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Abstract

Enabling FifthGeneration of Cellular CommunicationNetworks (5G) systems requires
energy e�cient architectures which can provide a reliable service platform to deliver
5G services and beyond. Device-enhanced edge computing is a derivation of Multi-
access edge computing (MEC), which provides computing and storage resources very
on the end-devices. The importance of this concept has been proved by the rising
demands of computation-intensive and ultra-low latency applications which over-
whelm the MEC server and the wireless channel. This dissertation presents a com-
putation o�oading framework with energy-, mobility-, and incentive-awareness in a
multiple-user multiple-task device-enhanced MEC system which considers the inter-
dependency of tasks as well as latency requirements of the applications.

Um Systeme der fünften Generation zellularer Kommunikationsnetze (5G) zu er-
möglichen, sind energiee�ziente Architekturen erforderlich, die eine zuverlässige
Serviceplattform für die Bereitstellung von 5G-Diensten und darüber hinaus bieten
können. Device-enhanced Edge Computing ist eine Ableitung des Multi-Access Edge
Computing (MEC), das Rechen- und Speicherressourcen direkt auf den Endgeräten
bereitstellt. Die Bedeutung dieses Konzepts wird durch die steigenden Anforderun-
gen von rechenintensiven Anwendungen mit extrem niedriger Latenzzeit belegt, die
den MEC-Server allein und den drahtlosen Kanal überfordern. Diese Dissertation
stellt ein Berechnungs-Auslagerungsframework mit Berücksichtigung von Energie,
Mobilität und Anreizen in einem gerätegestützten MEC-System mit mehreren Be-
nutzern und mehreren Aufgaben vor, das die gegenseitige Abhängigkeit der Auf-
gaben sowie die Latenzanforderungen der Anwendungen berücksichtigt.
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1 Introduction

Part of the content of this chapter was previously published in:
Mehrabi, Mahshid, et al. "Device-enhancedMEC: Multi-access edge computing
(MEC) aided by end device computation and caching: A survey." IEEE Access 7
(2019): 166079-166108 [2].

Enabling Fifth Generation of Cellular Communication Networks (5G) systems re-
quires e�cient architectures that will provide a service platform on which to deliver
5G services and beyond. The SECRET project aims to integrate various technologies
such as virtualization and Network-coded Cooperation (NCC) as a means to provide
a fully �exible and e�cient networking approach to provide cost-e�ective packet de-
livery [6]. Virtualization has changed our perspective of the network, providing tech-
nology tools to enable fully dynamic networks that can break the rigid boundaries of
current architectures. In fact, the thesis scenario given by Figure 1.1, demonstrates
how concepts such as Software De�ned Networking (SDN) and Network Function
Virtualization (NFV) introduce the notion of a virtualized Mobile Small Cell (MSC).

However, the key challenge is how to exploit this technology to deliver e�cient
5G services and beyond, that have stringent Quality of Service (QoS) requirements
in terms of reduced latency and power consumption. Key technologies for 5G and
beyond involve task o�oading and content caching in a bid to reduce the service de-
livery time. Content caching aims to exploit the extensive storage capacities inMEC in
order to increase the throughput of video �les without introducing additional infras-
tructure cost, whilst task o�oading services aims to reduce the power consumption
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and service delivery time by eventually enabling the vision of truly virtualized hand-
sets. Although these topics have been well investigated as isolated technologies,
there are only few works that show how these can be performed within a mobile
small cell context that exploits MEC nodes and virtualized mobile small cells.

Figure 1.1: Secret scenario architecture [1].

Concurrently, the recent advancement of Central Processing Unit (CPU) built into
mobile devices along with D2D communications have enabled the usage of compu-
tation and storage resources of adjacent devices. This can be considered as a proper
solution for problems caused by ever increasing internet tra�c such as breakdown
or edge servers overloading which can be even more problematic for applications
require ultra-low latency such as Tactile Internet (TI) and Internet of Things (IoT) for
robotic control applications [7], online gaming, Augmented Reality (AR) or Virtual Re-
ality (VR). This new computing era which we have coined device-enhanced MEC has
more advantages in terms of service coverage, spectral e�ciency, mobile devices’
battery savings beside the aimed-for latency reduction.

In that context, this thesis addresses the current problems of computation o�oad-
ing for 5G device-enhanced MEC. In the following, the thesis context and motivation
are stated. In Section 1.2, key issues of computation o�oading in device-enhance
MEC systems are described. The thesis contribution is stated in Section 1.3 and �-
nally, Section 1.4 presents the outline of this thesis.
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1.1 Context and motivations

The concept ofMECwas �rstly proposed by the European Telecommunications Stan-
dards Institute (ETSI) as ”a new platform to provide IT and Cloud computing ca-
pabilities within the Radio Access Network (RAN) in close proximity to mobile sub-
scribers” [8]. The original concept refers to the use of the Base Station (BS) to o�oad
the computation tasks of mobile devices. In comparison to the Mobile Cloud Com-
puting (MCC) which brings rich computational resources to mobile devices, MEC has
some advantages in terms of latency, energy for mobile users, context-aware com-
puting and mobile applications security.

Achieving ultra-low latency while saving mobile devices’ battery life times is one
of the big challenges in the design of the front-haul, where we strive to attain this
goal by considering the network as a cloud service, based on conceptual tool such
as edge computing and using adjacent mobile devices’ resources through D2D com-
munication.

1.1.1 Device-enhanced MEC concept

The �fth generation of cellular mobile communications is an era which targets mas-
sive device connectivity with high data rate and reduced latency and cost. The MEC
paradigm, has been introduced to bring computational and storage resources in
close proximity of the mobile end devices; however, the rapid increase of the num-
ber of mobile devices as well as the resulting overall rising Internet tra�c along with
the computation and storage demands of new emerging services, such as online
gaming, IoT, virtual or augmented reality, may overwhelm the installed MEC servers.
Due to the cost pressures in the telecommunication industry for installation of higher
and higher powered MEC servers, and recent developments of the CPUs of mobile
devices, a possible solution can be using adjacent mobile devices’ computation and
storage capacities for providing services. This resource sharing among mobile de-
vices can be provided using D2D communication. The D2D communication holds
signi�cant promise for a variety of practical use-cases such as proximity and local-
based services, Vehicle to Vehicle (V2V), among others. In proximity and local-based
services, like video stream services in the football stadiums, or concert halls, D2D
communication can facilitate connections between di�erent adjacent users to store
and share video �les and images. In V2V communication it can improve public safety
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and intelligent transportation systems [2]. In the following subsection, we will intro-
duce the key challenges of computation o�oading in device-enhancedMEC systems.

1.1.2 Key issues of computation o�oading in device-enhanced
MEC systems

In order to ful�ll the low-latency requirements of applications and save the battery
life of mobile devices, end devices can o�oad their computation intensive tasks to
more powerful MEC servers or adjacent users using D2D communication links. This
can reduce the load on the cellular network infrastructure and usage of cellular band-
width.

The primary objectives of the existing studies on enhancing MEC computation of-
�oading with end devices are the minimization of latency and energy consumption.
The type of application plays an important role in making o�oading decisions. Most
existing studies have considered computation tasks to be either completely parti-
tionable and non-partitionable, depending on the application scenario; here, individ-
ual sub-tasks of partitionable tasks or the non-partitionable tasks can be executed
locally depending on the computation resource amount of device and whether the
latency requirement of task can be tolerated, o�oaded to adjacent User Equipment
(UE)s directly via D2D communication or via relays, or o�oaded to an MEC server.
However, in many IoT scenarios, a data dependency between di�erent IoT sensors’
tasks exists for services to be completed, which has been neglected in the surveyed
articles. In these kind of services, some information from other tasks are needed to
execute the subsequent next tasks.

Furthermore, previous studies mostly consider devices as static; however, in real
scenarios, the end devices are mobile. Therefore, in this thesis, we focus on the chal-
lenges that mobility, along with increasing the density of devices in the small cells,
impact our scenario and try to achieve energy e�ciency for our delay-sensitive tasks
by considering the aforementioned issues. Mobility of end devices can bring several
challenges for service continuity and QoS in MEC systems. User movements can
lead to the interruption of D2D links and this will likely increase the latencies and
higher battery energy consumption. Therefore, a key prerequisite for enabling satis-
factory services is updating the availability and reliability of computation resources.
Users’ movements can happen either by the requester (the user with computation-
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intensive tasks), relays/helpers (the users which share their resources).
In addition, in a realistic cooperation computation o�oading scenario, an incen-

tive mechanism should be de�ned to pursue mobile devices to share their compu-
tation or storage resources. We have therefore developed and validated an e�ective
method for providing reliable computation resources for dynamic network scenarios
in this dissertation.

In Section 1.2, we brie�y describe our contributions in this thesis to solve the afore-
mentioned challenges and problems.

1.2 Thesis contribution

In this section, we summarize the signi�cant contributions of this thesis:

1.2.1 Proposed an optimal edge o�oading in a basic three-node
device-enhanced MEC system

In Chapter 3, we propose an optimal computation o�oading in a basic three- node
device-enhanced MEC system as our �rst contribution. This contribution was pub-
lished in 2020 IEEE Global Communications Conference, Selected Areas in Commu-
nications: Cloud and Fog/Edge Computing, Networking and Storage conference [3].
In this work, we considered a three- tier network consisting of two UEs called UE1
and UE2. UE1 has a computation task following sequential dependency graph and
UE2 can play either a helper or relay role and a MEC server node is attached to a
BS. In this scenario, tasks can be executed cooperatively using D2D communication.
Minimizing the total energy consumption of the device and ful�lling the time dead-
line constraints of the tasks are our two performance metrics.
The previous studies on computation o�oading in device-enhanced MEC networks
mostly considered the tasks independently, however, in some IoT applications such
as the distributed Ibis application presented in the [9] there exist inter-task depen-
dency relationships. The inter-task dependency challenges for computation o�oad-
ing in MEC systems investigated in [10, 11]; However, to the best of our knowledge,
our joint computation and communication cooperation o�oading using D2D com-
munication method was the �rst work which considered task dependencies in a
device-enhanced MEC network. Simulation results show that our proposed method
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can save up to 65.47% of energy when compared with on device execution of the
tasks and 49.29% when compared with an all server execution strategy for complex
tasks scenarios.

1.2.2 Proposed an optimal dynamic computation o�oading
using a deep learning based mobility prediction algorithm
in device-enhanced MEC systems

In Chapter 4, we propose a dynamic computation o�oading in a three-tiers device-
enhanced MEC system as our second contribution. This contribution was published
in 2021 Network Journal [4].
Many previous studies consider a static scenario while mobility of users can cause
serious problems for service continuity as well as establishing D2D and cellular links.
In order to ensure the service continuity and reliability of computation resources, an
online computation o�oading framework is proposed considering the dependency
relationships between computation tasks.
In this article, there is one UE with computation intensive tasks and multiple helper
nodes as well as multiple MEC servers with their respective coverage areas are dis-
tributed in the network. The users aremobile, meaning that they can leave the cover-
age of one small cell and enters the others’. The mobility e�ects of users in this work
has been captured by sojourn time concept which is obtained by the Deep Learning
(DL) algorithm PECNet [5]. PECNet uses the historical data of motion path as well as
their social interactions.
By introducing the sojourn time concept, there is no handover and service migration
during small cell changes, and therefore the extra delay and energy consumption of
handover are prevented. Minimizing the total energy consumption for the service
execution while satisfying the time deadline constraints of the tasks is the main goal
of this work. Simulation results show that our proposed method can save up to
56.34% of energy when compared with on device execution of the tasks and 33.73%
when compared with an all server execution strategy for complex tasks scenarios.
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1.2.3 Proposed an optimal dynamic and incentive-aware
multi-users multi-tasks computation o�oading in a
device-enhanced MEC system

In Chapter 5, we extended our dynamic scenario to an incentive-aware computation
o�oading with multi-user multi-task scenario to satisfy the fact that users should be
pursued to share their computation and communication resources. Therefore, the
proposed computation o�oading algorithm in this chapter is a more practical sce-
nario in real world.
In this work, there are several numbers of users which each has to perform an ap-
plication which is divided into K �ne- grained inter-dependent tasks. The mobility
model in this section is same as our previous work.
By using resource tit-for-tat and an energy budget constraints [12], we introduce our
incentive method. In this work, we have two types of resource constraint namely,
computing cycles and cellular bandwidth which account for computation and com-
munication resources, respectively. Our computation o�oading decision algorithm’s
goal is to minimize the sum of energy consumption and the �nish time of the tasks.
Therefore, our cost function is de�ned based on the weighted combination of the
energy consumption and �nish time for executing the tasks. Simulation results show
that our proposed method can save up to 56.88% of energy when compared with
on device execution of the tasks and 44.82% when compared with an all server ex-
ecution strategy for complex tasks scenarios.

1.3 Thesis outline

The thesis as a whole is organized as follows. Chapter 2 includes the background
and literature review of device-enhanced MEC systems. In Chapter 3, we consider a
basic three-node system and present an optimal computation o�oadingmethod for
inter-dependent and latency critical tasks scenarios. Chapter 4 contains our contri-
bution towards dynamic computation o�oading with users’ mobility. By taking into
account the mobility e�ects of the users by the sojourn time concept and using a DL
algorithm, we predict realistic, socially compliant trajectories and users’ destinations.
The problem is then formulated as an energy usage minimization optimization while
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satisfying the task dependencies and the completion deadlines and solved using a
semide�nite relaxation approach. Then, in Chapter 5, we extend the work of Chap-
ter 4 to a more realistic scenario and introduce an incentivization mechanism for
cooperations in the o�oading algorithm.

The goal is formulated to minimize the sum of energy consumption and the �nish
time of the tasks as a Mixed Integer Nonlinear Programming (MINLP) and a genetic
algorithm is used to solve the optimization problem. Finally, the conclusion and our
future research directions are stated in Chapter 6.

24



2 Background and Literature Review

The content of this chapter was previously published in:
Mehrabi, Mahshid, et al. "Device-enhancedMEC: Multi-access edge computing
(MEC) aided by end device computation and caching: A survey." IEEE Access 7
(2019): 166079-166108 [2].

2.1 Introduction

The MEC paradigm, which is also known as Mobile Edge Computing, has been intro-
duced to bring computing and storage resources in close physical proximity of the
wireless end devices [13, 14]. For instance, MEC resources can be co-located with
the BSs or back-haul entities of cellular wireless communications [15], as illustrated
in Figure 2.1. The MEC thus helps to provide low-latency services requiring intensive
computations or large data volumes to mobile wireless end devices [16–18]. The
number of wireless end devices, such as UE nodes in cellular wireless networks, is
expected to further grow and continue to substantially contribute to the overall In-
ternet tra�c growth [19]. Also, the computing and data demands of the wireless end
devices are projected to grow substantially over the coming years. This growth is in
part due to newly emerging service paradigms, such as the TI [20] requiring millisec-
ond latency responsiveness, e.g., for robotic control applications, the IoT [21] con-
necting enormous numbers of devices, Machine Type Communication (MTC) [22],
online gaming, as well as virtual or augmented reality. The increasing computing and
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Figure 2.1: Illustration of MEC systems.

data demands due to these emerging services, which will likely be utilized by large
numbers of wireless end devices, may overwhelm the installed MEC computing and
storage infrastructure. Moreover, cost pressures in the telecommunication industry
may limit the installation of ever-increasing MEC compute and storage capacities, as
clearly this approach does not scale well.

A possible solution to this dilemma is to utilize the increasingly powerful processing
units, e.g., CPUs and special-purpose processing units, and increasing storage capac-
ities of modern wireless end devices for providing services. That is, the community of
wireless end devices, which is also referred to as mobile device cloud, can contribute
its aggregate computing and storage resources to provide services to individual end
devices jointly with the MEC. E�ectively, the end devices share their resources and
collaborate with the MEC to quickly provide compute- and data-intensive services to
their fellow end devices. This sharing among end devices is facilitated by recent ad-
vances in D2D communication [23–26]. D2D communication enables an end device
to exploit the resources of the end devices in its proximity via direct (D2D) connec-
tions, as illustrated by the red links in the right half of Figure 2.2; thus, the tra�c load
on the cellular network and MEC infrastructure is potentially reduced. The collabo-
ration of (i) the MEC, which has installed resources up to the BSs, with (ii) the shar-
ing of resources among end devices, which is enabled through D2D communication,
gives rise to the paradigm of device-enhanced MEC. As illustrated in Figure 2.3, device-
enhanced MEC encompasses conventional MEC and D2D communication enabled
end device resource sharing and thus extends across the entire scope of Figure 2.3.
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Figure 2.2: Illustration of D2D communication between devices.
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Figure 2.3: Illustration of device-enhanced MEC systems [2].

2.1.1 Emergence of MEC

The demands of popular applications running on mobile end devices have brought
several challenges for network operators. The limited battery lifetimes as well as the
limited computational and storage resources of mobile end devices have motivated
network operators to modify their existing infrastructures. The MCC paradigm was
introduced to extend cloud computing features to mobile end devices with the aim
of centralizing the management of the computational and storage resources in the
core network [27–30]. The MCC bene�ts mobile end devices by expanding the avail-
able computation and storage resources as well as the �exibility to support multiple
platforms.

However, the MCC fails to ful�ll the low-latency requirements of emerging mobile
applications due to the long distances to the devices and the back-haul bandwidth
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limitations [31]. To tackle this problem, computing and storage resources should be
placed as close as possible to themobile end devices, e.g., by deploying cloud servers
inside cellular BSs or Access Point (AP) depending on the network architecture. This
trend of deploying cloud servers close to the mobile end devices was initially called
Mobile Edge Computing and standardized by the ETSI Industry Speci�cation Group
(ISG). In order to extend the MEC usage to heterogeneous networks technologies,
e.g, Wireless Local Area Network (WLAN) (often branded "WiFi" by the WiFi Alliance)
and �xed access, ETSI ISG has renamedMobile Edge Computing toMulti-access Edge
Computing in September 2016 [32,33].

