage are revealed.
3.7.4 Establishing Trust with the Operating System

Because the agent can read the load time integrity of the kernel stored inside the dynamicPCR in the TPM, it can ensure that the computer executes a kernel that was intended to loadbecause even if an adversary boots a malicious kernel, she cannot tamper with PCRs thatreflect the malicious kernel load.An adversary who gains access to the computer by stealing credentials using social engi-neering or exploiting a misconfiguration cannot run arbitrary software because she does not

39

3 High-assurance Security Systems Integrity Monitoring and Enforcement

have the signing key to issue a certificate required by the integrity-enforcement mechanisms(IMA) to authorize the file.However, an adversary might exploit memory vulnerabilities in the existing code, such asLinux kernel or software executing on the system remotely [35]. This is feasible becausemost system software is implemented in unsafe memory languages. We assume that theoperating system owner relies on an additional security mechanism enumerated in §3.3 toenforce the runtime process integrity. Typically, the system owner alsominimizes the trustedcomputing base (TCB) by authorizing only crucial software to run on a computer. He does itby digitally signing only trusted software and relying on the IMA-appraisal to enforce it duringthe operating system runtime.An adversary who gains access to the computer can restart it and disable the securitymechanisms or boot the computer into an untrusted state. In §3.8.2, we estimate the vul-nerability window size in which the monitoring controller detects the computer integrity vio-lation.Another attack vectors are network side-channel attacks, such asNetCAT [164], and rowham-mer attacks over the network [246]. In these attacks, an adversary does not have to run mal-ware on the computer but instead sends malicious network packages that modern networkcards place directly in the main memory. We assign a low risk to these classes of attacks be-cause (i) they are hard to perform in a noisy production environment, (ii) they are detectableby network trafficmonitoring tools and firewalls because they generate high network activity,(iii) mitigation techniques exist and can be applied independently [164, 246].

3.8 Evaluation

We evaluate CHORS in three-folds. In §3.8.1, we demonstrate CHORS protecting a real-worldapplication from the eHealth domain. Then, in §3.8.2 and §3.8.3, we evaluate CHORS’ securityand performance, respectively. The evaluation of the real-world application applies only to§3.8.1.
Testbed. Experiments execute on a rack-based cluster of three Dell PowerEdgeR330servers connected via a 10Gb Ethernet. Each server is equipped with an Intel Xeon E3-1270 v5 CPU, 64GiB of RAM, Infineon9665 TPM 2.0, running Ubuntu 16.04 LTS with Linuxkernel v4.4.0-135-generic. The CPUs are on the microcode patch level (0xc6). The enclavepage cache (EPC) is configured to reserve 128MiB of RAM. During all experiments, the agent,the monitoring controller, and the trusted beacon run on different machines.

Table 3.1. The execution time of the eHealth application. Mean values calculated from 30 indepen-dent application executions. The standard deviation in all variants was 1 sec.
native SCONE CHORSExecution time 41 sec 52 sec 53 secSecurity level- tolerate rogue operator ✗ ✓ ✓- tolerate untrusted OS ✗ ✓ ✓- no side-channel attacks (exclusive access to the OS) ✗ ✗ ✓- data processed in correct geolocation ✗ ✗ ✓

40

3 High-assurance Security Systems Integrity Monitoring and Enforcement

3.8.1 Protecting a Real-world eHealth Application

We leveraged CHORS to protect an eHealth application provided to us by a partner whorequires protection of his intellectual property (the application’s source code) and the con-fidentiality of the privacy-sensitive patients’ data. This dataset contains concentrations of112 metabolites in cerebrospinal fluid samples from patients with bacterial meningitis, viralmeningitis/encephalitis, and non-inflamed controls. The application, implemented in Python,uses a machine learning (ML) algorithm to understand pathophysiological networks andmechanisms as well as to identify disease-specific pathways that could serve as targets forhost-directed treatments to reduce end-organ damage. We used publicly available SCONEdocker images [232] to run the application inside a container executed inside the SGX en-clave. We configured the operating system to use IMA and run the CHORS’s agent. On twoother machines, we deployed the trusted beacon and the monitoring controller, which wasconstantly querying the agent to verify the operating system integrity.We measured the execution time of the machine learning algorithm run in three differentvariants; in native, the application executes in the untrusted operating system; in SCONE, theapplication executes in the untrusted operating system but inside an SGX enclave providedby SCONE; in CHORS, the application executes inside an SGX enclave on an integrity-enforcedoperating system booted with CHORS.Table 3.1 shows that the machine learning algorithm’s execution inside the SGX enclavetakes 52 sec, which was 1.3× longer than the native execution (41 sec). CHORS further in-creased the application execution time by 2%, compared to the SGX enclave execution. Thisis an acceptable performance overhead, assuming the higher security guarantees offered byCHORS and the compliance with the privacy regulations required by the EU law.
3.8.2 Security

An adversary cannot violate the computer system’s integrity if all integrity enforcementmech-anisms are properly configured and enabled (including mechanisms protecting runtime pro-cess integrity §3.3) because the kernel rejects untrusted files from loading to the memory.However, an adversary can run arbitrary software if she gets enough privileges to boot thecomputer with disabled enforcement mechanisms. We run a set of micro-benchmarks toestimate the vulnerability window size expressed with Equation (1), during which the integrityviolation remains undetected.
tvw = trq + 2 ∗ (ntre + tvp) (3.1)

tvw is the vulnerability window size, trq is the time to read a TPM quote, n is the maximumnumber of events that can be opened within trq, tre is the time to read a single event fromthe IMA log, tvp is the time required by the agent to verify the policy and by a verifier to send,receive, and process the verification request.
What is the latency of reading a TPM quote?

Each time the agent reads the IMA log, it reads a fresh TPM quote to verify the IMA log’sintegrity. The TPM supports different signing schemes that have a direct impact on the TPMquote read latency.

41

3 High-assurance Security Systems Integrity Monitoring and Enforcement

Table 3.2. The latency of reading the TPM quote generated using different signing schemes. Meanvalues calculated from 30 experiment executions. σ stands for standard deviation.
Signing scheme TPM quote read latencyRSA 2048 with SHA-256 521ms (σ = 4ms)ECDSA P256 with SHA-256 155ms (σ = 2ms)HMAC with SHA-256 107ms (σ = 3ms)

Table 3.2 shows that TPM issues a quote using hash-based message authentication code(HMAC) in 107ms, which is 4.9× faster than when using Rivest-Shamir-Adleman (RSA) cryp-tography and 1.4× faster when using elliptic curve digital signature algorithm (ECDSA). Thus,selecting an HMAC or ECDSA allows validating the IMA log’s integrity faster than when usingRSA. We assume usage of the ECDSA when reading a quote, thus trq=155ms.
Table 3.3. The latency of reading a single event from the IMA log. Mean values calculated from 1200events readings. σ stands for standard deviation.

Read latency of a single IMA log entryImaNg event 34μs (σ = 28μs)ImaSig event 58μs (σ = 32μs)

What is the latency of reading integrity measurements?

We measured the latency of reading new measurements from the IMA log to learn how fastthe agent can detect the integrity violation. During the first read of the IMA log, the agentreads all measurements collected by IMA during the operating system boot, which is typicallythe biggest chunk of the IMA log that has to be read by the agent at once. The bootstrapof Ubuntu Linux produces approximately 1800 measurements. The agent needs 130ms toread all events from the IMA log, recalculate the IMA log integrity hash, and compare thehash to the PCR value.After the initial IMA log read, the agent reads only the new IMA measurements since thelast IMA log read. The time needed to read the integrity measurements depends on thenumber of new events measured and added to the IMA log.Table 3.3 shows that the agent requires 34μs and 58μs to retrieve a single ImaNg andImaSig event, respectively. The ImaNg, a default IMA event format providing the file’s integrityhash. The ImaSig event entry extends the ImaNg format by also including the file’s signature.So, the maximum event read time tre=58μs.
How much time does it take to detect the integrity violation?

The vulnerability window for the attack consists of the time the agent takes to read a freshquote, retrieve new events from the IMA log, and process the policy verification request.We assume that when the agent reads a quote (trq), an adversary can cause IMA to openno more than n=3875 files (according to our measures, opening a file takes at least 40μs).The agent would require about n ∗ tre=225ms to read events, and about tvp=100ms to verify

42

3 High-assurance Security Systems Integrity Monitoring and Enforcement

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

L
a
te

n
cy

 [
m

s]

Throughput [req/s]

default
location proximity

runtime
runtime and location prox.

Figure 3.9. Policy verification throughput. Default policy checks secure boot and trusted boot. Loca-
tion proximity checks geolocation. Runtime verifies IMA measurements.
them against the policy, see §3.8.3. Therefore, using Equation (1), we estimate that the policyverification protocol has a vulnerability window of approximately tvw=805ms.
3.8.3 Performance

How scalable is CHORS? Can it efficiently verify policies on behalf of multiple verifiers?

In our design, the agent is the security-critical component that performs local integrity at-testation on behalf of high-assurance security systems, centralized monitoring services, andsecurity officers. To verify the agent’s ability to verify security policies, we measured the pol-icy verification throughput – the time in which the agent responds to the verifier’s requestverifying operating system integrity. Our experiments compare four variants of the policycontent: (i) default, the policy contains only the definition of static and dynamic PCRs; (ii) lo-
cation proximity, the default policy content with additional constraints about proximity totrusted beacon; (iii) runtime, the default policy content with a whitelist of trusted software;(iv) runtime and location proximity, the combination of the runtime and location proximitypolicies.Figure 3.9 shows that the agent achieves the maximum throughput of 623 req/sec whenverifying a default policy. A similar throughput is achieved for the policy with the locationproximity extension. The throughput decreases to 521 req/sec when the agent verifies asecurity policy containing IMA measurements because of the overhead caused by readingnew IMAmeasurements. An optimal latency of 100ms is achieved for all policy variants whenthe throughput < 250 req/sec.
Table 3.4. The mean remote attestation latency comparison between different integrity monitoringframeworks. In all systems, the TPM quote was signed with RSA signing scheme. se stands for stan-dard error.

Remote attestation latencyCHORS 665ms (se=2ms)Intel CIT 2475ms (se=5ms)IBM ACS 5677ms (se=22ms)

43

3 High-assurance Security Systems Integrity Monitoring and Enforcement

How does CHORS performance compare to the existing monitoring frameworks?

Wemeasured the integrity verification latency of the existing integritymonitoring frameworksto check if the presented framework can be considered practical in terms of performance.Specifically, we compared CHORS with Intel open cloud integrity technology (Intel CIT) [128,125], and IBM TPM attestation client-server (IBM ACS) [111], which is a sample code for aTrusted Computing Group (TCG) attestation application. We measured the total time takento establish a connection with an agent, retrieve a fresh quote, and compare PCRs with awhitelist. In all experiments, the TPM has been previously commissioned.Table 3.4 shows that CHORSwith themean latency of 665ms outperforms Intel CIT by 3.7×and IBM ACS by 8.5×. CHORS achieves better performance because, during the initialization,it caches AIK, static PCRs, and dynamic PCRs that do not change during the entire agent’s lifecycle. The agent verifies that those values did not change by comparing them to the certifiedvalues obtained from the quote. Furthermore, unlike others, the agent verifies the integrityof the IMA log and PCRs by recomputing a hash over cached PCRs and IMA log and matchingit against the PCRs hash in the quote. It allows the agent to skip the slow process of readingPCRs and, consequently, reduce communication with the TPM to a single recurrent quoteread operation.
Table 3.5. The latency of the policy deployment into the agent depending on the content of thesecurity policy. Mean values calculated from 600 independent policy deployments. σ stands forstandard deviation.

Security policy content Deployment latencyStatic and dynamic PCRs 576ms (σ = 15ms)+ location proximity 626ms (σ = 17ms)+ IMA measurements 606ms (σ = 16ms)+ location prox. and IMA measur. 677ms (σ = 15ms)

How much time does it take to deploy a single security policy?

Table 3.5 shows the latency of the policy deployment protocol using different policy exten-sions. The latency is measured as the total time between establishing a transport layer se-curity (TLS) connection with CHORS, a policy upload, a verification using a fresh quote, and aresponse retrieval. The default policy’s size, containing the whitelist of 13 PCRs and one TPMmanufacturer’s CA certificate, is 4.7 kB. Its deployment takes 576ms. The runtime policy size,containing the whitelist of 1790 files and an IMA signing certificate, is 235 kB (50× the defaultpolicy). Its deployment lasts 606ms, which is only a 1.05× of the default policy deploymentlatency. The deployment latency of a policy with the location proximity extension dependson the communication latency between CHORS and trusted beacons. The deployment of thepolicy with one trusted beacon located in the same data center takes 626ms.
How does CHORS impact the boot time of a computer?

We used the systemd-analyze tool to measure the load time of initramfs and userspace in dif-ferent configuration variants of Ubuntu. Figure 3.10 shows that the native Ubuntu Linuxstarts in 19 sec, from which the load of the userspace takes 13 sec and the kernel with

44

3 High-assurance Security Systems Integrity Monitoring and Enforcement

0
20
40
60
80

100
120
140

initramfs userspace

2.7x 4.1x
5.8x

10.2x 10.3x

Bo
ot

 ti
m

e
(s

)

Ubuntu Linux
+tboot

+tboot +agent
+tboot +IMA

+tboot +IMA +agent

Figure 3.10. Impact of CHORS on boot time.
initramfs remaining 6 sec. tboot executes after the bootloader and before the initramfs,thus not influencing the load time of the operating system. The activation of IMA configuredto measure all files defined by the TCG group (ima_tcb boot option), increases the boot timeto 158 sec, 8.3× of the native. A load of userspace takes 84% of this time, which is caused bythe measurement of 1790 files. The boot time could be decreased by reducing the numberof services loaded by the operating system. CHORS increases the boot time by 58% com-pared to the Ubuntu Linux with tboot and 8% compared to the Ubuntu Linux with IMA. Theincreased boot time is mostly caused by the execution of time-consuming TPM operationsin initramfs performed by CHORS and IMA.

3.9 Related Work

Like the existing monitoring systems [128, 111], CHORS relies on the TPM attestation proto-col to verify the computer’s integrity. Unlike them, CHORS is resilient to the cuckoo attack.Existing defenses against this attack have a limited application for high-assurance securitysystems. Fink et al. proposed a time side-channel approach [67] to detect the cuckoo attack.As confirmed by the authors, it is prone to false positives and requires stable measurementconditions, an impractical assumption in real-world scenarios. Flicker [184] accesses localTPM from the isolated execution environment established by DRTM. However, DRTM doesnot attest to the computer location which makes its attestation untrustworthy due to simplehardware attacks [272]. Moreover, DRTM permits executing only a single process on the en-tire CPU at the same time. This impacts application’s throughput because a single contextswitch to DRTM-established environment takes 10-100s of milliseconds [183]. CHORS in-stead first verifies that the computer is in the trusted data center (thus, no hardware attacksare possible) and uses DRTM only once when provisioning the TPM. This approach providesbetter performance as required by modern applications.Other solutions for root of trust identification problem require the verifier to solve biomet-ric challenge [52], observing emitted LED signals [244], verifying the device state displayed onthe screen [51, 165], using trusted devices to scan bar codes sealed on the device [182], orpressing a special-purpose button for bootstrapping trust during the computer boot [205].These approaches have limitations because (i) the TPM is a passive device controlled by soft-ware which, due to lack of trusted I/O paths to external devices, can redirect, reply, or foolthe communication, and (ii) they require human interaction and thus do not scale for the

45

3 High-assurance Security Systems Integrity Monitoring and Enforcement

DC-level.Recently, Dhar et al. proposed ProximiTEE [53] to deal with the SGX (not TPM) cuckooattack by attaching a trusted device to the computer and detecting the cuckoo attack duringthe SGX attestation. This solution can verify that the SGX enclave executes on the computerwith the attached trusted device because of the very low communication latency betweenthe enclave and the device. Although, as denoted by Parno [205] this approach cannot beused to detect the TPM cuckoo attack because of the slow speed of the TPM, CHORS coulduse ProximiTEE as a trusted beacon implementation to prove that the computer is locatedin the expected data center.Other work focuses on tolerating malware in the operating system while preventing side-channel attacks on TEEs. There are three approaches to mitigate these attacks: (i) static vul-nerability detection [96, 201], (ii) attack prevention [4, 26, 75], and (iii) attack detection [200,41]. The first one consists of analyzing andmodifying source code to detect gadgets [96, 201].However, finding all gadgets is difficult or impossible because the search narrows to gad-gets specific to known attacks. The second approach prevents attacks by hiding access pat-terns using oblivious execution/access pattern obfuscation, resource isolation [75], or hard-ware changes [266]. These techniques address only specific attacks [75], require hardwarechanges [266], or incur large performance overhead [4, 26]. The last approach consists ofruntime attack detection [200, 41] by isolating and monitoring resources of instrumentedprograms. But, it targets selected attacks and assumes some amount of statistical misses.CHORS aims at preventing such attacks without requiring source code changes or hardwaremodifications, with low performance overhead but a larger trusted computing base.

3.10 Summary

We responded to regulatory demands that require stronger isolation of high-assurance secu-rity systems by running them inside trusted execution environments on top of a trustworthyoperating system and in the expected geolocation. We demonstrated that the combinationof Intel SGX with TPM-based solutions meets such requirements but requires protectionagainst the cuckoo attack. We proposed a novel deterministic defense mechanism againstthe cuckoo attack and formally proved it. We implemented a framework that monitors andenforces the integrity as well as geolocation of computers running high-assurance securitysystems and mitigates the cuckoo attack. Our evaluation and security risk assessment showthat the CHORS is practical.

46

4 Remote Attestation of the Virtual
Machine’s Runtime Integrity

Chapter 3 introduced a technique allowing a computer owner to verify that his security-sensitive application executes on an integrity-enforced operating system running on a com-puter located in the data center under his control. However, many of today’s systems runinstead on computers owned and managed by another legal entity because it allows for costreduction, i.e., the responsibility of the computing resources maintenance and administra-tion shifts from application owners (tenants) to the infrastructure owners (cloud providers).Trust is of paramount concern in such a setting, because software managing computingresources and its configuration and administration remains out of the tenant’s control. Ten-ants have to trust that the cloud provider, its employees, and the infrastructure protect thetenant’s intellectual property as well as the confidentiality and the integrity of the tenant’sdata. A malicious employee [211], or an adversary who gets into possession of employeecredentials [113, 136], might leverage administrator privileges to read the confidential databy introspecting virtual machine (VM) memory [245] to tamper with computation by subvert-ing the hypervisor [145], or to redirect the tenant to an arbitrary VM under her control byaltering a network configuration [285]. We tackle the problem of how to establish trust in aVM executed in the cloud. Specifically, we focus on the integrity of legacy systems executedin a VM.The existing attestation protocols focus on leveraging trusted hardware to report mea-surements of the execution environment. In trusted computing [73], the trusted platformmodule attestation [90] and integritymeasurement architecture (IMA) [225] provide ameansto enforce and monitor integrity of the software that has been executed since the platformbootstrap [89]. The virtual TPM (vTPM) [21] design extends this concept by introducing asoftware-based trusted platform module (TPM) that, together with the hardware TPM, pro-vides integrity measurements of the entire software stack — from the firmware, the hyper-visor, up to the VM. However, this technique cannot be applied to the cloud because anadversary can tamper with the communication between the vTPM and the VM. For example,by reconfiguring the network, she can mount a man-in-the-middle attack to perform a TPMreset attack [142], compromising the vTPM security guarantees.A complementary technology to trusted computing, trusted execution environment (TEE) [81],uses hardware extensions to exclude the administrator and privileged software, i.e., operat-ing system, hypervisor, from the trusted computing base. The Intel software guard exten-

47

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

sions (SGX) [45] comes with an attestation protocol that permits remotely verifying the ap-plication’s integrity and the genuineness of the underlying hardware. However, it is availableonly to applications executing inside an SGX enclave. Legacy applications executed insidean enclave suffer from performance limitations due to a small amount of protected mem-ory [11]. The SGX adoption in the virtualized environment is further limited because theprotected memory is shared among all tenants.Alternative technologies isolating VMs from the untrusted hypervisor, e.g., AMD secure en-crypted virtualization (SEV) [140, 139] or IBM protected execution facility (PEF) [105], do nothavememory limitations. They support running the entire operating system in isolation fromthe hypervisor while incurring minimal performance overhead [98]. However, their attesta-tion protocol only provides information about the VM integrity at the VM initialization time. It isnot sufficient because the loaded operating systemmight get compromised later–at runtime–with operating system vulnerabilities or misconfiguration [279]. Thus, to verify the runtime(post-initialization) integrity of the guest operating system, one would still need to rely on thevTPM design. But, as already mentioned, it is not enough in the cloud environment.Importantly, security models of these hardware technologies isolating VM from the hyper-visor assume threats caused by running tenants’ operating systems in a shared executionenvironment, i.e., attacks performed by rogue operators, compromised hypervisor, or mali-cious co-tenants. These technologies do not address the fact that a typical tenant’s operatingsystem is a complex mixture of software and configuration with a large vector attack. I.e., theprotected application is not, like in the SGX, a single process, but the kernel, userspace ser-vices, and applications, which might be compromised while running inside the TEE and thusexposes tenant’s computation and data to threats. These technologies assume that tenantsare responsible for protecting the operating system. However, they lack primitives to en-able runtime integrity verification and enforcement of guest operating systems. This workproposes means to enable such primitives, which are neither provided by the technologiesmentioned above nor by the existing cloud offerings.

4.1 Contribution

We overcome the limitations of the existing approaches by combining trusted computingtechniques with TEE. We present TRIGLAV 9, a VM remote attestation protocol that providesintegrity guarantees to legacy systems executed in the cloud. TRIGLAV has noteworthy ad-vantages. First, it supports legacy systems with zero-code changes by running them insideVMs on the integrity-enforced execution environment. To do so, it leverages trusted com-puting to enforce and attest to the hypervisor’s and VM’s integrity. Second, TRIGLAV limitsthe system administrator activities in the host operating system using integrity-enforcementmechanisms while relying on the TEE to protect its own integrity from tampering. Third, itsupports tenants connecting from machines not equipped with trusted hardware. Specifi-cally, TRIGLAV integrates with the secure shell (SSH) protocol [280]. Login to the VM implicitlyperforms an attestation of the VM.To summarize, in this chapter, we make the following contributions: (i) We demonstratedthe security issues of applying trusted computing techniques in the cloud (§4.3.2). (ii) Weshowed how to mitigate these weaknesses by leveraging IMA, TEE, and key management(§4.4). (iii) We designed a protocol, TRIGLAV, attesting to the VM’s runtime integrity (§4.4).
9In the Slavic mythology, Triglav (Trzygłów) is a powerful three-headed deity representing a fusion of threekingdoms: heaven, earth, and undergrounds [79].

48

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

(iv) We implemented the TRIGLAV prototype using state-of-the-art technologies commonlyused in the cloud (§4.5). (v) We evaluated it on real-world applications (§4.6).

4.2 Threat Model

We require that the cloud node is built from the software which source code is certified bya trusted third party [198] or can be reviewed by tenants, e.g., open-source software [8] orproprietary software accessible under a non-disclosure agreement. Specifically, such soft-ware is considered safe and trusted when (i) it originates from trusted places like the officialLinux git repository; (ii) it passes security analysis like fuzzing [281]; (iii) it is implemented us-ing memory safe languages, like Rust [180]; (iv) it has been formally proven, like seL4 [148]or EverCrypt [212]; (v) it was compiled with memory corruption mitigations, e.g., position-in-dependent executables with stack-smashing protection.Our goal is to provide tenants with a runtime integrity attestation protocol that ensures thatthe cloud node (i.e., host operating system, hypervisor) and the VM (guest operating sys-tem, tenant’s legacy application) run only expected software in the expected configuration.We distinguish between an internal and an external adversary, both without capabilities ofmounting physical and hardware attacks (e.g., [272]). This is a reasonable assumption sincecloud providers control and limit physical access to their data centers.An internal adversary, such as a malicious administrator or an adversary who successfullyextracted administrators credentials [113, 136], aims to tamper with the hypervisor config-uration or with a VM deployment to compromise the integrity of the tenant’s legacy applica-tion. She has remote administrative access to the host machine that allows her to configure,install, and execute software. The internal adversary controls the network. She can insert,alter, and drop network packages.An external adversary resides outside the cloud. Her goal is to compromise the integrityof security-sensitive applications. She can exploit a guest operating systemmisconfigurationor use social engineering to connect to the tenant’s VM remotely. Then, she runs dedicatedsoftware, e.g., software debugger or custom kernel, to modify the legacy application’s behav-ior.We consider the TPM, the CPU, and their hardware features trusted. We rely on the sound-ness of cryptographic primitives used by software and hardware components. We treatsoftware-based side-channel attacks (e.g., [151]) as orthogonal to this work because of (i) thecounter-measures existence (e.g., [200]) whose presence is verifiable as part of the TRIGLAVprotocol, (ii) the possibility of provisioning a dedicated (not shared) machine in the cloud (see§3).

4.3 Background and Problem Statement

4.3.1 Load-time Integrity Enforcement

A cloud node is a computer where multiple tenants run their VMs in parallel on top of thesame computing resources. VMs are managed by a hypervisor, a privileged layer of soft-ware providing access to physical resources and isolating VMs from each other. Since theVM’s security depends on the hypervisor, it is essential to ensure that the correct hypervisorcontrols the VM.

49

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

host OS host OS host OShost OS host OShost OS

AT T

1) the rollback attack 2) the man in the middle attack

a VM owned  
by the tenant

malicious behavior, 
malware, misconfigurationA TPM communication 

flow

T

- tenantT

hypervisor

vTPMt=1

hypervisor

vTPMt=1

hypervisor

vTPMt=2 vTPMvm2vTPMvm1 vTPMvm2vTPMvm1vTPM

A T

timet=1 t=2 t=3

X

vTPM software-based  
TPM

redirects to
other TPM

load the previous
vTPM state to
undo malware
measurement

A
malware executes
in the VM. It is
measured by the
vTPM

hypervisor

T

a) modifies network package b) intercepts communication c) proxy via a legitimate VM

resets TPM state,
replays arbitrary
measurements

hypervisor

A

a VM compromised 
by an adversary --- -

T

hypervisor

proxy

-

A

Figure 4.1. An adversary with root access to the hypervisor can violate the security guaranteespromised by the vTPM [21] design.

4.3.2 Runtime Integrity Enforcement

The administrator has privileged access to the machine with complete control over the net-work configuration, with permissions to install, start, and stop applications. These privilegespermit him to trick the dynamic root of trust for measurements (DRTM) attestation processbecause the hypervisor’s integrity is measured just once when the hypervisor is loaded to thememory. The TPM report certifies this state until the next DRTM launch, i.e., the next com-puter boot. Hence, after the hypervisor has been measured, an adversary can compromiseit by installing an arbitrary hypervisor [222] or downgrading it to a vulnerable version withoutbeing detected.Integrity measurement architecture (IMA) [89, 225, 101] allows for mitigation of the threatmentioned above. Being part of themeasured kernel, IMA implements an integrity-enforcement
mechanism [101], allowing for loading only digitally signed software and configuration. Con-sequently, signing only software required to manage VMs allows for limiting activities carriedout by an administrator on the host machine. A load of a legitimate kernel with enabledIMA and input-output memory management unit (IOMMU) is ensured by DRTM, and it isattestable via the TPM attestation protocol.
4.3.3 Problems with Virtualized TPMs

The TPM chip cannot be effectively shared with many VMs due to a limited amount of plat-form configuration registers (PCRs). The vTPM [21] design addresses this problem by run-ning multiple software-based TPMs exposed to VMs by the hypervisor. This design requiresverifying the hypervisor’s integrity before establishing trust with a software-based TPM. Weargue that verifying the hypervisor’s integrity alone is not enough because an administratorcan break the software-based TPM security guarantees by mounting attacks [166, 47, 205]using the legitimate software, as we describe next. Consequently, the vTPM cannot be useddirectly to provide the runtime integrity of VMs.

50

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

Rollback Attack

The adversary dumps the state of the TPMt=1 containing legitimatemeasurements (Figure 4.11). Then, she compromises the VM’s integrity and restores the previously saved TPMt=1 state.Although the integrity measurements stored in TPMt=2 reflect the attack, the vTPM uses a le-gitimate TPMt=1 state. This attack is feasible because the adversary has unrestricted controlover the vTPM life-cycle and its memory, i.e., she can copy files with the TPM state, spawn anew TPM instance, attach it to an arbitrary VM. We propose to protect against the rollbackattack by tagging the vTPM state with the version number and the unique vTPM identifier.The recent version number is stored in the monotonic counter (MC), and the vTPM increasesit before executing each non-idempotent operation. The vTPM protects its state from tam-pering by running inside the TEE. During the startup, the vTPM ensures that the MC valueequals the version number read from the persistent state.
Man-in-the-middle Attacks

In the vTPM design, the hypervisor prepends a 4-byte vTPM identifier that allows routingthe communication to the correct vTPM instance. However, the link between the vTPM andthe VM is unprotected [47], and it is routed through an untrusted network. Consequently,an adversary can mount a masquerading attack to redirect the VM communication to anarbitrary vTPM (Figure 4.1 2a) by replacing the vTPM identifier inside the network package.To mitigate the attack, we propose to use the transport layer security (TLS) protocol [54] toprotect the communication’s integrity.Although the TLS helps protect the communication’s integrity, the lack of authenticationbetween the vTPM and the hypervisor still enables an adversary to fully control the communi-cation by mounting a man-in-the-middle (MitM) attack. In more detail, an adversary can con-figure the hypervisor in a way it communicates with vTPM via an intermediary software, whichintercepts the communication (Figure 4.1 2b). She can then drop arbitrary measurementsor perform the TPM reset attack [142], thus compromising the vTPM security guarantees.To mitigate the attack, the vTPM must ensure the remote peer’s integrity (is it the correcthypervisor?) and its locality (is the hypervisor running on the same platform?). Although theTEE local attestation gives information about software integrity and locality, we cannot use ithere because the hypervisor cannot run inside the TEE. However, suppose we find a way tosatisfy the locality condition. In that case, we can leverage runtime integrity measurements(IMA) to verify the hypervisor’s integrity because, among trusted software running on theplatform, there can be only software that connects to the vTPM—the hypervisor. To satisfythe locality condition, wemake the following observation: Only software running on the sameplatformhas direct access to the samehardware TPM.Wepropose to share a secret betweenthe vTPM and the hypervisor using the hardware TPM (§4.4.3). The vTPM then authenticatesthe hypervisor by verifying that the hypervisor presents the secret in the pre-shared key TLSauthentication.Finally, an adversary who compromises the guest operating system can mount the cuckooattack [205] to impersonate the legitimate VM. An adversary canmodify the TPMdriver insidea guest operating system to redirect the TPM communication to a remote TPM (Figure 4.12c). A verifier running inside a compromised VM cannot recognize if he communicates withthe vTPM attached to his VM or with a remote vTPM attached to another VM. The verifier ishelpless because he cannot establish a secure channel to the vTPM that would guaranteecommunication with the local vTPM. To mitigate the attack, we propose leveraging the TEE

51

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

host OS

σi

cloud provider tenant

1 4

  virtual machine (VM)

 trusted computing
components

SSH
TLS

TLS

spawns
new VM

C

A

 TRIGLAV

2

Legend

data flow

public/private SSH
key of a VM

security policy

integrity measurement

Initially untrusted
(subject of attestation)

trusted execution
environment

connects to the VM 
(authenticate VM with) 3

σi
D trusted computing components C

hy
pe

rv
iso

r

B

deploys returns

Figure 4.2. The high-level overview of TRIGLAV. The VM’s SSH key is bound to the VM’s integrity statedefined in the policy.
attestation protocol to establish a secure communication channel between the verifier andthe vTPM and to use it to exchange a secret allowing the verifier to identify the vTPM instanceuniquely (§4.4.4).