Compared to the centralized MCC, the MEC paradigm with distributed computing
and caching resources being placed in close physical proximity to themobile end de-
vices, e.g., by placing compute and caching servers at BSs, brings several advantages
for future low-latency networking, such as the Tactile Internet and IoT applications
withmillisecond-scale latency requirements. Besides reducing communication delay
as the main goal, the MEC paradigm reduces the back-haul data tra�c (compared to
sending all UE service requests to the core network) [34,35], extends the UE battery
life times by o�oading compute intensive tasks to edge servers [36], and provides
real-time information of UE locations and behaviors, which are helpful for enabling
context-aware services [16,17]. Also, the MEC can support the wireless power trans-
fer to mobile end devices [37–39].

2.1.2 Key technologies for implementation of MEC concept

To implement the MEC paradigm and make it operational, multiple integrative tech-
nologies are involved [40], mainly SDN, NFV, network slicing and Information Centric
Network (ICN), as outlined next.

2.1.2.1 Software De�ned Networking (SDN)

The main idea for introducing SDN was to enable the use of commodity and o�-the-
shelf hardware to create intelligent networks that are programmability and applica-
tion aware [41,42]. This is achieved by separating the control plane, which manages
the network, from the data plane, which transfers actual data streams. Key to as-
suring interoperability between various equipment manufacturers and vendors is a
well-de�ned open interface between the two planes. Logically centralized SDN con-
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trollers help to solve classical networking problems, such as routing, tunneling, and
IP address translation, as well as new challenges in future 5G applications, such as UE
mobility, adaptation to service degradation, as well as security and integrated pro-
tection for IoT systems [43, 44]. Through SDN, network tra�c �ows can be �exibly
steered to and from the MEC [45, 46] so as to seamlessly integrate MEC computa-
tions and caching into the provisioning of network services to mobile applications.

2.1.2.2 Network Function Virtualization (NFV)

NFV leverages virtualization techniques to enable the �exible design, deployment,
and management of network functions, independent of the underlying physical net-
work equipment [47–49]. These network functions may include classical functions,
such as �rewalls, deep packet inspection, the elements of the Evolved Packet Core
(EPC) which is a framework to provide converged voice and data on LTE networks,
but also innovative functions, including network coding, data aggregation, or compu-
tation as a service. An intuitive extension of the NFV concept combines single virtual
network functions in a sequence to modularize complex functionalities in so-called
Service Function Chains (SFC) [50–53].

2.1.2.3 Network Slicing

Network slicing is a virtual network architecture with the concept of running multiple
logical network instances on top of a same physical infrastructure in order to pro-
vide better resource isolation and satisfy particular applications’ demands. Network
slicing is an e�cient solution to address the future 5G heterogeneous services and
requirements that coexist on the same underlying devices. The integration of Net-
work slicing and MEC can be useful to ful�ll some of the diverse requirements such
as the low latency, high reliability and di�erentiation in tra�c priorities that all are
necessary for use cases like autonomous driving, massive IoT services or industry
applications [44,54,55]. Figure 2.4 shows an example of network slicing concept.

2.1.2.4 Information Centric Networking (ICN)

The Internet, whichwas originally designed for host-to-host communications, ismainly
used today for content distribution. The ICN paradigm aims to narrow the gap be-
tween the Internet’s original design and the current applications, such as high-de�nition
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Figure 2.4: Integration of Network slicing and MEC.

video on-demand streams, 3D gaming, as well as augmented and virtual reality, with
ever increasing tra�c volumes. In order to optimize caching and content distribu-
tion, ICN proposes to redesign the Internet architecture as a content-centric network
which adopts two design concepts, namely networking named contents (rather than
hosts) and in-network caching, e.g., at MEC servers, to relieve the pressure on band-
width as well as improving data delivery [56–59].

2.1.3 Device-to-Device (D2D) communication

The exponential growth ofmobile data tra�c and context-aware applications require
innovative approaches to utilize the bandwidth more e�ciently and to increase cov-
erage, while lowering delay and energy consumption. The star-topology of cellular
networks with a centralized control point, e.g., a BS or AP, su�ers ine�ciencies as all
communication has to be relayed by the centralized control point. In contrast, D2D
communication is a radio technology that enables direct data exchanges between
two adjacent UEs without the involvement of the central control point or core net-
work of the cellular network, i.e., without traversing the BS or AP [24–26, 60]. This
direct D2D communication brings several bene�ts, such as improved spectral ef-
�ciency, increased data rates between devices, reduced power consumption, and
reduced end-to-end delay. D2D communication has been employed in several stud-
ies for computation o�oading to other near-by UEs (while not utilizing any MEC re-
sources), e.g., [61–67]. Also, accessing caches at nearby UEs (while not utilizing MEC
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caches) has been considered in prior studies, e.g., [68–75], whereby speci�cally video
�le caching at other UEs has been considered in [76,77].

However, D2D communication also poses some implementation challenges. One
challenge is the need to collect precise channel information, e.g., for estimating the
channel and controlling the communication, which adds overhead. Security is an-
other important challenge in D2D communication. Since a UE’s data passes through
other UEs, D2D communication is inherently susceptible to security attacks. Sel�sh
exploitative UE behavior is another obstacle for collaborative multi-device D2D com-
munication, as some UEs may use the communication resources of other UEs, e.g.,
for multi-hop D2D communication via intermediate relay UEs, without contributing
their own resources to aid others. Interference and mobility management are also
key challenges. Therefore, these D2D communication challenges need to be care-
fully considered when designing device-enhanced MEC systems that involve D2D
communication.

Despite these challenges, D2D communication holds signi�cant promise for a wide
range of practical use-case scenarios in future communication systems. We proceed
to brie�y outline a few example use-case scenarios.

• National security and public safety: The reliance of cellular wireless commu-
nication on the availability of the cellular network infrastructure gives rise to
severe problems in emergency and disaster scenarios, such as earthquakes
and �oods. Such disasters often damage the cellular network infrastructure,
disrupting cellular wireless communication. In contrast, D2D communication
does not require a �xed installed infrastructure and thus can continue to op-
erate when the cellular network infrastructure is damaged. This advantage has
made direct D2D communication a key component in projects proposed for
future national security and public safety networks by the U.S. National Public
Safety Telecommunications Council as well as European Conference of Postal
and Telecommunications Administrations [78].

• Proximity and local-based services: The growing interest in multiplayer gam-
ing, advertising, and social network services (e.g., Facebook and Instagram) has
increased the need for e�cient short-range communications to support in-
teractions between near-by people with low latency and battery consumption
while supporting high levels of user privacy [79]. D2D communication can facil-
itate such connections between di�erent machines in close proximity, such as
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a mobile phone connecting to a PC or other mobile phones to store and share
video �les and images [80].

• Vehicle-to-Vehicle (V2V) communication: Vehicular or Vehicle to Anything (V2X)
communications is another important use case of D2D communication which
is divided into three categories such as V2V, Vehicle to Infrastructure (V2I), and
Vehicle to Network (V2N) communication [81–84]. Recent signi�cant enhance-
ments in computing and communication platforms as well as sensing capabili-
ties of vehicles have shifted attention towards V2X communication to improve
public safety and intelligent transportation system [85], collision avoidance sys-
tems [86], as well as the charging of electric vehicles [87].

We note that these outlined use-cases and a wide range of other D2D communi-
cations use-cases have the potential to signi�cant bene�t from jointly exploiting in-
stalled MEC computing and caching resources as well as the resources of near-by
other mobile end devices, i.e., from device-enhanced MEC. In order to facilitate the
further advancement of exploiting device-enhanced MEC through D2D communica-
tion, we comprehensively survey in the following two sections the existing research
literature on device-enhanced MEC.

2.2 Enhancing MEC computation o�oading with
end-devices

With device-enhanced MEC, end devices, such as UEs can o�oad tasks that require
heavy computations to powerful MEC servers or to nearby UEs in order to ful�ll the
low-latency demands of applications and extend their battery life time [88]. The of-
�oading to nearby UEs is conducted over D2D communications, which reduces the
load on the cellular network infrastructure and frees up some cellular bandwidth for
other usages.

Given the widespread consideration of UEs as end devices in the existing device-
enhanced MEC studies, we consider the terms “end device” and “UE” as interchange-
able in this thesis. There are two categories for o�oading, depending on whether
the tasks can be partitioned or not, namely binary o�oading and partial o�oading.
Binary o�oading is employed for tasks that cannot be partitioned. Binary o�oading
either executes the entire task locally or o�oads the entire task to an MEC server or
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another nearby UE, as illustrated for the o�oading from UE1 via UE2 to UE3 in the
bottom part of Figure 2.5. Partial o�oading is employed for tasks that can be par-
titioned into independent parts (sub-tasks) and executed in parallel, either locally
or at MEC servers or other nearby UEs, as illustrated in the top part of Figure 2.5,
where UE4 o�oads its sub-tasks to an MEC server and UE5. The o�oading to other
UEs exploits the idle resources of nearby UEs via D2D communication, which can
signi�cantly improve the service to UEs [89,90]. End devices can generally play three
distinct roles in device-enhanced MEC:

• Helper node: A helper node computes o�oaded tasks on behalf of UEs that
require computation services.

• Relay node: A relay node helps other UEs through communication in order to
o�oad their computation tasks to nearby devices or an MEC server for remote
execution.

• Helper and relay node: A device can act as both helper and relay in order to
execute and communicate o�oaded tasks.

1 2 3 4 5 6

1 2

3 4

Offloading to MEC

5 6

D2D communication
enables offloading to other UE

UE4 UE5

UE1
(Requester)

UE2
(Relay)
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Sub-tasks of UE4

Task of UE1

D2D communication
via relay node

Core Network Internet

MEC Server

Task of UE1

Figure 2.5: Illustration of device-enhanced MEC computation o�oading [2].

2.3 Enhancing MEC content caching with end-devices

Mobile video streaming and related social networking already account for a large
tra�c proportion in wireless networks. The forecast continuous growth of this data-
intensive tra�c will likely overwhelm installed MEC caching resources or incur sub-
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stantial additional investments by wireless operators (or lead to service degrada-
tions). Device-enhanced MEC caching exploits the extensive storage capacities in
modern wireless end devices to supplement the MEC cache infrastructure. UE re-
quests for data-intensive video streams, web pages, and related social networking
applications can be collaboratively served by MEC cache servers, the local UE cache,
and the caches of other nearby UEs (see Figure 2.6), which are reached via D2D
communication [91, 92]. The caching contributions from the UE caches reduce du-
plicate content transmissions by the BS, which would result when popular content
items are requested by the UEs in the range of a BS at di�erent times. In particu-
lar, for social networking applications, exploiting the social relationships among UEs
and their common interests using local D2D communication can be a key enabler
for pre-caching popular content items in the caches of UEs with rich social ties [93].

Core Network

Internet

MEC Server

D2D Caching Edge CachingLocal Caching

UE2

UE3

UE1

Figure 2.6: Illustration of device-enhanced MEC content caching [2].

Generally, there are two main aspects of caching, namely content placement and
content delivery. Caching placement studies strive to design methods for optimally
storing (placing) the content item �les in caches at BSs and UEs. In contrast, content
delivery studies focus on the transmission of the requested �les to the end device.

Device-enhancedMEC caching strategies can generally be controlled in a distributed
manner or in a centralized manner. The centralized control is typically implemented
at the BS. Most existing studies have considered the centralized control since the BS
typically tracks the required information, e.g., about UE locations, preferences, and
requests, as well as content popularities and channel states. Thus, the BS has the
required information to provide an optimal solution for the entire network encom-
passing the UEs within the range of the BS [94].

The device-enhancedMEC computation o�oading concept is continued from now
as the main use-case scenario of this work.
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2.4 State-of-the-art research works on
device-enhanced MEC computation o�oading

The main objectives of the existing device-enhanced MEC computation o�oading
studies have been the minimization of the latency and the energy consumption
through optimization of communication and computation resources. We organize
this section according to the main objective of the existing device-enhanced MEC
computation o�oading studies, as summarized in Table 2.1. As Table 2.1 indicates,
several studies have considered the joint minimization of latency and consumed en-
ergy, while some studies have focused on enhancing the security aspects of device-
enhanced MEC computation o�oading. The D2D access technology column in Ta-
ble 2.1 gives the type of frequency resources considered for the D2D communication
links in the studies, as well as the channel access method if a speci�c channel access
method is considered in a study. The dash sign ’–’ indicates that no speci�c D2D
access technology is considered in the study.

2.4.1 Latency minimization

MEC system failures diminish the quality of the service provided to the UEs. MEC
server downtimes can incur enormous costs for businesses that rely on MEC server
computations. The study [95] proposed two recovery schemes for an MEC server
that is overloaded from serving too many computation tasks or for an MEC server
that failed. The �rst scheme o�oads the tasks of the overloaded or failedMEC server
to available MEC servers within a transfer range. However for situations when there
is no available neighboring MEC server, the second proposed scheme uses the UEs
that are adjacent to an MEC server as ad-hoc relay nodes in order to provide a con-
nection between the failed MEC server and a new MEC server. The study [95] as-
sumes that an ad-hoc relay node can relay up to three LTE Frequency DivisionDuplex
(FDD) Resource Blocks (RB) at a time. It is shown that the proposed method works
well in dense areas. However, the study [95] has only considered the data downlink
from the recovery MEC server, while the data uplink to the recovery MEC server has
been neglected. The availability of neighboring resources is also not guaranteed by
the protection strategies.

Importantly, the study [95] has only considered the UEs as relay nodes towards
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the new MEC server and ignored the usage of their computation resources. How-
ever, it is bene�cial in terms of delay to use the available resources in the vicinity.
Considering this fact, a joint task assignment and resource allocation for device-
enhanced MEC computing has been proposed in [96]. In this study, a UE can of-
�oad its computational-heavy tasks to several nearby end devices, such as smart
wearable devices, cell phones, tablets, laptops, as well as infrastructure nodes, such
as WiFi APs and cellular BSs, as helper nodes. The task assignment is optimized to
minimize the latency, subject to UE and helper energy constraints. Each UE can com-
pute a task locally, or o�oad the task to a helper node for remote execution. The
tasks are considered non-partitionable, however parallel execution of independent
UE tasks is possible. A time-slotted communication protocol with three phases is
developed. Within the three phases of a time slot, the task is o�oaded to one of
the helper nodes and the computation results are sent back to the UE. The resulting
mixed-integer non-linear minimization problem is solved by relaxing the integer task
assignment variables, which results in an e�cient, albeit suboptimal solution.

The follow-up study [97] reduced the overall latency by considering controllable
computation frequencies instead of �xed processing capacities. Nevertheless, there
are still some limitations. The UEs and channel condition are considered static; how-
ever, in reality UEs are mobile and channels are dynamic. Therefore, UE mobility and
dynamic channels should be addressed through adaptive mechanisms in future re-
search. In addition, only Time-Division Multiple Access (TDMA) is used due to its ease
of implementation; other orthogonal multiple access methods for D2D communica-
tions should be examined in future research to improve the system performance.

The design of an incentive mechanism to motivate UEs to share their computation
resources is a key factor in device-enhanced MEC computation o�oading and has
been neglected in the studies surveyed so far. The study [98] presented bandwidth
incentives for UEs. The considered system contains one BS and numerous UEs. The
UEs are either Computing User Equipment (CUE), which have computationally inten-
sive tasks, or Helper User Equipment (HUE), which help by taking over some of the
computation sub-tasks. CUEs motivate HUEs to take over some computation sub-
tasks as follows. CUEs give some of their available communication bandwidth to the
HUEs in exchange for the help with computations. Thus, HUEs essentially trade in
some of their computation resources in order to increase their overall communi-
cation bandwidths. A CUE can either o�oad a task to an MEC server using its full
available bandwidth or o�oad a part of the task to the MEC server and the rest to
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an HUE; thereby lending some of its bandwidth to that HUE.
An optimization problem has been formulated to model the decisions for pairing

a CUE to a suitable HUE, the task o�oading, and the partitioning of the MEC server
resources among UEs. The study [98] assumed that each HUE can only assist a
single CUE. Also, the speci�cs of the bandwidth lending process were neglected and
UE mobility was not considered.

2.4.2 Energy consumption minimization

In order to improve the MEC performance, a joint computation and communica-
tion cooperation method has been presented in [89]. The study [89] considers a
basic three-node MEC system with two UEs, whereby one UE needs computation
resources and the other UE is the helper/relay. Moreover, one AP node is attached
to an MEC server. A four-slot protocol is proposed to enable energy-e�cient device-
enhanced MEC that minimizes the total energy consumption at both UEs, but also
considers the UE’s latency-constrained computation requirements. UE computation
tasks are assumed to be partitionable; thus, a computations task can be partitioned
and the di�erent partitions can be executed locally, o�oaded to a helper, or of-
�oaded to the MEC server. However, the examined approach does not fully exploit
the capacity of the multiple access channel from the multiple UEs to the MEC server.
This limits the performance of multi-user MEC systems [99]. Another drawback of
this study is the simple evaluation topology, which included only two UEs.

A cellular D2D framework with a massive crowd of devices at the network edge for
joint computation and communication resource sharing has been proposed in [100].
The UE energy consumption is minimized by optimizing the task assignment with a
graph matching policy, which can achieve good D2D task assignments. However,
the energy-e�ciency of the D2D clusters is not considered in the study [100], since
it mainly deals with the D2D crowd task assignment problem [101]. In addition, in
order to make the proposed framework practical, scenarios with changing D2D con-
nections need to be considered in future research. Moreover, to prevent UEs from
over-exploiting other UEs and from free-riding behaviors, an incentive mechanism
should be added in future research.

The minimization of the energy consumption of computation task o�oading in
device-enhanced MEC with a large number of UEs poses signi�cant modeling and
computational challenges. The two studies [102] and [103] have investigated game-
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theoretic models for device-enhanced MEC o�oading with large UE numbers. More
speci�cally, the study [102] has formulated the o�oading decision problem as a
sequential game and examined the stable Nash equilibrium for the system. The
study [103] has formulated the problem as a non-cooperative strategic potential
game [104]. Both studies found that the game-theory based device-enhanced MEC
computation o�oading reduces the consumed energy compared to computation
on only the MEC servers or computation on only the local UEs.

To take the long-term UE incentive constraints into account and avoid free riding
behaviors of UEs which may deter other UEs from collaborating, a D2D framework
is presented in [105] to minimize the time-average energy consumption with a Lya-
punov optimization based online task o�oading. UEs can dynamically share their
resources, whereby the sharing is controlled by the BS. The BS establishes in-band
LTE-direct Orthogonal Frequency-Division Multiple Access (OFDMA) D2D links be-
tween UEs (out-of-band links, e.g., Bluetooth, cannot be controlled by the BS). The
working day movement model has been used to characterize the UE mobility pat-
terns. This model which is based on people’s daily life activities, including commuting
fromhome towork, spending time at the work place, and commuting back fromwork
to home. The working day movement model has shown close similarity to real-world
mobility measurements [106]. Three types of tasks have been considered, namely
pure computations tasks, such as image processing, pure communications tasks,
such as �le downloading, and hybrid tasks requiring both computation and commu-
nication resources, such as video streaming. The evaluation model generates the
UE application layer tasks according to a Poisson process to represent the stochas-
tic nature of real-life task generation. Tasks are admitted based on a best-e�ort
�rst-come-�rst-serve admission policy.

The task admission policy is independent from the scheduling of the task o�oad-
ing and only operates at the start of a time frame. Interactions between task admis-
sion and task o�oading should be examined in future research.

The rapid growth of the IoT and fog computing have brought computing devices,
which are referred to as fog computing devices, with idle resources close to the UEs.
Accessing both the MEC and the fog computing devices can improve energy savings.
Towards this goal, an energy-e�cient joint computation o�oading via cellular net-
works to the MEC server and via D2D communications to fog computing devices in
a 5G network has been presented in [107]. Some UEs are deployed around one
MEC server in the considered system. The access technology between UEs and the
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MEC server is an LTE radio access network. Fog computing devices with idle comput-
ing resources near the UEs functions as helpers. In particular, each UE has a �xed
fog computing helper device and communicates with its helper through D2D links.
Since the helpers have also limited computing resources, three computation task
execution models are considered, depending on the UE demands for computation
resources: local, fog computing device, and MEC server execution. The computation
o�oading framework has two parts, namely a control plane and a data plane. The
control plane includes the controller, which is responsible for o�oading decisions
according to the network status. The data plane includes the task queue bu�er and
the task data transmission parts in the UEs. Simulation results have demonstrated
that the proposed method is e�ective; however, several issues, such as communi-
cation overhead, synchronization, data recovery overhead, security, and incentive
mechanisms, are neglected in the framework.

Advanced energy harvesting techniques to power mobile devices with renewable
energy, such as solar and wind energy, can extend the battery life time of devices. A
new device-enhanced MEC computing and networking framework called D2D Edge
Computing and Networking has been proposed in [108] toward designing a green
computation MEC system that exploits advanced energy harvesting techniques. The
examined D2D Edge Computing and Networking system includes a BS and some
UEs, whereby one UE is called the master and the rest are secondary devices. The
master device is the UE with a computation-intensive task. The master device is
equipped with energy harvesting elements. The o�oading process is divided into
successive time slots of the same length. The task assignment decision, CPU fre-
quency adjustment, and power control are accomplished at the beginning of each
time slot. The task transmission and computation at the master and secondary UEs
�ll the total task execution time in each time slot. The communication setting be-
tween UEs is based on the LTE-D2D standard with the Frequency-Division Multiple
Access (FDMA) protocol for dedicated D2D transmissions. The energy cost model for
each time slot includes the energy consumed for task transmission and processing
at the master and secondary devices. A system operation cost is de�ned to give a
reward or penalty to the D2D-Edge Computing and Networking system. The reward
or penalty is a function of the energy consumption and cost for a unit of energy. The
joint optimization of the computation o�oading and the resource management to
reach a good trade-o� between low system operation cost and short task execu-
tion time is formulated as a constrained Markov Decision Process (MDP). In order to
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execute this joint optimization problem, a Q-learning algorithm is employed, which
helps to address the stochastic features of harvesting energy and network informa-
tion. In addition, a low-complexity online Lyapunov optimization based algorithm is
developed to tackle the challenges of high dimensionality of the D2D Edge Comput-
ing and Networking o�oading framework. However, in this study, the system status
is considered static in each time interval, which may not be a realistic assumption for
scenarios with high UE mobility. The simple system model with only one BS and one
master UE device is another drawback of this study.

Based on recent advances in antenna design, the study [109] has proposed an en-
ergy e�cient o�oading scheme using Full Duplex (FD) relays. The network consists
of one BS and several UEs forming multiple clusters. One UE with FD antennas is se-
lected as the cluster head, referred to as FD-DCH, in each cluster. This FD-DCH acts
as a relay between normal UEs in the cluster (DUEs) and the BS. When DUEs send a
proportion of their tasks to their associated FD-DCHs, the tasks will be relayed simul-
taneously to the BS on the same frequency band used for D2D communication. To
avoid interference, it is assumed that DUEs and FD-DCHs work on orthogonal spec-
trums in both up-link and down-link. The cluster head selection algorithm is based
on the Chinese Restaurant Process [110] and the weighted sum method considers
several metrics, such as UEs’ social behaviors, energy and storage resources, and
the transfer rate from the BS to the UEs. The mobility of UEs, which can change the
social attributes and consequently the cluster head selection procedure is neglected
in this study.

2.4.3 Joint minimization of latency and energy consumption

A simple scenario to minimize the task execution cost which can jointly consider la-
tency and energy consumption minimization for a system with one BS has been pro-
posed in [111]. The problem is transformed into a computation o�oading subprob-
lem and a resource allocation subproblem which are solved by the Kuhn-Munkres
algorithm [112] and the Lagrangian dual method, respectively. In [111], UE tasks are
considered partitionable and parallel execution at the requesting UE and at an MEC
server or helper UE is possible.

The total task execution cost problem is further investigated in [113] with the con-
sideration of users movements using a hybrid o�oading framework called HyFog.
The cost problem has been de�ned as the weighted sum of the UE computational
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time and the UE energy consumption. HyFog chooses between UE task o�oading
to the MEC or to nearby end devices using D2D communication (cellular D2D or
WiFi-direct). The working day movement model has been used as UE mobility pat-
tern. A novel three-layer graph matching algorithm has been developed to repre-
sent the choice space consisting of local (UE) task execution, D2D task o�oading to
nearby UEs, and task o�oading to the MEC. The total task execution cost is min-
imized through problem mapping to a minimum weight matching problem in the
three-layer graph and the Edmonds’ Blossom algorithm [114]. The study [113] has
only focused on spectrum allocation problems. However, the development of mech-
anisms that overcome the instinctive sel�shness of the UEs remains a key challenge.
Instinctively, each IoT user typically optimizes its own Quality of Experience (QoE)
individually without following the strategies for optimizing the overall system perfor-
mance [115].

Some IoT applications require ultra-low latency computation services. However,
poor channel conditions between end devices and the MEC server may impede
latency-constrained IoT applications. To address this problem, the study [116] pro-
posed a forwarding scheme to improve resource sharing for mission-critical IoT de-
vices which fall under the coverage of neighboring end devices. A greedy exam-
ple heuristic has been proposed to solve the optimization problem for task alloca-
tions [116]. In particular, the tasks are allocated according to two main criteria: the
proximity of the devices and the number of tasks that have already been allocated to
a given device. The evaluations in [116] demonstrated through simulations that by
using D2D communication in this way, lower latency, energy consumption, and traf-
�c load through the network can be achieved and improvements in the cooperation
of IoT devices at the edge of the network are possible. LTE-Direct with OFDMA and
Single-Carrier FDMA have been employed for the down-link and up-link D2D com-
munications, respectively. A round robin scheduler divided the RBs equally between
the candidate D2D transmissions (with 6 RBs for D2D). This RB division avoided in-
terference. The random direction movement model, which is a variant of the widely
used random waypoint model [117], is considered as the mobility model. An inter-
ference coordination scheme that reuses parts of the available frequencies could
achieve additional performance gains.

The study [118] has proposed an o�oading method with frequency reuse for IoT
applications. In the studied architecture, UEs send their computation requests to the
MEC server. The MEC server determines the o�oading destination according to a
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two-step algorithm. The �rst step processes delay-sensitive tasks, while the second
step processes tasks of UEs with energy restrictions. The o�oading problem for
delay-sensitive tasks is modeled as a delay-aware adjacency graph, which is solved
for a maximummatching with minimum cost with Edmonds’ Blossommethod [114].
The result speci�es whether the computation requests are o�oaded through D2D
communication to near-by UEs or to the MEC server. The MEC server then conducts
an analogous graph-based solution procedure for the remaining requests from UEs
with energy limitations and allocates the computation resources of the remaining
idle near-by UEs and its own resources. If the MEC server becomes overloaded, it
o�oads the computation tasks of energy-limited UEs to the central cloud.

Common drawbacks of the preceding studies on the joint minimization of latency
and energy is their use of conventional cellular and WiFi technologies for D2D com-
munication only, as well as their simulation based evaluation. It is important to ex-
amine novel D2D communication technologies as well as to examine the e�ective-
ness of an o�oading algorithm through real implementations. The study [119] ad-
dressed these drawbacks by proposing the �rst task o�oading framework with Near
Field Communication (NFC) based D2D communication and a real implementation
evaluation. NFC has several advantages over the longer-range Bluetooth and WiFi
technologies due to its short communication range, including lower interference,
lower energy consumption, and intrinsic security. The proposed framework circum-
vents some of the limitations of default Android NFC protocols: the NFC-based task
o�oading enables bidirectional communications between two UEs and makes the
task o�oading smoother. The performance evaluation in [119] demonstrated that
the NFC interface reduces the UE energy consumption and reduces the execution
time of the o�oaded task, especially for powerful helper devices. Nevertheless, the
NFC-based task o�oading in [119] has several limitations. First, the data transfer
rate of NFC based communications is only 53 kB/s, because the used hardware can
transfer only one message per connection; therefore, the framework is not suitable
for data-demanding application scenarios. Moreover, the device heterogeneity and
the potential of parallel connections using Bluetooth and/or WiFi-direct as well as
user mobility should be examined in future research.

Although the study [119] is based on a practical implementation, the study [119]
as well as all prior studies on joint latency and energy minimization lack an incentive
mechanism. An incentive mechanism is generally required to make the o�oading
attractive for users in real D2D systems. A generalized o�oading scheme with an in-
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centive approach based on credit and reputation to increase the cooperation among
UEs via D2D communication has been proposed in [120]. The proposed task o�oad-
ing systemenhances the accessibility of UEs to o�oading support and improves their
QoS. The social-characteristics of the UEs [121, 122] are exploited to form o�oad-
ing communities. An o�oading community is formed by a group of UEs that trust
each other with o�oading tasks. A UE gains points when it shares computational
resources with other UEs, stays in a certain location for a longer time, or pre-caches
some tasks. A UE loses points when utilizing the community resource pool. In [120],
the community assignment is based on the frequencies and durations with which
the UEs are detected. This assignment approach requires the activation of the UE
discovery interfaces. A learning method for predicting communities can improve the
discovery process and save energy [123]. Also, new task process acceleration tech-
niques that exploit multiple devices are an important direction for future research.

2.5 Summary and discussion

The main objectives of the existing device-enhanced MEC computation o�oading
studies have been the minimization of the latency and energy consumption of the
UEs as well as the enhancement of security. Most existing studies have considered
partitionable and non-partitionable computational tasks, depending on the applica-
tion scenario. Individual sub-tasks of partitionable tasks or complete non-partitionable
tasks can be executed locally (if the UE has su�cient computation resources and the
latency of local UE execution can be tolerated), o�oaded to adjacent UEs directly via
D2D communication or via relays, or o�oaded to an MEC server.

The wireless channel characteristics and the UE resource availabilities are gener-
ally stochastic and change with time due to the UE mobility. Therefore, o�oading
decisions should be based on the latest status of the system and be computed on-
line. Overall, Lyapunov optimization based algorithms have so far been the predom-
inant optimization tools for tackling the challenges of the high dimensionality of the
o�oading frameworks. Lyapunov optimization based algorithms can solve the of-
�oading optimization problems with low-complexity online computations based on
the current state of the system, as well as the drift-plus-penalty function for stabiliz-
ing the queues.

The task assignment, i.e., the decision on where to execute a computation task
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or sub-task can generally either be made in a distributed manner or a centralized
manner (at the BSs). The examined task assignments to other UEs or an MEC have
typically been based on various aspects of the UE and MEC server resources as well
as the UE computation demands. Despite the considerable amount of research de-
voted to task assignment, the proposed approaches are generally oversimpli�ed. In
particular, they did typically not consider the dynamics of wireless communication
links. Also, the heterogeneous computational capabilities and time-varying avail-
abilities of the computational resources of the end devices and MEC servers have
typically only been partially considered. Future research needs to develop practical
approaches that optimize the computation o�oading (task assignment) while com-
prehensively considering the wireless network dynamics and heterogeneity and dy-
namic availabilities of the end devices and MEC servers.

While the centralized control approach is appropriate for small network sizes,
a purely centralized approach may become infeasible or ine�cient for large-scale
networks. This is because the adaptation to the network dynamics requires fre-
quent data collection from the entire network domain and subsequent centralized
processing. This centralized processing translates into long signalling delays, large
control signaling overhead, and high computational complexity in large-scale net-
works [124]. The existing research studies that considered distributed task assign-
ments, neglected the network dynamics; thus they cannot be readily applied to device-
enhanced MEC systems [96]. Future research needs to explore hybrid decision ap-
proaches that delegate some scope of the decision making to local nodes, while
slow-timescale global decisions can still be made at a central controller. While such
hybrid approaches have begun to be explored for general wireless resource alloca-
tion problems [125–130], they remain an open research area for device-enhanced
MEC computation task o�oading.

In order to reach the main goal of e�cient device-enhanced MEC computation
o�oading for real world applications and scenarios, future research needs to fur-
ther examine the interactions between task admission policies and the scheduling
of task o�oading as well as e�ective ways to continuously maintain the o�oading
service when UEs are mobile. In addition, relying only on orthogonal multiple access
technologies, such as TDMA and FDMA, may limit the performance of multiuser MEC
systems [99]; hence, there should be more focus on using new channel access tech-
nologies that exploit the particular network architecture. Generally, WiFi appears to
be the most practical medium access technology for D2D communication between

44



UEs. Nevertheless, emerging physical layer technologies should be evaluated for
providing D2D UE communications. Despite a wide range of studies on the design
of incentive mechanisms, there is still a pronounced lack of systematic research on
participation incentives that consider the interdependent security risks.

The evaluation methodology in most of the existing computation o�oading stud-
ies is simulation and only few studies have considered practical scenarios. Future
research needs to broaden the evaluation to consider mathematical analysis when
appropriate to obtain relevant insights through tractable analysis. Also, prototypes
of the proposed device-enhanced MEC computation o�oading systems should be
developed and evaluated through measurements for representative work loads and
mobility patterns.

2.6 Conclusion

Device-enhancedMECaugments theMEC computing and storage (caching) resources
with the computing and storage resources of thewireless enddevices, e.g., UE nodes.
Device-enhancedMEC thus enlarges the resource pool that is available for providing
services to end devices. This enlargement of the available resource pool is achieved
without additional investments in MEC infrastructure; albeit, device-enhanced MEC
typically requires some incentives (e.g., payments) to the owners of the participat-
ing end devices. Nevertheless, with the ever-increasing computing and storage re-
sources available inmobile end-devices, device-enhancedMEC is an attractive paradigm
for improving the service quality without requiring large upfront capital investments
in more MEC resources. Also, device-enhanced MEC works particularly well in dense
networks, where each end-device has a large number of neighboring end devices
within a short D2D communication distance, e.g., in crowded places such as stadi-
ums. Such dense network scenarios pose scalability problems for conventional MEC
with a �xed amount of installed resources. Generally, the possibilities for “recruiting”
neighboring end devices to contribute computation and storage resources grow in
dense networks, as there are more end devices near any given end device in dense
networks. Thus, device-enhanced MEC holds a particular promise to mitigate MEC
resource shortages in dense networking scenarios.

This chapter was organized to focus on the basic concepts of computation o�oad-
ing in the device-enhanced MEC environment, D2D communication and the pros
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and cons of previous research studies. The studies are sub-categorized according
to their main objective. The existing studies have strived to reduce the latency, and
to reduce the energy consumption. Also, some studies have focused on enhanc-
ing security aspects, while others have focused on maximizing some utility measure.
Overall, the device-enhanced MEC studies that have been conducted to date have
made signi�cant progress in advancing the protocol development and optimization
for o�oading computations to MEC resources and other end devices.