4.4 TRIGLAV Design

Our objective is to provide an architecture that:• protects legacy applications running inside a VM from threats defined in §4.2,• requires zero-code changes to legacy applications and the VM setup,• permits tenants to remotely attest to the execution environment’s runtime integrity with-out possessing any vendor-specific hardware.
4.4.1 High-level Overview

Figure 4.2 shows an overview of the cloud node running TRIGLAV. It consists of the followingfour components:
(A) the VM,
(B) the hypervisor managing the VM, providing it with access to physical resources andisolating from other VMs,
(C) trusted computing components enabling hypervisor’s runtime integrity enforcementand attestation,
(D) TRIGLAV, software executed inside TEE that allows tenants to attest and enforce theVMs’ integrity.The configuration, the execution, and the operation of the above components are subjectto attestation. First, the cloud operator bootstraps the cloud node and starts TRIGLAV. Atthe tenant’s request, the cloud provider spawns a VM (➊). Next, the tenant establishes trustwith TRIGLAV (§4.4.4), which becomes the first trusted component on a remote computer.The tenant requests TRIGLAV to check if the hypervisor conforms to the policy (➋), whichcontains tenant-specific trust constraints, such as integrity measurements (§4.4.6). TRIGLAVuses IMA and TPM to verify that the computer’s runtime integrity conforms to the policy andthen generates a VM’s public/private key pair. The public key is returned to the tenant (➌).TRIGLAV protects access to the private key, i.e., it permits the VM to use the private key only

52

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

if the host and guest operating systems match the integrity defined inside the policy. Finally,the tenant establishes trust with the VM during the SSH-handshake. He verifies that the VMcan use the private key corresponding to the previously obtained public key (➍). The tenantauthenticates himself in a standard way, using his own SSH private key. His SSH public key isembedded inside the VM’s image or provisioned during the VM deployment.
4.4.2 Platform Bootstrap

The cloud provider is responsible for the proper computer initialization. She must turn onsupport for hardware technologies (i.e., TPM, DRTM, TEE), launch the hypervisor, and startTRIGLAV. The tenant ensures that the platform was correctly initialized when he establishestrust in the platform (§4.4.4).First, TRIGLAV establishes a connection with the hardware TPMusing the TPM attestation; itreads the TPM certificate and generates an attestation key following the activation of creden-
tial procedure ([12] p. 109-111). TRIGLAV ensures it communicates with the local TPM using aprotocol detecting the TPM cuckoo attack introduced in chapter 3. Eventually, TRIGLAV readsthe TPM quote, which certifies the DRTM launch and the measurements of the hypervisor’sintegrity.
4.4.3 VM Launch

The cloud provider requests the hypervisor to spawn a new VM. The hypervisor allocatesthe required resources and starts the VM providing it with TPM access. At the end of theprocess, the cloud provider shares the connection details with the tenant, allowing the tenantto connect to the VM.TRIGLAV emulates multiple TPMs inside the TEE because many VMs cannot share a singlehardware TPM [21]. When requested by the hypervisor, TRIGLAV spawns a new TPM instanceaccessible on a unique TCP port. The hypervisor connects to the emulated TPM and exposesit to the VMas a standard character device. We further use the term emulated TPM to describea TEE-based TPM running inside the hypervisor and distinguish it from the software-basedTPM proposed by the vTPM design.The communication between the hypervisor and the emulated TPM is susceptible to MitMattacks (§4.3.2). Unlike TRIGLAV, the hypervisor does not execute inside the TEE, preventingTRIGLAV from using the TEE attestation to verify the hypervisor identity. However, TRIGLAVconfirms the hypervisor identity by requesting it to present a secret when establishing aconnection. TRIGLAV generates a secret inside the TEE and seals it to the hardware TPM viaan encrypted channel ([92] §19.6.7). Only software running on the same operating system asTRIGLAV can unseal the secret. Thus, it is sufficient to check if only trusted software executeson the platform to verify that it is the legitimate hypervisor who presents the secret.Figure 4.3 shows the procedure of attaching an emulated TPM to a VM. Before the hypervi-sor spawns a VM, it commands TRIGLAV to emulate a new software-based TPM (➊). TRIGLAVcreates a new emulated TPM, generates a secret, and seals the secret with the hardwareTPM (➋). TRIGLAV returns the TCP port and the sealed secret to the hypervisor. The hypervi-sor unseals the secret from the hardware TPM (➌) and establishes a TLS connection to theemulated TPM authenticating itself with the secret (➍). At this point, the hypervisor spawnsa VM. The VM boots up, the firmware and IMA send integrity measurements to the emulatedTPM (➎). To protect against the rollback attack, each integrity measurement causes the em-

53

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

hardware
TPM

establish TLS connection, auth. with secret

integrity measurement

hypervisor

1

generate 
secret

unseal secret

register VM

seal secret

2

3

4

5
VM

emulated
TPM

monotonic
counter (MC)

increase MC

6 store

MC

TRIGLAV Legend

data flow

initially untrusted
(subject of attestation)
trusted execution
environment

trusted

Figure 4.3. TRIGLAV emulates TPMs inside the TEE. To prevent theMitM attack, TRIGLAV authenticatesthe connecting hypervisor by sharing with him a secret via a hardware TPM. To mitigate the rollbackattack, the emulated TPM increments the monotonic counter value on each non-idempotent com-mand.
ulated TPM to increment the hardware-based MC and store the current MC value inside theemulated TPM memory (➏).TRIGLAV permits only one client connection and does not permit reconnections to preventthe attachment of new VMs to the already initialized emulated TPM. Although an adversarymight redirect the hypervisor to a fake emulated TPM exporting a false secret, such an attackis detected when establishing trust with the VM (§4.4.4).
4.4.4 Establishing Trust

The tenant establishes trust with the VM in three steps. First, he verifies that TRIGLAV exe-cutes inside the TEE and runs on genuine hardware (a CPU providing the TEE functionality).He then extends trust to the hypervisor and VM by leveraging TRIGLAV to verify and enforcethe runtime integrity of the host and guest operating systems. Finally, he connects to theVM, ensuring it is the VM provisioned and controlled by TRIGLAV.Since the TRIGLAV design does not restrict tenants to possess any vendor-specific hard-ware and the existing TEE attestation protocols are not standardized, we propose to add anextra level of indirection. Following the existing solutions [88], we rely on a trusted certificateauthority (CA) that performs the TEE-specific attestation before signing an X.509 certificateconfirming the TRIGLAV’s integrity and the underlying hardware genuineness. The tenantestablishes trust with TRIGLAV during the TLS-handshake, verifying that the presented certifi-cate was issued to TRIGLAV by the CA.Although the tenant remotely ensures that TRIGLAV is trusted, he has no guarantees thathe connects to his VM controlled by TRIGLAV because the adversary can spoof the net-work [285] redirecting the tenant’s connection to an arbitrary VM. To mitigate the threat,TRIGLAV generates a secret and shares it with the tenant and the VM. When the tenant es-tablishes a connection, he uses the secret to authenticate the VM.Only the VMwhich integrityconforms to the policy has access to this secret.

54

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

cloud node (host OS)
virtual machine TRIGLAV

signature

signs with the
private key

signature

(SSH handshake)

7

8

deploys

4

1

returns

tenant

challenge 
(SSH handshake)

2

HTTPs

HTTPs
SSH client

SSH server

sends challenge6

SSH

Legend

data flow

public/private SSH
key of a VM

security policy

initially untrusted
(subject of attestation)
trusted execution
environment

9

5

verifies  
the policy

generates  
an SSH key pair

3

SSH

Figure 4.4. The high-level view of the attestation protocol. TRIGLAV generates an SSH public/privatekey pair inside the TEE. The tenant receives the public key as a result of the policy deployment. Tomitigate the MitM attacks, the tenant challenges the VM to prove it has access to the private key.TRIGLAV signs the challenge on behalf of the VM if and only if the platform integrity conforms withthe policy.
Figure 4.4 shows a high-level view of the protocol. First, the tenant establishes a TLS con-nection with TRIGLAV to deploy the policy (➊). TRIGLAV verifies the platform integrity againstthe policy (➋), and once succeeded, it generates the SSH key pair (➌). The public key is re-turned to the tenant (➍) while the private key remains inside the TEE. TRIGLAV enforces thatonly a guest operating system which runtime integrity conforms to the policy can use the pri-vate key for signing. Second, the tenant initializes an SSH connection to the VM, expecting theVM to prove the possession of the SSH private key. The SSH client requests the SSH serverrunning inside the VM to sign a challenge (➎). The SSH server delegates the signing oper-ation to TRIGLAV (➏). TRIGLAV signs the challenge using the private key (➐) if and only if thehypervisor’s and VM’s integrity match the policy. The SSH private key never leaves TRIGLAV;only a signature is returned to the SSH server (➑). The SSH client verifies the signature usingthe SSH public key obtained by the tenant from TRIGLAV (➒). The SSH server also authenti-cates the tenant, who proves his identity using his own private SSH key. The SSH server isconfigured to trust his SSH public key. The tenant established trust in the remote platformas soon as the SSH handshake succeeded.

4.4.5 Policy Enforcement

TRIGLAV policy enforcement mechanism guarantees that the VM runtime integrity conformsto the policy. At the host operating system, TRIGLAV relies on the IMA integrity-enforcement [101]to prevent the host kernel from loading to the memory files that are not digitally signed.Specifically, each file in the filesystem has a digital signature stored inside its extended at-tribute. IMA verifies the signature issued by the cloud provider before the kernel loads thefile to the memory. The certificate required for signature verification is loaded from initramfs(measured by the DRTM) to the kernel’s keyring. At the guest operating system, IMA insidethe guest kernel requires the TRIGLAV approval to load a file to the memory. The emulatedTPM, controlled by TRIGLAV, returns a failure when IMA tries to extend it with measurementnot conforming to the policy. The failure instructs IMA not to load the file.

55

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

cloud node (host OS)

 authenticates  
VM with A

 TRIGLAV

generate

policy
enforcement

tenant A σi

TLS

TLS

logical tenant separation

VMA

SSH

Legend

data flow
public/private SSH
key of a VM

security policy

integrity measurement
policy enforcement
mechanism
Initially untrusted
(subject of attestation)
trusted execution
environment

signs with

AA
A A

A

 authenticates  
VM with B

generate

policy
enforcement

tenant B σi

TLS

TLS

VMB

SSH

signs with

BB
B B

B

Figure 4.5. Multiple tenants interacting with TRIGLAV concurrently. TRIGLAV generates a dedicatedSSH key for each deployed security policy and allows using it only if the VM’s integrity conforms tothe security policy.

4.4.6 Tenant Isolation and Security Policy

Multiple applications with different security requirementsmight coexist on the same physicalcomputer. TRIGLAV allows ensuring that applications run in isolation from each other andmatch their security requirements. Figure 4.5 shows how TRIGLAV assigns each VM a pairof a public and private key. The keys are bound with the application’s policy and the VM’sintegrity. Each tenant uses the public key to verify that he interacts with his VM controlled bythe integrity-enforced hypervisor.
Listing 4.1: Example of the TRIGLAV’s security policy

1 host:
2 tpm: |−
3 −−−−−BEGIN CERTIFICATE−−−−−
4 # Manufacturer CA certificate
5 −−−−−END CERTIFICATE−−−−−
6 drtm: # measurements provided by the DRTM
7 − {id: 17, sha256: f9ad0...cb}
8 − {id: 18, sha256: c2c1a...c1}
9 − {id: 19, sha256: a18e7...00}
10 certificate: |−
11 −−−−−BEGIN CERTIFICATE−−−−−
12 # software update certificate
13 −−−−−END CERTIFICATE−−−−−
14 guest:
15 enforcement: true
16 pcrs: # boot measurements (e.g., secure boot)
17 − {id: 0, sha256: a1a1f...dd}
18 measurements: # legal integrity measurement digests
19 − "e0a11...2a" # SHA digest over a startup script
20 − "3a10b...bb" # SHA digest over a library
21 certificate:

56

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

22 − |−
23 −−−−−BEGIN CERTIFICATE−−−−−
24 # certificate of the signer, e.g., OS updates
25 −−−−−END CERTIFICATE−−−−−
26 −−−−−BEGIN CERTIFICATE−−−−−
27 # software update certificate
28 −−−−−END CERTIFICATE−−−−−
Listing 4.1 shows an example of a security policy. The policy is a text file containing awhitelist of the hardware TPM manufacturer’s certificate chain (line 4), DRTM integrity mea-surements of the host kernel (lines 6-9), integrity measurements of the guest kernel (line 16),and runtime integrity measurements of the guest operating system (lines 18-20, 24). Thecertificate chain is used to establish trust in the underlying hardware TPM. TRIGLAV com-pares DRTM integrity measurements with PCR values certified by the TPM to ensure thecorrect hypervisor with enabled integrity-enforced mechanism was loaded. TRIGLAV usesruntime integrity measurements to verify that only expected files and software have beenloaded to the guest operating system memory. A dedicated certificate (line 24) makes thesystem scalable because it permits more files to be loaded to the memory without redeploy-ing the policy. Specifically, it is enough to sign the software, which we allow to execute, withthe corresponding private key to make the software pass through the integrity-enforcementmechanism. Similarly, dedicated certificates (lines 12, 27) allow for software updates of bothhost and guest operating system thanks to a dedicated trusted software repository discussedin detail in chapter 6.

4.5 Implementation

4.5.1 Technology Stack

We decided to base the prototype implementation on the Linux kernel because it is an open-source project supporting a wide range of hardware and software technologies. It is com-monly used in the cloud and, as such, can demonstrate the practicality of the proposeddesign. QEMU [17] and kernel-based virtual machine (KVM) [147] permit to use it as a hy-pervisor. We rely on Linux IMA [225] as an integrity enforcement and auditing mechanismbuilt-in the Linux kernel.We chose Alpine Linux because it is designed for security and simplicity in contrast to otherLinux distributions. It consists of a minimum amount of software required to provide a fullyfunctional operating system that permits keeping a trusted computing base (TCB) low. Alluserspace binaries are compiled as position-independent executables with stack-smashingprotection and relocation read-only memory corruption mitigation techniques. Those tech-niques help mitigate the consequences of, for example, buffer overflow attacks that mightlead to privilege escalation or arbitrary code execution. To restrict the host from access-ing guest memory and state, we follow existing security-oriented commercial solutions [112]that disable certain hypervisor features, such as hypervisor-initiated memory dump, hugememory pages on the host, memory swapping, memory ballooning through a virtio-balloondevice, and crash dumps. For production implementations, we propose to rely on microker-nels like formally proved seL4 [148].We rely on SGX as the TEE technology. The SGX remote attestation [133] allows us to

57

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

hardware

Linux kernel

Alpine Linux

Q
EM

U

TRIGLAV:  
monotonic counter

intel software
guard extensions

intel trusted  
execution technology

TRIGLAV:
monitoring service

kernel-based virtual
machine (KVM) TPM driver

 Linux
IMA

SSH

server

TPM 2.0

VM

TRIGLAV:  
emulated TPM

Legend

data flow

public/private SSH
key of a VM

integrity measurement

initially untrusted
(subject of attestation)

trusted execution
environment

trusted

integrity measurement
architecture (Linux IMA)

Q
EM

U

σi

σkσj

Figure 4.6. The overview of the TRIGLAV prototype implementation.
verify if the application executes inside an enclave on a genuine Intel CPU. We implementedTRIGLAV in Rust [180], which preservesmemory-safety and type-safety. To run TRIGLAV insidean SGX enclave, we used the SCONE framework [11] and its Rust cross-compiler. We alsoexploited the Intel trusted execution technology (TXT) [87] as a DRTM technology because itis widely available on Intel CPUs. We used the open-source software tboot [127] as a pre-kernel bootloader that establishes the DRTM with TXT to provide the measured boot of theLinux kernel.
4.5.2 Prototype Architecture

The TRIGLAV prototype architecture consists of three components: the monitoring service,the emulated TPM, and the monotonic counter service. All the components execute insidean SGX enclave.The monitoring service is the component that leverages Linux IMA and the hardware TPMto collect integrity measurements of the host operating system. There is one monitoringservice running on the host operating system. It is available on a well-known port on whichit exposes a TLS-protected REST API used by tenants to deploy the policy. We based thispart of the implementation on the CHORS’s agent, discussed in chapter 3, that provides amechanism to detect the TPM locality. The monitoring service spawns emulated TPMs andintermediates in the secret exchange between QEMU and the emulated TPM. Specifically,it generates and seals to the hardware TPM the secret required to authenticate the QEMUprocess, and passes this secret to an emulated TPM.The emulated TPM is a software-based TPM emulator based on the libtpms library [19]. Itexposes a TLS-based API allowing QEMU to connect. The connection is authenticated usingthe secret generated inside an SGX enclave and known only to processes that gained accessto the hardware TPM. We extracted the emulated TPM into a separate component becauseof the libtpms implementation, which requires running each emulator in a separate process.The monotonic counter service (MCS) provides access to a hardware monotonic counter(MC). Emulated TPMs use it to protect against rollback attacks. We designed the MCS asa separate module because we anticipate that due to hardware MC limitations (i.e., high la-tency, the limited number of memory overwrites [242]), a distributed version of the MCS, e.g.,ROTE [179], might be required. However, the MCS might also be deployed locally to lever-age built-in SGX MC [36] accessible on the same platform where the monitoring service and

58

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

emulated TPM run.
4.5.3 Monotonic Counter Service

We implemented a monotonic counter service (MCS) as a service executed inside the SGXenclave. It leverages the high-endurance indices defined by the TPM 2.0 specification [92] toprovide the MC functionality. The MCS relies on the TPM attestation to establish trust withthe TPM chip offering hardwareMC, and on the encrypted and authenticated communicationchannel ([92] §19.6.7) to protect the integrity and confidentiality of the communication withthe TPM chip from the enclave. The MCS exposes a REST API over a TLS (§4.5.4), allowingother enclaves to increment and read hardware monotonic counters remotely.The emulated TPMestablishes trust with theMCS via the TLS-based SGX attestation (§4.5.4)and maintains the TLS connection open until the emulated TPM is shutdown. We imple-mented the emulated TPM to increase the MC before executing any non-idempotent TPMcommand, e.g., extending PCRs, generating keys, writing to non-volatile memory. The MCvalue and the TLS credentials are persisted in the emulated TPM state, which is protected bythe SGX during runtime and at rest via sealing. When the emulated TPM starts, it reads theMC value from the MCS and then checks the emulated TPM state freshness by verifying thatits MC value equals the value read from the MCS.
4.5.4 TLS-based SGX Attestation

We use the SCONE key management system (CAS) [258] to perform remote attestation ofTRIGLAV components, verify SGX quotes using Intel attestation service (IAS) [9], generate TLScredentials, and distribute the credentials and the CAS CA certificate to each componentduring initialization. TRIGLAV components are configured to establish mutual authenticationover TLS, where both peers present a certificate, signed by the same CAS CA, containing anenclave integrity measurement. Tenants do not perform the SGX remote attestation to ver-ify the monitoring service identity and integrity. Instead, they verify the certificate exposedby a remote peer during the policy deployment when establishing a TLS connection to themonitoring service. In our prototype implementation, we force tenants to trust CAS. The pro-duction implementation might use Intel SGX-RA [149] to achieve similar functionality withoutrelying on an external key management system.
4.5.5 VM Integrity Enforcement

The current Linux IMA implementation extends the integrity digest of the IMA log entry toall active TPM PCR banks. For example, when there are two active PCR banks (e.g., SHA-1and SHA-256), both are extended with the same value. We decided to make a minor mod-ification in the Linux kernel, which permitted us to share with the emulated TPM not onlythe integrity digest but also the file’s measurement and the file’s signature. We modified thecontent of the PCR_Extend command sent by the Linux IMA in a way it uses the SHA-1 bankto transfer the integrity digest, the SHA-256 bank to transfer the file’s measurement digest,and the SHA-512 bank to transfer the file’s signature. In the emulated TPM, we interceptthe PCR_extend command to extract the file’s measurement and the file’s digest. We useobtained information to enforce the policy; if the file is not permitted to be executed, the

59

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

emulated TPM process closes the TLS connection, which is a signal to the QEMU process toshut down the VM.
4.5.6 SSH Integration

To enable a secure connection to the VM, we relied on the OpenSSH server. It supports thePKCS#11 [197] standard, which defines how to communicate with cryptographic devices, likeTPM, to perform cryptographic operations using the key without retrieving it from the TPM.We configured an OpenSSH server running inside the guest operating system to use anSSH key stored inside the emulated TPM running on the host operating system. Importantly,the VM’s SSH private key is generated and stored inside the SGX enclave, and it never leavesit. The SSH server, via PKCS#11, uses it for the TLS connection only when TRIGLAV authorizesaccess to it. The tenant uses his own SSH private key, which is not managed by TRIGLAV.

4.6 Evaluation

In this chapter, we answer the question if TRIGLAV is practical to protect legacy applications.
Testbed. Experiments execute on a Dell PowerEdge R330 servers equipped with an IntelXeon E3-1270 v5 CPU, 64GiB of RAM, Infineon 9665 TPM 2.0 discrete TPM chips (dTPMs).Experiments using an integrated TPM (iTPM) run on Intel NUC7i7BNH machine, which hasthe Intel platform trusted technology (PTT) running on Intel ME 11.8.50.3425 powered byIntel Core i7-7567U CPU and 8GiB of RAM.All machines have a 10Gb Ethernet network interface card (NIC) connected to a 20Gb/sswitched network. The SGX, TXT, TPM 2.0, Intel virtualization technology for directed I/O (VT-d), and single root input/output virtualization (SR-IOV) technologies are turned on in the UE-FI/BIOS system configuration. The hyper-threading is switched off. The enclave page cache(EPC) is configured to reserve 128MiB of RAM.On host and guest operating systems, we run Alpine 3.10 with Linux kernel 4.19. We mod-ified the guest operating system kernel according to the description in §4.5.5. We adjustedquick emulator (QEMU) 3.1.0 to support TLS-based communication with the emulated TPMas described in §4.4.3.

4.6.1 Micro-benchmarks

Are TPMmonotonic counters practical to handle the rollback protection mechanism?

Strackx and Piessens [242] reported that the TPM 1.2 memory gets corrupted after a maxi-mum of 1.450M writes and has a limited increment rate (one increment per 5 sec). We runan experiment to confirm or undermine the hypothesis that those limitations apply to theTPM 2.0 chip. We were continuously incrementing the monotonic counter in dTPM and iTPMchips. The dTPM chip reached 85M increments, and it did not throttle its speed. The iTPMchip slowed down after 7.3M increments limiting the increment latency to 5 sec. We did notobserve any problem with the TPM memory.

60

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

Table 4.1. The latency of main operations in the TPM-based MCS. σ states for standard deviation.
Read Increasediscrete TPM 42ms (σ = 2ms) 40ms (σ = 2ms)integrated TPM 25ms (σ = 2ms) 32ms (σ = 1ms)

 0

 50

 100

 150

 200

C
re

a
te

C
re

a
te

P
ri
m

a
ry

Q
u
o
te

P
C

R
R

e
a
d

P
C

R
E

x
te

n
d

(6236 ms)
L
a
te

n
c
y
 (

m
s
) swTPM

Triglav
Triglav + MC

dTPM
iTPM

Figure 4.7. TPM operations latency depending on the TPM.

What is the cost of the rollback protection mechanism?

Each non-idempotent TPM operation causes the emulated TPM to communicate with theMCS and might directly influence the TRIGLAV performance. We measured the latency of theTPM-based MCS read and increment operations. In this experiment, the MCS and the testclient execute inside an SGX enclave. Before the experiment, the test client running on thesame machine establishes a TLS connection with the MCS. The connection is maintainedduring the entire experiment to keep the communication overhead minimal. The evaluationconsists of sending 5k requests and measuring the mean latency of the MCS response.Table 4.1 shows that the MCS using iTPM performs from 1.25× to 1.68× faster than itsversion using dTPM. The read operation on the iTPM is faster than the increment opera-tion (25ms versus 32ms, respectively). Differently, on dTPM both operations take a similaramount of time (about 40ms).
What is the cost of running the TPM emulator inside TEE and with the rollback
protection mechanism? Is it slower than a hardware TPM used by the host operating
system?

As a reference point to evaluate the emulated TPM’s performance, we measured the latencyof various TPM commands executed in different implementations of TPMs. The TPM quoteswere generated with the elliptic curve digital signature algorithm (ECDSA) using the P-256curve and SHA-256 bit key. PCRs were extended using the SHA-256 algorithm.Figure 4.7 shows that except for the PCR extend operation, the SGX-based TPM with roll-back protection is from 1.2× to 69× faster than hardware TPMs and up to 6× slower than theunprotected software-based swTPM. Except for the create primary command, which derivesa new key from the TPM seed, we did not observe performance degradation when runningthe TPM emulator inside an enclave. However, when running with the rollback protection,the TPM slows down the processing of non-idempotent commands (e.g., PCR_Extend) dueto the additional time required to increase the MC.

61

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

0

25

50

75

baseline:

< 40µs

134ms

L
a

te
n

cy
 m

s 1st file open

Host OS, no IMA

0

20

40

100 1k 10k 100k 1M 10M

L
a

te
n

cy
µs

2nd+ file open

File size [bytes]

Host OS, with IMA Guest OS, with IMA

Figure 4.8. File opening times with and without Linux IMA.

How much IMA impacts file opening times?

Before the kernel executes the software, it verifies if executable, related configuration files,and required dynamic libraries can be loaded to the memory. The IMA calculates a crypto-graphic hash over each file (its entire content) and sends the hash to the TPM. We measurehow much this process impacts the opening time of files depending on their size.Figure 4.8 shows that the IMA inside the guest operating system incurs higher overheadthan the IMA inside the host operating system. It is primarily caused by (i) the higher latency ofthe TPM extend command (∼ 43ms) that is dominated by a slow network-based monotoniccounter, (ii) the IMA mechanism itself that has to calculate the cryptographic hash over theentire file even if only a small part of the file is actually read, and (iii) the less efficient datastorage used by the VM (virtualized storage, QCOW format).In both systems, the IMA takes less than 70ms when loading files smaller than 1MB (99%of files in the deployed prototype are smaller than 1MB). Importantly, IMA measures the fileonly once unless it changes. Figure 4.8 shows that the next file reads take less than 40μsregardless of the file size.
4.6.2 Macro-benchmarks

We run macro-benchmarks to measure performance degradation when protecting popu-lar applications, i.e., the nginx web-server [65] and the memcached cache system [43], withTRIGLAV. We compare the performance of four variants for each application running on thehost operating system (native), inside a SCONE-protectedDocker container on the host oper-ating system (SCONE), inside a guest operating system (VM), inside a TRIGLAV-protected guestoperating system with rollback protection turned on (TRIGLAV). Please note that TRIGLAV op-erates under a weaker threat model than SCONE. We compare both systems to show thetradeoff between the security, performance, and the required resources.

62

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80

L
a
te

n
c
y
 [
s
]

Throughput (k.req/s)

Native
SCONE

VM
Triglav

Figure 4.9. Throughput/latency of the nginx.

How much does TRIGLAV influence the throughput of a web server, e.g., nginx?

We configured nginx to run a single worker thread with turned off gzip compression andlogging, according to available SCONE’s benchmark settings. Then, we used wrk2 [248], run-ning on a different physical host, to simulate 16 clients (4 per physical core) concurrentlyfetching a pre-generated 10KiB binary uncompressed file for 45 s.10 We were increasing thefrequency of the fetching until the response times started to degrade. Except for the refer-ence measurement (native) run on the bare metal, nginx run inside a VM with access to allavailable cores and 4GB of memory.Figure 4.9 shows that TRIGLAV achieved 0.94× of the native throughput, reaching 70krequests. The SCONE variant reached about 31k requests, which is 0.45× of the TRIGLAVthroughput. We observed low-performance degradation incurred by the virtualization (lessthan 2%). The TRIGLAV overhead is caused mostly by the IMA.
Does TRIGLAV influence the throughput of systems that extensively use in-memory
storage, i.e., memcached?

In this experiment, we used memtier [216] to generate load by sending GET and SET re-quests (at 1:1 ratio) of 500bytes of random data to a memcached instance running on adifferent physical host. We calculated the memcached performance by computing the meanthroughput achieved by the experiment before the throughput started to degrade (latency
10The limited network bandwidth dictated the file size—for larger sizes, we saturated the NIC bandwidth.

 0

 1

 2

 3

 220 240 260 280 300 320 340

L
a
te

n
c
y
 [
m

s
]

Throughput (k.req/s)

Native SCONE VM TRIGLAV

Figure 4.10. Throughput/latency of memcached.

63

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

lower than 2ms). Except for the reference measurement (native) run on the bare metal,memcached run inside a VM with access to all available cores and 4GB of memory.Figure 4.10 presents how TRIGLAV influences the throughput-latency ratio of memcached.Weobserved small performance degradationwhen runningmemcached inside a VM. TRIGLAVachieved 0.98× of the native throughput. It is a result of how Linux IMA is implemented.During the memcached start, IMA measures the integrity of the memcached executable, dy-namic libraries, and configuration files. But, it does not measure any data directly written tothe memory during runtime. TRIGLAV throughput was 1.23× higher than the memcachedrun inside SCONE.
Table 4.2. The VM boot time depending on the TPM.

MC TPM IMA Boot timeno TPM ✗ ✗ ✗ 9.7 sec (σ = 0.1 sec)swTPM ✗ ✓ ✓ 14.0 sec (σ = 0.2 sec)TRIGLAVno MC ✗ ✓ ✓ 14.1 sec (σ = 0.3 sec)with MC ✓ ✓ ✓ 50.8 sec (σ = 0.4 sec)fast MC ✓ ✓ ✓ 15.8 sec (estimate)

How the measured boot increases the VM boot time?