Nevertheless, device-enhancedMEC is a nascent research area; most studies have
appeared within the past three years. Thus, the existing state-of-the-art research in
the device-enhanced MEC area has severe limitations and requires extensive future
research to address the numerous open challenges. Overall, only roughly half of the
existing studies have accounted for end device mobility. Also, less than roughly a
quarter of the existing studies has incorporated an incentive mechanism. Moreover,
there is an overarching need to develop e�ective and e�cient control and manage-
ment frameworks for device-enhanced MEC that can cope with end device mobility
and end device heterogeneity while scaling to large network sizes and device den-
sities. Future research should also further improve device-enhanced MEC, e.g., by
exploiting emerging Machine Learning (ML) techniques and improved models of the
social relationships of end device users. Also, comprehensive performance eval-
uation frameworks and methodologies should be developed and agreed upon by
researches to facilitate the comparison of di�erent approaches to device-enhanced
MEC.
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Table 2.1: Summary of device-enhanced MEC computation o�oading studies [2].
Objective Study Year D2D Access

Technology
Mobility of
UEs

Incentive
Mecha-
nism

Evaluation
Environ-
ment

Latency
minimization

[95] 2017 Cellular re-
source

No No Simulation
using
Python
and Matlab

[96] 2018 Cellular re-
source, TDMA

No No Simulation

[97] 2019 Cellular re-
source, TDMA

No No Simulation

[98] 2019 – No Bandwidth
incentive

Simulation

Energy
consumption
minimization

[89] 2018 – No No Simulation

[100]
2017 Cellular re-

source
Yes No Simulation

[102]
2018 Cellular re-

source
No No Simulation

[103]
2019 Cellular re-

source
No No Simulation

[105]
2016 Cellular re-

source, OFDMA
Working
day move-
ment
model

Tit-for-tat Simulation

[107]
2019 Cellular re-

source
No No Simulation

[108]
2019 Cellular re-

source, FDMA
No No Simulation

[109]
2019 Cellular re-

source
No No Simulation

Joint minimization
of latency + energy
consumption

[111]
2018 Cellular re-

source
No No Simulation

[113]
2017 Cellular re-

source
Working
day move-
ment
model

No Simulation

[116]
2017 Cellular re-

source, OFDMA
downlink,
SCFDMA uplink

Random
direction
movement
model

No Simulation
using Mat-
lab

[118]
2019 Cellular re-

source
No No Simulation

[119]
2017 Near Field Com-

munication
No No Android

[120]
2017 – Yes Credit

and rep-
utation

Real and lab
tests with
Android OS
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3 Energy-aware Cooperative
Computation O�oading

The content of this chapter was previously published in:
Mehrabi, Mahshid, et al. "Energy-aware cooperative o�oading framework for
inter-dependent and delay-sensitive tasks." IEEE Global Communications Con-
ference, 2020 [3].

3.1 Introduction

As mentioned in the previous chapters, computation o�oading is a key enabler of
providing computation intensive tasks on mobile user devices in 5G networks. Fur-
thermore, by using D2D links between adjacent devices, computation and communi-
cation cooperation can be achieved which ease the task o�oading and broaden the
concept of MEC networks. In this chapter, we will investigate joint computation and
communication cooperation task o�oading in a basic three node device-enhanced
MEC system. The aim is to reduce the battery consumption of the user while sat-
isfying the inter-task dependencies and latency deadline requirements. Simulation
results show the superior performance of the proposed algorithm compared to the
other state-of-the-art methods.
In order to solve such a problem, we �rst transformourMINLP algorithm to aQuadrat-
ically ConstrainedQuadratic Programming (QCQP) approach and thenusing a Semidef-
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inite Relaxation Method (SDR), we obtain an approximation of the original problem.
Finally, a randomization method is applied to obtain optimum o�oading strategy.
This chapter is organized as follows. First, the system model and network condi-
tion are introduced in Section 3.2. Then, the optimization problem is formulated in
Section 3.3, followed by the randomization method for our o�oading decision algo-
rithm. In Section 3.4, numerical results are presented and �nally, conclusions and
future works are stated in Section 3.5.

3.2 System model

There are two user-equipments called UE and UER in the cluster, which can directly
communicate with each other via a D2D network. The UE runs an application while
the UER can act as a helper or relay, which can help UE to execute tasks or receiving
the task data from the user and then forwarding it to the MEC server.
The MEC server has more powerful resources, such as higher CPU frequency and
number of processing units than the two devices. We assume that the MEC server
is powered by the energy grid, so the energy usage of the sever is not considered
in our work. Both devices can also communicate with the edge server directly via
cellular networks. The BS establishes in-band LTE-direct OFDMA for dedicated D2D
transmissions. The MEC server is connected to the cloud server via wired networks
(such as optical �ber network).

Figure 3.1: A basic three node device-enhanced MEC system [3].

The wireless channel is assumed quasi-static during the execution time and the
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Channel State Information (CSI) and computation related parameters are available
for devices. The computation result of each task is assumed much smaller than the
input bits, therefore, the time for sending the result back is negligible and only the
transmission time of the task input and the execution time are taken into consider-
ation. There is a time deadline for completing the UE1’s tasks and it is assumed that
the data size and computation resource requirements for each task are known in
advance. In the following, we elaborate the system model parameters.

3.2.1 Task model

In our scenario, the UE’s tasks are sequentially dependent, meaning that each task
requires the result of its previous task. The distributed Ibis application presented in
[9] would be an example for a sequential task dependency scenario. The application
contains the set of tasks presented by K “ t1, 2, ..., Ku. Each task k has parameters
of Ak “ tbk, ck, dku, where bk is the input data size of the computation task k (in bits),
ck is the computation resources which is required for execution of each bit in task
k (in CPU cycles/bit), and dk , equals to bk times ck, is the total amount of required
computation capacity for execution of the task k . Td is the time deadline for the
execution of the whole application.
The dependency graph of tasks is shown in Figure 3.2. To apply task dependencies
e�ect to the computation o�oading decision algorithm, the starting and �nishing
time concepts are needed as follows [10]:

• Finish time: It is the time that the task k execution is completed:

FTk “ STk + Texe
k , (3.1)

where STk is the time that the execution of task k predecessors is �nished and
Texe
k presents the time for task k execution itself.

• Start time: It is the time that the execution of task k can be started:

STk “

$
&

%
0, k “ 1

FTk–1, @k ‰ 1
(3.2)
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According to (3.2), since there is no predecessors for the �rst task, its start time is
zero.

Figure 3.2: The sequential dependency graph [3].

3.2.2 Communication model

The up-link data rate for task k transmission can be achieved using the Shannon
theorem and the down-link data rate is neglected in our scenario due to the small
size of the executed tasks.

rk “ B log2

ˆ
1 +

Ptr
k Hk

� �2

˙
, (3.3)

Here, Ptr
k is the sender’s transmission power, B and H are the channel bandwidth and

channel gain between sender and receiver respectively, and �2 denotes the variance
of the Gaussian channel noise. � is the coding gap as a function of bit error rate
(BER) which is determined based on the coding schemes and medium access proto-
col [131]. To simplify the model, here we assume � “ 1.

3.2.3 Computation model

There are three possible scenarios for tasks’ execution in our o�oading algorithm:
local execution on the UE, remote execution on the helper, or remote execution on
the MEC server. The latter can be either be a direct o�oading from UE or via the
relay to the MEC server.
Depending on that which device or server is executing the task, the time and energy
needed for execution of task k is calculated based on the computation capability of
the host. This can be calculated based on the CPU cycles needed for execution of
task which is known in advance in our scenario.
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3.2.3.1 Local computing

The time needed for task k execution locally on the UE is then obtained as follows:

TL
k “

dk

f UE
, (3.4)

where f UE is the computation capacity required for task k execution and it is assumed
to remain same during processing of task k. Based on the e�ective switched capac-
itance �, the energy consumption per operation is � “ �(f UE)2, depending on the chip
architecture [132]. Therefore:

EL
k “ �

`
f UE

˘2 dk. (3.5)

The equations (3.4) and (3.5) are fully descriptive due to the no transmission posi-
blility of data in the local mode.

3.2.3.2 Computing on the helper

In the second scenario, the task is o�oaded from UE to UER, which plays the role of
helper for UE to execute its computation task. The computation execution time con-
sequently consists of two parts, communication time and computation time. There-
fore, the total time budget splits into two parts as follows:

TH
k “

bk

rUHk
+

dk

f UER
, (3.6)

where rUHk is the transmission data rate between UE to UER and f UER denotes the
required computation capacity to execute task k on the helper. The energy con-
sumption in this mode is then calculated as follows:

EH
k “ PUE

tra

ˆ
bk

rUHk

˙
+ PUE

wait

ˆ
dk

f UER

˙
. (3.7)

Here, PUE
tra is the expended transmission power of UE, rUHk is the transmission data

rate between UE to UER and PUE
wait is UE’s idle circuit power which is the energy that

UE consumes while waiting to get the result back. As per the scenario, the return
trip for the results is neglected in this, as well as the following strategies due to its
smaller size both in terms of energy as well as time.
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3.2.3.3 Computing on the edge cloud

Under this �nal o�oading mode for this scenario, the task is o�oaded to the edge
server, with its more powerful computational abilities and energy supply. UE trans-
mits the task to the MEC server directly and after remote execution, the result is sent
back to UE. Therefore, there are two time delay steps for transmission and compu-
tation:

TS
k “

bk

rUSk
+
dk

f S
, (3.8)

where RUS
k is the transmission rate from UE to MEC server and f S is the computation

capacity allocated for task k execution on the server. The corresponding energy
consumption for the UE in this remote case execution is calculated as follows:

ES
k “ PUE

tra

ˆ
bk

rUSk

˙
+ PUE

wait

ˆ
dk

f S

˙
. (3.9)

3.2.3.4 Computing on the edge cloud via relay

In thismode, the task is still o�oaded to the edge server, but the di�erence is that UE
doesn’t send the data to the server directly, but with the help of UER. This time UER
plays the role of a relay, receives data from UE, and transmits the data further to the
MEC server. This can be a good strategy when the wireless channel state between
UE andMEC server is far worse than the channel state between UER andMEC server.
Therefore, there are three time delay steps for transmissions and computation:

THS
k “

bk

rUHk
+

bk

rHSk
+
dk

f S
(3.10)

Here, rHSk is the transmission rate from UER to MEC server.

The corresponding energy consumption for the UE in this remote case execution
can be then calculated as follows:

EHS
k “ PUE

tra

ˆ
bk

rUHk

˙
+ PUE

wait

ˆ
bk

rHSk
+
dk

f S

˙
. (3.11)
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3.3 Computation o�oading problem formulation
under sequential task dependency

The goal of our joint communication and computation cooperation o�oading algo-
rithm is to minimize the energy consumption of the UE considering the execution
deadline of the tasks.

3.3.1 Problem formulation

Considering the o�oading scenarios de�ned above, the total energy consumption
and execution time of task k on UE can be formulated as follows:

Eexe
k “ wkEL

k + xkEH
k + ykES

k + zkEHS
k , (3.12)

Texe
k “ wkTL

k + xkTH
k + ykTS

k + zkTHS
k , (3.13)

where wk, xk, yk and zk denote the binary decision variables for the o�oading algo-
rithm meaning that only one of them can be 1 and the rest are 0 for each task. The
total energy consumption of the UE for the whole application can be then formulated
by

EUE “
Kÿ

i“1

Eexe
k . (3.14)

Therefore, our user’s energy minimization problemwith respect to the time deadline
for execution and tasks’ inter-dependencies can be stated as follows:

min
�,�

Kÿ

k“1

Eexe
k (3.15a)
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subject to: wk, xk, yk, zk P t0, 1u, @k P K, (3.15b)

wk + xk + yk + zk “ 1,@k P K, (3.15c)

FTK § Td, (3.15d)

ST1 “ 0, (3.15e)

STk “ FTk–1, @k P K, k ‰ 1, (3.15f)

where � “ [w1, x1, y1, z1, � � � ,wK , xK , yK , zK ] and � “ [ST1, ST2, � � � , STK ] are o�oading bi-
nary decision variables and starting times, respectively. Constraint (3.15d) assures
that the application is �nishedbefore the timedeadline; constraints (3.15e) and (3.15f)
de�ne the start time conditions for task k.

3.3.2 Solution of the optimization problem

Due to the existence of a non-linear constraint, the problem is Non-Linear Program-
ming (NLP) and since the �rst constraint is integer, the problem is then a mixed-
integer. Thus, this optimization problem is MINLP, which is an NP-hard problem
which means there is no known way to solve it in polynomial time.
In order to solve such a problem, we �rst transform it into a homogeneous QCQP
and then using SDR, we obtain an approximation of the original problem. Finally, a
randomization method is applied to obtain optimum o�oading strategy.

In the �rst step, the integer constraints are inverted to the quadratic formats as
following:

wk pwk – 1q “ 0, xk pxk – 1q “ 0, yk pyk – 1q “ 0,

zk pzk – 1q “ 0, @k P K.
(3.16)

Then, the QCQP transformation of our minimization problem (3.15a) is:

min
�,�

Kÿ

k“1

Eexe
k (3.17a)
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subject to:

wk pwk – 1q “ 0, xk pxk – 1q “ 0,

yk pyk – 1q “ 0, zk pzk – 1q “ 0,

@k P K

(3.17b)

wk + xk + yk + zk “ 1,@k P K , (3.17c)

FTK § Td, (3.17d)

ST1 “ 0, (3.17e)

STk – FTk–1 “ 0,@k ‰ 1, (3.17f)

In the next step, we de�ne two vectors called v with the size of p5K + 1q ˆ 1 as v “

r�,�, 1sT and v 1 with the size of 5K ˆ 1 as v 1 “ r�,�sT with standard unit vectors ei
with the ith entry equal to 1 and size of p5K + 1q ˆ 1, and e1i with the ith entry equal
to 1 with the sizes of 5K ˆ 1, respectively. Thus, the QCQP transformation of our
minimization problem (3.17a) can be formulated as:

min
v

pa0q
T v (3.18a)

subject to:
vTdiag peiq v – peiqT v “ 0,

i “ 1, ..., 4K ,
(3.18b)

´
aJ
k

¯T
v “ 1,@k P K , (3.18c)

pa1q
T v § Td, (3.18d)

pe4K+kqT v “ 0,@k “ 1, (3.18e)

pe14K+kq
T v 1 – pa2q

T diag
`
aI
k–1

˘
v 1 “ 0,

@k P K , k ‰ 1,
(3.18f)

where
a0 “

“
EL
1, EH

1 , ES
1, EHS

1 , � � � , EL
K , EH

K , ES
K , EHS

K ,01ˆ(K+1)
‰
,

aJ
k “ e4k–3 + e4k–2 + e4k–1 + e4k,

a1 “
“
01ˆ(4K–4), TL

K , TH
K , TS

K , THS
K ,01ˆ(K–1), 1, 0

‰T ,

a2 “
“
TL
1, TH

1 , TS
1 , THS

1 , � � � , TL
K , TH

K , TS
K , THS

K ,11ˆK
‰T ,

aI
i “ e14i–3 + e14i–2 + e14i–1 + e14i + e14K+i.
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The homogeneous QCQP format of the problem can then obtained by de�ning u “
“
vT , 1

‰T as follows:
min
u

uTM0u (3.19a)

subject to: uTM1u “ 0, i “ 1, � � � , 4K , (3.19b)

uTM2u “ 1,@k P K, (3.19c)

uTM3u § Td, (3.19d)

uTM4u “ 0,@k “ 1, (3.19e)

uTM5u “ 0,@k P K, k ‰ 1, (3.19f)

where

M0 “

»

–0p5K+1qˆp5K+1q 1
2a0

1
2 pa0q

T 0

fi

fl

M1 “

»

–diag peiq –1
2ei

–1
2 peiq

T 0

fi

fl

M2 “

»

–0p5K+1qˆp5K+1q 1
2a

P
k

1
2

`
aP
k

˘T 0

fi

fl

M3 “

»

–0p5K+1qˆp5K+1q 1
2a1

1
2 pa1q

T 0

fi

fl

M4 “

»

–0p5K+1qˆp5K+1q 1
2e3K+k

1
2 (e3K+k)

T 0

fi

fl

M5 “

»

———–

0p5K )ˆ(5Kq –1
2

”
pa2q

T diag
`
aI
k–1

˘ıT 1
2e

1
3K+k

–1
2

”
pa2q

T diag
`
aI
k–1

˘ı
0 0

1
2

`
e13K+k

˘T 0 0

fi

���fl
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It can be observed that the homogeneous QCQP problem (3.19a) is still not con-
vex. Therefore, using the SDR approach, we relax the problem into a Semide�nite
Programming (SDP) problem. We further de�ne U “ uuT and by dropping the rank
constraint rank pUq “ 1, the minimization problem (3.18a) is transformed to:

min
U

Tr pM0Uq (3.20a)

subject to: Tr pM1Uq “ 0, i “ 1, ..., 4K , (3.20b)

Tr pM2Uq “ 1, @k P K, (3.20c)

Tr pM3Uq § Td, (3.20d)

Tr pM4Uq “ 0, @k “ 1, (3.20e)

Tr pM5Uq “ 0, @k P K, k ‰ 1, (3.20f)

U p5K + 1, 5K + 1q “ 1, (3.20g)

U p5K + 1, 5K + 2q “ 1, (3.20h)

U p5K + 2, 5K + 1q “ 1, (3.20i)

U p5K + 2, 5K + 2q “ 1, (3.20j)

U © 0. (3.20k)

SeDuMi [133] as a standard SDP software, is adopted in order to solve the SDP prob-
lem and to obtain our binary o�oading decisions, and a randomization method is
proposed to recover a rank-1 solution of the problem (3.15a) from U∗ as the SDP
problem (3.20a) optimal solution.

3.3.3 The randomization method for binary o�oading decision

We got inspired this randomization method by [10] and modi�ed it in order to apply
it to our o�oading strategy U∗. We again de�ne U “ uuT and u p5K + 2q “ 1 and by
that, the last column of U is:

U pi, 5K + 2q “ u piq , i “ 1, � � � , 5K + 2 (3.21)

Thus, using the value of U pi, 5K + 2q we can determine the o�oading strategy U∗ for
i “ 1, � � � , 4K . The optimal solution of the original problem (3.15a) could be extract
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directly through U, if the rank of U were 1, otherwise, using a stochastic mapping
method [10], we obtain a reasonable solution for our optimization problem (3.15a).
The �rst 4K elements of the last column of U∗, u0 piq , i “ 1, � � � , 4K are extracted and
the following equation is obtained based on the (3.20c) and (3.20k) constraints:

u0 p4i – 3q + u0 p4i – 2q + u0 p4i – 1q + u0 p4iq “ 1, i “ 1, � � � , K ,u0 piq P R,u0 piq > 0.
(3.22)

Therefore, u0 piq is considered as the probability of u0 piq “ 1 for i “ 1, � � � , 4K . Then
by following the standard uniform distribution, K random numbers between 0 and 1
are generated. The o�oading strategy that ful�lls the constraint (3.15b) is accepted.
For example, we have u0 p1q ,u0 p2q ,u0 p3q ,u0 p4q as the probability of w1 “ 1, x1 “

1, y1 “ 1, z1 “ 1, respectively for the �rst task. By generating the �rst randomnumber
�1, the strategy for the �rst task was chosen based on the following equation:

$
’’’’’’&

’’’’’’%

rw1, x1, y1, z1s “ [1, 0, 0, 0], if �1 § u0(1);

rw1, x1, y1, z1s “ [0, 1, 0, 0], if u0(1) < �1 § u0(1) + u0(2);

rw1, x1, y1, z1s “ [0, 0, 1, 0], if u0(1) + u0(2) < �1 § u0(1) + u0(2) + u0(3);

rw1, x1, y1, z1s “ [0, 0, 0, 1], if u0(1) + u0(2) + u0(3) < �1.

(3.23)

Note that the condition (3.15d) is not always ful�lled by the result of the mapping
method, therefore, in case it does not satisfy the deadline Td, it will be discarded. R
random samples are generated to get amore accurate o�oading strategy and based
on the above procedure, potential solutions are achieved. Finally, the solution with
minimum energy consumption is selected.

3.4 Numerical results

In this section, simulation results using Python are provided to validate the perfor-
mance of our joint communication and computation cooperation o�oading algo-
rithm compared to the following approaches:

• All local: The tasks are fully executed on UE.

• Computation cooperation: The UER can just have a helper node role to exe-
cute the computation tasks.
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• Communication cooperation: TheUER can just have a relay node role to trans-
mit the tasks to the MEC server.

The simulation parameters are listed in Table 3.1. The average energy consumption

Table 3.1: Simulation parameters [3]
Parameters Value
Number of tasks (K ) 25
Task deadline (Td) 3 s
Data size of task k (bk) 200 – 500 kb
Required CPU cycles per bit of task k (ck) 0 – 50 cycles/bit
Channel bandwidth (B) 5MHz
Channel gain between the UE and UER (Hlh) 10–7

Channel gain between the UE and MEC (Hls) 10–8

Channel gain between the UER and MEC (Hhs) 10–7

Variance of the Gaussian channel noise (�2) 10–9

Transmission power of UE (PUE
tra ) 0.2mW

CPU cycles frequency of UE (fUE) 0.1ˆ 109 cycles/s
CPU cycles frequency of UER (fUER) 0.5ˆ 109 cycles/s
CPU cycles frequency of MEC server (fS) 2ˆ 109 cycles/s
E�ective switched capacitance (�) 10–25 F
Idle circuit power (PUE

wait) 0.1W

for 100 runs is shown in Figure 3.3. To test the o�oading algorithm for di�erent
workloads, we sweep the required computations per bit of task data size, the variable
ck.
As can be observed, when the required computations per bit of the task k in-

creases, the average energy consumption of all methods increases as well due to
the more computation power required to complete the execution process. As the
CPU resource requirements of tasks become larger, the performance bene�t of our
joint communication and computation cooperation approach is more observable.

In all local mode, the minimum energy consumption can be obtained, when c is
less than 10 cycles/bit. By increasing c, all-local still meets the deadline demands but
more energy is consumed in comparison with the other methods. For computation-
intensive tasks which c • 35 cycles/bit, due to the inability to satisfy the deadline
requirements, the all-local method fails as shown in Table 3.2. This clearly shows the
need for a computation o�oading framework.
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Figure 3.3: Average energy consumption vs tasks’ complexity [3].

Table 3.2: Finish time of the local execution (Deadline: 3s) [3].

Computations Finish time of
per bit the last task [s]

0 0
5 0.4343
10 0.8697
15 1.3166
20 1.7473
25 2.1863
30 2.6203
35 3.0444
40 3.5343
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The average energy consumption for di�erent methods, with data size changing
from 0 to 800 kb is shown in Figure 3.4. By increasing the size of the task, more com-
putation resources are needed to �nish the execution process. This leads to the
increases of the average energy consumption of all methods. The energy consump-
tion of our joint communication and computation cooperation is still lower compared
to the other methods.

Figure 3.4: Average energy consumption vs tasks’ data size [3].

3.5 Conclusion

In this chapter, we studied the optimization of computation o�oading decision al-
gorithm in a basic device-enhanced MEC system considering the tasks’ sequential
dependency and the time deadline required to �nish the application. The �nal goal
wasminimizing the user’s battery life timewhile executing the application. Simulation
results show that our method can achieve the best performance by jointly optimiz-
ing the computation and communication resource allocations. For future work, a
more realistic scenario with multiple users and general dependency graphs as well
as the users’ movements and incentive mechanisms for a better cooperation is in-
vestigated.

63





4 Mobility and Energy-aware
Cooperative Computation
O�oading

This chapter was previously published in:
Mehrabi, Mahshid, et al. "Mobility-and Energy-Aware Cooperative Edge Of-
�oading for Dependent Computation Tasks." Network 1.2 (2021): 191-214 [4].

4.1 Introduction

In Chapter 3, we �rst discussed a basic static scenario with three nodes. However,
the signi�cant and ongoing increase of the number of both mobile devices as well as
applications with low-latency service requirements, such as IoT [134], TI [7], online
gaming, and virtual or augmented reality and the MTC [135] have led to the need for
reliable servic requirements. An example of such a dense 5G network architecture
is shown in Figure 4.1.
Several research studies proposed utilizing D2D to enhance the energy e�ciency
performance of the system [136–142]; However, the mobility of users is neglected
in these research studies which can cause several issues for service continuity and
established D2D and cellular links. This handover and service migration can fur-
ther increase the delay and energy consumption and negate the performance of
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Figure 4.1: 5G ultra-dense network architecture.

the device-enhanced MEC system.

In order to assure the reliability as well as the service continuity of computation
resources, in this chapter, we propose an online computation o�oading framework
considering the dependency relationships between computation tasks.

To the best of our knowledge, a few works studied the inter-dependency and mo-
bility e�ects on o�oading decision algorithm [143, 144] and our work was the �rst
on online task o�oading with task dependencies considering joint computation and
communication cooperation in device-enhanced MEC systems which is published
in [4]. A DL based algorithm called PECNet [5] is applied to predict users’ paths by
exploiting social interactions as well as the history of users’ movement trajectories.

The following part of this chapter is organized as follows. Section 4.2 contains
the detailed elaboration of the system model, including the task, mobility, commu-
nication and computation models. In Section 4.3, the task o�oading decision al-
gorithm is formulated and in Section 4.4, using the QCQP transformation and the
SDR approach, we solve the dynamic computation o�oading optimization problem.
The system performance is investigated in Section 4.5 through various simulation
scenarios, and �nally, conclusions and possible paths for future work are stated in
Section 4.6.

A generic three-layer fog computing network architecture is presented in [144]
taking into account the mobility e�ects of the users by considering the sojourn time
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Figure 4.2: System model [4].

with exponential distribution for the coverage of fog nodes. However, in order to
have a more accurate prediction, in reality, the sojourn time can be calculated using
ML tools. We formulate the joint optimization of o�oading decision algorithm and
computation resource allocation problem as aMINLP aimed to reduce themigration
probability. The previous studies neglected task dependency relationships which can
cause several issues considering the movement of the users, especially in a D2D-
assisted MEC network. Therefore, to enhance the performance of the o�oading
decisionmaking in real-world scenarios, we propose an online joint computation and
cooperation cooperative o�oading framework by taking into account the mobility of
users, applying a DL based algorithm to predict the users’ trajectory exploiting social
interactions between users, in addition to using the history of users’ motion paths,
and the inter-dependency relations of tasks.

We note for completeness that an approach speci�cally formobile video streaming
has been examined in [145], while energy harvesting has been the focus in [146] and
an industrial IoT setting has been considered in [147]. Joint computation o�oading
and radio resource management has been explored in [148].
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4.2 System model

4.2.1 Overview

A three-layer heterogeneous network with multiple devices and small cells is con-
sidered in this work where each small cell has been equipped with a BS and a MEC
server attached to it as shown in Figure 4.2. UEs represent the devices with the
computation-intensive tasks and the devices with su�cient computation and com-
munication resources are helpers/relays which are denoted as UHs. We randomly
distribute all devices and de�ne U “ tUH1,UH2, � � � ,UHIu as the set of UHs. The maxi-
mumservice coverage for eachUHi P U can be shownby Ri and aUE can only connect
to one helper node at the same time. Same as above, the set M “ tS1, S2, � � � , SMu
is de�ned for the edge servers which Rm is the service coverage of m-th server rep-
resented as Sm. In our model, Macro Base Station (MBS) has the information of the
channel state and the user positions and controls the o�oading decision process.
The notations used in this chapter are summarized in Table 4.1.

4.2.2 Task model

One example of a task with a general dependency graph would be a video navigation
application which would be be running on a smartphone [149]. This computation-
intensive application is denoted as K “ t1, 2, � � � , Ku. For every task, an associated
set of parameters Ak “ tbk, ck, dku represents the required computation andmemory
resources required, respectively, with bk denoting the bit-wise data size, ck the nec-
essary CPU cycles per bit of data, and dk the total amount of computation resources
required to execute, which equals bkˆck. An application-wide deadline for the entire
execution process is introduced as Tmax

d .

The nature of the task’s Directed Acyclic Graph (DAG) with its dependency rela-
tionship directly implies an order of execution for the applications’ modules. The
predecessors of any given task may introduce wait times, i.e. until all predecessors
have �nished, see Fig 4.3. Thus the concepts of start and �nish time of a task are
introduced in order to model this in�uence on the computation o�oading decision
algorithm:
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Table 4.1: Parameter notations [4]
Symbol De�nition
I Number of helpers/relays
M Number of MEC servers
K Number of tasks
U Set of helper/relay nodes
M Set of MEC servers
K Set of computation tasks
bk Data size of computation task k
ck Required computation resources per bit of task k
dk Computation resources required to execute task k
Tmax
d Deadline for execution of set of K tasks
B Bandwidth of wireless channel
Hk Wireless channel gain
�2 AWGN noise variance
Ptr
k Transmission power for task k

Pwait
k UE’s idle circuit power

f UEk UE CPU cycle frequency allocated to execute task k
f UHi
k CPU cycle frequency of helper node UHi

f Smk CPU cycle frequency of MEC server m
H Set of helper nodes’ selection variables
S Set of MEC servers’ selection variables
HS Set of relays and MEC servers’ selection variables
XUE
t UE position at time t
XUHi
t Position of UHi at time t
Ri Distance between UE and UHi

Ts,i,t UE sojourn time in coverage of helper node UHi

• Finish time is the time instant of execution completion of task k:

FTk “ STk + Texe
k , (4.1)

where STk is the start time of task k (see immediately below) and Texe
k is the exe-

cution duration (span) for task k.

• Start time is the time instant when the execution of task k can commence at the
earliest:

STk “

$
&

%
max
jP�(k)

FTj �(k) ‰ H,

0 �(k) “ H

(4.2)
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Figure 4.3: Example illustration of general task dependency graph specifying the re-
quired task execution order for an application with a total of K “ 10 tasks.
Tasks k “ 2, 3, and 4 depend on the prior completion of task k “ 1. The
last task K “ 10 has to be completed by the deadline Tmax

d [4].

where �(k) contains all predecessors of the task k. (4.2) implies that the execution of
tasks without predecessors can be started without delay, whereas the start time of
any subsequent tasks is lower-bounded, speci�cally by the largest �nish time of the
union over the computational graph of respective preceding tasks.

4.2.3 Communication model

For the transmission of a task k, the achievable up-link data or information rate can
be obtained based on the Shannon-Hartley theorem, i.e.

rk “ B log2

ˆ
1 +

Ptr
k Hk

�2

˙
, (4.3)

with the channel bandwidth Bbetween sender and receiver. Possible sending enti-
ties include UE and UHs; the receivers could be UHs or MEC servers, among others.
Ptr
k is the transmission power for task k, and Hk denotes the channel gain between

sender and receiver during transmission of task k. Default values in the evaluation
are set to Hk “ 10–7 for UE to UHi, Hk “ 10–8 for UE to server, and Hk “ 10–7 for
UHi to server); additionally, �2 is the variance of the Gaussian channel noise. Since in
our scenario, the packets describing the tasks to be executed are of small size, the
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down-link data rate is neglected.

4.2.4 Computation model

In total, four decision options in our dynamic o�oading decision algorithm need to
be determined. These correspond to the various paths of the execution, namely
local execution (i.e., on the UE), remote execution (on a helper device) and remote
execution on the MEC server, in which case the tasks can be transmitted either di-
rectly to the MEC server by UE, or via relays. All of these relevant decision options
are de�ned now.

4.2.4.1 Local execution

For a local execution of task k at the UE, the execution time is fully given by

T l
k “

bkck
f UEk

, (4.4)

where, the data size for each task k is bk in bits, ck the required computational CPU
cycles per bit, and f UEk the computation capacity allocated in the user’s device for
task execution. Based on (5.10) and the e�ective switched capacitance, modeled as
a (constant) factor depending on the chip architecture and denoted by � (cf. [150]),
the energy consumption in this purely local execution mode can be estimated as

El
k “ �bkck

`
f UEk

˘2 . (4.5)

4.2.4.2 Helper execution

In the second mode, task execution is comprised of two steps. First, task k is trans-
ferred from UE to helper node UHi via D2D communication, after which is executed
on UHi. Thus, the total time required for execution is given by

Thi
k “

bk

rUHi
k

+
dk

f UHi
k

, (4.6)

in which rUHi
k is the communication transmission rate from UE to UHi and f UHi

k is
the computation capacity of UHi, provisioned for the execution of task k. Deriving
from (4.6), the energy consumption of the helper execution mode is driven by three
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Figure 4.4: Timing diagram for task execution by an external computing resource
(helper UH) [4].

phases. The task transmission from UE to helper, the task execution phase, and �-
nally the energy consumed by the UE while waiting to receive the result back from
the helper:

Ehi
k “ Ptr

k

˜
bk

rUHi
k

¸
+ �

´
f UHi
k

¯2
dk + Pwait

k

ˆ
dk

f UHi

˙
, (4.7)

where Ptr
k represents the transmission power of the UE, rUHi

k is the transmission rate
from the UE to UHi, and Pwait

k is the idle circuit power while the device is waiting for
the result.

As described above, a total of I helpers are available for the UE. Therefore, hi
k “

1,hi
k P H, means that UE has chosen to o�oad task k to UHi, where H “ thi

k|k P K, i P
Uu is the variable set for helper node selection. Taking into consideration that any
task k can only be o�oaded to one helper at the same time in any e�cient manner,
consequentially this constraint follows:

ÿ

iPH
hi
k § 1. (4.8)

To illustrate this concept, we have shown the o�oading process of a task k to the
helper in Figure 4.4: the time ttrk is needed to transmit task k to helper node i, and texek

is required for the execution of the task on the helper. For completeness, the time
ttrreswould be needed for the return trip of the result back from helper node i to the
UE, but this is neglected in our model due to the typically small size of output.
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4.2.4.3 Server execution

As hinted at above, two fundamental paths exist for task execution on the server:

• Direct o�oading to the MEC server: Without additional hops, the execution
delay for task k is as follows

Tsm
k “

bk

rSmk
+

dk

f Smk

, (4.9)

with rSmk as the transmission rate from UE to server Sm, and f Smk denoting server
Sm’s CPU computation cycle frequency for execution. For the resulting energy
usage, the following equation results:

Esm
k “ Ptr

k

˜
bk

rSmk

¸
+ Pwait

k

˜
dk

f Smk

¸
. (4.10)

Generally, the MEC server’s energy consumption is generally ignored in (4.10),
since these servers do typically not rely on limited battery power.

With M servers available in the area to the UE, the UE has a placement choice
tomake. This results in smk “ 1 for one server Sm, with the set smk P S, S “ tsmk |k P

K,m P Mu containing all selection variables for MEC server nodes. Only one
task may be served at any given time at each MEC server, so this following
constraint mirrors the one introduced above:

ÿ

mPM
smk § 1. (4.11)

• O�oading from UE via relay UHi to the MEC server: The o�oading UE �rst
sends the task to the relay UHi, which then forwards it to the server Sm. This
results in delay consisting of three steps, two for transmissions and one for
computation:

Tsi,m
k “

bk

rUHi
k

+
bk

rSm,i
k

+
dk

f Smk

, (4.12)

with transmission rate rSm,i
k from UHi to server Sm. Then, the energy consump-
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tion can be written as

Esi,m
k “ Ptr

k

˜
bk

rUHi
k

¸
+ Pwait

k

˜
bk

rSm,i
k

+
dk

f Smk

¸
+ Ptr,i

k

˜
bk

rSmk

¸
, (4.13)

where the transmission power of UHi is given by Ptr,i
k and the result is assumed

to be sent back directly from server Sm to the UE.