Table 4.2 shows how TRIGLAV impacts VM boot times. As a reference, we measure the boottime of a VM without any TPM attached. Then, we run experiments in which a VM has accessto different implementations of a software-based TPMs. Except for the reference measure-ment, the Linux IMA is always turned on. Each VM has access to all available cores and 4GBof memory. As the guest operating system, we run Ubuntu 18.10, a Linux distribution with apre-installed tool (systemd-analyze) to calculate system boot times.The measured boot increases the VM load time. It is caused by the IMA module that mea-sures files required to initialize the operating system. We did not observe any difference inboot time between the setup with the swTPM [20] and the Triglav emulated TPM (Triglav no
MC). However, when running the emulated TPMwith the rollback protection (Triglav with MC),the VM boot time is 5.2× and 3.6× higher when compared to the reference and the swTPMsetting, respectively. Alternative implementations of MCS, such as ROTE [179], offer muchfaster MC increments (1–2ms) than the presented TPM-based prototype. We estimated thatusing TRIGLAV with a fast MC would slow down VM boot time only by 1.13×.
Does TRIGLAV incur performance degradation when multiple VMs are spawned?

We examine the scalability by running memcached concurrently in several VMs with andwithout TRIGLAV, i.e., the native indicates memcached instances executing inside VMs whoseintegrity is neither measured nor enforced. Specifically, we calculate the performance degra-dation between the variant with and without TRIGLAV. I.e., we do not compare the perfor-mance degradation between different numbers of VMs, because it depends on the limitedamount of shared network bandwidth. In the scalability experiments, we assigned one phys-ical core and 1GB of RAM to each VM.

64

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

 0

 1

 2

 3

 4

 150 200 250

L
a
te

n
c
y
 [
m

s
]

2 VMs

 0

 1

 2

 3

 4

 150 200 250

Throughput (k.req/s) native TRIGLAV

3 VMs

 0

 1

 2

 3

 4

 150 200 250

4 VMs

Figure 4.11. Throughput/latency of memcached depending on the number of concurrently executedVMs.
Figure 4.11 shows that when multiple VMs are concurrently running on the host operatingsystem, TRIGLAV achieves 0.96×–0.97× of the native throughput.

4.7 Discussion

4.7.1 Alternative TEEs

The TRIGLAV design (§4.4) requires a TEE that offers a remote attestation protocol and pro-vides confidentiality and integrity guarantees of TRIGLAV components executing in the hostoperating system. Therefore, the SGX used to build the TRIGLAV prototype (§4.5) might be re-placed with other TEEs. In particular, TRIGLAV implementation might leverage Sanctum [46],Keystone [169], Flicker [184], or L4Re [217] as an SGX replacement. TRIGLAVmight also lever-age ARM TrustZone [172] by running TRIGLAV components in the secure world and exploitingthe TPM attestation to prove its integrity.
4.7.2 Hardware-enforced VM Isolation

Hardware CPU extensions, such as SEV [116], Intel multi-key total memory encryption (MK-TME) [122], Intel trust domain extensions (TDX) [123], are largely complementary to theTRIGLAV design. They might enrich TRIGLAV design by providing the confidentiality of thecode and data against rogue operators with physical access to the machine, compromisedhypervisor, or malicious co-tenants. They also consider untrusted hypervisor excluding itfrom the TRIGLAV TCB. On the other hand, TRIGLAV complements these technologies by of-fering means to verify and enforce the runtime integrity of guest operating systems — thefunctionality easily available for bare-metal machines (via a hardware TPM) but not for virtualmachines.
4.7.3 Trusted Computing Base

The prototype builds on top of software commonly used in the cloud (i.e., Linux kernel,QEMU), which has a large TCB because it supports different processor architectures andhardware. TRIGLAVmight be combined with other TEE and hardware extensions, resulting ina lower TCB and stronger security guarantees. Specifically, TRIGLAV could be implementedon top of a microkernel architecture, such as formally verified seL4 [148, 209], that providesstronger isolation between processes and a much lower code base (less than 10k sourcelines of code (SLOC) [148]), when compared to the Linux kernel. Compared to the prototype,

65

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

QEMUmight be replacedwith Firecracker [8], a virtual machinemonitor written in a type-safeprogramming language that consists of 46k SLOC (0.16× of QEMU source code size) and isused in production by Amazon AWS cloud. The TCB of the prototype implementation mightbe reduced by removing superfluous code and dependencies. For example, most of the TPMemulator functionalities could be removed following the approach of μTPM [183]. TRIGLAVAPI could be built on top of the socket layer, allowing removal of HTTP dependencies thatconstitute 41% of the prototype implementation code.
4.7.4 Integrity Measurements Management

The policy composed of digests is sensitive to software updates because newer softwareversions result in different measurement digests. Consequently, any software update ofan integrity-enforced system would require a policy update, which is impractical. Instead,TRIGLAV supports dedicated update mirrors serving updates containing digitally signed in-tegrity measurements, a solution introduced and discussed in chapter 6.Other measurements defined in the policy can be obtained from the national software ref-erence library [198] or directly from the IMA-log read from a machine executed in a trustedenvironment, e.g., development environment running on tenant premises. The amount ofruntime IMA measurements can be further reduced by taking into account processes inter-action to exclude some mutable files from the measurement [130, 226].

4.8 Related Work

VM attestation is a long-standing research objective. The existing approaches vary from VMsmonitoring systems that focus on systembehavior verification [99, 223, 208], intrusion detec-tion systems [135, 224], or verifying the integrity of the executing software [74, 22]. TRIGLAVfocuses on the VM runtime integrity attestation.Following Terra [74] architecture, TRIGLAV leverages VMs to provide isolated execution en-vironments constrainedwith different security requirements defined in a policy. Like ScalableAttestation [22], TRIGLAV uses software-based TPM to collect VM integrity measurements.Additionally, TRIGLAV extends the software-based TPM functionality by enforcing the policyand binding the attestation result with the VM connection, as proposed by IVP [230]. Un-like the idea of linking the remote attestation quote to the TLS certificate [84], TRIGLAV relieson the TEE to restrict access to the private key based on the attestation result. FollowingTrustVisor [183], TRIGLAV exposes trusted computing methods to legacy applications by pro-viding them with dedicated TPM functionalities emulated inside the hypervisor. Unlike otherworks, TRIGLAV addresses the TPM remote attack (recall §4.3.2) at the VM level by combin-ing integrity enforcement with key management and with the TEE-based remote attestation.Alternative approaches to TPM virtualization exist [243, 83]. However, the cuckoo attack re-mains the main problem. Moreover, the trusted hypervisor is still required to protect theTPM state and bind VMs with correct TPMs. In TRIGLAV, we enhanced the vTPM design [21]mostly because of the simplicity; no need for hardware [243] or the TPM specification [83]changes.Hardware solutions, such as SEV [116], TDX [123], emerged to isolate VMs from the un-trusted hypervisor and the cloud administrator. However, they lack the VM runtime integrityattestation, a key feature provided by TRIGLAV. TRIGLAV is complementary to them. Combin-

66

4 Remote Attestation of the Virtual Machine’s Runtime Integrity

ing these technologies allows for better isolation of VM from the hypervisor and the admin-istrator and for runtime integrity guarantees during the VM’s runtime.

4.9 Summary

This chaper presented TRIGLAV, the VM attestation protocol allowing for verification thatsecurity-sensitive applications execute in the VM composed and controlled by expected soft-ware in expected configuration. TRIGLAV provides transparent support for legacy applica-tions and requires no changes in the VM configuration. TRIGLAV also permits tenants to re-motely attest to the platform runtime integrity without possessing any vendor-specific hard-ware by binding the VM integrity attestation with the SSH connection. Our evaluation showsthat TRIGLAV is practical and incurs low performance overhead (≤ 6%).

67

5 Secure Multi-Stakeholder Machine
Learning Framework with GPU
Support

5.1 Problem Statement

Machine learning (ML) techniques are widely adopted to build functional artificial intelligence(AI) systems. For example, face recognition systems allow paying at supermarkets withouttyping passwords; natural language processing systems allow translating information boardsin foreign countries using smartphones; medical expert systems help to detect diseases at anearly stage; image recognition systems help autonomous cars to identify road trajectory andtraffic hazards. To build such systems, multiple parties or stakeholders with domain knowl-edge from various science and technology fields must cooperate since machine learning isfundamentally a multi-stakeholder computation, as shown in Figure 5.1. They would benefitfrom sharing their intellectual property – private training data, source code, and models –to jointly perform machine learning computations only if they can ensure their intellectualproperty remains confidential.
Training data owner. ML systems rely on training data to build inference models. How-ever, the data is frequently sensitive and cannot be easily shared between disjoint entities.For example, healthcare data used for training diagnostic models contain privacy-sensitivepatient information. The strict data regulations, such as general data protection regulation(GDPR) [63], impose an obligation on secure data processing. Specifically, the training datamust be under the training data owner’s control and must be protected while at rest, duringtransmission, and training computation.
Training code owner. The training code owner implements a training algorithm that trainsan inference model over the training data. The training code (e.g., Python code) typically con-tains an optimized trainingmodel architecture and tuned parameters that build the businessvalue and the inference model quality. Thus, the training code is considered as confidentialas the training data. The training requires high computing power, and, as such, it is eco-nomically justifiable to delegate its execution to the cloud. However, in the cloud, users withadministrative access can easily read the training service source code implemented in pop-ular programming languages, such as Python.

68

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

Legend
ML code
ML data (volume)
data flow
stakeholder
ML inference result

training data  
owner

training code 
owner

model 
owner

inference  
code owner

cloud

provider

cloud

data

clientstraining
data

ML
inference

ML
model

ML
training

Figure 5.1. Stakeholders share source code, data, and computing power to build a ML application.They need a framework to establish mutual trust and share code and data securely.
Model owner. The inference model is the heart of any inference service. It is createdby training the model with a large amount of training data. This process requires extensivecomputing power and is time-consuming and expensive. Thus, the model owner, a trainingcode owner, or a third party that buys the model, must protect the model’s confidentiality.The trained models may reveal the privacy of the training data [2]. Several works [70, 2]demonstrated that extracted images from a face recognition system look suspiciously similarto images from the underlying training data.
Inference code owner. The inference code is an AI service allowing clients to use the in-ferencemodel on a business basis. The inference code is frequently developed using Pythonor JavaScript and hosted in the cloud. Thus, the confidentiality of the code and the integrityof the computation must be protected against an adversary controlling computing systemsexecuting the AI service.
Inference data owner. The inference data owner is a client of an AI service. He wants toprotect his input data. Imagine a person sending an X-ray scan of her brain to a diagnosticservice to check for a brain tumor. The inference data, e.g., a brain’s scan, is privacy-sensitiveand must not be accessible by the AI service provider.To build an AI service, stakeholders must trust that others follow the rules protecting eachother’s intellectual property. However, it is difficult to establish trust among them. First, somestakeholders might collude to gain advantages over others [196]. Second, even a trustwor-thy stakeholder might lack expertise in protecting their intellectual property from a skilledattacker gaining access to its computing resources [218, 57]. We tackle the following prob-lem: How to allow stakeholders to jointly perform machine learning to unlock all AI benefitswithout revealing their intellectual property?Recent works [187, 160] demonstrated that cryptographic techniques, such as securemulti-party computation [278] and fully homomorphic encryption [78], incur a large per-formance overhead, which currently prevents their adoption for computing-intensive ML.Alternative approaches [199, 167] adopted trusted execution environments (TEEs) [185] tobuild ML systems showing that TEEs offer orders of magnitude faster ML computation, atthe cost of weaker security guarantees compared to pure cryptographic solutions. Specifi-cally, the pure cryptographic solutions compute on encrypted data, while in TEE-based ap-proaches, a trusted ML software processes the plaintext data in a CPU-established execu-tion environment (called enclave), which is isolated from the untrusted operating system andadministrator. Although promising for the ML inference, TEEs still incur considerable per-formance overhead for memory-intensive computations, like deep training, because of thelimited memory accessible to the enclave and lack of support for hardware accelerators, likegraphical processing units (GPUs). Thus, since TEEs alone are not enough for the ML training

69

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

processes, we raise the question: What trade-off between security and performance has tobe made to allow the ML training to access hardware accelerators?

5.2 Contribution

Wepropose PERUN, a framework allowing stakeholders to share their code anddata only withcertain ML applications running inside an enclave and on a trusted operating system. PERUNrelies on encryption to protect the intellectual property and on a trusted key managementservice to generate and distribute the corresponding cryptographic keys. TEE provides con-fidentiality and integrity guarantees to ML applications and to the key management service.Trusted computing techniques [73] provide integrity guarantees to the operating system, al-lowing ML computations to access hardware accelerators. Our evaluation shows that PERUNachieves 0.96× of native performance execution on the GPU and a speedup of up to 1560×in training a real-world medical dataset compared to a pure TEE-based approach [167].To summarize, in this chapter, we make the following contributions: (i) We designed a se-cure multi-stakeholder ML framework that allows stakeholders to cooperate while protect-ing their intellectual property (§5.4.1, §5.4.2)) and select trade-off between the security andperformance, allowing for hardware accelerators usage (§5.4.3,§5.4.4). (ii) We implementedPERUN prototype (§5.5) and evaluated it using real-world datasets (§5.6).

5.3 Threat Model

Stakeholders are financially motivated businesses that cooperate to perform ML computa-tion. Each stakeholder delivers an input (e.g., input training data, code, and MLmodels) as itsintellectual property for ML computations. The intellectual property must remain confiden-tial during ML computations. The stakeholders have limited trust. They do not share theirintellectual property directly, but they encrypt them so that only other stakeholders’ applica-tions, which source code they can inspect under a non-disclosure agreement or execute ina sandbox, can access the encryption key to decrypt it.An adversary wants to steal a stakeholder’s intellectual property when it resides on a com-puter executing ML computation. Such a computer might be provisioned in the cloud ora stakeholder’s data center, e.g., a hybrid cloud model. In both cases, an adversary has nophysical access to the computer. For this, we rely on state-of-the-art practices controllingand restricting access to the data center to trusted entities.However, an adversary might exploit an operating system misconfiguration or use socialengineering to connect to the operating system remotely. We assume she can execute privi-leged software to read anML process’s memory after getting administrative access to the op-erating system executing ML computation. One of the mitigation techniques used in PERUN,integrity measurement architecture (IMA) [225], effectively limits software that can executeon the computer under the assumption that this software, which is considered trusted, be-haves legitimately also after it has been loaded to the memory, i.e., an adversary cannot tam-per with the process’ code after it has been loaded to the memory. This might be achievedusing existing techniques, like enforcing control flow integrity [143], fuzzing [281], formallyproving the software implementation [287], usingmemory-safe languages [180], usingmem-ory corruptionmitigation techniques, like position-independent executables, stack-smashingprotection, relocation read-only techniques, or others.

70

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

The CPU with its hardware features, hardware accelerators, and secure elements (e.g.,TPM) are trusted. We excludemicro-architectural and side-channel attacks, like Foreshadow [260]or Spectre [151]. We rely on the soundness of the cryptographic primitives used within soft-ware and hardware components.

5.4 Design

Our objective is to provide an architecture that:• supports multi-stakeholder ML computation,• requires zero code changes to the existing ML code,• allows for a trade-off between security and performance,• uses hardware accelerators for computationally-intensive tasks.
5.4.1 High-level Overview

Figure 5.2 shows the PERUN framework architecture that supports multi-stakeholder com-putation and the use of dedicated hardware accelerators. The framework consists of fivecomponents: (i) stakeholders, the parties who want to perform ML jointly while keeping theirintellectual property protected; (ii) security policy manager, a key management and configu-ration service that allows stakeholders to share intellectual properties for ML computationswithout revealing them; (iii) ML computation including training and inference; (iv) GPU, hard-ware accelerators enabling high-performance ML computation; and (v) TEE and TPM, secure
elements enabling confidentiality and integrity of ML computations on untrusted computingresources.To allow multiple stakeholders to perform ML and keep their intellectual property confi-dential, we propose that the intellectual property remains under the stakeholder’s control.To realize that idea, we design the security policy manager that plays the role of the root of
trust. Stakeholders establish trust in this component using the remote attestationmechanism,like [133], offered by a TEE. The TEE, e.g., Intel software guard extensions (SGX) [45], guaran-tees the confidentiality and integrity of processed code and data. After stakeholders ensurethe security policy manager executes in the TEE, they submit security policies defining ac-cess control to their encryption keys. Each stakeholder’s intellectual property is encryptedwith a different key, and the security policy manager uses security policies to decide who canaccess which keys. From a technical perspective, the security policy manager generates thekeys inside the TEE and sends them only to authenticated ML computations executing insidethe TEE. Thus, these keys cannot be seen by any human.Depending on individual stakeholders’ security requirements, PERUNoffers different through-put/latency performances for ML computations. For stakeholders willing strong integrity andconfidentiality guarantees, PERUN executes ML computations only inside TEEs enclaves, i.e.,input and output data, code, andmodels never leave the enclave. For stakeholders acceptinga larger trusted computing base in exchange for better performance, PERUN enables trustedcomputing techniques [73] to protect ML computations while executing them on hardwareaccelerators, e.g., GPU. Specifically, it uses IMA, which is an integrity enforcement mecha-nism that prevents adversaries from running arbitrary software on the operating system, i.e.,software that allows reading data residing in the main memory or being transferred to orprocessed by the GPU. The security policy manager verifies that such a mechanism is en-

71

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

TLS

TLS

data center

training
data

ML
model

data
ML

training
ML

inference

i)

ii)

iii)
iv)
v)

TLS

security policy manager

GPU

Legend
TEE application
encrypted volume
execution/data flow
stakeholder
trusted
ML inference result
security policy

inference  
owner

training  
 code 
policy

inference  
 code 
policy

training  
 data 
policy training  

owner
data  

owner TLS TLS

clients

attestation &  
secret provisioning

TPM

Figure 5.2. PERUN framework supports multi-stakeholder ML computation. Stakeholders trust thesecurity policy manager. Inside security policies, they define which stakeholder’s application canaccess a cryptographic key allowing decryption of confidential code or data. TEE protects code,data, and cryptographic keys.
abled by querying a secure element compatible with the trusted platformmodule (TPM) [90]attached to the remote computer.
5.4.2 Keys Sharing

Stakeholders use security policies to share encryption keys protecting their intellectual prop-erty. For example, the training data owner specifies in his security policy that he allows theML computation of the training code owner to access his encryption key to decrypt the train-ing data. The security policy manager plays a key role in the key sharing process. It generatesan encryption key inside the TEE and securely distributes it to ML computations accordinglyto the security policy. The training code owner cannot see the shared secret in the exampleabove because it is transferred only to his application executing inside the TEE.To provision ML computations with encryption keys, the security policy manager authenti-cates them using a remote attestation protocol offered by a TEE engine, e.g., the SGX remoteattestation protocol [133]. During the remote attestation, the TEE engine provides the secu-rity policy manager with a cryptographic measurement of the code executing on the remoteplatform. The cryptographic measurement – the output of the cryptographic hash functionover the code loaded by the TEE engine to the memory – uniquely identifies the ML compu-tation, allowing the security policy manager to authorize access to the encryption key basedon the ML computation identity and stakeholder’s security policies.
5.4.3 Security Policy and Trade-offs

PERUN relies on security policies as a means to define dependencies among stakeholders’computation and shared data.Listing 5.1 shows an example of a policy. The policy has a unique name (Listing 5.1 line1), typically combining a stakeholder’s name and its intellectual property name. The name isused among stakeholders to reference volumes containing code, input, or output data. A vol-ume is a collection of files encrypted with an encryption key managed by the security policymanager. Only the authorized ML computations have access to the key required to decryptthe volume and access the intellectual property. To prevent an adversary from changingthe policy, the stakeholder embeds his public key inside the policy (Listing 5.1 line 21). The

72

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

security policy manager accepts only policies containing a valid signature issued with a cor-responding stakeholder’s private key.The ML computation definition consists of a command required to execute the compu-tation inside a container (Listing 5.1 line 2) and a cryptographic hash over the source codecontent implementing the ML computation (Listing 5.1 line 8). The security policy manageruses the hash to authenticate the ML computation before providing it with the encryptionkey.The policy allows selecting trade-offs between security and performance. For example, atraining code owner who wants to use the GPU to speed up the ML training computationmight define conditions under which he trusts the operating system. In such a case, a stake-holder defines a certificate chain permitting to verify the authenticity of a secure elementattached to the computer (Listing 5.1 line 10) and expected integrity measurements of theoperating system (Listing 5.1 lines 16-19). The security policy manager only provisions theML computations with the encryption key if the operating system integrity (kernel sourcesand configuration) are trusted by the stakeholder. Specifically, the operating system integritymeasurements reflect what kernel code is running and whether it has enabled the requiredsecurity mechanisms. Only then, the ML computations can access the confidential data andsend it to the outside of the TEE, e.g., GPU.We discuss now and evaluate later (subsection 5.6.2) two security levels that are partic-ularly important for the ML computation. The first one, the high-assurance security level, fitswell the inference because it offers strong security guarantees provided by the TEE, allowingthe inferencemodel to execute in an untrusted data center controlled by an untrusted oper-ator. It comes at performance limitation, which is acceptable for inference because, typically,inference operates on much smaller data than ML training and does not need access tohardware accelerators. The high-assurance security level offers confidentiality and integrityof code and data at rest and in runtime. The trusted computing base (TCB) is low; It includesonly the inference model executing inside the TEE, the hardware providing the TEE func-tionality, and the key distribution process. The second security level, the high integrity level,fits well the ML training because it enables access to hardware accelerators required for in-tensive computation. It comes at the cost of a larger TCB compared to the high-assurancesecurity level because the code providing access to the hardware accelerators, i.e., an op-erating system, must be trusted. PERUN relies on the TPM to establish trust with load-timekernel integrity and on IMA to extend this trust to the operating system runtime integrity.
Listing 5.1: Security policy example

1 name: training_owner/training_code
2 command: python /app/training.py
3 volumes:
4 − path: /training_data
5 import: training_data_owner/training_data_service
6 − path: /inference_model
7 export: inference_owner/inference_service
8 integrity_hash: {"0a11...bb3f"}
9 operating_system:
10 certificate_chain: |−
11 −−−−−BEGIN CERTIFICATE−−−−−
12 # certificate chain allowing
13 # verification of the secure

73

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

14 # element manufacturer
15 −−−−−END CERTIFICATE−−−−−
16 integrity:
17 measure0: e0f1...4be6
18 measure1: ae44...3a6e
19 measure2: 3d45...796d
20 stakeholder: |−
21 −−−−−BEGIN PUBLIC KEY−−−−−
22 # the policy owner’s public key
23 −−−−−END PUBLIC KEY−−−−−

5.4.4 Hardware ML Accelerators Support

Typically, ML computations (e.g., deep neural networks training) are extremely intensive be-cause they must process a large amount of input data. To decrease the computation time,popular ML frameworks, such as TensorFlow11 [1], support hardware accelerators, such asGPUs or Google tensor processing units (TPUs). Unfortunately, existing hardware accelera-tors do not support confidential computing, thus not offering enough security guaranteesfor the multi-stakeholder ML computation. For example, an adversary who exploits an oper-ating system misconfiguration [276] can launch arbitrary software to read data transferredto the GPU from any process executing in the operating system. Even if ML computationsexecute inside the TEE enclaves, an adversary controlling the operating system can read thedata when it leaves the TEE, i.e., it is transferred to the GPU or is processed by the GPU. Be-cause of this, we design PERUN to support additional security mechanisms protecting accessto the data (also code and ML models) while being processed out of the TEE. This also allowsstakeholders to trade-off between security level and performance they want to achieve whenperforming ML computations.Figure 5.3 shows how PERUN enables hardware accelerator support. ML computationstransfer to the security policy manager a report describing the operating system’s integritystate. The report is generated and cryptographically signed by a secure element, e.g., a TPMchip, physically attached to the computer. The security policy manager authorizes the MLcomputation to use the encryption key only if the report states that the operating systemis configured with the required security mechanisms. Precisely, the integrity enforcementmechanism, such as integrity measurement architecture (IMA) [225], controls that the op-erating system executes only software digitally signed by a stakeholder. Even if an adver-sary gains root access to the system, she cannot launch arbitrary software that allows herto sniff on the communication between the ML computation and the GPU, read the datafrom the main memory, or reconfigure the system to disable security mechanisms or load amalicious driver. This also allows PERUN to mitigate software-based micro-architectural andside-channel attacks [260, 40, 267, 82], which are vulnerabilities of TEEs.To enable hardware accelerator support, a stakeholder specifies expected operating sys-tem integrity measurements inside the security policy (Listing 5.1 lines 9-19) and certificatesallowing verification of the secure element identity. The operating system integrity measure-ments are cryptographic hashes over the operating system’s kernel loaded to the memoryduring the boot process. A secure element collects suchmeasurements during the boot pro-
11TensorFlow, the TensorFlow logo and any related marks are trademarks of Google Inc.

74

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

Is service legitimate? 
Is OS legitimate?

bare metal machine

attestation 
reports

ML

trainingsecurity
policy

manager encryption key

TEE & TPM reports

train model

TEE Legend
TEE application
encrypted volume
data flow
trusted hardware
trustedtraining

data

TPM

GPUdecrypt

Figure 5.3. The high-level overview of PERUN supporting secure computation using hardware accel-erator, e.g., the GPU. PERUN performs both the SGX and TPM attestation before provisioning the MLcode with cryptographic keys. The successful TPM attestation informs that the legitimate OS withenabled integrity-enforcement mechanisms controls access to the GPU.
cess and certifies them using a private key linked to a certificate issued by its manufacturer.The certificate and integrity measurements are enough for the security policy manager toverify that the IMA enforces the operating system integrity.Although the hardware accelerator support comes at the cost of weaker security guar-antees (additional hardware and software must be trusted when compared to a pure TEE-based approach), it greatly improves the ML training computation’s performance (see sub-section 5.6.2).
5.4.5 Zero Code Changes

PERUN framework requires zero code changes to run existing ML computations, thus provid-ing a practical solution for legacyML systems. To achieve it, PERUN adapts platforms support-ing running legacy applications inside the TEE, such as SCONE [11] or GrapheneSGX [257].These platforms allow executing unmodified code inside the TEE by recompiling the codeusing dedicated cross-compilers or running them with a modified interpreter executing inthe TEE.
5.4.6 Policy Deployment and Updates

A stakeholder establishes a transport layer security (TLS) connection to the security policymanager to deploy a policy. During the TLS handshake, the stakeholder verifies the identityof the security policy manager. The security policy manager owns a private key and cor-responding certificate signed by an entity trusted by a stakeholder. For example, such acertificate can be issued by a TEE provider who certifies that given software running inside aTEE and identified by a cryptographic hash is the security policy manager. Some TEE engines,such as SGX, offer such functionality preventing even a service administrator from seeing theprivate key [149]. For other TEEs, a certificate might be issued by a cloud provider operatingthe security policy manager as part of cloud offerings.PERUN requires that the security policy manager authorizes changes to the deployed pol-icy. Otherwise, an adversary might modify the stakeholder’s policy allowing malicious codeto access the encryption key. In the PERUN design, the stakeholder includes his public keyinside the digitally signed security policy. Since then, the security policy manager acceptschanges to the policy only if a new policy has a signature issued with the stakeholders’ pri-vate key corresponding to the public key present in the existing policy. By having a publickey embedded in the security policy, other stakeholders can verify that the policy is owned

75

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

by the stakeholder they cooperate with. The details of the policy security manager regard-ing key management, high availability, tolerance, and protection against rollback attacks areprovided in [88].

5.5 Implementation

We implemented the PERUN prototype based on TensorFlow version 2.2.0 and the SCONEplatform [11] because SCONE provides an ecosystem to run unmodified applications insidea TEE. We also rely on the existing key management system provided by the SCONE [258]and its predecessor [88] to distribute the configuration to applications. We rely on IntelSGX [45] as a TEE engine because it is widely used in practice.Our prototype uses a TPM chip [90] to collect and report integrity measurements of theLinux kernel loaded to the memory during a trusted boot [235] provided by tboot [127] withIntel trusted execution technology (TXT) [87]. The Linux kernel is configured to enforce theintegrity of software, dynamic libraries, and configuration files using Linux IMA [225], a Linuxkernel’s security subsystem. Using the TPM chip, PERUN verifies that the kernel is correctlyconfigured and interrupts its execution when requirements are not met.We use an nvidia GPU as an accelerator for ML computation. The ML services are imple-mented in Python using TensorFlow framework, which supports delegating ML computationto the GPU.
5.5.1 Running ML Computations Inside Intel SGX

To run unmodified ML computations inside the SGX enclaves, we use the SCONE cross-compiler and SCONE-enabled Python interpreters provided by SCONE as Docker images.They allow us to build binaries that execute inside the SGX enclave or run Python code in-side SGX without any source code changes.The SCONE wraps an application in a dynamically linked loader program (SCONE loader)and links it with a modified C-library (SCONE runtime) based on the musl libc [190]. On theML computation startup, the SCONE loader requests SGX to create an isolated executionenvironment (enclave), moves the ML computation code inside the enclave, and starts. TheSCONE runtime, which executes inside the enclave alongwith theML computations, providesa sanitized interface to the operating system for transparent encryption and decryption ofdata entering and leaving the enclave. Also, the SCONE runtime provides the ML computa-tions with its configuration using configuration and attestation service (CAS) [258].
5.5.2 Sharing the Encryption Key

We implement the security policymanager in the PERUN architecture using the CAS, to gener-ate, distribute, and share encryption keys between security policies. We decided to use theCAS because it integrates well with SCONE-enabled applications and implements the SGXattestation protocol [133]. Other key management systems supporting the SGX attestationprotocol might be used [37, 159] but require additional work to integrate them into SCONE.We create a separate CAS policy for each stakeholder. The policy contains an identityof the stakeholder’s intellectual property (data, code, and models) and its access controland configuration. It is uploaded to CAS via mutual TLS authentication using a stakeholder-specific private key corresponding to the public key defined inside the policy. This fulfills the

76

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

PERUN requirement of protecting unauthorized stakeholders from modifying policies. Theintellectual property identity is defined using a unique per application cryptographic hashcalculated by the SGX engine over the application’s pages and their access rights. The SCONEprovides this value during the application build process. The CAS allows for the specificationof the encryption key as a program argument, environmental variable, or indirectly as a keyrelated to an encrypted volume. Importantly, the CAS allows defining which policies haveaccess to the key. Thus, with the proper policy configuration, stakeholders share keys amongenclaves as required in the PERUN architecture.Our prototype uses the CAS encrypted volume functionality, for which the SCONE run-time fetches from the CAS the ML computation configuration containing the encryption key.Specifically, following the SGX attestation protocol, the SCONE runtime sends to CAS the SGXattestation report in which the SGX hardware certifies the ML computation identity. The CASthen verifies that the report was issued by genuine SGX hardware and the ML computationis legitimate. Only afterward, it sends to the SCONE runtime the encryption key. The SCONEruntime transparently encrypts and decrypts data written and read by the ML computa-tion from and to the volume. The ML computations, i.e., training and inference authorizedby stakeholders via policies, can access the same encryption key, thus gaining access to ashared volume.
5.5.3 Enabling GPU Support with Integrity Enforcement

Our prototype implementation supports delegating ML computations to the GPU under thecondition that the integrity-enforced operating system handles the communication betweenthe enclave and the GPU. The integrity enforcement mechanism prevents intercepting con-fidential data that leaves the enclave because it limits the operating system functionality toa subset of programs essential to load the ML computation and the GPU driver. Thus, amalicious program cannot run alongside the ML computations on the same computing re-sources. We use trusted boot and TPM to verify it, i.e., that the remote computer runs alegitimate Linux kernel with enabled integrity enforcement that limits software running onthe computer to the required operating system services, the GPU driver, and ML computa-tions.
Trusted Boot

Trusted computing techniques (TCTs) define a set of technologies that measure, report, andenforce kernel integrity. Specifically, during the computer boot, we rely on a trusted boot-loader [127], which uses a hardware CPU extension [87] to measure and securely load theLinux kernel to an isolated execution environment [235]. (The TXT session ends with theexecution of tboot.) The trusted bootloader measures the kernel integrity (a cryptographichash over the kernel sources) and sends the TPM chip measurements.
Integrity Enforcement

IMA is a kernel mechanism that authenticates files before allowing them to be loaded to thememory. Figure 5.4 shows how the IMA works. A process executing in userspace requeststhe kernel to execute a new application, load a dynamic library, or read a configuration file.IMA calculates the cryptographic hash over the file’s content, reads the file’s signature fromthe file’s extended attribute, and verifies the signature using a public key stored in the kernel’s

77

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

integrity-enforcement mechanism (IMA)kerneluserspace

check  
signature ×

>_
accept
reject

exec ε

exec or 
load ε

✓ loader

Legend

>_ user with remote access 
or an OS process
a binary, library, or
configuration file
execution or data flow
trusted
untrusted

memory CPU
storage

signature ε

load ε

Figure 5.4. The kernel integrity-enforcement system authenticates a file by checking its digital signa-ture before loading it to the memory.
ima keyring. If the signature is correct, IMA extends the hash (load-time integrity of the file)to a dedicated PCR and allows the kernel to continue loading the file.
Trusted Boot Service

Because SCONE is proprietary software, we could not modify the SCONE runtime to providethe CAS with the TPM report. Instead, we implemented this functionality in a trusted boot ser-
vice that uses the TPM to verify that the ML computations execute in the integrity-enforcedoperating system. The trusted boot service relies on the CHORS’s agent implementation in-troduced in §3.5.1.The CAS performs the SGX attestation of the trusted boot service and provisions it with theTPM certificate as well as a list of the kernel integrity measurements. The trusted boot servicereads the integrity measurements stored in PCRs using the TPM attestation protocol. TheTPMgenuineness is ensured by verifying the TPM certificate using a certificate chain providedby the CAS. The Linux kernel integrity is verified by comparing the integrity measurementscertified by the TPM with the measurements read from the CAS.We implemented the trusted boot service as an additional stage in the ML data process-ing. It enables other ML computations to access the confidential data only if the operatingsystem state conforms to the stakeholder’s security policy. It copies the confidential datafrom an encrypted volume of one ML computation to a volume accessible to another MLcomputation after verifying the kernel integrity using the TPM. Our implementation is com-plementary with Linux unified key setup (LUKS) [28]. LUKS allows the kernel to decrypt thefile system only if the kernel integrity has not changed. This prevents accessing the trustedboot service’s volume after modifying the kernel configuration, i.e., disabling the integrity-enforcement mechanism.

5.6 Evaluation

Testbed. Experiments were executed on an ASUS Z170-A mainboard equipped with an In-tel Core i7-6700K CPU supporting SGXv1, Nvidia GeForce RTX 2080 Super, 64GiB of RAM,Samsung SSD 860 EVO 2TB hard drive, Infineon OPTIGA™SLB 9665 TPM2.0, a 10Gb Eth-ernet network interface card connected to a 20Gb/s switched network. Hyper-threading isenabled. The enclave page cache (EPC) is configured to reserve 128MB of RAM. CPUs are onthe microcode patch level 0xe2. We run Ubuntu 20.04 with Linux kernel 5.4.0-65-generic.Linux IMA is enabled. The hashes of all operating system files are digitally signed using a1024-bit RSA asymmetric key. The signatures are stored inside files’ extended attributes,

78

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

and the certificate signed by the kernel’s build signing key is loaded to the kernel’s keyringduring initrd execution.
Datasets. We use two datasets: (i) the classical CIFAR-10 image dataset [157], and (ii) thereal-world medical dataset [236].

5.6.1 Attestation Latency

We run an experiment to measure the overhead of verifying the operating system integrityusing the TPM. Precisely, we measure how much time it takes an application implementingthe trusted boot service to receive configuration from the security policy manager, read theTPM, and verify the operating system integrity measurements.The security policy manager executes on a different machine located in the same datacenter. It performs the SGX attestation before delivering a configuration containing two en-cryption keys – a typical setup for ML computations – and measurements required to verifythe operating system integrity. The security policy manager and the trusted boot serviceexecute inside SCONE-protected Docker containers.
Table 5.1. End-to-end latency of verifying software authenticity and integrity using SGX and TPMattestation. Mean latencies are calculated as 10% trimmed mean from ten independent runs. sdstands for standard deviation.

Execution timeApplication in a container 1573ms (sd=16ms)+ SGX attestation 1691ms (sd=37ms)+ SGX and TPM attestation 2410ms (sd=33ms)
Table 5.1 shows that launching the application inside a SCONE-protected container takes1573ms. Running the same application that additionally receives the configuration from thesecurity policy manager incurs 118ms overhead. Additional 719ms are required to readthe TPM quote, verify the TPM integrity and authenticity, and compare the read integritymeasurements with expected values provided by the security policy manager. As we shownext, 2.5 sec overhead required to perform SGX and TPM attestation is negligible consideringthe ML training execution time.

5.6.2 Security and Performance Trade-off

To demonstrate the advantage of PERUN in allowing users to select the trade-off betweensecurity and performance, we compare the performance of different security levels providedby PERUN and the pure SGX based system called SecureTF [167]. We run the model trainingusing the following setups: (i) only CPU (Native); (ii) GPU (Native GPU); (iii) PERUN, IMA enabled(PERUN+IMA); (iv) PERUN, IMA and SGX enabled (PERUN+IMA+SGX); (v) PERUN with GPU, IMAenabled (PERUN+IMA+GPU).The Native and Native GPU levels represent scenarios where no security guarantees areprovided. PERUN+IMA and PERUN+IMA+GPU represent the high integrity level (subsection 5.4.3)in whichML training can execute directly on the CPUorGPU (high performance) while requireto extend trust to the operating system (large TCB). Finally, PERUN+IMA+SGX represents thehigh-assurance security level where all computations are performed inside the TEE (limitedperformance) but requires a minimal amount of trust in the remote execution environment(low TCB). In all setups, the trusted boot service executes inside the enclave.

79

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

100

101

102

103

8 16 32 64 128 256 512Tr
ai

ni
ng

 la
te

nc
y

pe
r

ep
oc

h
(s

)

Batch sizes

PERUN+IMA+GPU
PERUN+IMA

PERUN+IMA+SGX
Native GPU

Native CPU

Figure 5.5. The CIFAR-10 training latency comparison among different security levels offered by PE-RUN. Mean latencies are calculated from five independent runs.

10-1

100

101

102

103

8 16 32 64 128 256 512

Sp
ee

du
p

(X
)

Batch sizes

PERUN + IMA + GPU
PERUN + IMA

PERUN + IMA + SGX
native GPU

native CPU

Figure 5.6. The CIFAR-10 training speedup of evaluated systems in comparison to PERUN with thehighest security level (PERUN+IMA+SGX).

CIFAR-10 Dataset

We perform training using the CIFAR-10 dataset, a convolutional neural network containingfour conv layers followed by two fully connected layers. We use BatchNorm after each convlayer. We apply the ADAM optimization algorithm [146] with the learning rate set to 0.001.Figure 5.5 shows the training latency, and Figure 5.6 shows the PERUN speedup depend-ing on setups and batch sizes. At the high-assurance security level (PERUN+IMA+SGX), PERUNachieves almost the same performance as the pure SGX-based system, secureTF. This is be-cause the training data is processed only inside the enclave, and SGX performs compute-intensive paging caused by the limited EPC size (128MB) that cannot accommodate thetraining computation data (8GB). PERUN+IMA+GPU and PERUN+IMA achieve 1321× and 40×speedup when relying just on the high integrity level compared to secureTF (batch size of512). With these setups, the PERUN performance is similar to native systems (∼ 0.96× ofnative latency) because the integrity protection mechanism performs integrity checks onlywhen it loads files to the memory for the first time, leading to almost native execution after-ward.

80

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

Real-world Medical Dataset

Next, we evaluate PERUN using a large-scale real-world medical dataset [236]. The datasetcontains a wide range of medical images, including images of cancer and tumor treatmentregimens for various parts of the human body, e.g., brain, colon, prostate, liver, and lung. Itwas created via CT or MRI scans by universities and research centers from all around theworld. We perform training over the brain tumor images dataset (6.1GB) using the 2-D U-Net [221] TensorFlow architecture from Intel AI [5]. It makes use of the ADAM optimizer thatincludes 7 760385 parameters with 32 feature maps. We set the learning rate to 0.001 andthe batch size to 32.
Table 5.2. The training latency comparison among different security levels of PERUN, secureTF, andnative. The results were obtained from a single run.

System Latency per epoch SpeedupNative CPU 5h 26min 14 sec 47×Native GPU 9min 54 sec 1561×PERUN+IMA 5h 26min 17 sec 47×PERUN+IMA+SGX 257h 27min 49 sec ∼ 1×PERUN+IMA+GPU 9min 55 sec 1560×secureTF 257h 43min 53 sec (baseline)
Table 5.2 shows that at the high-assurance security level (the data is processed entirelyinside the enclave), PERUN+IMA+SGX achieves the same performance as the referenced SGX-based system. However, when relying just on the high integrity level to protect the data,

PERUN+IMA+GPU and PERUN+IMA achieve a speedup of 1559× and 47× compared to se-cureTF, respectively. Wemaintain the accuracy of 0.9875 in all experiments (dice coef: 0.5503,soft dice coef: 0.5503).

5.7 Related Work

5.7.1 Secure Multi-party Computation

Although cryptographic schemes, such as secure multi-party computation (MPC) and fullyhomomorphic encryption, are promising to secure multi-stakeholder ML computation, theyhave limited application in practice [263, 199]. They introduce high-performance overhead [199,187, 160, 188, 137], which is a limiting factor for computing-intensive ML, and require toheavily modify existing ML code. Furthermore, they do not support all ML algorithms, suchas, deep neural networks. Some of them also require additional assumptions, like MPC pro-tocol requiring a subset of honest stakeholders. Unlike PERUN, most of them lack supportfor training computation. Instead, PERUN requires zero-code changes to theML applications,supports multi-stakeholder ML training, and offers good performance at the cost of muchlarger TCB than the pure cryptographic solutions.
5.7.2 Secure ML using TEEs

Many works leverage TEE to support secure ML [94, 107, 199]. Chiron [107] uses SGX forprivacy-preserving ML services, but it is only a single-threaded system. Also, it needs to add

81

5 Secure Multi-Stakeholder Machine Learning Framework with GPU Support

an interpreter and model compiler into the enclave. This incurs high runtime overhead dueto the limited EPC size. The work from Ohrimenko et al. [199] also relies on SGX for secureML computations. However, it does not allow using hardware accelerators and supports onlya limited number of operators — not enough for complex ML computations. In contrast tothese systems, PERUN supports legacy ML applications without changing their source code.SecureTF [167] is the most relevant work for PERUN because it also uses SCONE. It sup-ports inference and training computation, as well as distributed settings. However, it is notclear how secureTF can be extended to support secure multi-stakeholders ML computation.Also, secureTF does not support hardware accelerators, making it less practical for train-ing computation. Other works [253, 192, 13] use SGX and untrusted GPUs for secure MLcomputations. They split ML computations into trusted parts running in the enclave and un-trusted parts running in the GPU. However, they require changing the existing code and donot support multi-stakeholder settings.
5.7.3 Trusted GPUs

Although trusted computation on GPUs is not commercially available, there is ongoing re-search. HIX [131] enables memory-mapped I/O access from applications running in SGX byextending an SGX-like design with duplicate versions of the enclavememory protection hard-ware. Graviton [264] proposes hardware extensions to provide TEE inside the GPU directly.Graviton requires modifying the GPU hardware to disable direct access to the critical GPUinterfaces, e.g., page table and communication channels from the GPU driver. Telekine [106]restricts access to GPU page tables without trusting the kernel driver, and it secures commu-nication with the GPU using cryptographic schemes. The main limitation of these solutions isthat they require hardware modification of the GPU design, so they cannot protect existingML computations, and they also do not support multi-stakeholder ML computations.

5.8 Summary

PERUN allows multiple stakeholders to perform ML without revealing their intellectual prop-erty. It provides strong confidentiality and integrity guarantees at the performance of existingTEE-based systems. With the help of trusted computing, PERUN permits utilizing hardwareaccelerators, reaching native hardware-accelerated systems’ performance at the cost of alarger trusted computing base. When training anMLmodel using real-world datasets, PERUNachieves 0.96× of native performance execution on the GPU and a speedup of up to 1560×compared to the state-of-the-art SGX-based system.

82

6 A Practical Approach For Updating
an Integrity-enforced Operating
System

Techniques presented in chapter 3, chapter 4, and chapter 5 rely on trusted computing tech-niques (TCTs) to measure, record, enforce, and report the integrity of an operating system.While promising at first glance, these systems, as well as any other system leveraging TCTs,suffer from limitations when deployed in production. Specifically, they do not support op-erating system updates because the security patches, which might be released frequentlyand installed automatically, break the operating system’s integrity. We refer to integrity as asecurity property describing that a computer runs only expected software in the expectedconfiguration.To illustrate the problem of installing software updates, we first describe the conceptof integrity verification provided by TCTs technologies. Verifiers (e.g., monitoring systems[125, 128, 111] or virtual private network access points [240]) use hardware and softwaretechnologies [87, 225, 121], which implement trusted computing techniques [235, 90, 89],to identify compromised (executing not allowed software) or misconfigured (having invalidconfiguration) systems. In more detail, verifiers read from a remote computer a list of cryp-tographic hashes, in the form of a measurement report, calculated over every file loaded tothe computer memory since the computer boot. Verifiers detect integrity violations by com-paring hashes to a whitelist, which is a list that contains hashes of approved software andconfiguration. Unfortunately, verifiers cannot distinguish whether software integrity changeddue to malicious behavior or a legitimate software update (see Figure 6.1).Berger et al. 2015 [22] proposed to include in the measurement report digital signatures,which certify the integrity hashes of trusted software. The approach simplifies the verificationprocess because verifiers require only a single certificate to check the signatures instead of awhitelist of all possible cryptographic hashes. Consequently, it opened an opportunity to sup-port the operating system’s updates because updates could incorporate digital signaturesto vouch for the integrity of files changed during the update. This approach has, however,two limitations, which we address in this chaper. First, it requires changes to the existingprocedures of creating packages for every operating system distribution because each op-erating system distribution would have to issue and insert digital signatures of files insidetheir packages [23]. Second, software packages contain not only files that are extracted to

83

6 A Practical Approach For Updating an Integrity-enforced Operating System

the filesystem but also configuration scripts that might alter the operating system’s configu-ration, thus breaking the integrity.Instead of modifying the well-established process of package generation, which requiresapproval from the entire open-source community, an alternative approach consists of cre-ating a standalone repository with modified packages containing digital signatures [23]. Theapproach requires a trusted organization that owns a signing key and re-creates packagesafter injecting digital signatures. Such an organization must put additional efforts to protectthe signing key and must have a good reputation to convince users to trust it. We arguethat it might be difficult to achieve, considering incidents from the past, when signing keys ofmajor Linux distribution were leaked affecting millions of users [72, 214].
integrity measurement

architecture
no update software

(C, H) 

update software
(C’, H’)

tampering with  
software integrity

software
(C’’, H’’)

verify H’ ≠ H ⇒ violation 
(false positive)

verify

verify H’’ ≠ H ⇒ violation 
(true positive)

H = H ⇒ correct

problem addressed in this chapter
software (C, H)

C - content
hash(C) = H

Legend
integrity check by  
monitoring system

adversary

file contents of executables,  
configuration, dynamic
libraries

Figure 6.1. Problem of installing software updates in an integrity-enforced operating system. Soft-ware updates change software integrity measurement, which is reported by the monitoring systemsas integrity violation. The main question addressed in this chapter: How to distinguish between soft-ware manipulated by an adversary and correctly updated software?
Another problem is that an adversary controlling a repository can provide the operatingsystem with outdated packages containing known vulnerabilities (replay attack), or even pre-vent the operating system from seeing the update (freeze attack) [32, 33]. The secure choiceis to rely only on the original repository, which is a repository managed by a trusted orga-nization, such as an official software repository of the operating system distribution. But,this approach does not tolerate the original repository failure, thus the operating systemmust also accept mirrors. Mirrors store a copy of the original repository, and, in the case ofopen-source distributions, are hosted voluntarily. As reported by previous studies [32], it isnot difficult to create a custom mirror that becomes accepted as an official mirror. There-fore, we must tolerate that some of the available mirrors are controlled by an adversary,exposing operating systems to threats mentioned above. For example, it happened that acompromisedmirror of a popular repository distributed a vulnerable version of the software,allowing an adversary to remotely access the system [186].

6.1 Contribution

We present ROD, an intermediate layer between the operating system and the softwarerepository that provides sanitized software packages. The installation of sanitized packagescauses deterministic changes to the operating system configuration and filesystem. Becausesuch changes are verifiable by monitoring systems, ROD eliminates the risk of false-positives.According to our measures, sanitization enables 99.76% of packages available in the Alpine

84

6 A Practical Approach For Updating an Integrity-enforced Operating System

main and community repositories to be safely installed in integrity-enforced operating sys-tems.ROD requires zero code changes to bothmonitoring systems as well as operating systems.Due to the shared nature of the software repositories, we designed ROD as a service that canbe hosted on third-party resources, i.e., in the cloud. ROD exploits trusted execution environ-ment (TEE), i.e., Intel software guard extensions (SGX) [45, 185], to protect the signing keysand ROD integrity. Our evaluation shows that running ROD inside SGX is practical; SGX in-duces in average 1.18× performance overhead during sanitization, up to 1.96× for packagesexceeding available SGXmemory. Note that the sanitization is performed in batchmode andhence, the slowdown has no practical impact.Last but not least, ROD accepts security policies, which reflect organizational-specific se-curity requirements. Specifically, each organization defines a list of mirrors, which ROD usesto establish quorum on the correct version of a software package, thus tolerating mirrorscompromised by an adversary. We show that ROD requires up to 2.2 seconds to establish aquorum from official Alpine mirrors distributed over three continents.

develop & build distribute update

operating system
distribution community

mirrors
maintainers

end-userssoftware
maintainers

build
server or

ig
in

al

re
po

si
to

ry mirror

mirror

mirror

operating
system

opensource

commercial

install

do
w

nl
oa

d

sy
nc

pu
bl

is
h

de
liv

er

up
da

te
s

Legend

data flow

private signing key

public signing key

Figure 6.2. Overview of software update process. Colors indicate different administrative domainsand are consistent across all figures in this chapter.
To summarize, in this chapter, we make the following contributions: (i) We propose a prac-tical solution to support operating system updates in integrity-enforced systems, allowingfor software packages to be safely installed in integrity-enforced operating systems (§6.5.2),transparent support of the existing software update processes and infrastructure (§6.5.3),tolerance of a minority of mirrors exhibiting Byzantine behavior (§6.5.5). (ii) We realize theabove-mentioneddesign by developing ROD—asecure proxy framework for supporting soft-ware updates in integrity-enforced operating systems (§6.6). (iii) We have evaluated ROD us-ing a series of micro-benchmarks, and a real-world use case—Alpine Linux package updates(§6.7).

6.2 Background

To better understand the decisions taken in designing ROD, we start by providing backgroundinformation on software update processes and about existing technologies used to collect,report, and verify system integrity.
6.2.1 Operating System Updates

Figure 6.2 shows a high-level overview of an operating system update process: releasing,exposing, and installing new software versions. The process begins when software maintain-

85

6 A Practical Approach For Updating an Integrity-enforced Operating System

ers create a new software release that contains bug fixes or new features. The operatingsystem distribution community uses the source code of the new software release to cre-ate a software package. A software package is an archive containing software-specific filesand meta-information required by the operating system to install and manage the package.Packages are stored in a repository, from which end-users download them. A repositoryalso stores ametadata index that contains a digitally signed list of all packages. In this chaper,we refer to a software repository controlled by an operating system distribution communityas an original repository. The original repository is a root of trust for software updates. Themetadata file downloaded from the original repository provides information about the mostrecent versions of software available in the repository. As such, it can be used to verify thatthe operating system is up-to-date.Repository mirrors contain a copy of the original repository. They are used to distributethe load and to decrease the latency of downloading packages. The community has limitedcontrol over the mirrors, which are typically supported by volunteer organizations. Impor-tantly, mirrors do not have access to the signing key. End-users verify that the metadata fileand packages downloaded from mirrors originate from the original repository by verifyingdigital signatures using a public portion of the signing key provided by the operating systemdistribution community.
6.2.2 Package Managers

Operating systems use packagemanagers to simplify installation, update, and removal of soft-ware. The majority of distributions ship with package managers that use pre-built packages(e.g., .rpm, .deb [176], .apk [175]), but some build software directly from sources [177, 10]. Inthis chaper, we focus only on the pre-built packages, which we refer to further as packages.
software package

certifies  
authenticity  
and  
integrity

digital signature: 011011…010101

meta-information:

 name: “package”,

version: “0.1”,

dependencies: “openssl”,

hash: ‘c7a9f84bb5ac…987cce’

pre/post installation & update scripts

software-specific files

certifies  
integrity

package header

package control

package contents

Legend

certification order

configuration files,  
executables, libraries
provided by software
maintainers
provided by the operating
system distribution
community

Figure 6.3. The internal structure of a software package, i.e., Alpine APK package format. The packageauthenticity and integrity can be verified by using the digital signature and the content hash. Thedigital signature is stored inside the header, and is issued over the package control. The hash of thepackage contents is stored inside the meta-attributes of the package control.
Apackage is an archive containing software-specific files, installation scripts, meta-information(such as dependency on other packages), and digital signatures. Figure 6.3 shows an exam-ple of a package in the Alpine Linux .apk format. The package header stores a digital signatureissued by a developer with an offline signing key, a private key stored off the repository. Thedigital signature permits verifying the authenticity and the integrity of the package control,which contains installation scripts and meta-information describing package dependencies,

86

6 A Practical Approach For Updating an Integrity-enforced Operating System

software version, and a cryptographic hash of package contents. The hash permits verify-ing the integrity of executables, dynamic libraries, and configuration files stored inside thepackage.To install the package, the packagemanager first downloads it from the repository, or frommiddlemen such as a content delivery network (CDN) or mirrors. After that, it verifies that atrusted entity created the package. Finally, it runs installation scripts and extracts software-specific files to the file system.

6.3 Threat Model

We assume an adversary whose goal is to install vulnerable software on a remote computerby exploiting the software update mechanism. A remote computer is configured to installupdates from ROD, which itself relies on the original repository and official mirrors. An adver-sary has root access to the machine running ROD and to the minority of machines hostingmirrors. In more detail, she controls up to f mirrors out of a total of 2f + 1 mirrors availableto ROD. The adversary has access to all outdated packages that contain vulnerabilities, in-cluding outdated signed metadata files. By having root access to machines hosting ROD andmirrors, she can prevent network connection to the original repository and arbitrary mirrors.We assume that the operating system distribution community, software maintainers, theirinternal processes (i.e., software development, packages build), and infrastructure are trusted.In particular, packages are built using legitimate compilers; signing keys are well protected;the original repository provides the most recent software versions. We do not consider at-tacks resulting from the incorrect design of package formats and metadata, i.e., the end-less data attack and the extraneous dependencies attack [32]. The assumption is practicalbecause main repositories hosted by the popular Linux distributions (i.e., Debian, Ubuntu,RedHat, Alpine) and their corresponding package managers mitigate the attacks by digitallysigning the metadata, which also includes packages file sizes and integrity hashes.The TEEs are vulnerable to side-channel attacks [151, 260]. We exclude them from thethreat model, assuming they can be addressed using dedicated tools [34, 200, 201], by up-dating microcode [126], or by excluding a particular type of hardware during the remoteattestation protocol [133].

6.4 Problem Statement

We now introduce the main challenges and problems that shaped the ROD design.
Problem 1: How to modify the package so that the changes made to the operating
system configuration and filesystem are verifiable by the monitoring system?

The monitoring systems regularly verify that remote computers run only expected softwarein the expected configuration. Machines that fail the attestation might be restarted or re-installed to bring the system back into the correct state. Also, there exist mechanisms toenforce operating system integrity locally. Such mechanisms are built into the kernel (e.g.,IMA-appraisal [101]), allowing the kernel to authorize each file before loading it to the mem-ory. They make the integrity attestation more robust, preventing accidental or maliciouschanges to the filesystem.

87

6 A Practical Approach For Updating an Integrity-enforced Operating System

integrity-enforced operating system

integrity

monitoring

system

integrity

check failed

read integrity
measurements

5

!

mirror

modify OS
configuration

add new files
and execs

replace
outdated
libraries

package manager

execute
installation
scripts

extract

software 
files

2

3

1 download 
package

measure

4

TPM
2.0

Legend

execution flow

filesystem

new or updated files

trusted

initially untrusted (subject
of attestation)

Figure 6.4. Example of the package installation that changes the operating system configuration andfilesystem. Monitoring systems consider such a system compromised because the new operatingsystem configuration might, for example, allow an adversary to get remote access to the computeror remotely exploit vulnerabilities in the replaced dynamic libraries.
The main problem of applying trusted computing in production systems is, however, thatsoftware updates cannot be safely installed because they modify the operating system con-figuration and change files in a way unknown to monitoring systems. Figure 6.4 shows whythe package installation might move the operating system into an untrusted state. Afterthe package is downloaded (➊), the package manager executes software-specific installationscripts that modify the operating system configuration (➋). Moreover, the package managerextracts software-specific files (➌), which contents are not known to verifiers. The integrityof the operating system configuration files and software-specific files is measured by trustedcomputing components (➍). Eventually, amonitoring system uses remote attestation to readthe measurements (➎), thus detecting the operating system integrity change. The operatingsystem is considered compromised.A strawman approach consists of providing the monitoring system with a list of valid mea-surements before installing a new package. In practice, constructing such a list a priori isa difficult problem because of the complex nature of software dependencies, the operat-ing system configuration depending on the order in which software has been installed, andunpredictable schedules of security updates.

Replay attack:

Outdated package with  
known vulnerabilities.

 mirror #3

original repository

 mirror #4

operating
system Freeze attack:

Pretends that updates  
do not exist.

mirror #1 mirror #2 Legend

package delivery

adversary controlling
some mirrors and network

trustworthy mirror

compromised mirror

Figure 6.5. Mirrors controlled by an adversary can provide outdated packages with known vulnerabili-ties (replay attack) or completely hide the presence of software updates (freeze attack). An adversarymight prevent access to the original repository (the root of trust) forcing the operating system to relyon mirrors.

88

6 A Practical Approach For Updating an Integrity-enforced Operating System

Problem 2: How to modify packages without changing the well-established package
creation requiring community approval?

Previous studies proposed changing the package creation process operated by differentLinux communities to include digital signatures that vouch for individual file integrity [22]. Al-though different approaches have been proposed [239, 181], they have not gained enoughcommunity approval and have not been merged into upstream repositories. Therefore, apractical solution should not require changes to the existing package creation processes,thus be transparent to the existing update infrastructure and processes.
Problem 3: How to protect the signing key and to guarantee the correct generation
of signatures in the presence of a powerful adversary with administrative access to
ROD?

If we assume that we know how to modify the package (Problem 1), the operating systemwould reject themodified package because its digital signature would notmatch the packagecontents. This is expected behavior because it prevents operating systems from installingpackages tampered by an adversary. Therefore, a new package content must be certifiedagain. However, without community support, it is impossible to issue the signature becausethe community would restrict access to the signing key (Problem 2).An alternative approach is to let ROD generate a custom signing key, so it uses it to sign allmodified packages. However, an adversary with access to the machine on which the signingkeys are used might extract the signing key by simply reading the process memory usingadministrative rights or by exploiting memory corruption techniques [171]. Consequently,the adversary might sign arbitrary packages compromising all operating systems that trustthe signing key.
Problem 4: How to ensure access to the most up-to-date packages despite having no
connection to the main software repository?

Software repositories aremaintained by the operating systemdistributions and provide pub-lic access to packages and updates. We refer to such repositories as original repositories be-cause new versions of packages and software updates are published directly there. Althoughthe secure choice would be to always rely on the original repository controlled by a trustedorganization, such a decision would introduce a single point of failure. For this reason, origi-nal repositories propagate software updates to mirrors, which expose them to a wide rangeof end client machines.As reported by previous studies, an adversary controlling the mirror can serve outdated,vulnerable packages, decreasing the security of operating systems relying on that mirror [32,33]. Figure 6.5 shows that an adversary might prevent the operating system from accessingthe original repository, and forcing the operating system to use mirrors under her control.

6.5 Approach: Trusted Software Repository

Our objective is to provide an architecture that:• provides software updates which can be safely installed in an integrity-enforced oper-ating system,

89

6 A Practical Approach For Updating an Integrity-enforced Operating System

OSOS

integrity-enforced
operating system

install updates

4

package
manager

A B

integrity

monitoring

system

ROD

C D

sanitize packages

3

mirror #2

 mirror #3

TPM
2.0 6

verify integrity

quorum
 mirror #1 1

5
measure

install

re
m

ot
e 

at
te

st
at

io
n

do
w

nl
oa

d 
pa

ck
ag

es

expose updates Legend
data flow
sanitisation process
ROD private signing
key
ROD public signing
key
filesystem
trusted
initially untrusted
(subject of attestation)
trusted execution
environment

2

Figure 6.6. High-level overview of trusted software repository (ROD) architecture. ROD is a proxy thatmodifies packages in a way they are safe to be installed in the integrity-enforced operating systems.ROD, TPM, and the integrity monitoring system are trusted.
• requires no changes to the process of how communities create and distribute softwarepackages,• tolerates threats defined in §6.3.