Mirroring above’s approach, the selection variables si,mk “ 1, si,mk P HS for o�oad-
ing task k to Sm via UHi are presented, where the set HS “ tsi,mk |k P K, i P I,m P

Mu contains all selection variables corresponding to relays and MEC servers,
respectively. Again, since every single helper node could only provide service
to one task at any one time instance, the constraint follows as

ÿ

mPM

ÿ

iPI
si,mk § 1. (4.14)

4.2.5 Mobility model

Recent literature includes learnings that most user trajectories contain similar pat-
terns [143,151]. We incorporate this insight to achieve e�ective task o�oading with
realistic mobility-awareness. To this end, we make use of ML to predict paths of
both the UEs and UHs to accurately estimate their available service coverage time.
Speci�cally, we employ the DL based method PECNet [5] to predict socially compli-
ant trajectories which infer users’ destinations. DL [152] is a branch of ML methods
called Neural Network (NN), and had signi�cant impact in computer vision, natural
language processing and control. NNs are (often high-dimensional) mappings from
an input space to an output space. Layers are stacked from input to output and con-
nected in various forms (mot notably, feed-forward). A layer itself is made up from
simple units, "Neurons", that each perform a nonlinear operation on the sum of their
weighted inputs. Every single connection to every neuron has a weight that is cali-
brated during the learning process to �t data, according to some loss function. DL is
typically referred to in situations with more than three layers. Being trained on real
world data, PECNet enhances the plausibility of the predicted trajectories in addition
to using the historical data of motion paths. Altogether, this yields coherent trajec-
tories for users. PECNet divides the prediction problem into two parts: Firstly, it esti-
mates the potential destinations of users using a Variational Auto-Encoder (VAE) for
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Figure 4.5: PECNet system model [5]: Past trajectory encoder and endpoint estima-
tion variational encoder (VAE) feed into social pooling module to predict
paths.

endpoint prediction. Scondly, it predicts socially compliant trajectories while jointly
considering the motion history and potential destinations of all users in the scene.

The PECNet system model, which is shown in Figure 4.5, includes three key ele-
ments: a past trajectory encoder, an endpoint VAE, and a social pooling module. The
user’s motion histories are encoded via the past trajectory encoder, feeding into the
endpoint VAE for an estimation of the user’s destination. After that, the social pool-
ing module uses all users’ encoded past trajectoriess and estimated destinations to
jointly predict the future paths of all users in the scene. The �nal output are user-
speci�c paths whose future segments (i.e., the predictions) strongly depend on the
past locations (i.e., the inputs).

In our scenario, the initial positions of the UE and the helper node i at time t are
de�ned as XUE

t “ pxt , ytq and XUHi
t “

`
xit , yit

˘
, respectively. Then, the trajectories of the

UE and helpers from time (t – n + 1) to t are:

XUE
“
 
XUE
t–n+1, XUE

t–n+2, � � � , XUE
t
(

(4.15)

XUHi “

!
XUHi
t–n+1, X

UHi
t–n+2, � � � , XUHi

t

)
. (4.16)

This information can be directly collected by the edge server. PECNet takes these
trajectories of UE as well as helpers, and outputs the predicted movements from
time (t + 1) to (t + l):

pYUE
“

!
pYUE
t+1, pYUE

t+2, � � � , pYUE
t+l

)
(4.17)
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pYUHi “

!
pYUHi
t+1 , pY

UHi
t+2 , � � � , pYUHi

t+l

)
, (4.18)

where pYUE
t “ px̂t , ŷtq and pYUHi

t “
`
x̂it , ŷit

˘
. A D2D link between the UE and the helper

i at time t can be established if the UE is in the coverage area of helper iwhich has
radius Ri, i.e., if b`

x̂t – x̂it
˘2 +

`
ŷt – ŷit

˘2
§ Ri. (4.19)

The sojourn time in helper i’s coverage of UE from time t forward is then given as

Thi
s,t “ max l, s.t.

b
px̂� – x̂i�q

2 + pŷ� – ŷi�q
2

§ Ri, @� P rt, t + ls , � P Z. (4.20)

The same process can be utilized analogously to obtain the sojourn time of the UE
as well as UHi with respect to the coverage of MEC server Sm.

Due to the users’ mobility, the service coverage is limited, introducing a hard prob-
lem; in ourmethod, we tackle this by de�ning the sojourn and �nish times of the tasks
in such a way that users never choose a destination if the period of the coverage
availability is less than the time required for task execution.

4.3 Dynamic computation o�oading problem
formulation

The joint optimization of the computation and communication cooperation in our
framework for the execution of task k considering the o�oading decision options
de�ned above and the deadline constraints for execution of tasks can be de�ned as
follows

Eexe
k “ xkEl

k + hi
kE

hi
k + smk E

sm
k + si,mk Esi,m

k , (4.21)

where xk, hi
k, smk and si,mk denotes the binary decision variables for encoding the deci-

sion options. Only one of these variables, corresponding to the computation entity,
can be 1 per each task and the rest are 0. The task execution time can be formulated
as

Texe
k “ xkT l

k + hi
kT

hi
k + smk T

sm
k + si,mk Tsi,m

k . (4.22)
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Hence, the �nish time of task k is

FTk “ Texe
k + STk. (4.23)

The optimization problem for minimal energy cost can be formulated considering
the application’s execution deadline constraint, the users’ movements, and the task
dependency relations as:

OP1 : min
�,�

Eexe
tot “

Kÿ

i“1

Eexe
k , @k P K,

s.t : C1 : xk,hi
k, smk , s

i,m
k P t0, 1u, @k P K, @i P I, @m P M

C2 : xk +
Iÿ

i“1

hi
k +

Mÿ

m“1

smk +
Mÿ

m“1

Iÿ

i“1

si,mk “ 1, @k P K

C3 : STk “

$
&

%
max
jP�(k)

FTj �(k) ‰ H, @k P K

0 �(k) “ H, @k P K

C4 : FTK § Tmax
d ,

C5 : FTk § Ts,k, @k P K,

(4.24)

where � “ [x1,h1
1, � � � ,hI

1, s11, � � � , sM1 , s1,11 , � � � , sI,M1 , � � � , xK ,h1
K , � � � ,hI

K , s1K , � � � , sMK , s1,1K , � � � , sI,MK ]
and � “ [ST1, ST2, � � � , STK ] denote the o�oading decision variables and start time
sets, respectively. C3 demonstrates the start time constraint for each task k accord-
ing to the predecessors. For tasks with no predecessor, the execution process can
get started immediately, while for the rest, themaximum �nish time of the respective
predecessors determine the start time of the execution. Constraint C4 denotes that
the �nish time of the last task K which shows the time needed for the whole execu-
tion process, should satisfy the time deadline Tmax

d constraint of the application. C5
shows that an o�oading destination may be selected if only the sojourn time for the
device in the range of the computation resource is more than the time needed to
�nish executing task k.

The sojourn time of the di�erent o�oading methods can be obtained as follows

Ts,k “

$
’’&

’’%

Thi
s,t , if hi

k “ 1

Tsm
s,t , if smk “ 1

mintThi
s,t , T

sm
s,t , T

si,m
s,t u, if si,mk “ 1.

(4.25)
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Where Thi
s,t and Tsm

s,t represent the user’s sojourn time when it is in the range of helper
node UHi and the MEC server Sm respectively, while Tsi,m

s,t is helper UHi sojourn time in
the coverage area of theMEC server Sm. According to C5 it is shown that an o�oading
destination may be selected if only the sojourn time for the device in the range of
the computation resource is more than the time needed to �nish executing of task
k. However, in case the relay option is chosen, the execution completion time of the
task should be less than the minimum sojourn time between the UE and UHi, UHi

and the MEC server Sm, as well as the UE and the MEC server Sm.

The binary constraints make the optimization problem (OP1) a non-convex MINLP
problem which cannot be solved in polynomial time [153]. In order to e�ciently �nd
a feasible solution, we �rst transform the problem to an equivalent QCQP format.
Then, using a SDR and stochastic mapping method, the binary o�oading decisions
can be recovered.

4.4 Solution of dynamic computation o�oading
optimization problem

The �rst step towards �nding the solution for the Optimization Problem (OP1) is
converting the integer constraints to a quadratic formulation:

xk pxk – 1q “ 0, hi
k
`
hi
k – 1

˘
“ 0, smk psmk – 1q “ 0, si,mk

´
si,mk – 1

¯
“ 0, @k P K , @i P I,@m P M.

(4.26)
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The QCQP transformation of OP1 can be then expressed as follows considering the
quadratic constraint formulations

OP2 : min
�,�

Eexe
tot

s.t : C1 : xk pxk – 1q “ 0, hi
k
`
hi
k – 1

˘
“ 0, smk psmk – 1q “ 0, si,mk

´
si,mk – 1

¯
“ 0,

@k P K , @i P I, @m P M

C2 : xk +
Iÿ

i“1

hi
k +

Mÿ

m“1

smk +
Mÿ

m“1

Iÿ

i“1

si,mk “ 1, @k P K

C3 : STk “ 0 @j P �(k),�(k) “ H, @k P K

STk – FTj • 0, @j P �(k),�(k) ‰ H, @k P K

C4 : FTK § Tmax
d ,

C5 : FTk § Ts,k, @k P K,
(4.27)

where we reformulated C1 and vectorized C3.

Furthermore, we introduce a vector v with dimension pp2 + I +M + IMq K + 1qˆ1 as
v “ r�,�, 1sT , and a standard unit vector ej with the jth entry equal to 1 and dimension

((2 + I +M + IM)K + 1)ˆ 1.

Thus, the QCQP transformation of OP2 can be written as

OP3 : min
v

(n0)Tv

s.t : C1 : vTdiag(ej)v – (ej)Tv “ 0, j “ 1, � � � , (1 + I +M + IM)K

C2 : (n1k)Tv “ 1, @k P K

C3 : (e(1+I+M+IM)K+1)Tv “ 0, @j P �(k),�(k) “ H, @k P K

C3 : (e(1+I+M+IM)K+k)Tv – (nT )Tdiag(n3)v • 0,@j P �(k),�(k) ‰ H @k P K

C4 : (n2)Tv § Tmax
d ,

C5 : (nT – nTs )Tdiag(n1k)v § 0, @k P K,

(4.28)
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where
v “[x1,h1

1, � � � ,hI
1, s11, � � � , sM1 , s1,11 , � � � , sI,M1 , � � � , xK ,h1

K ,

� � � ,hI
K , s1K , � � � , sMK , s1,1K , � � � , sI,MK , ST1, � � � , STK , 1]T ,

n0 “[El
1, E

h1
1 , � � � , EhI

1 , E
s1
1 , � � � , EsM

1 , Es1,1
1 , � � � , EsI,M

1 ,

� � � , El
K , E

h1
K , � � � , EhI

K , E
s1
K , � � � , EsM

K , Es1,1
K , � � � , EsI,M

K ,01ˆ(K+1)]

(4.29)

are the decisions set to determine which resource destinations the tasks should be
o�oaded to, respectively; n0 is the energy consumption vector associated with a full
set of decisions. Note that it is extended by a row of zeros for the optimizer.

n1k “e(1+I+M+IM)(k–1)+1 + ¨ ¨ ¨ + e(1+I+M+IM)k–1 + e(1+I+M+IM)k + e(1+I+M+IM)K+k

n2 “[01ˆ(2+I+M+IM)(K–1), T l
K , T

h1
K , � � � , ThI

K , T
s1
K , � � � , TsM

K , T l,s1,1
K , � � � , T l,sI,M

K , 01ˆ(K–1), 1, 0]T

n3 “e(2+I+M+IM)(j–1)+1 + ¨ ¨ ¨ + e(2+I+M+IM)j–1 + e(2+I+M+IM)j + e(2+I+M+IM)K+j

nT “[T l
1, T

h1
1 , � � � , ThI

1 , T
s1
1 , � � � , TsM

1 , Ts1,1
1 , � � � , TsI,M

1 , � � � , T l
K , T

h1
K , � � � , ThI

K , T
s1
K , � � � , TsM

K , Ts1,1
K ,

� � � , T l,sI,M
K , 11ˆ(K+1)]T

nTs “[Tmax
d , Th1

s,t , � � � , ThI
s,t , T

s1
s,t , � � � , TsM

s,t , T
s1,1
s,t , � � � , TsI,M

s,t , � � � , Tmax
d , Th1

s,t , � � � , ThI
s,t , T

s1
s,t , � � � , TsM

s,t ,

Ts1,1
s,t , � � � , TsI,M

s,t , 11ˆ(K+1)]T

(4.30)
are the constraints reformulated equations, consisting of standard unit vectors and
sojourn times.
By de�ning g “ [vT1], we change the OP3 to a homogeneous QCQP. We further take
n1
1 “ diag(n1k), n1

3 “ diag(n3), a “ (2 + I + M + IM)K , b “ (1 + I + M + IM)K + 1, and
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c “ (1 + I +M + IM)K + k for ease of understanding the equations. Therefore,

OP4 : min
g

gT pM0q g

s.t : C1 : gTM1g “ 0, j “ 1, � � � , p1 + I +M + IMq K

C2 : gTM2g “ 1,@k P K,

C3 : gTM3g “ 0, @j P �(k),�(k) “ H, @k P K

C3 : gTM1
3g • 0, @j P �(k),�(k) ‰ H, @k P K

C4 : gTM4g § Tmax
d ,

C5 : gTM5g § 0, @k P K,

(4.31)

OP4 is in the standard format of the QCQP solvers along with the constraints re-
quired for the di�erent device roles in our framework. For this, all constraints are
converted into matrix form, i.e.,

M0 “

»

– 0(a+1)ˆ(a+1)
1
2n0

1
2 pn0q

T 0

fi

fl

M1 “

»

– diag(ej) –1
2ej

–1
2

`
ej
˘T 0

fi

fl

M2 “

»

– 0(a+1)ˆ(a+1)
1
2n1k

1
2 (n1k)T 0

fi

fl

M3 “

»

– 0(a+1)ˆ(a+1)
1
2eb

1
2 pebq

T 0

fi

fl

M1
3 “

»

———–

0aˆa –1
2

”
pnTq

T n1
3

ıT
1
2 pecq

T

–1
2

”
pnTq

T n1
3

ı
0 0

1
2(ec)

T 0 0

fi

���fl

M4 “

»

– 0(a+1)ˆ(a+1)
1
2 pn2q

1
2 pn2q

T 0

fi

fl

M5 “

»

– 0(a+1)ˆ(a+1)
1
2

”
pnT – nTsq

T n1
1k

ıT

1
2

”
pnT – nTsq

T n1
1k

ı
0

fi

fl .

The �nal conversion step is de�ningG “ ggT which is the symmetric, positive semidef-
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inite matrix.

OP5 : min
G

Tr(M0G)

s.t : C1 : Tr(M1G) “ 0, j “ 1, � � � , (1 + I +M + IM)K ,

C2 : Tr(M2G) “ 1,@k P K

C3 : Tr(M3G) “ 0, @j P �(k),�(k) “ H, @k P K

C3 : Tr(M1
3G) • 0, @j P �(k),�(k) ‰ H, @k P K

C4 : Tr(M4G) § Tmax
d ,

C5 : Tr(M5G) § 0, @k P K

C6 : G[a + 1, a + 1] “ 1

C7 : G[a + 1, a + 2] “ 1

C8 : G[a + 2, a + 1] “ 1

C9 : G[a + 2, a + 2] “ 1

C10 : rank(G) “ 1.

(4.32)

4.4.1 Energy-e�cient task o�oading (EETO) algorithm

Considering the inter-task dependency and the application completion deadline con-
straints introduced above, a stochastic mapping method is proposed in this section
to obtain the optimized o�oading strategy. Dropping the last non-convex constraint
of rank 1, SDR is employed to get an approximate solution G̃, the last row of which in-
cludes [�,�, 1, 1]. In case rank(G̃) “ 1, � is directly extracted as o�oading decision for
all tasks from the last row of G̃. Otherwise, a probability-based stochastic mapping
method is deployed to recover the solution. The largest value of each o�oading de-
cision is selected for task k, from the elements group with index k in � and is labeled
as t1, t2, t3, and t4. Then, t1, t2, t3, and t4 are mapped based on the probability based
stochastic mapping method:

q1t1 + q2t2 + q3t3 + q4t4 “ 1 (4.33)

Q1 “ q1t1,Q2 “ q2t2,Q3 “ q3t3,Q4 “ q4t4, (4.34)
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where Q1, Q2, Q3, and Q4 are the probabilities of the corresponding o�oading deci-
sion being 1. We randomly set ti “ 1 according to the probabilities Qi and the rest
in � are set to 0. For example, when I “ 2,M “ 2, and K “ 3, then the dimension
of vector � would be (1 + I + M + IM)K “ 27. We have 1 + I + M + IM “ 9 elements
per each task and if the solution were not rank 1, each element could be a value
between 0 and 1 and the sum of the 9 elements equals 1. According to ((4.33)) and
((4.34)), we stochastically map their probability that the corresponding o�oading de-
cision would be selected with Q1, Q2, Q3, and Q4, respectively. Then, one of the two
numbers is randomly set to 1 while the rest of the 9 elements are set to 0. This
means that only one o�oading decision would be selected for each task. The same
stochastic mapping method is performed for all tasks and after making decisions,
the o�oading strategy would be obtained �̃. In addition, comparing FTK and Tmax

d ,
the selected strategy could be feasible if only FTK § Tmax

d . The process is repeated L
times to obtain more accurate solutions and the one with the minimum energy cost
is selected. The algorithm is summarized as Algorithm 1.