6.5.1 Design

Figure 6.6 shows a high-level overview of the ROD design. It consists of four components:
(A) an integrity-enforced operating systemmeasured by trusted computing components, (B) amonitoring system which remotely verifies operating system integrity, (C) mirrors, copies ofthe original repository, containing operating system-dependent software packages, (D) ROD,an intermediate layer that provides the operating system with access to software packagesthat are safe to install in an integrity-enforced operating system.Now, we present how ROD integrates with the software update process. First, ROD fetchesthe most up-to-date packages from mirrors (➊) and modifies them in a way they are safe toinstall (➋). Next, the package manager queries ROD to collect information about the latestversions of packages. After selecting packages to update, it downloads them from ROD (➌).Then, the packagemanager installs them (➍), causing partial update of the existing operatingsystem configuration, replacement of existing files (e.g., dynamic libraries), and extractionof new files into the filesystem. Trusted computing components regularly measure thesechanges, and the corresponding integritymeasurements are stored inside a trusted platformmodule (TPM) chip (➎). The monitoring system collects the attestation report (➏), which nextto integrity measurements, contains the corresponding digital signatures. After verifying thedigital signatures and the integrity measurements, the monitoring system accepts a newstate of the updated operating system.
6.5.2 Solution to Problem 1: Sanitization

To enable support for software updates, wemust solve two problems. First, convince a mon-itoring system that the integrity measurements of files extracted from the software packageto the operating system are valid. Second, make sure that the execution of a software pack-age installation script does not cause the transition of the operating system into an untrustedstate.

90

6 A Practical Approach For Updating an Integrity-enforced Operating System

Table 6.1. Number of packages with and without custom configuration scripts in Alpine Linux mainand community repositories. Some packages (Safe=✗) contain scripts that break the operating sys-tem’s integrity.
Alpine repositoryPackages inMain Community5665 5916 Total Safe5531 5772 Without scripts ✓24 29 With safe scripts ✓110 115 With unsafe scripts ✗

To address these problems, we introduce the concept of package sanitization (Figure 6.6(➋)). The sanitization consists of verifying and modifying packages by: (i) changing installa-tion scripts to ensure that their execution changes the operating system configuration in adeterministic way; (ii) predicting such configuration; (iii) including digital signatures of filesdelivered with the software package and the predicted operating system configuration.
Digital Signatures

Following the work of Berger et al. 2015, we propose that for each file stored inside a pack-age, a corresponding digital signature certifying its integrity is also stored inside the package.The package manager would extract digital signatures to the filesystem, allowing the IMA toinclude digital signatures inside the attestation report. Consequently, the verifiers could rec-ognize that the new integritymeasurements are valid because they correspond to installationscripts and package-specific files.
Installation Scripts

Software packages might contain scripts that are executed with administrative rights duringthe package installation. Developers or package creators provide such scripts, and there areno limitations on what kind of operating system configuration changes scripts can do. There-fore it is possible that, due to a misconfiguration, a script reconfigures the operating system,allowing remote access to the machine. We designed ROD to modify packages in such a waythe installation scripts change operating system configuration deterministically. The pack-ages in which scripts cannot be sanitized are rejected from ROD, and thus not available forinstallation.To design the script sanitization algorithm, we started by analyzing existing scripts wrappedinside packages available in the Alpine Linux repositories12. Table 6.1 shows that 97.6% ofpackages do not contain any scripts. 81% of the remaining packages contain scripts thatalter the operating system configuration, breaking the system integrity.We analyzed commands executed inside the scripts to understand how they interfere withthe operating system configuration. Table 6.2 shows that 45 packages modify the filesystemstructure (i.e., copying, moving, or removing files, directories, and symbolic links, also chang-ing their permissions). From the operating system integrity point of view, these actions are
12v3.11 of the Alpine Linux main [174] and community [173] repositories.

91

6 A Practical Approach For Updating an Integrity-enforced Operating System

Table 6.2. Operations performed by installation scripts located in software packages in Alpine Linuxrepositories. Someoperations (Safe=✗) break the operating system’s integrity. The last column ("ROD") indicates which operations are safe after the sanitization. Filesystem changes: add/remove/modifyfolders, symbolic links, and their permissions. Empty scripts: conditional checks, display information.
Operations executed in scriptsPackages inMain Community Type Safe ROD30 15 Filesystem changes ✓ ✓5 17 Empty scripts ✓ ✓17 19 Text processing ✓ ✓11 7 Configuration change ✗ ✗1 0 Empty file creation ✗ ✓97 104 User/Group creation ✗ ✓4 6 Shell activation ✗ ✗

safe – they do not violate system integrity as defined by the IMA. Similarly, 36 packages exe-cute text processing utilities (e.g., parsing existing operating system configuration), which donot alter any existing file; thus, they are safe. However, 230 packages contain scripts modify-ing the operating system configuration, creating new users and groups, activating new shells,or creating empty files. These scripts are unsafe because they modify existing file contentsin which integrity is certified using pre-generated signatures (as discussed in the previoussection).
Script Sanitization

As we show next, the majority of the unsafe scripts provide a predictable output. Hence it ispossible to predict the operating system configuration before installing the package.The installation or update of 201 packages results in the creation of new users or groups.In the case of Linux-based operating systems, three files are affected, i.e., /etc/passwd, /etc/-group, /etc/shadow. Interestingly, these files change in a deterministic way. Adding a newuser or group results in adding a new well-defined line in at least one of these files. However,the order in which users and groups are created determines final file contents. In particular,different package installation order results in a different order in which users and groups aredefined inside of each file.Our solution consists of scanning the entire repository to learn about all possible usersand groups that might be added by any software package. Then, we change each installationscript in each package in a way the script creates all possible users and groups in the samepredefined order. Consequently, any selection of packages and their order always resultsin the same operating system configuration – it contains all users and groups. Finally, RODissues digital signatures over the predicted contents of the configuration files and modifiesscripts to install the signatures in the target operating system. Monitoring systems acceptthe newoperating system configuration because they read ameasurement report containingthe signatures, which vouch for the new configuration files contents.Our ROD implementation detected and sanitized two packages that not only create a userbut also set an empty password and shell. Installation of such packages might cause a se-curity breach by allowing an adversary to remotely connect to the operating system using a

92

6 A Practical Approach For Updating an Integrity-enforced Operating System

well-known username and password [194].
Unsupported Scripts

ROD does not support 28 packages (0.24%) out of all packages available in Alpine reposito-ries. In particular, ROD does not support packages in which installation changes arbitraryconfiguration files. For example, a package roundcubemail is not supported because it gen-erates an unpredictable configuration file containing a random session key. Although RODcould support it by generating the session key during the sanitization, such a solution wouldcontradict the script functionality that provides a unique key per the operating system.On the other hand, ROD intentionally does not support software packages providing dif-ferent shells (e.g., mksh, bash, tcsh). Their scripts modify the operating system configurationby activating a newly installed shell using add-shell command. Although ROD might use thesame technique as with adding users and groups, we argue that the installation of a customshell should not occur during an operating system update but should instead be part of theinitial operating system configuration.
6.5.3 Solution to Problem 2: Proxy

Wedesigned ROD as a proxy between packagemanagers and software repositories providedby the community. This design decision permits ROD to act as a separate software repositorythat serves sanitized packages signed directly by ROD. From the community point of view, nochanges are required to the existing software package creation processes, software packageformats, or the implementation of packagemanagers. Packagemanagers recognize ROD as astandard repository mirror. Hence, it is enough to adjust the operating system configurationin a way the package manager uses only ROD as a mirror.
6.5.4 Solution to Problem 3: Shielded Execution

ROD requires a signing key to certify changes made to packages during the sanitization pro-cess. To protect the signing key from an adversary with root access to the machine, wepropose to use TEE. In particular, we propose to leverage SGX, which is Intel’s CPU extensionproviding confidentiality and integrity guarantees to applications running in environmentsin which the operating system, hypervisor, or basic input/output system (BIOS) might havebeen compromised. Other studies [88] demonstrated that applications running inside anenclave (a trusted execution environment provided by SGX) can generate, store, and usecryptographic keys that are only known to the specific application – not even a human beingcan read them. ROD’s design relies on that concept. By running ROD inside an enclave, RODgenerates a signing key that is used later to sign all modified software packages. The publicportion of the signing key is exposed to both operating systems andmonitoring systems thatuse it to verify that software packages were created by ROD.
Listing 6.1: Policy example of ROD

1 mirrors:
2 − hostname: https://alpinelinux/v3.10/
3 certificate_chain: |−
4 −−−−−BEGIN CERTIFICATE−−−−−

93

6 A Practical Approach For Updating an Integrity-enforced Operating System

5 (...)
6 −−−−−END CERTIFICATE−−−−−
7 − hostname: https://yandex.ru/alpine/v3.10/
8 certificate_chain: |−
9 −−−−−BEGIN CERTIFICATE−−−−−
10 (...)
11 −−−−−END CERTIFICATE−−−−−
12 − hostname: https://ustc.edu.cn/alpine/v3.10/
13 certificate_chain: |−
14 −−−−−BEGIN CERTIFICATE−−−−−
15 (...)
16 −−−−−END CERTIFICATE−−−−−
17 signers_keys:
18 − |− # e.g., alpine@alpinelinux.org−4a40.rsa.pub
19 −−−−−BEGIN PUBLIC KEY−−−−−
20 (...)
21 −−−−−END PUBLIC KEY−−−−−
22 − |− # e.g., alpine@alpinelinux.org−524b.rsa.pub
23 −−−−−BEGIN PUBLIC KEY−−−−−
24 (...)
25 −−−−−END PUBLIC KEY−−−−−
26 init_config_files:
27 − path: /etc/passwd
28 content: |−
29 root:x:0:0:root:/root:/bin/ash
30 daemon:x:2:2:daemon:/sbin:/sbin/nologin
31 (...)
32 − path: /etc/shadow
33 content: |−
34 root:6UmJDHY...25/:18206:0:::::
35 daemon:!::0:::::
36 (...)
37 − path: /etc/group
38 content: |−
39 root:x:0:root
40 daemon:x:2:root,bin,daemon
41 (...)

6.5.5 Solution to Problem 4: Quorum

An adversarymight leverage administrative privileges to drop network traffic to certain hosts.In particular, she might prevent ROD from accessing the original repository, forcing ROD torely on a mirror serving outdated software packages.As specified in §6.3, we assume that the majority of repository mirrors are available andprovide the latest snapshot of the original repository. ROD does not trust any individual mir-ror. Instead, it reads 2f+1mirrors and only relies on the information that matches responsesof at least f+1 mirrors. Importantly, ROD requires a quorum only when reading the meta-

94

6 A Practical Approach For Updating an Integrity-enforced Operating System

data index. The packages can be downloaded from a single mirror because their integrity isverifiable using the metadata index.To allow different organizations to specify individual security requirements (i.e., which mir-rors to use, which package creators to trust) and to provide custom initial operating systemconfiguration (i.e., initial users, groups, and passwords), ROD accepts security policies. List-ing 6.1 shows an example of such a security policy. The format permits defining a list ofmirrors (Listing 6.1 lines 1-16) and a list of trusted package signers (Listing 6.1 lines 17-25).The package signer is a developer or a build system (e.g., continuous integration and contin-uous deployment) that builds, signs, and deploys packages to the original repository.ROD enforces the security policy by publishing only software packages in versions offeredby the majority of available mirrors and only created by trusted entities. The policy could beextended to support a private/closed variant in which an operating system owner can specifya subset of supported software packages by specifying whitelist/blacklist of packages.

SGX remote attestation1

3

generate 
signing  
key

deploys the policy2

returns the public key4
signing key

operating system’s
owner

integrity-enforced
operating system

5 configures OS

ROD

6 downloads updates

sanitize 
& sign 
updates

Legend
data flow

ROD private signing
key

ROD public signing key

trusted

initially untrusted
(subject of attestation)

trusted execution
environment

Figure 6.7. The protocol of distributing the public portion of the signing key, which can be used toverify the authenticity of the software packages.
Figure 6.7 shows how an organization can deploy a security policy to ROD. First, it estab-lishes trust with ROD (➊) using SGX remote attestation protocol [133], which permits ensuringthat ROD executes inside an enclave on the genuine Intel CPU. Then, it uploads the securitypolicy (➋), causing ROD to generate a new signing key (➌), to store the security policy, andto return the public portion of the newly generated signing key (➍). Finally, the public keyis distributed to all integrity-enforced operating systems and integrity monitoring systems(➎). At this point, the operating system accepts sanitized software packages (➏), and the in-tegrity monitoring system accepts integrity measurements of files digitally signed by ROD. Inmore detail, the integration between integrity monitoring systems and ROD consists of ad-justing integrity monitoring systems configuration to trust ROD signing key. Hence, integritymonitoring systems accept integrity measurements signed by ROD. ROD returns the sign-ing key during the repository initialization (§6.6.2) triggered by the operating system owner(Figure 6.7).

6.6 Implementation

We developed ROD in Rust, a programming language that ensures memory safety [180].We rely on the external Rust libraries, i.e., Hyper [108], Rustls [134], to build the represen-

95

6 A Practical Approach For Updating an Integrity-enforced Operating System

tational state transfer (REST) application programming interface (API) [66]. We use a Rust-based crypto library ring [27] to issue digital signatures. We use SCONE Rust cross-compilers[259] to execute ROD inside an SGX enclave. ROD is about 3.3k source lines of code, excludingexternal libraries.We rely on SGX because it provides the following properties: confidentiality to protect thesigning keys, integrity to protect the sanitization process, and attestation protocol to remotelyensure ROD integrity during the policy deployment. Alternative TEEs [169, 116, 87, 184] pro-viding similar functionality might be considered but the threat model should be carefullyadjusted according to TEE-specific implementation. For example, TEEs relying on late-launchtechnologies [116, 87, 184] must assume trusted link between CPU and TPM [272, 271],while others, like Keystone [169], must assume trusted boot process.
6.6.1 Supported Package Formats

Our prototype implementation of ROD supports apk packages used by Alpine Linux. We se-lected Alpine Linux because it is a popular security-oriented Linux distribution thatminimizesthe amount of software required to run the operating system. It is an important propertyfor systems relying on trusted computing. In the future, we plan to add support for otherformats (i.e., deb, rpm) used by other Linux distributions.
6.6.2 Repository Initialization

ROD can be executed in the cloud and is operated by a cloud provider, who is responsiblefor correct hardware initialization, installation of the operating system, and ROD execution.The cloud provider exposes the hostname on which ROD API is accessible by his clients.Multiple clients share a single ROD instance. Each client deploys a policy to create hisindividual, logically separated, software repository within the ROD instance. For each newrepository, ROD, which runs inside an SGX enclave, generates a unique repository identifierand a unique signing key. The identifier and the public portion of the signing key are returnedto the client as a response to the policy deployment request issued via https. Each clientaccesses his repository via the REST API after providing the identifier. By verifying the digitalsignature of the package, the client ensures that the package conforms to his requirementsdefined inside the policy.
6.6.3 Package Sanitization

We define package sanitization as an operation consisting of the following steps: verifyingpackage integrity and authenticity, extracting files from the package archive, modifying theinstallation scripts (see §6.5.2), issuing digital signatures to all files inside the package, updat-ing the metafile, and recreating the package. ROD issues digital signatures using the signingkey generated during the policy deployment.The digital signatures are stored inside portable archive exchange (PAX) headers [115] ofthe tar archive [118], which is logically equivalent to the package. The modern versions oftar extractors (e.g., GNU tar [71]) transparently copy the specific PAX headers’ value into theextended attributes in the filesystem. Before opening a file, Linux IMA scans extended at-tributes and includes the digital signature inside a dedicated file (IMA log). Consequently, the

96

6 A Practical Approach For Updating an Integrity-enforced Operating System

monitoring systems read the measurement report and the IMA log. They check the integrityof every file measured by the IMA by verifying its digital signature included inside the IMA log.
6.6.4 Operating System Configuration

Software repositories include information about software packages sizes and hashes insidethe repositorymetadata index tomitigate the endless data attack and the extraneous depen-dencies attack [32]. Operating systems read the package size and its hash from themetadataindex to ensure they download the file of the expected size and contents. Because of that,when an operating system requests ROD to return the metadata index for the first time, RODdownloads and sanitizes all packages listed in the upstreammetadata index. Then, ROD gen-erates a new metadata index that matches the sanitized packages and returns it. Althoughthe first metadata index generation is time-consuming, subsequent requests require ROD tosanitize only packages that have changed on the upstream mirrors, since the previous read.Each integrity-enforced operating systemmust be reconfigured to use the ROD repositoryinstead of mirrors. Moreover, the operating system must trust the packages signed by ROD;thus, the public portion of the signing key must be added to the list of trusted signers. Thisreconfiguration can be done automatically using configuration management systems suchas Puppet [119] or Chef [117].
6.6.5 Package Caching

A slow read of software updates increases the vulnerability window for the time of check totime of use (TOCTOU) attack, where an adversary exploits the existing vulnerabilities until thesecurity patches become available in the repository. In the case of ROD, this time is increasedby the sanitization process (see §6.5.2) and the time required to read themajority of availablemirrors (see §6.5.5).To minimize the vulnerability window for the TOCTOU attack, ROD uses a local file systemto cache the already sanitized packages, including the metadata index. ROD detects the out-dated software packages each time ROD reads the new metadata index from the upstreammirrors. Consequently, ROD invalidates the metadata index, downloads the new version ofthe package, sanitizes it, and stores the new version inside the cache.An adversary might tamper with the cache by reverting software packages and the meta-data index to outdated versions. To mitigate the attack, ROD stores metadata indexes (thelatest one read from upstreammirrors and the one reflecting the already sanitized packages)inside its memory, which integrity and freshness are guaranteed by SGX. ROD uses the firstmetadata index to check which software packages changed in the upstream mirrors. It usesthe second metadata index to verify that the package read from the cache (untrusted disk)has not been rollbacked, before returning it to the operating system.However, the data stored inside ROD memory is lost as soon as ROD is shutdown, forexample, due to the operating system restart. To preserve the metadata indexes acrossROD restarts, we extended ROD implementation with support for TPM monotonic counter(MC) [90]. After generating themetafile, ROD increases theMC value and uses SGX sealing [9]to store the metadata indexes together with the MC value on the disk. The SGX sealing, andits revert operation unsealing, uses a CPU- and enclave-specific key. Hence, only the sameenclave running on the same CPU can unseal the previously sealed file. After the restart, ROD

97

6 A Practical Approach For Updating an Integrity-enforced Operating System

unseals the metadata indexes from the disk together with the MC value and verifies that theunsealed MC value matches the current MC value.

6.7 Evaluation

In this section, we evaluate ROD to answer the following questions:• What is the overhead related to the package sanitization?• What are the performance limitations incurred by running ROD inside an SGX enclave?• What is the cost of tolerating compromised mirrors?
Testbed. Experiments executed on a rack-based cluster of Dell PowerEdge R330 serversequipped with an Intel Xeon E3-1280 v6 CPU, 64GiB of RAM, Samsung SSD 850 EVO 1TB.All machines have a 10Gb Ethernet network interface card (NIC) connected to a 20Gb/sswitched network. The support for SGX is turned on; the hyper-threading is switched off. Westatically configured SGX to reserve 128MB of RAM for the enclave page cache (EPC) [45].The central processing units (CPUs) are on the microcode patch level 0x5e. We ran AlpineLinux 3.10 with enabled Linux IMA.

6.7.1 Package Sanitization Overhead

The sanitization process directly influences the software update process, i.e., time after whichsoftware updates are visible by the operating system and the latency taken by the operatingsystem to download the update. For that reason, we ran experiments in which we instru-mented the sanitization process to measure its impact on packages from the main and com-munity repositories of Alpine Linux. The results are based on a 20% trimmed mean from sixindependent experiment executions.
How much time does it take to sanitize all packages?

From the operating system perspective, low repository initialization time results in fasterdelivery of software updates. Therefore, we calculated the time requires to create a newrepository, i.e., to download and to sanitize all packages. In the case of packages updates,this time is expected to be significantly lower because ROD would have to download and tosanitize just a small amount of packages.
Table 6.3. Time required to initialize a repository. We assume two scenarios. In the optimistic one,ROD has access to a copy of packages stored in a cache. In the pessimistic one, during the policydeployment, ROD must download all packages from the original repository.

TimePessimistic Optimistic Operation17 min 0 min Download packages< 1 min < 1 min Policy deployment13 min 13 min Sanitize packages30 min 13 min Total
Table 6.3 shows the time taken to establish a new repository, assuming two scenarios. Inthe optimistic scenario, which takes about 13min, ROD has access to pre-fetched packages,

98

6 A Practical Approach For Updating an Integrity-enforced Operating System

which are available, for example, pre-fetched by a service provider. In the pessimistic one,which takes about 30min, ROD additionally downloads original packages (about 3GB of data)from upstream repositories. We argue that the download time can be greatly reduced byenabling parallel downloading. This performance improvement is left as part of future work.
What are the main factors driving the sanitization time?

ROD sanitizes all packages provided with a software update, thus introducing a delay in howfast the operating system receives the update. Therefore, it is important to understand themain drivers controlling the sanitization time.
Table 6.4. Spearman rank correlation coefficients (ρ) relating the package-specific properties andsanitization-specific operations. The corresponding p values are indicated by regular font in greyfields (p < 0.05), bold font in grey fields (p < 0.001); fields with regular font indicate p > 0.05.

Number of files Package sizeArchive, compress .46 .61Check integrity - .62 - .93Generate signatures .69 .03Modify scripts -.27 - .33

Table 6.4 shows the correlations between package-specific properties (i.e., number of filesinside a package, package size) and the proportional time contribution of certain compo-nents of the sanitization time. We observe a strong positive correlation (ρ = 0.61) betweenthe archive processing time and package size, which indicates that the archive, compressionand decompression algorithms take more time to process bigger archives. Also, we observea strong correlation (ρ = 0.69) between signatures generation and the number of files in-side a package. It confirms the intuitive expectation that in packages containing many files,the signature generation becomes a dominant factor of the sanitization time. Furthermore,we explain that a strong negative correlation (ρ = -0.93) between checking the package in-tegrity and package size shows that the time required to check the package integrity becomesnegligible for bigger packages because other operations (i.e., signature generation, archive,compression and decompression) become the dominant factors. All in all, we anticipate thatthe sanitization time is mainly driven by (i) extracting files from a package and compressingthem again into a package, (ii) issuing digital signatures.
How much time does it take to sanitize a package?

To better estimate time which ROD requires to expose an update, we examine the time ittakes to sanitize individual packages. Figure 6.8 shows the relationship between sanitizationtime and package-specific properties, such as the package size and the number of files insidethe package. The sanitization time is not evenly distributed; it changes from 11ms (50thpercentile), 36ms (75th percentile), 422ms (95th percentile), to 30 sec (100th percentile).

99

6 A Practical Approach For Updating an Integrity-enforced Operating System

101

102

103

104

10−2 10−1 100 101

Sanitization time [s]

N
um

be
r o

f f
ile

s
in

si
de

 p
ac

ka
ge

Exceeds EPC
No Yes

0.1 1 10 100

uncompressed package size [MB]

Figure 6.8. Time required to sanitize a package, depending on the number of files and size. Colorrepresents package size after decompression. Packages which size exceeds the EPC are marked as
▲. Boxplots indicate 5th, 25th, 50th, 75th, and 95th percentile.

What is the impact of sanitization on the repository size?

Repository size is the sum of all packages served by the repository. The higher the size,the more resources (i.e., disk space, bandwidth) are utilized. It not only increases the main-tenance costs but also increases the latency because the operating system requires moretime to download packages.Figure 6.9 shows that the package sizes increase when compared to the original pack-age size and the number of files located inside the package. In particular, the sanitizationprocess increases package size by 12%, 27%, and 76% in 50th, 75th, and 95th percentile,respectively. Packages with many small files suffer most from sanitization because the sizesof file signatures (each signature is 256bytes) constitute a dominant part of the total packagesize. However, the total repository size increases only by 3.6%, from 3000MB to 3110MB.
Does the caching decrease the latency of package download?

ROD implements caching to decrease the latency of accessing sanitized packages; it storeson the disk the original version of the package (the one fetched from upstream and notyet sanitized) and the sanitized one. We ran an experiment in which we measured howmuch time does ROD require to respond to a download request, assuming three scenarios:
(i) only the original packages are cached, (Original), (ii) both original and sanitized packagesare cached (Sanitized), and (iii) packages are not available in the cache (None).In the first scenario, ROD downloads packages from an official Alpine mirror located onthe same continent (an average network latency 26.4ms). In the last two scenarios, RODreads packages from the local disk. In each scenario, we requested ROD to return every

100

6 A Practical Approach For Updating an Integrity-enforced Operating System

101

102

103

104

10−1 100 101 102

Size overhead [%]

N
um

be
r o

f f
ile

s
in

si
de

 p
ac

ka
ge

0.01 0.1 1 10

package size [MB]

Figure 6.9. Increase of package size caused by sanitization, depending on the number of files insidethe package. Color represents size of a package (files are compressed into a single archive). Boxplotsindicate 5th, 25th, 50th, 75th, and 95th percentile.

0.0

0.5

1.0

1.5

2.0

10−4 10−3 10−2 10−1 100 101

latency [s]

D
en

si
ty

 fu
nc

tio
n

Cached packages: Original Sanitized None

Figure 6.10. Comparison of package download latencies for scenarios in which ROD has access tooriginal packages in the cache (Original), has access to already sanitized packages (Sanitized), anddoes not have access to any cached packages (None).
package available in the upstream Alpine repository sequentially. We calculated the latencyof downloading each package as a 20% trimmed average from five repeated downloads.Figure 6.10 shows distributions of package download latencies for the scenarios men-tioned above. Caching the sanitization results decreases the average download latency 129×when compared to the scenario where ROD runs without cache. We anticipate that the la-

101

6 A Practical Approach For Updating an Integrity-enforced Operating System

tency variation (0.37ms) is mainly caused by accessing the cache (i.e., reading packages ofdifferent sizes) and verifying packages integrity after reading them from untrusted storage.Similarly, caching the original packages decreases the average download latency 2.7×when compared to the scenario where ROD runs without cache. This is mostly the resultof a faster read of a package from the local disk than from a remote mirror accessed by thenetwork.
What is the end-to-end latency of installing an update sanitized by ROD?

Installation of a software update takes a considerable amount of time because a packagemanager must download and verify the update, prepare the system for the new packageversion (check dependencies, lock installed packages database), unpack the new softwarepackage, launch installation scripts, copy files, set permissions, and finally clean the filesys-tem from no longer necessary files. In this experiment, we check the end-to-end latency ofinstalling an update, which consists of sanitized packages or native Alpine packages. Wemea-sure the update installation latency for more than 5000 packages cached in a repository, i.e.,ROD serves sanitized packages from the cache. Before launching the experiment for eachsingle package, we install the package, and then we tamper with the operating system con-figuration to pretend the installed package is outdated. We do it by modifying the packageversion number and its integrity hash stored in the file-based database used by Alpine Linuxto store information about installed packages. Before measuring the next package, we unin-stall the previously measured package from the operating system.Figure 6.11 shows the experiment results in whichwe use two repositories, ROD and Alpinemirror, located in the same data center. We assume differences between network latency inboth setups to be negligible. An average update installation latency is 141ms and 110ms forROD and Alpine mirror, respectively. The higher latency observed when installing sanitized

0

3

6

9

102 102.5 103 103.5 104

update installation latency [ms]

De
ns

ity
 fu

nc
tio

n

Repository (same data center): Alpine mirror ROD

Figure 6.11. End-to-end latency of installing software updates.

102

6 A Practical Approach For Updating an Integrity-enforced Operating System

�

�

�

�

�

�

�

�

��
��

�

�

�

�

�

�
�

��

��

�

�

�

�
�
�

�

�
�

�

���

�

�
�
�

�

�

��

�

�

��
�
�

�

�

�

�

�

�
�
�

��

�

�

��

�

�

��

�

�

�

��

�

�

�

�

�
�

�

�

�

��

�

�

�
�

�

�

�

�
�

�

�
�

�

�

�

��

�

�

�

��

�

�

�

�
�

�

�

��
�

�

�

�
�

�

�

�

��
���

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

��

�

��

�

�

�

��
��
�
�
�

�

��
�

�
�

�

�

�
�

�
�

�

�

�

�

�

�

�

��

�
�
���

��

�

�
�
��

�

�

�

�
�
�

�
�

�

��
�

�
�
�

�
�

�

��

����

�

���

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�
�

�

�
�

�
�

�

�
�

�

�

�

�

�

��

�

�

��

�

�

�

�
��

�

�

�
�

�

��

�

��

�

�

�

�

�

����

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

��

�

�
��
��
�

�

�
�

�

�

�
�

�

�
��
�

�

�
�

��
�

�
�

�

�

�
�

�

�

�

�

�

�
�

�

�

���

�

�

��
�
�

�

�

��
�

�

�

��

�

�

�

�
�

�

�
�
�

�

�

�

�

�

�

��

�

�

��

�
�
�
��

�

��

✁

✁

✁

Figure 6.12. Violin plot showing comparison of sanitization times executed inside and outside of anSGX enclave. Boxplots indicate 5th, 25th, 50th, 75th, and 95th percentile.
packages is caused by installing digital signatures in the filesystem.
6.7.2 SGX Limitations

The current version of the SGX has limited memory, up to 128MB for SGXv1. Applicationsthat exceed this amount cause SGX to swap the memory leading to performance degrada-tion. Hence, we address the question of:
What is the performance overhead of running ROD inside an SGX enclave?

To answer this question, we observe that the package sanitization is the most memory-consuming operation because ROD extracts and manipulates the package completely in thememory. For that reason, we executed ROD without SGX to measure the processing time ofall available packages.Figure 6.12 shows the comparison of packages sanitization times executed inside and out-side an SGX enclave. We observe a minor overhead of executing inside SGX; 1.18× at 50thpercentile, 1.12× at 75th percentile, and 1.16× at 95th percentile. However, at the top 5percentiles that represent packages with sizes exceeding EPC, the SGX overhead increasesto 1.96× because of EPC paging. The total sanitization time required to process all packagesin the repository increases from 9.5min to 13.6min (1.43×) when running ROD inside an SGXenclave. In the future, SGXv2 might be used to overcome the limitation of the EPC memory,causing the largerst packages to be sanitized faster.
6.7.3 Tolerating Compromised Mirrors

What is the overhead of mitigating compromised mirrors?

In this experiment, we measured the latency in which ROD (running in Europe) returns themetadata index depending on the number of mirrors defined in the policy and their geo-

103

6 A Practical Approach For Updating an Integrity-enforced Operating System

Figure 6.13. Latency of downloading the repository index from ROD, depending on the number andlocation of mirrors. ROD instance is deployed in Europe.
graphical locations. We were increasing the number of mirrors from one (default setting cur-rently used by operating systems) to ten instances. To detect possible malicious responses,ROD used only the repository index which equal copies were returned by the majority ofmirrors. For that, ROD calculated digests of indices to compare them among each other. Wedivided the experiment into four scenarios. In each scenario, ROD uses official Alpine mir-rors located on different continents, i.e., Asia, Europe, North America, and their combination(All). In each scenario, we calculated a 10% trimmed latency average from 20 consecutiverequests.Figure 6.13 shows that the latency of downloading the metadata index depends on thenumber and location of mirrors. ROD returns the metadata index in less than 400 ms forup to five mirrors on the same continent. In the case of 10 mirrors, ROD returns the meta-data index in less than 1.2 sec. We observed higher latency when using mirrors located ondifferent continents, mainly due to higher network latency.The last scenario (All) shows that the latencies measured when mirrors are evenly dis-tributed across three continents are similar to the latencies measured when using mirrorslocated only in North America. It is a result of ROD implementation; ROD contacts the fastest f
+ 1mirrors, and, in case they present different metadata index, it contacts additional mirrorsuntil reaching the quorum (f + 1 responses are the same). Therefore, mirrors in Europe andNorth America were preferred, and ROD latency depends on the slowest selected mirror.It is the responsibility of the ROD clients to decide on the tradeoff between security andperformance. The experiment shows that even when specifying nine mirrors distributedacross different continents, ROD returns the metadata index in about 2.2 sec.

104

6 A Practical Approach For Updating an Integrity-enforced Operating System

6.8 Related Work

Given the importance of software updates, a plethora of works have been proposed to en-sure the security of software update systems [170, 69, 193, 286]. Typically, they aim to protectthe updates using cryptographic signatures and transfer them to targets via secure connec-tions. The critical aspect of these approaches is how to protect the signing keys becausetheir leakage compromises the update process.The Update Framework (TUF) [69] addresses the problem by assigning different roles foraccessing specific signing keys, raising the bar for an adversary to get in possession of allkeys. Unfortunately, TUF requires an online project registration; thus it cannot protect acommunity repository against several attacks, such as delivering arbitrarily modified pack-ages. Diplomat [162] overcomes the shortcoming of TUF by dividing signing keys into offlineand online keys. The online keys are used to provide fast package signing, a feature requiredin community repositories. Only online keys are leaked in the case of a repository compro-mise, which is a manageable problem since they can be easily revoked and the repositorywith new online keys can be regenerated using well-protected offline keys. CHAINIAC [193]provides mechanisms to secure the entire software supply chain. Developers create Merkeltrees defining software packages with their corresponding binaries. To approve the packagerelease, they sign and submit the trees to co-signing witness servers, which verify the signa-tures from developers as well as the mapping between the sources and the binaries. Thismechanism relies on the blockchain technology, which permits the maintenance of the his-tory of the releases but it increases the system’s complexity. With a similar goal but reducedcomplexity, in-toto [252] offers a mechanism to ensure the integrity of the software supplychain cryptographically. It enables users with the integrity verification of the whole softwaresupply chain. However, CHAINIAC, in-toto, and TUF do not consider the case that the tar-get systems are under the protection of trusted computing mechanisms. Thus, they do notprotect against integrity violations caused by software updates. Recently, KShot [286] intro-duced a secure kernel live patching mechanism to fix security vulnerabilities. KShot makesuse of systemmanagement mode and SGX to perform the patching process without trustingthe underlying operating system securely. Similarly, ROD leverages SGX to protect the soft-ware update patchingmechanism (sanitization), but ROD also ensures that software updatesdo not break the operating system integrity. We selected Intel SGX to implement ROD sinceit has become available in clouds [141, 85], ported many of confidential cloud native applica-tions including analytics systems [168, 167], key management system [88], and performancemonitoring [156].ROD follows the idea introduced by Berger et al. [23] to maintain a custom mirror withmodified packages containing digital signatures. Unlike the previous work, ROD removes themirror owner from the trusted computing base by protecting the signing keys using TEE. Also,ROD introduces the sanitizationmechanism to enable the installation of packages containinginstallation scripts.Several previous studies also considered various security aspects of the mirrors in soft-ware update systems [32, 150, 31]. Knockel et al. [150] indicated that man-in-the-middleattacks on third-party software are possible for open infrastructures. Fortunately, this canbe handled by securing connections using modern TLS instead of outdated SSL technology.The Stork package manager [31] provided mechanisms to handle various attacks from mali-ciousmirrors by dedicating the selective trust to users, i.e., users specify which packages theytrust to install. Mercury [161] addresses the rollback attacks on software packages [32, 18]

105

6 A Practical Approach For Updating an Integrity-enforced Operating System

by maintaining a separated signed metafile at the package manager. However, Mercury didnot address the problem of the first update in which a package manager cannot ensure themetadata index freshness. ROD tackles this problem by relying on the repository metadataindex obtained from the majority of mirrors under the assumption that most mirrors aretrustworthy.

6.9 Summary

In this chapter, we presented ROD, a trusted software repository that supports secure soft-ware updates of integrity-enforced operating systems. ROD is transparent to the existingimplementations of packagemanagers and software repositories. Importantly, it does not re-quire changes to well-established distribution-specific procedures of creating software pack-ages.Our implementation supports 99.76% of the packages available in Linux Alpine main andcommunity repositories. It can be hosted on-premises, e.g., in the cloud, while maintainingstrong security properties by running inside a TEE, enabling clients to define custom secu-rity policies, and permitting a minority of software repository mirrors to exhibit Byzantinebehavior.

106

7 Security Configuration
Management and Monitoring

High-assurance security systems require high-availability and fault-tolerance properties, andthus are designed and deployed as dependable systems. They are distributed over multiplecomputers consisting of different hardware and software, and are located in geographicallydistributed data centers to prevent a single point of failure. This complicates security man-agement and monitoring. Consider as an example a system implementing the three-tierarchitecture. Such a system is separated into a presentation, an application, and a data tier.Each tier runs different components, possibly split into microservices, that differ in terms ofsoftware and configuration. For example, the presentation tier can be accessed directly bythe end-user while the application tier (business logic) and the data tier (database and per-sistent storage) are accessible only by internal system processes. Such a design requires theapplication of a custom system and security configuration. For example, tiers will have differ-ent network and firewall settings to prevent unauthorized access to the business logic anddata storage. Depending on the load, computers might be dynamically added or removedfrom the pool of computing resources onwhich the system’s components are deployed. Withthe increasing number of computers, it becomes more and more difficult to efficiently con-figure and monitor the computer’s integrity. In this chapter, we address the problem of howan application owner, or a respective security officer, could monitor that all the componentsof his distributed system conform with the security requirements?Following existing approaches, such as Intel open cloud integrity technology (Intel CIT) [128]or Keylime [229], we propose ZORZA, a system simplifying management of security config-uration and monitoring of remote computers. ZORZA is designed to be a practical systemallowing for the quick adoption of the concepts presented in chapter 3, chapter 4, chapter 5,and chapter 6.

7.1 Contribution

We present ZORZA 13, a system simplifying integrity monitoring configuration and integrityverification of computers running high-assurance security systems. ZORZA has noteworthy
13In the Slavic mythology, Zorza is the goddess of the dusk.

107

7 Security Configuration Management and Monitoring

advantages. First, it supports auto-discovery of computers, permitting scaling up and downthe number of monitored computers without requiring manual intervention. Second, it per-forms automatic, recurrent integrity checking on behalf of the security officer, who gets au-tomatically notified on integrity violations. Third, it simplifies security policy management,allowing the security officer to easily define trusted components, such as trusted operatingsystems, trusted TPMs, list of trusted firmware, and then combining them together to matchthe configuration of particular computers.

7.2 Design

Our objective is to provide an architecture that: (i) automatically detects new computersin the cluster and deploys corresponding security policies, (ii) allows the security officer todefine security policies in a single place, (iii) recurrently verifies that monitored computersconform with the security policies.Figure 7.1 shows the high-level overview of the ZORZA design. ZORZA comprises of threecomponents: (A) The security configuration management and monitoring service is a webapplication that verifies the integrity of monitored computers, stores security policies, andnotifies about integrity violations. (B) The database is persistent storage that stores securitypolicies, a list ofmonitored computers, and an audit log of themonitored computers’ integritystates. (C) Remote computers whose integrity is monitored. A security officer (D) is a personthat is responsible for controlling the security of the provisioned computers. He definessecurity policies and takes action when policy violation is reported.
7.2.1 Discovery of Provisioned Computers

The security configuration management and monitoring service (SCMMS) is a standaloneapplication running on a well-known hostname on which it exposes a representational statetransfer (REST) application programming interface (API). The agent running on a newly provi-sioned computer sends an auto-discover message to the SCMMS. Like this, an initial connec-tion between the agent and the SCMMS is established and the SCMMS informs the security

operating systemoperating systemoperating system

security configuration
management and

monitoring

agent

TPM

configure

security officer
deploy policy &  
periodically check it

Legend

data flow

security policy

initially untrusted
(subject of attestation)

trusted

notify

database
auto-discovery 
message

AB

C

D

Figure 7.1. ZORZA design. The system owner interacts with the monitoring system via the securityconfiguration management and monitoring service (SCMMS). The SCMMS stores security policies,the monitoring audit log, and performs integrity check of the monitored machines.

108

7 Security Configuration Management and Monitoring

officer about the discovered computer. Typically, the security officer provisions computersand deploys the operating system with the agent using DevOps tools, such as configurationautomation tools [119, 117], or it is automatically done by orchestration systems deployingand scaling applications [158].
7.2.2 Security Policy Configuration

The SCMMS reads the remote computer configuration and presents it to the security officervia a web user interface. The security officer inspects the initial computer’s configuration andconverts it into a new security policy, following the concept of trust on first use (TOFU), orassigns some of the existing security policies with the computer. Security policies, a moni-toring audit log, and the list of monitored computers are stored in the database. We assumethat SCMMS and the database are trusted, i.e., run on trusted computers controlled by thesecurity officer.
7.2.3 Policy Deployment and Monitoring

The security officer relies on the SCMMS to deploy security policies to agents running onmonitored computers. The agent executes inside the SGX enclave that permits SCMMS toremotely attest to its integrity and delegate to it the remote computer’s integrity checking.ZORZA offers good scalability because the computation-heavy tasks are done locally on eachcomputer and not on a centralized server. Specifically, the agent verifies its proximity to thetrusted beacon, reads the TPM quote and the IMA log comparing the read values to thedeployed security policy. Consequently, the communication between the SCMMS and theagent is reduced to a single recurrent call (§3.6.4).

7.3 Implementation

We implemented ZORZA in the Python programming language. We used the Django [68]framework to build a web-based application utilizing the MariaDB database to store per-sistent data. We relied on Docker to containerize the ZORZA because it allows for quickconfiguration, testing, and deployment.Figure 7.2 shows the implementation of ZORZA in the context of the work presented inthis thesis. It leverages CHORS (§3) to provide implementation of the agent and trusted bea-cons. It further relies on TRIGLAV (§4) to provide the functionality of virtual computer runtimeintegrity monitoring and enforcement. PERUN (§5) provides a dedicated key managementsystem to distribute keys to high-assurance security applications running on computers. Fi-nally, ROD (§6) exposes sanitized software packages allowing for safe update of the operatingsystem.ZORZA extends the monitoring system presented in chapter 3 with(i) a web interface simplifying policy management and deployment,(ii) auto-discovery protocol allowing for simple addition of newly provisioned computersinto the pool of monitoring resources,(iii) notification tools informing the security officer about integrity violations.

109

7 Security Configuration Management and Monitoring

operating systemoperating systemoperating system

ZORZA
(security configuration

management and monitoring)

CHORS
(agent)

CHORS
(trusted beacon)

TPM

configure

security officer

ROD
(trusted software repository)

TRIGLAV

PERUN
(security policy definition

and authorization)

PERUN

deploy policy &  
periodically check it

Legend

data flow

security policy

initially untrusted
(subject of attestation)
trusted execution
environment

notify

Figure 7.2. ZORZA implementation overview.

Figure 7.3. The CHORS’s agent executes on newly provisioned machines. The agent contacts ZORZA,which runs on a well-known host. ZORZA collects infomation about the machine and allows thesystem owner to deploy specific policy to the machine and monitor it.

7.3.1 Auto-discovery

During the auto-discovery, the SCMMS fetches from the CHORS’s agent the computer’s con-figuration, i.e., the TPM certificate issued by the TPM’s manufacturer, the load-time integrityof the operating system, the operating system’s runtime integrity measurements collectedby IMA. Based on these information, the SCMMS matches the computer’s configuration withthe existing security policies stored in the database (Figure 7.3). For example, the TPM is ver-ified based on the white list of TPM certificates or trusted manufacturers’ certificate chains(Figure 7.4). Such functionality allows for the automatic addition of new computers to themonitored pool of computing resources without the burden of manual provisioning of everysingle computer.
7.3.2 Policy Creation

The security officer can predefine the security policies or can follow the concept of TOFU.To predefine security policies, he must define the list of trusted firmware in the form ofstatic platform configuration registers (PCRs) white list, trusted operating system in the formof dynamic PCRs and a white list of application’s measurements or a certificate allowing forverification of signed IMAmeasurements, and trusted trusted platformmodules (TPMs) in the

110

7 Security Configuration Management and Monitoring

Figure 7.4. ZORZA simplifies defining machine-specific policy by providing a web-based configurationtool that automatically collects machine-specific information. The security officer can then use thecollected configuration, define custom one, or use a configuration of other machines.

(a) Trusted platform module (b) Trusted hardware (c) Trusted operating system
Figure 7.5. A security officer defines a white list of trusted TPMs or TPMs’ manufacturers, expectedintegrity measurements of firmware, and operating system load-time and runtime integrity mea-surements.
form of a whitelist of certificates or TPM’s CA certificate chains (Figure 7.5). Trusted beaconsare defined as a hostname onwhich they expose the distance bounding protocol (see §3.5.3)and a TLS certificate allowing to authenticate the trusted beacon (Figure 7.6).The easiest way to create policies is to rely on the TOFU approach. The security officer caninspect the computer’s configuration obtained during the auto-discovery and accept themas a trusted configuration, i.e., he can request the SCMMS to create a new security policybased on the collected configuration. Other computers having the same hardware or the

111

7 Security Configuration Management and Monitoring

Figure 7.6. Trusted Beacon

Figure 7.7. Machine runtime configuration.
same operating system will be automatically matched against the existing security policies(Figure 7.7).

7.4 Evaluation

To evaluate the ZORZA capability of detecting integrity violations, we established a setupwhere an adversary exploits a webserver misconfiguration to get remote access to a com-

112

7 Security Configuration Management and Monitoring

puter. An adversary changes the root password in the remote operating system’s configura-tion file by providing the webserver with malicious input.
7.4.1 Experiment Setup

The setup consists of a rack-based cluster of two Dell PowerEdgeR330 servers connected viaa 10Gb Ethernet. The CHORS’s agent and ZORZA run on different computers running UbuntuLinux. The monitored computer runs an nginx [65] webserver exposing a PHP website. Thewebsite provides an HTML login form allowing its users to authenticate.The operating system of the computer running webserver contains two vulnerabilities thatare exploited by the adversary. Firstly, the nginx runs with root permissions, Listing 7.1. Sec-ondly, the PHP script does not sanitize the input, which is eventually passed to the PHP’sshell_exec command, Listing 7.2. The combination of these two vulnerabilities allows an ad-versary to mount a simple attack, tampering with the remote computer’s integrity. Althoughthe presented attack is a very simple attack implemented just for demonstration purposes,ZORZA detects attacks that modify configuration files, binaries, or execute untrusted soft-ware (see §3.3). Please note that in this setup, we do not rely on the integrity measurementarchitecture (IMA) enforcement mechanism, which would prevent these kinds of attacks byrejecting tampered files from being loaded to the memory.The computer runs the CHORS’s agent inside Intel software guard extensions (SGX) en-clave. The agent performs runtime integrity verification by recurrently reading IMA eventsand comparing them to the policy deployed by the security officer via ZORZA. ZORZA runson another computer. It recurrently queries the agent to check if the remote computer’sintegrity conforms to the policy.
Listing 7.1: Vulnerability 1: The webserver executed with too broad permissions

1 # ps aux
2 # ...
3 3507 root 0:00 nginx: master process /usr/sbin/nginx −c /etc/nginx/nginx.conf
4 3508 www 0:00 nginx: worker process
5 3540 root 0:00 {php−fpm7} php−fpm: master process (/etc/php7/php−fpm.conf)
6 3547 root 0:00 {php−fpm7} php−fpm: pool www
7 3548 root 0:00 {php−fpm7} php−fpm: pool www
8 # ...

Listing 7.2: Vulnerability 2: The script does not sanitize input
1 <?php
2 $login = $_GET[’login’];
3 $password = sha1($_GET[’password’]);
4
5 if (strcmp($password, trim($correct_password_hash)) == 0) {
6 echo
7 } else {
8 echo ’Incorrect login or password’;
9 }
10 ?>

113

7 Security Configuration Management and Monitoring

Listing 7.3: Malicious input: The malicious input allowing an adversary to tamper with theoperating system configuration in order to gaining remote access
1 # source code:
2 shell_exec("cat /home/$login/password.txt");
3 # malicious input:
4 $login = "||pass=’SOME_HASH’&&sed −I −e ’s,root:[:]\+:,root:$pass:,’ /etc/shadow ||echo ";
5 # executed command in runtime:
6 cat /home/||pass=’SOME_HASH’&&sed −I −e ’s,root:[:]\+:,root:$pass:,’ /etc/shadow ||echo /password.txt

7.4.2 Experiment Scenario

The adversary requests via HTTP calls a webserver to render an HTML code of the loginpage. By checking different login and password configurations, he finds out that the scriptdoes not sanitize input because it outputs the received input to the output of the HTML code.Since such requests do not cause the webserver integrity violation, no integrity violations arereported by ZORZA.The adversary prepares a malicious input that will cause the script to tamper with the op-erating system configuration, i.e., the root password in the /etc/shadow file. Specifically, theadversary leverages the fact that the content of the login field input is directly passed to theshell_exec command and that the webserver runs with root permissions. This allows the ad-versary to execute arbitrary commands with root privileges. Listing 7.3 shows the maliciousinput crafted by the adversary and the resulting command executed by the script in a shell.By changing the SOME_HASH to a hash value corresponding to a password known to theattacker, an attacker can change the root password, gaining remote access to the computervia, for example, SSH. An adversary might directly leverage the possibility of running arbitrarycommands to download and execute an exploit. Executing an exploit or any command-linetool that is not whitelisted in the security policy deployed by ZORZA, causes an integrity vio-lation.In our experiment, ZORZA returned the runtime integrity violation of the computer hostingthe webserver as soon as the adversary modified the root password. Specifically, IMA mea-sured the new content of the /etc/shadow file. The agent detected that the file content hashwas not included in the policy whitelist and reported the policy violation to ZORZA, which no-tified the security officer about the incident. Depending on the use case, onemight configureautomatic incident response to respond to attack in real-time or configure IMA to preventloading such a file, using IMA integrity enforcement mechanism (§2.2.5).

7.5 Related Work

The Intel CIT [128], the successor of OpenAttestation [124], is an open-source integrity mon-itoring system provided by Intel. It relies on tboot to establish a dynamic root of trust formeasurements (DRTM) with Intel trusted execution technology (TXT) [87], and TPM to se-curely store platform measurements. Intel CIT integrates with OpenStack [202], to whichit exposes the hosts’ security properties allowing to group resources in trusted computingpools. Similarly to ZORZA, the Intel CIT’s trust agent is deployed on each host to retrieve the

114

7 Security Configuration Management and Monitoring

measurements from TPM, TXT logs as well as the operating system configuration. During thestart up of the trust agent, a bash script module_analysis.sh is executed. It parses the out-put of tboot (using txt-stat command) to produce an XML formatted file stored in plaintexton the disk. The file is not protected against tampering and is regenerated only during therestart of the agent. TLS protected web services implemented in Java are executed on topof Jetty application server, exposing host measurements and configuration to the Open CITcentral server. The host configuration is read from the operating system and pre-caches thetxt-stat output. Themeasurements are obtained by executing the tpm2_quote command-lineutility on each request to the POST /tpm/quote web service. The authenticity, integrity, andfreshness of the quote is verified by the central Open CIT server. Compared to ZORZA, IntelCIT performs integrity verification centrally and does not support the geolocation proximityverification and the TPM cuckoo attack detection. It does not allow tenants to verify that theacquired computing resources comply with the given security policy.The IBMTPMattestation client-server (IBMACS) [111] is an open source project of a sampleTrusted Computing Group (TCG) attestation application written in C. It implements the TPMremote attestation in a centralized manner where the server gathers TPM measurementsfrom hosts, compares them to the whitelist, and stores in a database. IBM ACS supportsverification of the IMA measurements, TPM 1.2 and TPM 2.0. Unlike ZORZA, it peforms cen-tralized integrity verification and does not protect against the cuckoo attack.Keylime [229] also implements an integrity monitoring system that additionally integrateswith a certificate authority (CA). The CA is used to revoke keys once the integrity violation isdetected. Like this, other applications, such as IPsec, Pupper, or LUKS can rely on the CAwithout requiring to communicate with the TPM and other trusted computing technologies.However, unlike ZORZA, Keylime performs centralized integrity verification, does not verifythe geolocation proximity of the monitored machines, and does not address the cuckooattack.

7.6 Conclusion

In this chapter, we presented ZORZA, a security configuration management and monitoringsystem. It facilitates the management of security configurations, their distribution to remotecomputers, and automatic verification of compliance of these computers with defined config-urations. ZORZA enables a simplified use of the concepts presented in the previous chaptersof this thesis.

115

8 Conclusion and Future Work
Given that our societies depend more and more on digital services that execute security-and safety-critical operations and process privacy-sensitive data, I investigated how to es-tablish technical assurance that these services execute securely. Specifically, I looked at howto attest that a high-assurance security system executes in a dedicated data center, on topof a trustworthy operating system, and isolated from other software. My approach combinestwo state-of-the-art solutions, trusted computing techniques (TCTs) and trusted execution envi-
ronment (TEE). I demonstrated that they are complementary, but their combination requiressolving additional issues specific to each solution. I presented how to solve these issuesand demonstrated the practicality of my approach by building prototypes, which I evaluatedusing real-world applications.

8.1 Summary of Results

My research contributed a framework dedicated to the secure execution of high-assurancesecurity systems in remote execution environments. The framework implements novel tech-niques that provide technical assurance that high-assurance security systems execute inisolation from other software and run on trustworthy operating systems. More precisely,high-assurance security systems utilizing my framework maintain integrity and confidential-ity guarantees of their code and data while ensuring the runtime integrity of the surroundingoperating system. The solution follows assumptions of high-assurance security systems thatrequire isolation of computing resources at the data center level.I designed the framework focusing on the practicality, i.e., the framework has been imple-mented with available security mechanisms and hardware. The framework supports state-of-the-art technologies (i.e., Linux kernel with kernel-based virtual machine (KVM) virtualiza-tion [147]), uses existing off-the-shelf security mechanisms and hardware (i.e., trusted plat-form module (TPM) [90], Intel software guard extensions (SGX) [45]), supports legacy appli-cations without requiring source code changes, supports software updates, and induces lowperformance overhead (up to 6%). Here, I summarize each of the techniques introduced.

116

8 Conclusion and Future Work

8.1.1 Cuckoo Attack Defense Mechanism

By relying on the properties of the TPM, dynamic root of trust formeasurements (DRTM) [235],and SGX I designed a practical, deterministic cuckoo attack detection protocol. It enablestrust to be established from the inside of the SGX enclave to the TPM chip, recording in-tegrity measurements of the operating system. At the conceptual level, the protocol helps aprocess executed inside the TEE to learn about the trustworthiness of the surrounding op-erating system. This is particularly important in the case of high-assurance security systemsbecause such systems depend on the operating system in terms of availability and confiden-tiality. Rasha Faqeh formally proved [203] the protocol to be immune to the cuckoo attack.
8.1.2 Integrity Monitoring and Enforcement Framework

I implemented an integritymonitoring and enforcement framework that controls the integrityof multiple services across multiple computers in the data center (chapter 3, chapter 7). Inmy design, a small piece of software executed inside the TEE acts as a trusted anchor (ini-tially the only trusted piece of software) on a remote computer. It then extends trust to thesecure element (a TPM chip), ensuring the lack of the cuckoo attack with the help of thedefense mechanism mentioned above. The trust is eventually extended to the operatingsystem level with the help of integrity monitoring and the enforcement mechanism, i.e., in-tegrity measurement architecture (IMA) [225, 89]. Crucially, the framework decentralizes theintegrity attestation of machines by implementing a protocol that performs integrity checkson each monitored machine individually. This is only possible because of the TEE that guar-antees the integrity of the attestation process.
8.1.3 Runtime Integrity-enforcement of Virtual Machines

I extended the protocol mentioned before to enforce the integrity of software executing in-side virtual machines (chapter 4). The solution allows the virtual machine’s owner to definesoftware he trusts in the form of a security policy and delegate enforcement of this policyto a piece of trusted code protected by the TEE. My solution helps to better utilize comput-ing resources by partitioning them into virtual machines while still enforcing the integrity ofsoftware used to establish the virtualized environment.
8.1.4 Multi-stakeholder Machine Learning Framework

I combined the previous work on secure key distribution [88] with integrity enforcement andattestation to allow the high-assurance security system’s owner to trade-off between thesecurity and performance in a multi-stakeholder environment (chapter 5). In my design, atrusted third party is responsible for enforcing access to the cryptographic keys. Dependingon the use case, cryptographic keys are accessible only to a high-assurance security systemexecuting inside TEE or inside a trustworthy operating system. In the latter case, the high-assurance security system has access to hardware accelerators at the cost of a larger trustedcomputing base. I argue that the trade-off is justifiable in the case of machine learning train-ing computations that require access to large computing power.

117

8 Conclusion and Future Work

8.1.5 Support for Software Updates of Integrity-enforced Operating Systems

I solved the problem that limited the practical application of TCTs for monitoring of operatingsystem’s integrity (chapter 6). I introduced the concept of sanitization in which a trusted thirdparty (i.e., an algorithm executing inside the TEE) transparently modifies software updates tocertify the future system’s state after predicting how it will look after the update is installed.From the security perspective, the design protects against freeze and replay attacks permit-ting aminority of software repositorymirrors to exhibit Byzantine behavior. The evaluation ofthe prototype implementation showed that this approach supports 99.76% of the packagesavailable in Linux Alpine main and community repositories.

8.2 Future Work

This thesis showed that despite the differences in designs and security guarantees of TEE andTCTs, both concepts could be combined together, solving issues specific to each technologyand, eventually, increasing the security guarantees of high-assurance security systems. Iidentified potential directions that might expand my current work. I outline them in thissection.
8.2.1 Policy-based Compliance Management

Depending on the country and the domain, high-assurance security systems are subject todifferent regulations. For example, German eHealth regulations [77] require the use of TEEon top of a trustworthy operating system, while other regulations might require just file in-tegritymonitoring. Consequently, each such system requires the implementation of differentsecurity mechanisms and an expert-knowledge to ensure compliance with the regulations.The practical framework should then support a wide range of security mechanisms and theflexibility to select them accordingly to applicable regulations.Existing approaches, such as OpenSCAP [215], provide policies and tools checking if thesystem configuration complies with specific regulations, like the payment card industry (PCI)data security standard (PCI-DSS) [206]. However, these approaches lack support for verifyingif certain hardware-based technologies are used, what isolation levels for security-critical pro-cesses are provided, and if the attached hardware devices meet given standards. I anticipatethat a production-ready solution should comewith built-in policies, ideally semi-automaticallyextracted from regulations, that are then used by attestation engines to certify complianceof remote execution environments with given requirements.
8.2.2 Integrity Attestation of Mutable Files

Integrity measurement architecture (IMA) [225, 89] enables attestation of the runtime in-tegrity of the operating system. The verifier, such as a remote entity checking the computer’sintegrity or a kernel’s integrity-enforcement mechanism, can check if the file is legitimateby comparing the hash over its content to a hash representing an allowed content. How-ever, this technique alone is not enough when a legitimate process creates or modifies a filebecause the new hash representing the file’s content differs from the allowed value of theapriori known content.

118

8 Conclusion and Future Work

I proposed a technique to deal with this problem in the context of software updates caus-ing deterministic changes to the file system (subsubsection 6.5.2). However, this techniqueis not enough for a general-purpose system where temporal results are written and then readfrom a filesystem as part of the regular operating system’s execution, because the integrity-enforcement mechanism would prevent such temporal files from reading causing undefinedruntime behavior. A more relaxed approach, where system integrity is only recorded for at-testation purposes but not enforced, would cause false positives in the integrity monitoringsystems. I envision that future work solves this problem by focusing on certifying hashes ofsuch temporal files from the inside of the TEE, leveraging causal order of integrity measure-ments, or providing a verifier with additional knowledge about the origin of such changes.
8.2.3 Availability Guarantees

Most of TEEs do not offer availability guarantees because, by their design, the enclave’s lifecy-cle is under full control of an untrusted operating system and administrator. However, avail-ability is a crucial security property of high-assurance security systems. The natural questionthat arises is how to provide the availability guarantees to the enclave without relying on theoperating system? Could we bind the enclave’s lifecycle with the policy presented to the CPUon the enclave initialization? Could CPU provide support for ensuring certain enclave’s qual-ity of service (QoS), like the number of resources or CPU time slots dedicated for the givenenclave? Or, should we rather build TEE with the availability guarantee on the microkernelarchitecture?
8.2.4 Integration with SIEM

Security information and event management (SIEM), like QRadar [110] are industry-standardsecurity solutions actively monitoring computer systems behavior that might indicate an at-tack. SIEM systems collect event data from various heterogeneous sources, such as file in-tegrity monitoring and network monitoring, and correlate them with patterns indicating suc-cessful intrusion or attack attempts. The framework introduced in this thesis could comple-ment SIEMbecause i) it mitigates certain attacks by enforcing the operating system’s integrity,and ii) it collects file integrity measurements. I anticipate that future work might explore whatexact security guarantees could be gained by combining SIEM, TEE, and TPM-based securitymechanisms and if such combination would decrease the number of false positives?
8.2.5 Hardware-supported Virtual Machine Isolation

In chapter 4, I discussed TRIGLAV, a framework for virtual machine’s runtime integrity mon-itoring and enforcement. However, to provide runtime integrity guarantees of a virtual ma-chine, TRIGLAV must also establish trust in the hypervisor, enlarging the trusted computingbase (TCB). In fact, VM-based trusted execution environment (TEE), such as Intel TDX [123]or AMD SEV [140] might reduce the TCB of the TRIGLAV design because these technologiesprovide integrity, freshness, and confidentiality of the virtual machine’s memory in the faceof an untrusted hypervisor. Future work might consider leveraging these technologies toimprove the TRIGLAV design so that the tenant not only attests to the VM’s load-time andruntime integrity but also gets the proof that the VM executes inside the TEE that isolates itfrom the hypervisor and operator.