4.5 EETO evaluation

4.5.1 Simulation setup

The UE and UHs are initially randomly distributed following the mobility pattern of
the publicly available PECNet dataset [5]. The coverage area for the BSs and each
user equipment are 400 m and 50 m, respectively. In PECNet model as a common
mobility benchmark over 11,000 unique pedestrians in a university campus are con-
sidered [5]. The user’s mobility speed is initially set to 1m/s. The other relevant
parameters of the simulation are listed in Table 5.1.

We benchmark EETO against four other approaches for computation placement,
namely the purely UE using all local (ALO), the remote-centric all sever (ASO), and the
two hybrids computation cooperation optimization (CPCO), and communication co-
operation optimization (CMCO). In other words, the tasks are all executed locally on
the UE in ALO; while with ASO, all tasks are executed remotely on the MEC servers.
CPCO allows for the usage of adjacent devices’ computation resources which allows
the UHi to act as a helper node. Finally, in CMCO, UHi can only act as transmitter,
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Algorithm 1: Energy-E�cient Task O�oading (EETO) Algorithm [4]
Input: L, K , I, M, Tmax

d , B, �2, P(k), bk, ck, Hk, Ptr
k , Pwait

k , f UEk , f UHi
k , f Smk , @k P K, XUE , XUHi

Output: �
Initialize: Predict path of UE and helpers by PECNet with historical path XUE ,
XUHi , calculate Ts,k with Equation (4.25). Initialize the matrices in
Equation eq(4.32). Solve the SDP problem in Equation (4.32), dropping the
rank-1 constraint yielding the optimal solution G̃. Extract the �rst
(1 + I +M + IM)K elements of the last row in G̃ as �1;
if rank(G̃)==1 then

� “ �1;
else

for l = 1:L do
for k “ 1 : K do

s(k) “ (1 + I +M + IM) elements in �1(l) related to task k;
Perform probability based stochastic mapping: set one element of
s(k) to 1 and others to 0;
Compute the current FTk by �1(l) and Equation (4.23);
if FTk > Ts,k then

Discard �1(l);

if FTK > Tmax
d then

Discard �1(l);
else

�1(l) saved as a feasible solution and calculate total energy
consumption by �1(l) and Equation (4.21);

Select the solution �̃ among �1(1),. . . ,�1(L) that yields the minimum energy
cost;
� = �̃.

forwarding the tasks for execution to the MEC server.
Multiple independent simulation replications were run for each evaluation to elimi-
nate random in�uence. The resulting 95% con�dence intervals however spread out
less than 5% from the corresponding sample means, and are omitted from the plots
to avoid visual clutter.

4.5.2 Simulation results

Figure 4.6 shows the energy usage versus the computation CPU cycles needed for
execution of each bit of task k, which is the same parameter sweep approach as in
Chapter 3, but this time for the �nal �ve methods. As expected, the energy usage
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Table 4.2: Simulation parameters [4]
Parameters Value
I 10
M 2
K 25
bk 200 – 400KB
ck 30 – 50 cycles/bit
Tmax
d 4.4 s
B 5MHz
�2 10–9 W
Ptr
k 0.2W

Pwait
k 0.05W

f UEk 0.1 ¨ 109 cycles/s
f UHi
k 0.5 ¨ 109 cycles/s
f Smk 2 ¨ 109 cycles/s
�UHi 0.8 ¨ 10–27 F
�UE 10–25 F

of ALO increases linearly with increase of the computations per bit. The energy us-
age of ASO is nearly constant with a slight increase, which is explainable by the nearly
constant energy demand for transmitting the data to the server. When the computa-
tions per bit increases, the user’s device uses additional energy while idly waiting on
the server, a far lower usage than the transmission energy. As an intermediate result
it can be stated that for simple tasks, local execution or nearby helper execution is an
e�cient approach. Consequently with few computations per bit, CPCO outperforms
CMCO, because it allows o�oading the task to the helper. For more involved tasks,
execution at the server is more energy e�cient. As expected for this situation, most
of the energy is e�orted for the transmission of the data to the server. With CMCO’s
more varied support of transmission paths, CMCO can outperform CPCO when the
computations per bit are large. It can be observed from Figure 4.6 that the proposed
EETO method is able to achieve the lowest average energy consumption among all
approaches. EETO trades o� optimally between the two approaches of computa-
tion cooperation (CPCO) and communication cooperation (CMCO), and thus it is free
to achieve minimal average energy usage across the full range of task complexities,
i.e., required computation cycles ck per bit for task k. In the most assumption-free
heterogeneous operating scenarios and with a wide range of task complexities ck,
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Figure 4.6: Average energy consumption vs. task computation demands ck; �xed pa-
rameters: uniform random data size dk “ 200–400 KB, random task de-
pendency, task deadline Tmax

d “ 4.4 s [4].

EETO decides in an optimal way for each task k, depending on the individual per-task
characteristics and thus can extract substantial energy usage reductions compared
to the CPCO or CMCO benchmarks, which are only free to exploit one single type of
cooperation each.

In case of required CPU cycles ck per bit of less than 10 cycles/bit, ALO achieves
minimum energy consumption among all methods, in line with previous observa-
tions and intuition gained above. When this parameter ck of required computations
increases, ALO can still satisfy the deadline requirements, but the energy usage in-
creases over the competing algorithms. As is shown in Table 4.3, with computation-
intensive workloads corresponding to ck • 20 cycles/bit, ALO fails to �nish the task
executionwithin the deadline. This failure clearly demonstrates the bene�ts of (energy-
aware) o�oading methods. In Figure 4.7, we validate that increasing task size de-
mands more energy to o�oad the task to the helper or server, to the point where
additional computational resources are necessary for execution. This results in in-
creased average energy usage, which of course is invariant to the chosen approach.
We note how the newly introduced method achieves best in class results compared
to the other methods, irrespective of data size.
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Table 4.3: Finish time of local computing (ALO); Deadline: Tmax
d “ 4.4 s [4]

Computations Finish time of
per bit ck the last task [s]

0 0
5 1.2155
10 2.4201
15 3.6314
20 4.8343
25 6.0631
30 7.2743
35 8.4917
40 9.6840

Figure 4.7: Average energy consumption vs data size dk; �xed parameters: uniform
random computation cycles per bit ck in the range 30–50 cycles per bit,
random task dependency, task deadline Tmax

d “ 4.4 [4].

Similar behaviour can be observed for computation intensive tasks, and Table 4.4
shows that with increasing task data size, the ALOmode cannot satisfy the latency re-
quirements. To enable applicationswith these requirements, the need for an energy-
aware o�oading method is demonstrated herein again. Finish time and average en-
ergy usage of the �ve analyzed algorithms are shown in Figures 4.8a and 4.8b for
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Table 4.4: Finish time for local computing (ALO); Red numbers violate the deadline
of Tmax

d “ 4.4 s [4]

Data size Finish time of
(KB) �nal task (s)
0 0
50 1.6038
100 3.248
150 5.1438
200 6.1856
250 8.256
300 9.9504
350 11.5976
400 12.9008

the task dependency relationship graphs corresponding to sequential, random, and
parallel dependencies. The proposed EETO algorithm demonstrated the lowest en-
ergy consumption in the comparison. With a sequential dependency graphs, each
task has exactly one predecessor, whose execution is required to have completed in
order to start task execution. In contrast, with random and/or parallel dependency
graphs, each task can have zero, one, ormultiple predecessors, which requires vastly
di�erent o�oading decisions to bemadewhen compared to sequential dependency
graphs. Since multiple tasks can be executed at the same time in random and par-
allel graphs, lowered total execution time should be expected to be achievable for
all methods for the same number of total tasks. EETO does not always feature the
shortest execution time, perhaps counter intuitively. Its goal is to minimize the en-
ergy usage while keeping the �nal �nish time below the deadline. In any case, EETO’s
execution time is very close to the minimum. Figure 4.9a shows the average en-
ergy consumption as a function of the transmit power Ptr

k . As it can be observed,
increasing Ptr

k leads to an overall growth of the average energy consumption. Due to
the energy-e�cient relay task transmission to the MEC servers for low Ptr

k “ 45 mW,
EETO andCMCO consumeonly about two-thirds of the battery of CPCO and less than
half of ASO, however, for a high transmission power, EETO and CPCO achieve higher
energy savings compared to ASO and CMCO by avoiding the energy-expensive direct
transmission to an MEC server and the relay transmission.
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(a) Finish time vs. dependency graphs. (b) Average energy vs. dependency graphs.

Figure 4.8: Impact of task dependency graph; �xed parameters: uniform random
data size dk “ 280–320 KB, ck “ 30–50 computation cycles per bit (uni-
form random), task deadline Tmax

d “ 9 s [4].

Figure 4.9b shows the average energy usage as a function of the user’s speed.
The UHi ’s default speeds are considered 0.7 m/s [5]. As it can be seen in the be-
ginning, energy consumption is decreased as the user’s speed increases to 1.5 m/s
and then it increases as the UE speed increases since a similar moving speed as the
surrounding UHi leads to a longer sojourn time. Importantly, Figure 4.9b shows that
EETO consistently reduces the battery energy consumption compared to CPCO and
CMCO across the full range of considered user’s speeds.

(a) (b)

Figure 4.9: Average energy consumption vs. transmit power and user’s speed). (a)
Transmit power Ptr

k , (b) UE speed [4].

As such, the average energy usage levels versus di�erent latency requirements

89



Figure 4.10: Average energy consumption vs execution deadline Tmax
d ; �xed param-

eters: uniform random data size dk “150–180 KB; random task depen-
dency [4].

Tmax
d are shown in Figure 4.10. With relaxation of the deadline of the �nal task, energy-
e�cient helpers are free to take some of the load to execute tasks even with a long
processing time. Consequently, more tasks are o�oaded to energy-e�cient helpers,
which again reduces the energy e�ort of CPCO and EETO. For ASO and CMCO, this
relaxation of constraints introduces no exploitable change, since all the tasks are
executed on the cloud, and the energy usage remains essentially constant.

4.6 Conclusion

We investigated the optimization of joint computation and communication resource
allocation for computation o�oading decision in a dynamic device-enhanced MEC
system, considering the user mobility, the task dependencies and application dead-
line with the goal of improving the users’ battery life time. We employed a DL based
method to predict the trajectory of the users and the mobility impact has been char-
acterized through the concept of sojourn time. Simulation results demonstrated
that our proposed algorithm does achieve favorable performance when compared
to other algorithms. Indeed, our system always �nds a strategy to minimize energy
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usage, in most cases outperforming the naive approach of selecting for every pa-
rameter con�guration the o�oading decision that gives the minimum energy. It can
save 56.34% of energy when compared with on device execution of the tasks and
33.73%when compared with an all server execution strategy. An important direction
for future work is to investigate incentive mechanisms that promote fair cooperation
between users.
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5 Incentive-aware Cooperative
Computation O�oading

5.1 Introduction

In Chapter 3, we �rst discussed a basic static scenario with three nodes and in Chap-
ter 4, we extended our scenario to a dynamic one with user mobility and handover
between small cells. However, the fact that users should be motivated to share their
computation and communication resources has been neglected. Therefore, in this
chapter, we propose an incentive-aware dynamic computation o�oading in a dense
small cell which ismore practical in real world scenarios. Simulation results show that
our proposed method can achieve superior performance compared to the other
state-of-the-art algorithms.
In order to solve such a mixed integer non linear algorithm, we apply a genetic algo-
rithm [154] to minimize the energy consumption required for execution of the tasks
while satisfying the execution time deadline of users’ applications.
This chapter is organized as follows. First, the system model and network condi-
tions are introduced in Section 5.2. Then, the optimization problem is formulated
in Section 5.3. The genetic algorithm method for our o�oading decision algorithm
is explained in detail in Section 5.4. In Section 5.5, numerical results are presented
and �nally, conclusions and future works are stated in Section 5.6.
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5.2 System model

In our system, as it is shown in Figure 5.1, we assume there to be N UEs represented
by the set of N “ t1, 2, ...,Nu. Each user has to perform an application which is
divided into K �ne-grained inter-dependent tasks. Same as in previous chapters,
it is assumed that UEs are randomly distributed in a small cell with a MEC server
attached to the BS, so we do not set up a favouring scenario. The BS is in charge of
the D2D and cellular links control as well as o�oading decision making algorithm. In
this work, OFDMA is used to address concurrent transmissions of users to the BS
and D2D links are dedicated and there is no cellular frequency reuse.
A device can act as a helper or relay for UE n, only if it is in its coverage radius, meaning
that the distance d p¨, ¨q between two users is upper-bounded by the threshhold Ri.
Therefore, a set of N – n resource devices of

H “

§

nPN
ti P N : d pn, iq § Riu

can be de�ned such that H Ä N. In essence, the D2D link between two UEs can be
established if the distance between them is below the threshold Ri.
The wireless channel is assumed quasi-static during the execution time and the CSI
and computation related parameters are available to the devices. The computation
result of each task is assumed much smaller than the input bits, therefore, the time
for sending the result back is negligible and thus, only the transmission time of the
task input and the execution time are taken into consideration. There is a time dead-
line for completing the UEs’ tasks and it is assumed that the data size and computa-
tion resource requirements for each task are known in advance. In the following, we
elaborate the system model parameters.

5.2.1 Task model

Same as Section 4, the tasks follow general dependency using a directed acyclic
graph which is represented by G “ (V , E). The set V includes the tasks and e(i, j) indi-
cates the relationship between tasks i and j, meaning that if task i is the predecessor
of task j, the edge e(i, j) exits in E [131].
Each task k from device n has a set of parameters An,k “ tbn,k, cn,k, dn,ku, where bn,k
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Figure 5.1: The system model containing one small cell and multiple users with mul-
tiple tasks.

is the data size of computation task k (in bits) of device n, cn,k is the computation re-
sources which are required for execution of each bit of task k of device n (in CPU
cycles/bit), and dn,k , equals to bn,k ˆ cn,k, is the total amount of required computation
resources for execution of the task k and Tmax

n is the time deadline for the execution
process of the whole application of device n.

5.2.2 Communication model

The up-link data rate for task k of UE n can be calculated using the Shannon theorem
and the down-link data rate is neglected in our scenario due to the small size of the
executed tasks.

rn,k “ B log2

ˆ
1 +

Ptr
k Hk

� �2

˙
, (5.1)
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Here, Ptr
k is the sender’s transmission power, B and H are the channel bandwidth and

channel gain between sender and receiver, respectively, and �2 denotes the variance
of theGaussian channel noise. � is the coding gap as a function of bit error rate which
is determined based on the coding schemes and medium access protocol [131]. To
simplify the model, here we assume � “ 1.

5.2.3 Mobility model

The mobility model in this section is same as Chapter 4. ML is employed to pre-
dict the users’ paths and obtain their available service coverage time. The DL based
method PECNet [5] is employed to predict socially compliant trajectories which con-
clude from users’ destinations to help prediction.
In our scenario, the position of the UE n and the helper node i at time t are de�ned
as Xn

t “ pxnt , ynt q and X i
t “

`
xit , yit

˘
, respectively. The UE n and its corresponding helpers’

paths from pt – n + 1q to t are:

Xn
“ tXn

t–n+1, Xn
t–n+2, � � � , Xn

t u (5.2)

Xi
“
 
X i
t–n+1, X i

t–n+2, � � � , X i
t
(
. (5.3)

The edge server is responsible to collect this information. The trajectories of UE n
and helpers are PECNet inputs and outputs are the predicted movements from time
pt + 1q to pt +mq:

pYn
“

!
pYn
t+1, pYn

t+2, � � � , pYn
t+m

)
(5.4)

pYi
“

!
pY i
t+1, pY i

t+2, � � � , pY i
t+m

)
, (5.5)

where pYn
t “ px̂nt , ŷnt q and pY i

t “
`
x̂it , ŷit

˘
. For establishing a D2D link between the UE n

and the helper i at time t, the UE n should be in the coverage area of helper i with
radius Ri, b`

x̂nt – x̂it
˘2 +

`
ŷnt – ŷit

˘2
§ Ri. (5.6)

The sojourn time of UE in helper i’s coverage from time t is then given as:

Ts,i,t “ max m, s.t.
b

px̂n� – x̂i�q
2 + pŷn� – ŷi�q

2
§ Ri, @� P rt, t +ms Ä Z. (5.7)
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5.2.4 Computation model

There are four possible scenarios in our task o�oading algorithm: local execution
on the UEs, remote execution on the helpers, remote execution on the MEC server
via a direct o�oading from UE or via the relay to the MEC server.
Depending on that which device or server is executing the task, the time and energy
needed for execution of task k is calculated based on the computation capability of
the host. This can be calculated based on the CPU cycles needed for execution of
tasks which are known in advance in our scenario.

5.2.4.1 Local computing

The time needed for task k execution locally (on the UE n) is then obtained as follows:

T l
n,k “

dn,k

f ln,k
,@k P K,@n P N, (5.8)

where f ln,k is the computation capacity of UE n allocated for task k1s execution and it
is assumed to remain constant during processing of task k. Based on the e�ective
switched capacitance, the energy consumption per operation is � “ �(f ln,k)2 as a factor
depending on the chip architecture denoted as � [132]. Therefore:

El
n,k “ �

´
f ln,k

¯2
dn,k, @k P K,@n P N. (5.9)

The equations (5.8) and (5.9) are fully descriptive due to the no transmission possibil-
ity of data in the local mode. We de�ne the binary variable xn,k which when it equals
to one, it means that the UE chose to execute task k locally on UE n.