119

Bibliography
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, PaulTucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI ’16), 2016.
[2] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, KunalTalwar, and Li Zhang. Deep Learning with Differential Privacy. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ’16), 2016.
[3] Advanced Micro Devices. AMD64 virtualization: Secure Virtual Machine ArchitectureReference Manual. AMD Publication no. 33047, Rev. 3.01, 2005.
[4] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungyoung Lee.Obfuscuro: A commodity obfuscation engine on Intel SGX. In Network and Distributed

System Security Symposium, 2019.
[5] Intel AI. Deep Learning Medical Decathlon Demos for Python. https://github.com/IntelAI/unet/, accessed on October 2021.
[6] Markuze Alex, Shay Vargaftik, Gil Kupfer, Boris Pismeny, Nadav Amit, Adam Morrison,and Dan Tsafrir. Characterizing, Exploiting, and Detecting DMA Code Injection Vulnerabili-

ties in the Presence of an IOMMU. 2021.
[7] Alpine Linux Development Team. Alpine Linux - Small. Simple. Secure. https://alpinelinux.org/about/, accessed on October 2021.
[8] Amazon Web Services, Inc. Firecracker: secure and fast microVMs for serverless com-puting. http://firecracker-microvm.github.io, accessed on October 2021.
[9] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technologyfor CPU based attestation and sealing. In Proceedings of the 2nd international workshop

on hardware and architectural support for security and privacy, 2013.
[10] Arch Linux. Arch Linux: Arch build system. https://wiki.archlinux.org/index.php/Arch_Build_System, accessed on October 2021.

I

https://github.com/IntelAI/unet/
https://github.com/IntelAI/unet/
https://alpinelinux.org/about/
https://alpinelinux.org/about/
http://firecracker-microvm.github.io
https://wiki.archlinux.org/index.php/Arch_Build_System
https://wiki.archlinux.org/index.php/Arch_Build_System

Bibliography

[11] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Chris-tian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark Stillwell, DavidGoltzsche, Dave Eyers, Rueudiger Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE:Secure linux containers with Intel SGX. In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16), 2016.
[12] Will Arthur and David Challener. A practical guide to TPM 2.0: Using the new trusted

platform module in the new age of security. Springer Nature, 2015.
[13] Aref Asvadishirehjini, Murat Kantarcioglu, and Bradley Malin. GOAT: GPU Outsourcingof Deep Learning Training With Asynchronous Probabilistic Integrity Verification InsideTrusted Execution Environment. arXiv preprint arXiv:2010.08855, 2020.
[14] BakerHostetler. International Compendium of Data Privacy Laws. https://towerwall.com/wp-content/uploads/2016/02/International-Compendium-of-Data-Privacy-Laws.pdf, accessed on October 2021.
[15] Guillaume Barbu, Hugues Thiebeauld, and Vincent Guerin. Attacks on java card 3.0combining fault and logical attacks. In International Conference on Smart Card Research

and Advanced Applications, 2010.
[16] BBC. Fukushima disaster: What happened at the nuclear plant? https://www.bbc.com/news/world-asia-56252695, accessed on October 2021.
[17] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the

Annual Conference on USENIX Annual Technical Conference (ATC’ 05), 2005.
[18] Anthony Bellissimo, John Burgess, and Kevin Fu. Secure Software Updates: Disap-pointments and New Challenges. In Proceedings of the 1st USENIX Workshop on Hot

Topics in Security (HOTSEC ’06). USENIX Association, 2006.
[19] Stefan Berger. Libtpms: software emulation of a Trusted Platform Module. https://github.com/stefanberger/libtpms, accessed on October 2021.
[20] Stefan Berger. SWTPM - Software TPM Emulator. https://github.com/stefanberger/swtpm, accessed on October 2021.
[21] Stefan Berger, Ramon Caceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer, andLeendert van Doorn. vTPM: virtualizing the trusted platform module. In Proceedings of

the 15th Conference on USENIX Security Symposium (USENIX Security ’06), 2006.
[22] Stefan Berger, Kenneth Goldman, Dimitrios Pendarakis, David Safford, EnriquilloValdez, and Mimi Zohar. Scalable Attestation: A Step toward Secure and TrustedClouds. In IEEE International Conference on Cloud Engineering (IC2E 2015), 2015.
[23] Stefan Berger, Mehmet Kayaalp, Dimitrios Pendarakis, andMimi Zohar. File SignaturesNeeded! Linux Plumbers Conference, 2016.
[24] Sandeep Bhatt, Pratyusa K. Manadhata, and Loai Zomlot. The operational role of se-curity information and event management systems. IEEE Security and Privacy (S&P),2014.

II

https://towerwall.com/wp-content/uploads/2016/02/International-Compendium-of-Data-Privacy-Laws.pdf
https://towerwall.com/wp-content/uploads/2016/02/International-Compendium-of-Data-Privacy-Laws.pdf
https://towerwall.com/wp-content/uploads/2016/02/International-Compendium-of-Data-Privacy-Laws.pdf
https://www.bbc.com/news/world-asia-56252695
https://www.bbc.com/news/world-asia-56252695
https://github.com/stefanberger/libtpms
https://github.com/stefanberger/libtpms
https://github.com/stefanberger/swtpm
https://github.com/stefanberger/swtpm

Bibliography

[25] Jeremy Boone. Tpm genie: Interposer attacks against the trusted platform moduleserial bus. In NCC Group Whitepaper, 2018.
[26] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, KariKostiainen, and Ahmad-Reza Sadeghi. DR. SGX: Automated and adjustable side-channel protection for SGX using data location randomization. In Proceedings of the

35th Annual Computer Security Applications Conference, 2019.
[27] Brian Smith. Safe, fast, small crypto using Rust. https://github.com/briansmith/ring,accessed on October 2021.
[28] Milan Broz. LUKS2On-Disk Format Specification, Version 1.0.0. In LUKS documentation,2018.
[29] Kevin R.B. Butler, StephenMcLaughlin, and Patrick D.McDaniel. Rootkit-resistant disks.In Proceedings of the 15th ACM Conference on Computer and Communications Security

(CCS ’08), 2008.
[30] Fabiana Cambricoli. Nova falha do Ministerio da Saude expoe dados pessoaisde mais de 200 milhoes de brasileiros. https://saude.estadao.com.br/noticias/geral,nova-falha-do-ministerio-da-saude-expoe-dados-pessoais-de-mais-de-200-milhoes,70003536340, accessed on October 2021.
[31] Justin Cappos, Scott Baker, Jeremy Plichta, Duy Nyugen, Jason Hardies, Matt Borgard,Jeffry Johnston, and John H. Hartman. Stork: Package Management for DistributedVM Environments. In Proceedings of the 21st Large Installation System Administration

Conference (LISA ’07), 2007.
[32] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman. A look in the mirror:attacks on package managers. In Proceedings of the 15th ACM conference on Computer

and Communications Security (CCS ’08), 2008.
[33] Justin Cappos, Justin Samuel, Scott Baker, and John H Hartman. Package managementsecurity. University of Arizona Technical Report, 2008.
[34] Chanandler Carruth. Speculative Load Hardening. https://llvm.org/docs/SpeculativeLoadHardening.html, accessed on October 2021.
[35] Marco Carvalho, Jared DeMott, Richard Ford, and David A Wheeler. Heartbleed 101.

IEEE security & privacy, 2014.
[36] Cen, Schanwei and Zhang, Bo. Trusted Time and Monotonic Counters with Intel Soft-ware Guard Extensions Platform Services. Intel white paper, Intel, 2017.
[37] Somnath Chakrabarti, Brandon Baker, and Mona Vij. Intel SGX Enabled Key ManagerService with OpenStack Barbican. arXiv preprint:1712.07694, 2017.
[38] Dhiman Chakraborty, Lucjan Hanzlik, and Sven Bugiel. simTPM: User-centric TPM forMobile Devices. In 28th USENIX Security Symposium (USENIX Security ’19), 2019.
[39] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system call api is abad untrusted rpc interface. In Proceedings of the Eighteenth International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’13),2013.

III

https://github.com/briansmith/ring
https://saude.estadao.com.br/noticias/geral,nova-falha-do-ministerio-da-saude-expoe-dados-pessoais-de-mais-de-200-milhoes,70003536340
https://saude.estadao.com.br/noticias/geral,nova-falha-do-ministerio-da-saude-expoe-dados-pessoais-de-mais-de-200-milhoes,70003536340
https://saude.estadao.com.br/noticias/geral,nova-falha-do-ministerio-da-saude-expoe-dados-pessoais-de-mais-de-200-milhoes,70003536340
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html

Bibliography

[40] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. SgxPectre: Stealing Intel Secretsfrom SGX Enclaves Via Speculative Execution. In 2019 IEEE European Symposium on

Security and Privacy (EuroS&P), 2019.
[41] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang, XiaoFengWang, Ten-Hwang Lai, andDongdai Lin. Racing in hyperspace: Closing hyper-threadingside channels on sgx with contrived data races. In 2018 IEEE Symposium on Security

and Privacy (SP), 2018.
[42] William R. Claycomb. Detecting Insider Threats: Who Is Winning the Game? (MIST ’15).In Proceedings of the 7th ACM CCS International Workshop on Managing Insider Security

Threats. Association for Computing Machinery, 2015.
[43] Memcached Community. memcached. https://memcached.org, accessed on October2021.
[44] Intel Corportation. Intel trusted execution techonology–software development guide,revision 017.0, 2008.
[45] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR Cryptol. ePrint Arch.,2016.
[46] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware exten-sions for strong software isolation. In Proceedings of the 25th USENIX Security Symposium

(USENIX Security ’16), 2016.
[47] Jordi Cucurull and Sandra Guasch. Virtual TPM for a secure cloud: fallacy or reality?

RECSI 2014, 2014.
[48] Rongzhen Cui, Lianying Zhao, and David Lie. Emilia: Catching iago in legacy code. In

28th Annual Network and Distributed System Security Symposium (NDSS ’21), 2021.
[49] Natasha Dailey. The hackers that attacked a major US oil pipeline say it was onlyfor money — here’s what to know about DarkSide. https://www.businessinsider.com/pipeline-cyber-attack-darkside-hacker-group-shutdown-ransomware-money-politics-oil-2021-5?op=1&r=US&IR=T, accessed on May 2021.
[50] Dan Tarnovsky. DEF CON 20 - Attacking TPM Part 2 A Look at the ST19WP18 TPM De-vice. https://www.youtube.com/watch?v=Bp26rPw90Dc, accessed on October 2021.
[51] Janis Danisevskis, Michael Peter, Jan Nordholz, Matthias Petschick, and Julian Vetter.Graphical user interface for virtualized mobile handsets. IEEE S&P MoST, 2015.
[52] Ivan De Oliveira Nunes, Xuhua Ding, and Gene Tsudik. On the root of trust identi-fication problem. In Proceedings of the 20th International Conference on Information

Processing in Sensor Networks (Co-Located with CPS-IoT Week 2021), 2021.
[53] Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan Capkun. Proximitee: Hardenedsgx attestation by proximity verification. In Proceedings of the Tenth ACM Conference on

Data and Application Security and Privacy, CODASPY ’20, 2020.
[54] T. Dierks and E. Rescorla. The Transport Layer Security Protocol Version 1.2. https://tools.ietf.org/html/rfc5246, accessed on October 2021.

IV

https://memcached.org
https://www.businessinsider.com/pipeline-cyber-attack-darkside-hacker-group-shutdown-ransomware-money-politics-oil-2021-5?op=1&r=US&IR=T
https://www.businessinsider.com/pipeline-cyber-attack-darkside-hacker-group-shutdown-ransomware-money-politics-oil-2021-5?op=1&r=US&IR=T
https://www.businessinsider.com/pipeline-cyber-attack-darkside-hacker-group-shutdown-ransomware-money-politics-oil-2021-5?op=1&r=US&IR=T
https://www.youtube.com/watch?v=Bp26rPw90Dc
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

Bibliography

[55] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. 1976.
[56] DannyDolev and Andrew Yao. On the security of public key protocols. IEEE Transactions

on information theory, 1983.
[57] Jon Emont, Laura Stevens, and RobertMcMillan. Amazon Investigates Employees Leak-ing Data for Bribes. https://www.wsj.com/articles/amazon-investigates-employees-leaking-data-for-bribes-1537106401, accessed on October 2021.
[58] Eperi. Top Tier Bank and Confidential Computing. https://www.intel.com/content/www/us/en/customer-spotlight/stories/eperi-sgx-customer-story.html, accessed onOctober 2021.
[59] Gregor Erbach and Jack O’Shea. Cybersecurity of critical energy infrastructure. Euro-

pean Parliamentary Research Service, October 2019.
[60] Spyridon Bakas et al. Identifying the best machine learning algorithms for brain tumorsegmentation, progression assessment, and overall survival prediction in the bratschallenge, 2019.
[61] European Central Bank. Cyber resilience oversight expectations for financial marketinfrastructures – cyber resilience oversight expectations, 2018.
[62] European Commission. Proposal for a directive of the European Parliament and ofthe council on the resilience of critical entities, 2020.
[63] European Parliament. Regulation (eu) 2016/679 of the european parliament and ofthe council of 27 april 2016 on the protection of natural persons with regard to theprocessing of personal data and on the free movement of such data, and repealingdirective 95/46/ec, 2016.
[64] European Union. Horizon Europe Strategic Plan (2021 - 2024). Technical report, Eu-ropean Commission, 2021.
[65] F5, Inc. NGINX. https://www.nginx.com, accessed on October 2021.
[66] Roy Thomas Fielding. Architectural styles and the design of network-based software archi-

tectures. University of California, Irvine, 2000.
[67] Russell A Fink, Alan T Sherman, Alexander O Mitchell, and David C Challener. Catchingthe cuckoo: Verifying TPM proximity using a quote timing side-channel. In International

Conference on Trust and Trustworthy Computing. Springer, 2011.
[68] Django Software Foundation. Django. https://www.djangoproject.com, accessed onOctober 2021.
[69] The Linux Foundation. The Update Framework Project. https://theupdateframework.github.io, accessed on October 2021.
[70] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model Inversion Attacks ThatExploit Confidence Information and Basic Countermeasures. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security (CCS ’15), 2015.

V

https://www.wsj.com/articles/amazon-investigates-employees-leaking-data-for-bribes-1537106401
https://www.wsj.com/articles/amazon-investigates-employees-leaking-data-for-bribes-1537106401
https://www.intel.com/content/www/us/en/customer-spotlight/stories/eperi-sgx-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/eperi-sgx-customer-story.html
https://www.nginx.com
https://www.djangoproject.com
https://theupdateframework.github.io
https://theupdateframework.github.io

Bibliography

[71] Inc. Free Software Foundation. Tar - GNU Project - Free Software Foundation. https://www.gnu.org/software/tar/, accessed on October 2021.
[72] Paul W. Frields. Infrastructure report, 2008-08-22 UTC 1200. https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html, accessed on Octo-ber 2021.
[73] Eimear Gallery and Chris J. Mitchell. Trusted Computing: Security and Applications.

Cryptologia, 2009.
[74] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A virtualmachine-based platform for trusted computing. In Proceedings of the Nineteenth ACM

Symposium on Operating Systems Principles, SOSP ’03, 2003.
[75] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time Protection: The MissingOS Abstraction. In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19),2019.
[76] Gematik GmbH. Systemspezifisches Konzept E-Rezept. https://fachportal.gematik.de/fachportal-import/files/gemSysL_eRp_V1.1.0.pdf, accessed on October 2021.
[77] Gematik GmbH. Systemspezifisches Konzept ePA. https://www.vesta-gematik.de/standard/formhandler/324/gemSysL_ePA_V1_3_0.pdf, accessed on October 2021.
[78] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the

41st annual ACM symposium on Theory of computing, 2009.
[79] Aleksander Gieysztor. Mitologia Słowian. Wydawnictwo Uniwersytetu Warszawskiego,2006.
[80] Virgil Gligor and Maverick Woo. Establishing Software Root of Trust Unconditionally.In Network and Distributed Systems Security (NDSS ’19), 2019.
[81] GlobalPlatform Inc. The trusted execution environment: Delivering enhanced securityat a lower cost to the mobile market. White paper, GlobalPlatform Inc., 2011.
[82] JohannesGoetzfried, Moritz Eckert, Sebastian Schinzel, and TiloMueller. Cache Attackson Intel SGX. In Proceedings of the 10th European Workshop on Systems Security (EuroSec

’17), 2017.
[83] Kenneth Goldman and Stefan Berger. TPM Main Part 3 – IBM Com-mands. https://researcher.watson.ibm.com/researcher/files/us-kgoldman/mainP3IBMCommandsrev36.pdf, accessed on October 2021.
[84] Kenneth Goldman, Ronald Perez, and Reiner Sailer. Linking remote attestation to se-cure tunnel endpoints. In Proceedings of the First ACM Workshop on Scalable Trusted

Computing, STC ’06, 2006.
[85] James C Gordon. Microsoft Azure Confidential Computing with Intel SGX, accessed onOctober 2021.
[86] S. Govindavajhala and A.W. Appel. Using memory errors to attack a virtual machine.In Proceedings of the 2003 Symposium on Security and Privacy, (S&P 2003), 2003.

VI

https://www.gnu.org/software/tar/
https://www.gnu.org/software/tar/
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://fachportal.gematik.de/fachportal-import/files/gemSysL_eRp_V1.1.0.pdf
https://fachportal.gematik.de/fachportal-import/files/gemSysL_eRp_V1.1.0.pdf
https://www.vesta-gematik.de/standard/formhandler/324/gemSysL_ePA_V1_3_0.pdf
https://www.vesta-gematik.de/standard/formhandler/324/gemSysL_ePA_V1_3_0.pdf
https://researcher.watson.ibm.com/researcher/files/us-kgoldman/mainP3IBMCommandsrev36.pdf
https://researcher.watson.ibm.com/researcher/files/us-kgoldman/mainP3IBMCommandsrev36.pdf

Bibliography

[87] James Greene. Intel trusted execution technology: Hardware-based technology forenhancing server platform security. Intel Corporation, 2010.
[88] Franz Gregor, Wojciech Ozga, Sebastien Vaucher, Rafael Pires, Do Le Quoc, SergeiArnautov, Andre Martin, Valerio Schiavoni, Pascal Felber, and Christof Fetzer. Trustmanagement as a service: Enabling trusted execution in the face of byzantine stake-holders. In The 50th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN ’20), 2020.
[89] Trusted Computing Group. TCG Infrastructure Working Group Architecture Part ii -Integrity Management, Specification Version 1.0, Revision 1.0, 2006.
[90] Trusted Computing Group. TPM Library Specification, family "2.0", level 00, revision01.38. In TCG Resources, TPM 2.0 Library, 2016.
[91] Trusted Computing Group. TCG Trusted Attestation Protocol (TAP) Information Modelfor TPM Families 1.2 and 2.0 and DICE Family 1.0. Version 1.0, Revision 0.36, 2019.
[92] Trusted Computing Group. TPM Library Part 1: Architecture, Family "2.0", Level00, Revision 01.38. http://www.trustedcomputinggroup.org/resources/tpm_library_specification, accessed on October 2021.
[93] Trusted Computing Group. Trusted Computing. https://trustedcomputinggroup.org/trusted-computing/, accessed on October 2021.
[94] Karan Grover, Shruti Tople, Shweta Shinde, Ranjita Bhagwan, and RamachandranRamjee. Privado: Practical and Secure DNN Inference with Enclaves. arXiv preprint

arXiv:1810.00602, 2018.
[95] Le Guan, Jingqiang Lin, Bo Luo, Jiwu Jing, and Jing Wang. Protecting private keys againstmemory disclosure attacks using hardware transactional memory. In 2015 IEEE Sym-

posium on Security and Privacy, 2015.
[96] Marco Guarnieri, Boris Köpf, Jose F Morales, Jan Reineke, and Andres Sanchez. SPEC-TECTOR: Principled detection of speculative information flows. In 2020 IEEE Symposium

on Security and Privacy (S&P ’20). IEEE, 2020.
[97] Shay Gueron. Memory Encryption for General-Purpose Processors. IEEE Security and

Privacy, 2016.
[98] Christian Göttel, Rafael Pires, Isabelly Rocha, Sébastien Vaucher, Pascal Felber,Marcelo Pasin, and Valerio Schiavoni. Security, Performance and Energy Trade-offsof Hardware-assisted Memory Protection Mechanisms. 2018 IEEE 37th Symposium on

Reliable Distributed Systems (SRDS), 2018.
[99] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic Remote Attestation –A Virtual Machine directed approach to Trusted Computing. In 3rd Virtual Machine

Research and Technology Symposium, 2004.
[100] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lestwe remember: cold-boot attacks on encryption keys. Proceedings of the 17th USENIX

Security Symposium (USENIX Security’08), 2008.

VII

http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
https://trustedcomputinggroup.org/trusted-computing/
https://trustedcomputinggroup.org/trusted-computing/

Bibliography

[101] Serge Hallyn, Dmitry Kasatkin, David Safford, Reiner Sailer, and Mimi Zohar. LinuxIntegrity Measurement Architecture (IMA) - IMA appraisal. https://sourceforge.net/p/linux-ima/wiki/Home/#ima-appraisal, accessed on October 2021.
[102] JamesHamilton. AWSNitro System. https://perspectives.mvdirona.com/2019/02/aws-nitro-system/, accessed on October 2021.
[103] Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun Kim. A bad dream: Sub-verting trusted platform module while you are sleeping. In 27th USENIX Security Sym-

posium (USENIX Security 18), 2018.
[104] Hex Five Security, Inc. MultiZone Hex Five Security. https://hex-five.com, accessed onOctober 2021.
[105] Guerney DH Hunt, Ramachandra Pai, Michael V Le, Hani Jamjoom, Sukadev Bhat-tiprolu, Rick Boivie, Laurent Dufour, Brad Frey, Mohit Kapur, Kenneth A Goldman, et al.Confidential computing for openpower. In Proceedings of the 16th European Conference

on Computer Systems (EuroSys ’21), 2021.
[106] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christopher J. Rossbach,and Emmett Witchel. Telekine: Secure Computing with Cloud GPUs. In 17th USENIX

Symposium on Networked Systems Design and Implementation (NSDI ’20), 2020.
[107] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel. Chi-ron: Privacy-preserving Machine Learning as a Service. arXiv preprint arXiv:1803.05961,2018.
[108] Hyper. Hyper. https://hyper.rs, accessed on October 2021.
[109] IBM. IBM CEX7S / 4769 PCIe Cryptographic Coprocessor (HSM). IBM 4769 Data Sheet,2019.
[110] IBM. IBM Security QRadar. Intelligent security analytics for insight into your most crit-ical threats. https://www.ibm.com/security/security-intelligence/qradar, accessed onOctober 2021.
[111] IBM. IBM TPM Attestation Client Server. https://sourceforge.net/projects/ibmtpm20acs/, accessed on October 2021.
[112] IBM. Introducing IBM Secure Execution for Linux. https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxse/lxse_t_secureexecution.html,accessed on October 2021.
[113] IBM X-Force Incident Response and Intelligence Services (IRIS). X-force threat intelli-gence index. In IBM Security report, 2020.
[114] IBM X-Force Incident Response and Intelligence Services (IRIS). X-force threat intelli-gence index. In IBM Security report, 2021.
[115] IEEE and The Open Group. The Open Group Base Specifications Issue 7, 2018 edition,IEEE std 1003.1-2017. https://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_03, accessed on October 2021.

VIII

https://sourceforge.net/p/linux-ima/wiki/Home/#ima-appraisal
https://sourceforge.net/p/linux-ima/wiki/Home/#ima-appraisal
https://perspectives.mvdirona.com/2019/02/aws-nitro-system/
https://perspectives.mvdirona.com/2019/02/aws-nitro-system/
https://hex-five.com
https://hyper.rs
https://www.ibm.com/security/security-intelligence/qradar
https://sourceforge.net/projects/ibmtpm20acs/
https://sourceforge.net/projects/ibmtpm20acs/
https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxse/lxse_t_secureexecution.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxse/lxse_t_secureexecution.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_03
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_03

Bibliography

[116] Advanced Micro Devices Inc. AMD Secure Encrypted Virtualization API Version 0.22.
Technical Preview, 2019.

[117] Chef Software Inc. Chef. https://www.chef.io/chef/, accessed on October 2021.
[118] Free Software Foundation Inc. Basic Tar Format. https://www.gnu.org/software/tar/manual/html_node/Standard.html, accessed on October 2021.
[119] Puppet Inc. Puppet - server automation framework and application. https://puppet.com, accessed on October 2021.
[120] Information Technology Laboratory. Security requirements for cryptographic mod-ules. Federal Information Processing Standards Publication, 2001.
[121] Intel. Strengthening Security with Intel Platform Trust Technology. In Intel Whitepaper,2014.
[122] Intel. Memory Encryption Technologies Specification Rev: 1.2. Intel Architecture, Intel,2019.
[123] Intel. Intel Trust Domain Extensions. Intel White Paper, 2020.
[124] Intel. Intel OpenAttestation project. https://github.com/OpenAttestation/OpenAttestation, accessed on October 2021.
[125] Intel. Intel Security Libraries for Data Center. https://01.org/intel-secl, accessed onOctober 2021.
[126] Intel. Resources and Response to Side Channel L1TF. https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html, accessed on October 2021.
[127] Intel. Trusted Boot (tboot). https://sourceforge.net/projects/tboot/, accessed on Oc-tober 2021.
[128] Intel and National Security Agency. Intel Open Cloud Intergrity Technology. https://01.org/opencit, accessed on October 2021.
[129] Intel Corporation. Intel SGX: Intel EPID Provisioning and Attestation Ser-vices. https://software.intel.com/content/www/us/en/develop/download/intel-sgx-intel-epid-provisioning-and-attestation-services.html, accessed on October 2021.
[130] Trent Jaeger, Reiner Sailer, and Umesh Shankar. Prima: Policy-reduced integrity mea-surement architecture. In Proceedings of the Eleventh ACM Symposium on Access Control

Models and Technologies, SACMAT ’06, 2006.
[131] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and Jaehyuk Huh. Het-erogeneous Isolated Execution for Commodity GPUs. In Proceedings of the Twenty-

Fourth International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’19), 2019.
[132] Ramya Jayaram Masti, Claudio Marforio, and Srdjan Capkun. An architecture for con-current execution of secure environments in clouds. In Proceedings of the 2013 ACM

workshop on Cloud computing security workshop, 2013.

IX

https://www.chef.io/chef/
https://www.gnu.org/software/tar/manual/html_node/Standard.html
https://www.gnu.org/software/tar/manual/html_node/Standard.html
https://puppet.com
https://puppet.com
https://github.com/OpenAttestation/OpenAttestation
https://github.com/OpenAttestation/OpenAttestation
https://01.org/intel-secl
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://sourceforge.net/projects/tboot/
https://01.org/opencit
https://01.org/opencit
https://software.intel.com/content/www/us/en/develop/download/intel-sgx-intel-epid-provisioning-and-attestation-services.html
https://software.intel.com/content/www/us/en/develop/download/intel-sgx-intel-epid-provisioning-and-attestation-services.html

Bibliography

[133] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen. Intelsoftware guard extensions: EPID provisioning and attestation services. White Paper,2016.
[134] Joseph Birr-Pixton. rustls. https://github.com/ctz/rustls, accessed on October 2021.
[135] Ashlesha Joshi, Samuel T. King, George W. Dunlap, and Peter M. Chen. Detecting pastand present intrusions through vulnerability-specific predicates. In Proceedings of the

Twentieth ACM Symposium on Operating Systems Principles, SOSP ’05, 2005.
[136] Rob Joyce. Disrupting Nation State Hackers. USENIX Enigma’16, 2016.
[137] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A LowLatency Framework for Secure Neural Network Inference. In Proceedings of the 27th

USENIX Conference on Security Symposium (USENIX Security), 2018.
[138] Georgios A Kaissis, Marcus R Makowski, Daniel Rückert, and Rickmer F Braren. Secure,privacy-preserving and federatedmachine learning inmedical imaging. NatureMachine

Intelligence, 2020.
[139] David Kaplan. Protecting VM register State with SEV-ES. AMDWhite Paper, AMD, 2017.
[140] David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryption. Amd whitepaper, AMD, 2016.
[141] Karnati. Data-in-use protection on IBM Cloud using Intel SGX. https://www.ibm.com/blogs/bluemix/2018/05/data-use-pro-tection-ibm-cloud-using-intel-sgx/, accessedon October 2021.
[142] Bernhard Kauer. OSLO: Improving the security of Trusted Computing. USENIX, 2007.
[143] Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and Jie Yang.Origin-sensitive control flow integrity. In 28th USENIX Security Symposium (USENIX Secu-

rity ’19), 2019.
[144] Sven Kiljan, Koen Simoens, Danny De Cock, Marko Van Eekelen, and Harald Vranken.A survey of authentication and communications security in online banking. ACM Com-

puting Surveys (CSUR), 49(4), 2016.
[145] S.T. King and P.M. Chen. SubVirt: implementing malware with virtual machines. In

2006 IEEE Symposium on Security and Privacy (S&P’06), 2006.
[146] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.
[147] Avi Kivity, Yaniv Kamay, and Dor Laor. kvm: the Linux Virtual Machine Monitor. In

Proceedings of the Linux Symposium, Volume One, 2007.
[148] Gerwin Klein, Michael Norrish, Thomas Sewell, Harvey Tuch, SimonWinwood, Kevin El-phinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elka-duwe, Kai Engelhardt, and Rafal Kolanski. seL4: formal verification of an OS kernel. In

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles - SOSP

’09, Big Sky, Montana, USA, 2009.

X

https://github.com/ctz/rustls
https://www.ibm.com/blogs/bluemix/2018/05/data-use-pro-tection-ibm-cloud-using-intel-sgx/
https://www.ibm.com/blogs/bluemix/2018/05/data-use-pro-tection-ibm-cloud-using-intel-sgx/

Bibliography

[149] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and MonaVij. Integrating remote attestation with transport layer security. arXiv preprint

arXiv:1801.05863, 2018.
[150] Jeffrey Knockel and Jedidiah R. Crandall. Protecting Free andOpenCommunications onthe Internet Against Man-in-the-Middle Attacks on Third-Party Software: We’re FOCI’d.In Proceedings of the 2nd USENIX Workshop on Free and Open Communications on the

Internet (FOCI ’12). USENIX, 2012.
[151] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, MikeHamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and YuvalYarom. Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on

Security and Privacy (SP), 2019.
[152] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, andother systems. In Proceedings of the 16th Annual International Cryptology Conference on

Advances in Cryptology, CRYPTO ’96, 1996.
[153] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Proceed-

ings of the 19th Annual International Cryptology Conference on Advances in Cryptology,CRYPTO ’99, 1999.
[154] Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison, Robert Gawlik,Christof Paar, and Thorsten Holz. Reverse engineering x86 processor microcode. In

26th USENIX Security Symposium (USENIX Security 17), 2017.
[155] Kari Kostiainen, Aritra Dhar, and Srdjan Capkun. Dedicated Security Chips in the Ageof Secure Enclaves. IEEE Security and Privacy, 2020.
[156] Robert Krahn, Donald Dragoti, Franz Gregor, Do Le Quoc, Valerio Schiavoni, PascalFelber, Clenimar Souza, Andrey Brito, and Christof Fetzer. TEEMon: A continuousperformance monitoring framework for TEEs. In Proceedings of the 21th International

Middleware Conference (Middleware), 2020.
[157] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tinyimages. Technical report, Citeseer, 2009.
[158] Kubernetes. Kubernetes website. https://kubernetes.io/, accessed on October 2021.
[159] Ambuj Kumar, Anand Kashyap, Vinay Phegade, and Jesse Schrater. Self-Defending KeyManagement Service with Intel SGX. Fortranix Whitepaper, accessed on October 2021.
[160] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi, andRahul Sharma. CrypTFlow: Secure TensorFlow Inference. In IEEE Symposium on Security

and Privacy (S&P ’20), 2020.
[161] Trishank Karthik Kuppusamy, Vladimir Diaz, and Justin Cappos. Mercury: Bandwidth-Effective Prevention of Rollback Attacks against Community Repositories. In Proceed-

ings of the 2017 USENIX Conference on USENIX Annual Technical Conference (USENIX ATC

’17). USENIX Association, 2017.

XI

https://kubernetes.io/

Bibliography

[162] Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz, and Justin Cappos.Diplomat: Using Delegations to Protect Community Repositories. In Proceedings of

the 13th USENIX Conference on Networked Systems Design and Implementation (NSDI ’16),2016.
[163] Klaus Kursawe, Dries Schellekens, and Bart Preneel. Analyzing trusted platform com-munication. In ECRYPT Workshop, CRASH-CRyptographic Advances in Secure Hardware,2005.
[164] Michael Kurth, BenGras, Dennis Andriesse, CristianoGiuffrida, Herbert Bos, and KavehRazavi. NetCAT: Practical Cache Attacks from the Network. In 2020 IEEE Symposium on

Security and Privacy (S&P ’20), 2020.
[165] Matthias Lange and Steffen Liebergeld. Crossover: secure and usable user interfacefor mobile devices with multiple isolated os personalities. In Proceedings of the 29th

Annual Computer Security Applications Conference, 2013.
[166] Hagen Lauer, Amin Sakzad, Carsten Rudolph, and Surya Nepal. Bootstrapping Trust ina "Trusted" Virtualized Platform. In Proceedings of the 1st ACM Workshop on Workshop

on Cyber-Security Arms Race (CYSARM ’19), 2019.
[167] Do Le Quoc, Franz Gregor, Sergei Arnautov, Roland Kunkeland, Pramod Bhatotia, andChristof Fetzer. secureTF: A Secure TensorFlow Framework. In Proceedings of the 21th

International Middleware Conference (Middleware), 2020.
[168] Do Le Quoc, Franz Gregor, Jatinder Singh, and Christof Fetzer. SGX-PySpark: SecureDistributed Data Analytics. In The World Wide Web Conference (WWW ’19), 2019.
[169] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song. Key-stone: An open framework for architecting trusted execution environments. In Pro-

ceedings of the Fifteenth European Conference on Computer Systems (EuroSys ’20), 2020.
[170] Jun Li, P. L. Reiher, and G. J. Popek. Resilient Self-Organizing Overlay Networks forSecurity Update Delivery. IEEE Journal on Selected Areas in Communications, 22(1), 2006.
[171] Christopher Liebchen. Advancing Memory-corruption Attacks and Defenses. System

Security Lab Fachbereich fur Informatik Technische Universitaet Darmstadt, 2018.
[172] ARM Limited. Building a Secure System using TrustZone Technology. White paper,accessed on October 2021.
[173] Alpine Linux. Alpine Linux community repository. http://dl-cdn.alpinelinux.org/alpine/edge/community/, accessed on October 2021.
[174] Alpine Linux. Alpine Linux main repository. http://dl-cdn.alpinelinux.org/alpine/edge/main/, accessed on October 2021.
[175] Alpine Linux. Alpine Linux package management. https://wiki.alpinelinux.org/wiki/Alpine_Linux_package_management, accessed on October 2021.
[176] Debian Linux. Debian Linux: Debian package management. https://www.debian.org/doc/manuals/debian-reference/ch02.en.html, accessed on October 2021.

XII

http://dl-cdn.alpinelinux.org/alpine/edge/community/
http://dl-cdn.alpinelinux.org/alpine/edge/community/
http://dl-cdn.alpinelinux.org/alpine/edge/main/
http://dl-cdn.alpinelinux.org/alpine/edge/main/
https://wiki.alpinelinux.org/wiki/Alpine_Linux_package_management
https://wiki.alpinelinux.org/wiki/Alpine_Linux_package_management
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html

Bibliography

[177] Gentoo Linux. Gentoo Linux: Portage build system. https://wiki.gentoo.org/wiki/Portage, accessed on October 2021.
[178] Theo Markettos, Colin Rothwell, Brett F Gutstein, Allison Pearce, Peter G Neumann,SimonMoore, and Robert Watson. Thunderclap: Exploring vulnerabilities in operatingsystem iommu protection via dma from untrustworthy peripherals. In Network and

Distributed System Security Symposium, 2019.
[179] Sinisa Matetic, David Sommer, Mansoor Ahmed, Arthur Gervais, Kari Kostiainen, AritraDhar, Ari Juels, and Srdjan Capkun. ROTE: Rollback Protection for Trusted Execution.

26th USENIX Security Symposium (USENIX Security ’17), 2017.
[180] Nicholas D Matsakis and Felix S Klock. The Rust language. ACM SIGAda Ada Letters,2014.
[181] Matthew Garrett. dpkg patch. https://gitlab.com/mjg59/dpkg/-/commits/master, ac-cessed on October 2021.
[182] J.M. McCune, A. Perrig, and M.K. Reiter. Seeing-is-believing: using camera phonesfor human-verifiable authentication. In 2005 IEEE Symposium on Security and Privacy

(S&P’05), 2005.
[183] Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil Gligor,and Adrian Perrig. TrustVisor: Efficient TCB reduction and attestation. In 2010 IEEE

Symposium on Security and Privacy, 2010.
[184] JonathanMMcCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and Hiroshi Isozaki.Flicker: An execution infrastructure for TCBminimization. In Proceedings of the 3rd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2008, 2008.
[185] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi, Ved-vyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions and softwaremodel for isolated execution. HASP isca, 2013.
[186] Slashdot Media. phpMyAdmin corrupted copy on Korean mirror server. https://sourceforge.net/blog/phpmyadmin-back-door/, 2012.
[187] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and RalucaAda Popa. Delphi: A Cryptographic Inference Service for Neural Networks. In 29th

USENIX Security Symposium (USENIX Security ’20), 2020.
[188] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine learning. In 2017 IEEE Symposium on Security and Privacy (S&P

’17), 2017.
[189] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and FrankPiessens. Plundervolt: Software-based fault injection attacks against intel sgx. In Pro-

ceedings of the 41st IEEE Symposium on Security and Privacy (S&P ’20), 2020.
[190] muslc. musl libc. https://musl.libc.org, accessed on October 2021.
[191] Eugene D Myers. Using the intel stm for protected execution. https://www.platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf, lastaccessed on July 2021.

XIII

https://wiki.gentoo.org/wiki/Portage
https://wiki.gentoo.org/wiki/Portage
https://gitlab.com/mjg59/dpkg/-/commits/master
https://sourceforge.net/blog/phpmyadmin-back-door/
https://sourceforge.net/blog/phpmyadmin-back-door/
https://musl.libc.org
https://www.platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf
https://www.platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf

Bibliography

[192] Lucien KL Ng, Sherman SM Chow, Anna PY Woo, Donald PH Wong, and Yongjun Zhao.Goten: GPU-Outsourcing Trusted Execution of Neural Network Training and Predic-tion. 35th AAAI Conference on Artificial Intelligence, 2019.
[193] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser,Ismail Khoffi, Justin Cappos, and Bryan Ford. CHAINIAC: Proactive software-updatetransparency via collectively signed skipchains and verified builds. In 26th USENIX Se-

curity Symposium (USENIX Security ’17), 2017.
[194] NIST. CVE-2019-5021. https://nvd.nist.gov/vuln/detail/CVE-2019-5021, accessed onOctober 2021.
[195] NIST. TheHeartbleed Bug: CVE-2014-0160. https://nvd.nist.gov/vuln/detail/CVE-2014-0160, accessed on October 2021.
[196] Talal H. Noor, Quan Z. Sheng, Sherali Zeadally, and Jian Yu. Trust Management ofServices in Cloud Environments: Obstacles and Solutions. ACM Comput. Surv., 2013.
[197] OASIS. PKCS#11 specification. http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html, accessed on October 2021.
[198] National Institute of Standards and Technology (NIST). National Software ReferenceLibrary (NSRL). https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl/about-nsrl/nsrl-introduction, accessed on October 2021.
[199] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin,Kapil Vaswani, and Manuel Costa. Oblivious Multi-Party Machine Learning on TrustedProcessors. In Proceedings of the 25th USENIX Conference on Security Symposium, 2016.
[200] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof Fetzer.Varys: Protecting SGX enclaves from practical side-channel attacks. In 2018 Usenix

Annual Technical Conference (USENIX ATC ’18), 2018.
[201] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. SpecFuzz:Bringing Spectre-type vulnerabilities to the surface. In 29th USENIX Security Symposium

(USENIX Security ’20), 2020.
[202] OpenStack community. OpenStack. https://www.openstack.org, accessed on October2021.
[203] Wojciech Ozga, Rasha Faqeh, Do Le Quoc, Franz Gregor, Silvio Dragone, and ChristofFetzer. Chors: Hardening high-assurance security systems with trusted computing.

Proceedings of the 37th ACM Symposium On Applied Computing (SAC ’22), 2022.
[204] Wojciech Ozga, Do Le Quoc, and Christof Fetzer. A practical approach for updating anintegrity-enforced operating system. In Proceedings of the 21st International Middleware

Conference, 2020.
[205] Bryan Parno. Bootstrapping Trust in a Trusted Platform. In Proceedings of the 3rd

Conference on Hot Topics in Security, 2008.
[206] LLC PCI Security Standards Council. Requirements and Security Assessment Proce-dures, Version 3.2.1. Payment Card Industry (PCI) Data Security Standard, 2018.

XIV

https://nvd.nist.gov/vuln/detail/CVE-2019-5021
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl/about-nsrl/nsrl-introduction
https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl/about-nsrl/nsrl-introduction
https://www.openstack.org

Bibliography

[207] Mike Petullo. Encrypt your root filesystem. Linux Journal, 2005.
[208] Jonathan Poritz, Matthias Schunter, Els Van Herreweghen, andMichael Waidner. Prop-erty attestation — Scalable and privacy-friendly security assessment of peer comput-ers. In IBM Research Report, Computer Science RZ3548, 2004.
[209] Dr Daniel Potts, Rene Bourquin, Leslie Andresen, Dr Gerwin Klein, and Gernot Heiser.Mathematically Verified Software Kernels: Raising the Bar for High Assurance Imple-mentations. Article, General Dynamics, 2014.
[210] Bart Preneel. The state of cryptographic hash functions. In Lectures on Data Security,

Modern Cryptology in Theory and Practice, Summer School, Aarhus, Denmark, July 1998,1999.
[211] Emil Protalinski. TechSpot News. Google fired employees for breaching user pri-vacy. https://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html, accessed on October 2021.
[212] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina Pol-ubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joonwon Choi, AntoineDelignat-Lavaud, Cédric Fournet, et al. Evercrypt: A fast, verified, cross-platform cryp-tographic provider. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.
[213] Himanshu Raj, Stefan Saroiu, AlecWolman, Ronald Aigner, Jeremiah Cox, Paul England,Chris Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon, Magnus Nys-trom, David Robinson, Rob Spiger, Stefan Thom, and David Wooten. fTPM: A Software-only Implementation of a TPM Chip. Proceedings of the 25th USENIX Security Symposium,2016.
[214] RedHat, Inc. Critical: openssh security update. https://access.redhat.com/errata/RHSA-2008:0855, accessed on October 2021.
[215] RedHat, Inc. OpenSCAP - Audit, Fix and be Merry. https://www.open-scap.org, ac-cessed on October 2021.
[216] Redis Labs. NoSQL Redis and Memcache traffic generation and benchmarking tool.https://github.com/RedisLabs/memtier_benchmark, accessed on October 2021.
[217] Max Reitz. Isolating Program Execution on L4Re/Fiasco.OC. PhD thesis, TU Dresden,2019.
[218] Reuters. Ex-Microsoft employee charged with leaking trade secrets to blogger.https://www.reuters.com/article/us-microsoft-tradesecret-idUSBREA2J07K20140320,accessed on October 2021.
[219] Reuters. Foreign Hackers Probe European Critical Infrastructure Networks: Sources.https://www.reuters.com/article/us-britain-cyber-idINKBN19V1C7, accessed on Octo-ber 2021.
[220] Jordan Robertson and Michael Riley. The Big Hack: How China Used a Tiny Chip toInfiltrate U.S. Companies. Bloomberg Businessweek, 2018.

XV

https://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
https://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
https://access.redhat.com/errata/RHSA-2008:0855
https://access.redhat.com/errata/RHSA-2008:0855
https://www.open-scap.org
https://github.com/RedisLabs/memtier_benchmark
https://www.reuters.com/article/us-microsoft-tradesecret-idUSBREA2J07K20140320
https://www.reuters.com/article/us-britain-cyber-idINKBN19V1C7

Bibliography

[221] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networksfor biomedical image segmentation. In International Conference on Medical image com-
puting and computer-assisted intervention, 2015.

[222] Joanna Rutkowska. Introducing blue pill. SyScan’06, 2006.
[223] Ahmad-Reza Sadeghi and Christian Stüble. Property-based attestation for comput-ing platforms: Caring about properties, not mechanisms. In Proceedings of the 2004

Workshop on New Security Paradigms, 2004.
[224] Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Ronald Perez, Leendert Van Doorn,John LinwoodGriffin, and Stefan Berger. shype: Secure hypervisor approach to trustedvirtualized systems. In IBM research report RC23511, 2005.
[225] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert Van Doorn. Design and Im-plementation of a TCG-based Integrity Measurement Architecture. In USENIX Security

symposium, 2004.
[226] Roberto Sassu. Infoflow LSM. In Linux Security Summit’19, 2019.
[227] Uday Savagaonkar, Nelly Porter, Nadim Taha, Benjamin Serebrin, and Neal Mueller.Titan in depth: Security in plaintext. Google Cloud Identity and Security Blog, 2017.
[228] Vinnie Scarlata, Simon Johnson, James Beaney, and Piotr Zmijewski. Supporting thirdparty attestation for intel sgx with intel data center attestation primitives. White paper,2018.
[229] Nabil Schear, Patrick T. Cable, Thomas M. Moyer, Bryan Richard, and Robert Rudd.Bootstrapping and maintaining trust in the cloud. In Proceedings of the 32nd Annual

Conference on Computer Security Applications (ACSAC ’16), 2016.
[230] Joshua Schiffman, Hayawardh Vijayakumar, and Trent Jaeger. Verifying System Integrityby Proxy. In Trust and Trustworthy Computing. Springer Berlin Heidelberg, 2012.
[231] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Man-gard. Malware guard extension: Using sgx to conceal cache attacks. In International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 2017.
[232] Scontain UG. SCONE Docker curated images. https://hub.docker.com/u/sconecuratedimages, accessed on October 2021.
[233] Security Standards Council, LLC. Payment Card Industry (PCI) Data Security Standard.Requirements and Security Assessment Procedures. Version 3.2.1, 2018.
[234] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and PradeepKhosla. Pioneer: Verifying code integrity and enforcing untampered code executionon legacy systems. In Proceedings of the Twentieth ACM Symposium on Operating Systems

Principles (SOSP ’05), 2005.
[235] Jacob Shin, Bill Jacobs, Mark Scott-Nash, Julian Hammersley, Monty Wiseman, RobSpiger, Dick Wilkins, Ralf Findeisen, David Challener, Dalvis Desselle, Steve Goodman,Gary Simpson, Kirk Brannock, Amy Nelson, Mark Piwonka, Conan Dailey, and RandySpringfield. TCG D-RTM Architecture, Document Version 1.0.0. Trusted Computing

Group, 2013.

XVI

https://hub.docker.com/u/sconecuratedimages
https://hub.docker.com/u/sconecuratedimages

Bibliography

[236] Amber L Simpson, Michela Antonelli, Spyridon Bakas, Michel Bilello, Keyvan Farahani,Bram Van Ginneken, Annette Kopp-Schneider, Bennett A Landman, Geert Litjens, Bjo-ern Menze, et al. A large annotated medical image dataset for the development andevaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063, 2019.
[237] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep Torrellas,and Christopher W. Fletcher. Microscope: Enabling microarchitectural replay attacks.In Proceedings of the 46th International Symposium on Computer Architecture, ISCA ’19,2019.
[238] Evan R Sparks. A Security Assessment of Trusted Platform Modules. Computer Science

Technical Report TR2007-597, 2007.
[239] Stefan Berger. [PATCH v2] Support for PAX extended header and Linux extended at-tributes. https://linux.debian.maint.dpkg.narkive.com/Jwr2kstj/patch-v2-support-for-pax-extended-header-and-linux-extended-attributes, accessed on October 2021.
[240] Andreas Steffen. StrongSwan an OpenSource IPsec implementation. https://www.strongswan.org, accessed on October 2021.
[241] Doug Stiles. The Hardware Security Behind Azure Sphere. IEEE Micro, 2019.
[242] Raoul Strackx and Frank Piessens. Ariadne: A Minimal Approach to State Continuity.

25th USENIX Security Symposium (USENIX Security ’16), 2016.
[243] Frederic Stumpf and Claudia Eckert. Enhancing Trusted Platform Modules withHardware-Based Virtualization Techniques. In 2008 Second International Conference

on Emerging Security Information, Systems and Technologies. IEEE, 2008.
[244] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining Wang. Trustice: Hardware-assisted isolated computing environments on mobile devices. In 2015 45th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’15), 2015.
[245] Sahil Suneja, Canturk Isci, Eyal de Lara, and Vasanth Bala. Exploring VM Introspection:Techniques and Trade-offs. In Proceedings of the 11th ACM SIGPLAN/SIGOPS Interna-

tional Conference on Virtual Execution Environments - VEE ’15, Istanbul, Turkey, 2015.
[246] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano Giuffrida,Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer attacks over the net-work and defenses. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), 2018.
[247] Dina Temple-Raston. A ’worst nightmare’ cyberattack: The untold story of thesolarwinds hack. https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack, accessed on October 2021.
[248] Gil Tene et al. wrk2 HTTP benchmarking tool. https://github.com/giltene/wrk2, ac-cessed on October 2021.
[249] The White House. Executive Order on Improving the Nation’s Cyberse-curity. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/, accessed on October2021.

XVII

https://linux.debian.maint.dpkg.narkive.com/Jwr2kstj/patch-v2-support-for-pax-extended-header-and-linux-extended-attributes
https://linux.debian.maint.dpkg.narkive.com/Jwr2kstj/patch-v2-support-for-pax-extended-header-and-linux-extended-attributes
https://www.strongswan.org
https://www.strongswan.org
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://github.com/giltene/wrk2
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

Bibliography

[250] The New York Times. Hack of Saudi Petrochemical Plant Was Coordinated FromRussian Institute. https://www.nytimes.com/2018/10/23/us/politics/russian-hackers-saudi-chemical-plant.html, accessed on October 2021.
[251] The New York Times. Hackers Are Targeting Nuclear Facilities, Homeland SecurityDept. and F.B.I. Say. https://www.nytimes.com/2017/07/06/technology/nuclear-plant-hack-report.html, accessed on October 2021.
[252] Santiago Torres-Arias, Hammad Afzali, Trishank Karthik Kuppusamy, Reza Curtmola,and Justin Cappos. in-toto: Providing farm-to-table guarantees for bits and bytes. In

28th USENIX Security Symposium (USENIX Security ’19), 2019.
[253] Florian Tramèr andDan Boneh. Slalom: Fast, Verifiable and Private Execution of NeuralNetworks in TrustedHardware. 7th International Conference on Learning Representations

(ICLR), 2019.
[254] Trusted Computing Group. TCG PC Client Specific Implementation Specification forConventional BIOS, Specification Version 1.21, Revision 1.00, 2012.
[255] Trusted ComputingGroup. TCGPCClient Platform Firmware Profile Specification, Fam-ily 2.0, Level 00, Revision 1.04, 2019.
[256] Trusted Computing Group. Trusted Computing Group Website. https://trustedcomputinggroup.org, accessed on October 2021.
[257] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A Practical Library OSfor Unmodified Applications on SGX. In Proceedings of the 2017 USENIX Conference on

Usenix Annual Technical Conference (USENIX ATC ’17), 2017.
[258] Scontain UG. SCONE Configuration and Attestation Service (CAS). https://sconedocs.github.io/CASOverview/, accessed on October 2021.
[259] Scontain UG. SCONE Rust cross-compilers. https://hub.docker.com/r/sconecuratedimages/rust, accessed on October 2021.
[260] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow:Extracting the keys to the Intel SGX kingdom with transient out-of-order execution. In

27th USENIX Security Symposium (USENIX Security 18), 2018.
[261] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, DanielGenkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI: HijackingTransient Execution throughMicroarchitectural Load Value Injection. In 41th IEEE Sym-

posium on Security and Privacy (S&P’20), 2020.
[262] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. SGAxe: HowSGX fails in practice. https://sgaxeattack.com/, 2020.
[263] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei Lapets, andAzer Bestavros. Conclave: Secure Multi-Party Computation on Big Data. In Proceedings

of the 14th EuroSys Conference (EuroSys ’19), 2019.

XVIII

https://www.nytimes.com/2018/10/23/us/politics/russian-hackers-saudi-chemical-plant.html
https://www.nytimes.com/2018/10/23/us/politics/russian-hackers-saudi-chemical-plant.html
https://www.nytimes.com/2017/07/06/technology/nuclear-plant-hack-report.html
https://www.nytimes.com/2017/07/06/technology/nuclear-plant-hack-report.html
https://trustedcomputinggroup.org
https://trustedcomputinggroup.org
https://sconedocs.github.io/CASOverview/
https://sconedocs.github.io/CASOverview/
https://hub.docker.com/r/sconecuratedimages/rust
https://hub.docker.com/r/sconecuratedimages/rust
https://sgaxeattack.com/

Bibliography

[264] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted Execution Envi-ronments on GPUs. In Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’18), 2018.

[265] SamuelWeiser, MarioWerner, Ferdinand Brasser, MajaMalenko, StefanMangard, andAhmad-Reza Sadeghi. TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclavesto RISC-V. In Network and Distributed Systems Security (NDSS ’19), 2019.
[266] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris Kasikci. NDA:Preventing Speculative Execution Attacks at Their Source. In Proceedings of the 52nd

Annual IEEE/ACM International Symposium on Microarchitecture, 2019.
[267] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank Piessens,Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution.

Technical report, 2018.
[268] David Weston. Microsoft and partners design new device security requirements toprotect against targeted firmware attacks. Microsoft Security Blog, 2019.
[269] Richard Wilkins and Brian Richardson. UEFI secure boot in modern computer securitysolutions. In UEFI Forum, 2013.
[270] Johannes Winter. Eavesdropping trusted platform module communication. In Pre-

sented at 4th European Trusted Infrastructure Summer school, ETISS 2009, 2009.
[271] Johannes Winter and Kurt Dietrich. A Hijacker’s Guide to the LPC bus. In Public Key

Infrastructures, Services and Applications. Springer Berlin Heidelberg, 2011.
[272] Johannes Winter and Kurt Dietrich. A hijacker’s guide to communication interfaces ofthe trusted platform module. Computers & Mathematics with Applications, 2013.
[273] Rafal Wojtczuk and Joanna Rutkowska. Attacking Intel Trusted Execution Technology.In Black Hat DC, 2009.
[274] Rafal Wojtczuk and Joanna Rutkowska. Attacking Intel TXT via SINIT code execution hi-jacking. https://invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf, accessed on October 2021.
[275] Ruan Xiaoyu. Platform Embedded Security Technology Revealed. Safeguarding the Future

of Computing with Intel Embedded Security and Management Engine. Apress Open, 2014.
[276] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan, YuanyuanZhou, and Shankar Pasupathy. Do Not Blame Users for Misconfigurations. In Proceed-

ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13),2013.
[277] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-Channel Attacks: De-terministic Side Channels for Untrusted Operating Systems. In Proceedings of the 2015

IEEE Symposium on Security and Privacy (S&P ’15), 2015.
[278] Andrew C Yao. Protocols for secure computations. In 23rd IEEE Annual Symposium on

Foundations of Computer Science (SFCS 1982), 1982.

XIX

https://invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
https://invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf

Bibliography

[279] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram, andShankar Pasupathy. An empirical study on configuration errors in commercial andopen source systems. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles, SOSP ’11, 2011.
[280] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol. RFC 4254(Proposed Standard). Updated by RFC 6668. https://tools.ietf.org/html/rfc6668, 2006.
[281] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler.The fuzzing book, 2019.
[282] Lianying Zhao and David Lie. Is hardware more secure than software? IEEE Security &

Privacy, 2020.
[283] Lianying Zhao and Mohammad Mannan. Hypnoguard: Protecting secrets acrosssleep-wake cycles. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security (CCS ’16), 2016.
[284] Lianying Zhao and MohammadMannan. Tee-aided write protection against privilegeddata tampering. In 26th Annual Network and Distributed System Security Symposium

(NDSS ’19), 2019.
[285] Oliver Zheng, Jason Poon, and Konstantin Beznosov. Application-based TCP hijacking.In Proceedings of the Second European Workshop on System Security - EUROSEC ’09. ACMPress, 2009.
[286] Lei Zhou, Fengwei Zhang, Jinghui Liao, Zhengyu Ning, Jidong Xiao, Kevin Leach, WestleyWeimer, and Guojun Wang. KShot: Live Kernel Patching with SMM and SGX. In Pro-

ceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN ’20), 2020.
[287] Jean-Karim Zinzindohoue, Karthikeyan Bhargavan, Jonathan Protzenko, and BenjaminBeurdouche. HACL*: A verified modern cryptographic library. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.

XX

https://tools.ietf.org/html/rfc6668

Notices

Trademark

IBM is a trademark or registered trademark of International Business Machines Corpora-tion, in the United States and/or other countries. Other product and service names mightbe trademarks of IBM or other companies. A current list of IBM trademarks is available onibm.com/trademark.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation or its sub-sidiaries in the United States and other countries.
The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation,the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

	Title page
	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Progressing Digitalization and Threats
	Regulations as a Remedy?
	Theory Meets Practice
	Establishing Trust in a Remote Computer
	Extending Trust to Virtual Machines
	Adding Support for Hardware Accelerators
	Enabling Updates of Integrity-Enforced Operating Systems
	Scope and Goals
	Summary of Contributions
	Organization

	Background
	Physical Protection of Computing Resources
	Trusted Computing Techniques
	Security Guarantees
	Trusted Platform Module (TPM)
	Secure Boot and Measured Boot
	Dynamic Root of Trust For Measurement
	Operating System's Runtime Integrity Measurement and Enforcement
	TPM Alternatives to Boot Code Integrity Protection

	Trusted Execution Environment
	Intel SGX
	Security Guarantees
	Enclave Initialization and Execution
	Remote Attestation
	Sealing

	High-assurance Security Systems Integrity Monitoring and Enforcement
	Problem Statement
	Contribution
	Threat Model
	Design Decisions
	CHORS architecture
	High-level Overview
	Policy
	Trusted Beacon
	Policy Verification Protocol

	Implementation
	Computer Bootstrap
	Establishing Trust
	Cache Updates
	Policy Verification

	Security Risk Assessment
	Preventing Physical and Hardware Attacks
	Establishing Trust with the Agent
	Establishing Trust with the TPM
	Establishing Trust with the Operating System

	Evaluation
	Protecting a Real-world eHealth Application
	Security
	Performance

	Related Work
	Summary

	Remote Attestation of the Virtual Machine's Runtime Integrity
	Contribution
	Threat Model
	Background and Problem Statement
	Load-time Integrity Enforcement
	Runtime Integrity Enforcement
	Problems with Virtualized TPMs

	TRIGLAV Design
	High-level Overview
	Platform Bootstrap
	VM Launch
	Establishing Trust
	Policy Enforcement
	Tenant Isolation and Security Policy

	Implementation
	Technology Stack
	Prototype Architecture
	Monotonic Counter Service
	TLS-based SGX Attestation
	VM Integrity Enforcement
	SSH Integration

	Evaluation
	Micro-benchmarks
	Macro-benchmarks

	Discussion
	Alternative TEEs
	Hardware-enforced VM Isolation
	Trusted Computing Base
	Integrity Measurements Management

	Related Work
	Summary

	Secure Multi-Stakeholder Machine Learning Framework with GPU Support
	Problem Statement
	Contribution
	Threat Model
	Design
	High-level Overview
	Keys Sharing
	Security Policy and Trade-offs
	Hardware ML Accelerators Support
	Zero Code Changes
	Policy Deployment and Updates

	Implementation
	Running ML Computations Inside Intel SGX
	Sharing the Encryption Key
	Enabling GPU Support with Integrity Enforcement

	Evaluation
	Attestation Latency
	Security and Performance Trade-off

	Related Work
	Secure Multi-party Computation
	Secure ML using TEEs
	Trusted GPUs

	Summary

	A Practical Approach For Updating an Integrity-enforced Operating System
	Contribution
	Background
	Operating System Updates
	Package Managers

	Threat Model
	Problem Statement
	Approach: Trusted Software Repository
	Design
	Solution to Problem 1: Sanitization
	Solution to Problem 2: Proxy
	Solution to Problem 3: Shielded Execution
	Solution to Problem 4: Quorum

	Implementation
	Supported Package Formats
	Repository Initialization
	Package Sanitization
	Operating System Configuration
	Package Caching

	Evaluation
	Package Sanitization Overhead
	SGX Limitations
	Tolerating Compromised Mirrors

	Related Work
	Summary

	Security Configuration Management and Monitoring
	Contribution
	Design
	Discovery of Provisioned Computers
	Security Policy Configuration
	Policy Deployment and Monitoring

	Implementation
	Auto-discovery
	Policy Creation

	Evaluation
	Experiment Setup
	Experiment Scenario

	Related Work
	Conclusion

	Conclusion and Future Work
	Summary of Results
	Cuckoo Attack Defense Mechanism
	Integrity Monitoring and Enforcement Framework
	Runtime Integrity-enforcement of Virtual Machines
	Multi-stakeholder Machine Learning Framework
	Support for Software Updates of Integrity-enforced Operating Systems

	Future Work
	Policy-based Compliance Management
	Integrity Attestation of Mutable Files
	Availability Guarantees
	Integration with SIEM
	Hardware-supported Virtual Machine Isolation

	Bibliography