5.2.4.2 Computing on the helper

The task k of device n can be o�oaded to one of the helpers in setH. Suppose UE i
plays the role of helper to execute the task k of device n: the computation execution
time consists of two parts, communication time and computation time. Therefore,
the total time budget splits into two parts as follows:

T i
n,k “

bn,k

rin,k
+
dn,k

f in,k
, @k P K,@n P N, @i P H, (5.10)
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where rin,k is the transmission data rate between UE n to UE i and f in,k denotes the
CPU clock cycles per second allocated to execute task k of UE n on the helper i. The
energy consumption in this mode is then calculated as follows:

Ei
n,k “ Ptr

n,k

˜
bn,k

rin,k

¸
+ �

`
f in,k

˘2 dn,k,@k P K,@n P N, @i P H. (5.11)

Here, Ptr
n,k is the transmission power of UE n, rin,k is the transmission data rate from

UE n to UE i. The UE n can chose one helper at the time to o�oad task k. Therefore,
we de�ne a binary variable ai

n,k “ 1, indicates that the UE n chose to o�oad task k
to UE i, where i P H. Therefore, a logical o�oading selection algorithm should follow
the constraint ÿ

iPH
ai
n,k § 1. (5.12)

5.2.4.3 Computing on the edge cloud

Under this o�oading strategy mode, the task is o�oaded to the MEC server, which
has more powerful computation abilities and energy supply. The UE transmits the
task to the MEC server directly and after remote execution, the result is sent back to
UE. The energy consumption of the MEC server is neglected, since it is assumed that
the MEC server is powered by the grid. There are two time delay steps for transmis-
sion and computation:

Ts
n,k “

bn,k

rsn,k
+
dn,k

f sn,k
,@k P K,@n P N,@i P H, (5.13)

where rsn,k is the transmission rate from UE to MEC server and f sn,k is the computation
capacity allocated for task k of device n execution on the MEC server. The corre-
sponding energy consumption for the UE in this remote case execution is calculated
as follows:

Es
n,k “ Ptr

n,k

ˆ
bn,k

rsn,k

˙
, @k P K,@n P N, @i P H. (5.14)

We de�ne the binary variable yn,k which when it equals 1, it means that the UE chose
to o�oad task k directly to the MEC server.
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5.2.4.4 Computing on the edge cloud via relay

In this mode, the task is still o�oaded to the MEC server, but with the help from a
relay. This timeUE i receives the data fromUE n, and transmits the data further to the
MEC server. This can be a good strategy when the wireless channel state between
UE and MEC server is far worse than the channel state between the relaying UE i
and MEC server. Therefore, there are three time delay steps for transmissions and
computation:

T i,s
n,k “

bn,k

rin,k
+
bn,k

ri,sn,k
+
dn,k

f sn,k
,@k P K,@n P N,@i P H, (5.15)

Here, ri,sn,k is the e�ective transmission rate from UE i to the MEC server (after error
correction).

The corresponding energy consumption in this remote case execution can be then
calculated as follows:

Ei,s
n,k “ Ptr

n,k

ˆ
bn,k

rsn,k

˙
+ Ptr,i

n,k

ˆ
bn,k

rsn,k

˙
, @k P K,@n P N, @i P H. (5.16)

The UE n can chose one relay at the time to o�oad task k. Therefore, we de�ne a
binary variable a1i

n,k “ 1, which indicates that the UE n chose to o�oad task k to relay
i, where i P H. Therefore, a logical o�oading selection algorithm will have to follow
the constraint ÿ

iPH
a1i
n,k § 1. (5.17)

5.3 Task dependency

There will be one or more predecessor tasks for any task k ‰ 1 which without �nish-
ing execution of them, the execution process of task k cannot begin. In our o�oad-
ing decision algorithm, the tasks dependency is taken into account as follows [155]:
Start time: It is the earliest time that the execution process of task k can get begin,
meaning that execution of all predecessors of task k is completed. The start time of
task k of UE n can be de�ned depending on the o�oading modes.
Finish time: This is the time that the execution process for task k of UE n is �nished,

FTn,k “ xn,kFT l
n,k + ai

n,kFT i
n,k + a1i

n,kFT
i,s
n,k + yn,kFTs

n,k. (5.18)
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The determination of these important times branches depending on the o�oading
mode:

• Local computing: In this mode, the biggest time value between the completion
of the execution of task’s predecessors and the time that UE n is available for
execution process is considered as the start time.

ST l
n,k “ max

´
max

`
FTn,p

˘
, FT l

n,b, FTn
i,b1

¯
(5.19)

where p is the predecessor of task k. FT l
n,b is the �nish time for completion of

task b keeping theUE n occupied. If the UE n is acting as a helper at themoment
for other UEs, then, we have FTn

i,b1 for the execution completion process.
The �nish time can be then calculated as follows:

FT l
n,k “ ST l

n,k + T l
n,k (5.20)

• Computing on the helper: Same as above, in this mode, the task k of device
n has to wait for its predecessors’ execution and the availability of the helper i.
In case helper i is acting as a relay for the task b1 of UEm, we should wait till UE
m �nishes o�oading its task to UE i after which the D2D link is free. Note that
task k can be o�oaded to the helper simultaneously with o�oading task b1 to
the edge.

ST i
n,k “ max

˜
max

`
FTn,p

˘
, FT l

i,b, FT i
m,b1 , ST

i,s
m,b1 +

bm,b1

rim,b1

¸
(5.21)

Here, FT i
m,b1 and ST i,s

m,b1 denote the �nish time of task b1 of UE m, when UE n is
acting as helper and the start time of task b1 of UEm when it acts as a relay for
UE m, respectively. The �nish time can be then calculated as:

FT i
n,k “ ST i

n,k + T i
n,k (5.22)

• Direct edge o�oading: In this mode, the UE n should only wait for execution
of predecessor tasks.

STs
n,k “ max

`
FTn,p

˘
(5.23)
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FTs
n,k “ STs

n,k + Ts
n,k (5.24)

• Edge o�oading via relay: In this mode, the predecessors’ execution comple-
tion as well as the availability of the relay should be considered.

ST i,s
n,k “ max(max(FTn,p), FT l

i,b, FT i
m,b1 , ST

i,s
m,b1 +

bm,b1

rim,b1
) (5.25)

FT i,s
n,k “ ST i,s

n,k + T i,s
n,k (5.26)

5.4 Incentive mechanism

In a feasible cooperative computation o�oading algorithm, in order to prevent self-
ish behaviors of UEs in computation and communication resources usage, a proper
incentive mechanism should be de�ned. By getting inspiration from [12] and using
resource tit-for-tat and energy budget constraints, we introduce our incentivising
method. In this thesis, we have two types of resource constraint, namely, computing
cycles and cellular bandwidth, which account for computation and communication
resources, respectively.
Therefore, in order to de�ne the amount of resources that UE n takes from other
devices, we introduce Xn fi

 
Xc
n, Xb

n
(
, where Xc

n and xbn are the computing and band-
width resources, respectively. The same goes for Yn fi

 
Yc
n, Yb

n
(
, where, Yc

n and Yb
n are

the computing and bandwidth resources that UE n contributes to other devices, re-
spectively. Considering each task k of device n, we have the following expressions:

Xc
n “

ÿ

i‰n

Kÿ

k“1

ai
n,kdn,k, Yc

n “
ÿ

i‰n

Kÿ

k“1

ai
i,kdi,k (5.27)

Xb
n “

ÿ

i‰n

Kÿ

k“1

a1i
n,kbn,k, Yb

n “

ÿ

i‰m

Kÿ

k“1

a1i
i,kbi,k (5.28)

We have then the average of Xn “

!
Xc
n, Xb

n

)
and Yn “

!
Yc
n, Yb

n

)
for each device n

(e.g., Xc
n “

Xcn
K , K is the total number of tasks). By de�ning a resource tit-for-tat con-

straint [12]:
�cnXc

n § �cn + Yc
n (5.29)
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�bnXb
n § �bn + Yb

n (5.30)

where each �n and �n are within [0,1]. The tit-for-tat resource constraints assure a
fair resource amount exchangemeaning that themore resources a device gets from
others, the more it has to share in return [12].

It may happen that there are some UEs with su�cient resources which are mostly
idle, therefore, the BS may repeatedly chooses them in order to share their re-
sources by other UEs with computation or communication resource demands. Thus
these devices would su�er from over-exploitation and undesired battery life time
degradation. To prevent this, here we introduce an energy budget constraint which
will be determined by the network operator [12]. This energy budget represented by
Ebudget
i is the average energy budget for helper node UEi P H. The total energy which

UEi consumes to execute the o�oaded tasks is obtained as

Ei “
ÿ

n‰i

Kÿ

k“1

´
ai
n,k�

`
f in,k

˘2 dn,k + a1i
n,kP

tr,i
n,kT

i,s
n,k

¯
,

therefore, the energy budget constraint can be as follows:

Ei § Ebudget
i (5.31)

5.5 Problem formulation

The energy consumption for execution of the task k of UE n can be calculated based
on equations (5.11), (5.9), (5.14) and (5.16) as follows

En,k “ xn,kEl
n,k + ai

n,kEi
n,k + a1i

n,kE
i,s
n,k + yn,kEs

n,k. (5.32)

Our computation o�oading decision algorithm’s goal is to minimize the sum of en-
ergy consumption given in equation (5.32) and the �nish time of the tasks. Therefore,
we introduce the variable Zn,k as the weighted combination of the energy consump-
tion and �nish time for executing the task k of UE n, that contributes to our com-
posite cost function, where �T

k and �E
k are the weight factors satisfying the constraint

�T
k + �E

k “ 1:
Zn,k “ �TFTn,k + �EEn,k.
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Consequently, this variable can be di�erentiated along the contributing elements for
the various o�oading modes, i.e.

Zn,k “ xn,kZl
n,k + ai

n,kZi
n,k + a1i

n,kZ
i,s
n,k + yn,kZs

n,k.

Based on the systemmodel and constraints described above, we formulate our com-
putation o�oading decision algorithm as follows:

min
q

Nÿ

n“1

Kÿ

k“1

Zn,k

s.t. @k P K, i P N,n P N

C1 : xn,k, ai
n,k, a

1i
n,k, yn,k P t0, 1u

C2 : xn,k +
Iÿ

i“1

´
ai
n,k + a1i

n,k

¯
+ yn,k “ 1

C3 : xn,k +
ÿ

nPN–i

´
an
i,k + a1n

i,k

¯
§ 1

C4 :
Nÿ

n“1

Kÿ

k“1

f sn,k § Fmax, if yn,k “ 1 (5.33)

C5 : max
 
FTn,p

(
§ STn,k

C6 : FTn,K § Tmax
n

C7 : FTn,k § Ti,s, if i �“ n

C8 : �nXn § �n + Yn

C9 : Ei § Ebudget
i ,

(5.34)

where q is the o�oading binary decision variable as follows:

q “ [x1,1, a1
1,1, a2

1,1, ...,aI
1,1, a

11
1,1, a21

1,1, ...,a
1I
1,1, y1,1, x1,2, a1

1,2, ...,aI
1,2, a

11
1,2, ...,a

1I
1,2,

y1,2, ......., x1,K , a1
1,K , ...,aI

1,K , a
11
1,K , ...,a

1I
1,K , y1,K , x2,1, a1

2,1, ...,aI
2,1, a

11
2,1, ...,a

1I
2,1,

y2,1, .........., xN,K , a1
N,K , ...,aI

N,K , a
11
N,K , ...,a

1I
N,K , yN,K ]T .

(5.35)

The constraints C1 and C2 represent the o�oading decision binary variables, mean-
ing only one of them can be 1 and the rest are 0 for each task k of device n. The
third constraint depicts that UE n can only process one task (as a helper or relay) at a
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time. Constraint C4 assures that the sum of dedicated CPU cycle frequency to each
task at the edge is less or equal than the total computation capacity of the server. C5
represents the task dependency relationship constraint. C6 denotes the �nish time
of the last task of UEs, which is equal to the completion time of the application, which
must be within the deadline. C7 represents that an o�oading destination may only
be chosen if the sojourn time of the UE in the range of the computation resource is
longer than the time needed to �nish executing task k. And �nally, the C8 and C9 are
the incentive constraints which are described in Section 5.4.

In order to homogenize the di�erent symbols in the decision variable vector q, the
local execution binary variable, xn,k can be written as an

n,k and server execution binary
variable can be also rewritten as a1n

n,k. Therefore, ai
n,k can indicate local execution and

a1i
n,k can represent direct server o�oading (only for i “ n) (here i P t1, 2, ...,Nu).

The o�oading decision variables vector can be then written as follows:

q “ [a1
1,1, a2

1,1, ...,aN
1,1, a

11
1,1, a

12
1,1, ...,a

1N
1,1, a1

1,2, a2
1,2, ...,aN

1,2, a
11
1,2, a

12
1,2, ...,a

1N
1,2, .......,

a1
1,K , a2

1,K , ...,aN
1,K , a

11
1,K , a

12
1,K , ...,a

1N
1,K , a1

2,1, ...,aN
2,1, a

11
2,1, ...., a

1N
2,1, .........., a1

N,K ,

..., aN
N,K , a

11
N,K , ...,a

1N
N,K ]T

(5.36)

5.6 Solution of the incentive- and mobility-aware
computation o�oading optimization problem
(IMCO)

A dynamic edge computation o�oading method with joint communication and com-
putation cooperation is proposed in this section. To solve our formulated MINLP
minimization problem, we propose a Genetic Algorithm (GA) as a metaheuristic evo-
lutionary algorithm which is proper for big search spaces. GAs have been proved to
produce better results by operating on a population of solutions rather than a single
solution [156, 157]. First, an initial population as solutions are produced and then,
by a selection process, two chromosomes are chosen as parents to produce next
generation. By crossover and mutation of generations, after some iterations, a near-
optimal solution would be obtained by convergence of the chromosomes [157]. We
describe the aforementioned terms of a GA in the following subsections in detail.
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5.6.1 Chromosomes and encoding method

In GAs, a chromosome contains a set of genes. A gene for a computation o�oading
problem could be the o�oading decision variables for computation task k. There-
fore, one chromosome can be the o�oading decision variables for the total applica-
tions of UEs as it has been shown in Figure 5.2.

Figure 5.2: An example of a chromosome with o�oading variables.

Assuming a number N of UEs in the network with the number K of tasks, each
chromosome has 2KN2 binary genes or decision variables which slows down our
algorithm by increasing the complexity in each iteration and this problem gets worse
with increasing number of UEs and computation tasks. Therefore, instead of using
binary variables, we use the location of the device or the MEC server where the task
is executed on as integer values between 0 and 2N–1. The integer numbers between
[0,N – 1] represent the local or helper execution where as the numbers from N to
2N – 1 indicate direct server execution or server o�oading via relay options. Since
n P t0, 1, 2, ...,N – 1u and k P t0, 1, 2, ..., K – 1u, the size of each chromosome becomes
KN.

5.6.2 Fitness function

Our computation o�oading algorithm goal is minimizing the total sum of energy
consumption given in equation (5.32) and the �nish time of the tasks while satisfy-
ing the mobility, incentive and applications deadline constraints. Therefore, similar
to works in [157–159], our �tness function can be de�ned as sum of our objective
function and the constraints as penalties such that there will be punishments for

105



each chromosome violating the constraints. The �tness function can be written as:

Fitness “
N–1ÿ

n“0

K–1ÿ

k“0

Zn,k + �
”
maxt0, FTn,K – Tmax

n u + maxt0,
`
FT i

n,k – Ti,s
˘
u

+maxt0, (FT i,s
n,k – Ti,s)u + maxt0,�nXn – �n – Ynu + maxt0,

Ei – Ebudget
i u

ı
(5.37)

Here, � is a very large number. Since constraints C1 and C2 are met in our chro-
mosomes de�nition, there is no more need to include them in the penalty function.
This is same for C3 where we used same process as [157] which the computation
resource allocation constraint is simpli�ed for remote execution by applying uniform
frequency assignment.
The constraint C4 in our method is calculated based on the o�oading options as
described in equations (5.19), (5.21), (5.23), (5.25).

5.6.3 Individual selection

The process selects individuals (choromosomes) at random and pits them in a tour-
nament. The individual with the best �tness values, which has won each tourna-
ment, will be selected as parents for the crossover. The advantage of tournament
method lies in its lower computational complexity, while keeping the diversity in so-
lutions [157].

5.6.4 Crossover and mutation

The crossover and mutation operations are executed in every iteration of the GA
to prevent the convergence towards locally optimal, but globally suboptimal solu-
tions. The crossover operation works as follows: Two o�-springs called o1 and o2
are obtained by applying the following operations on the parents p1 and p2:

1. First, we initialize g “ 0, where g represents a gene and g P {0,1, 2, ..., KN-1}),
o1 “ p1 and o2 “ p2

2. For every gth gene of o�spring chromosome, a �oat number r is selected be-
tween [0, 1] randomly.
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3. If r < 0.5 then the gth gene of the o�spring chromosomes is replaced by the gth

gene of corresponding parents as follows:

o1g “ p2g

o2g “ p1g

4. We increase g by 1 and repeat the process until g < KN – 1.

In order to mutate, the worst chromosome is chosen and is replaced randomly with
new parameters [160]. The GA typically continues until it reaches a predetermined
number of iterations. A brief summary of our joint computation and communication
cooperation o�oading algorithm is shown in Algorithm 2.

Algorithm 2: Incentive- and Mobility-aware Computation O�oading (IMCO)
Algorithm
Input: L, K , N, Tmax

n , B, �2, bk, dk, Hn,i, Ptra
n,k, f ln,k, f in,k, f sn,k, Xn, Xi

Output: q
Initialize: Predict path of UE n and helpers by PECNet with historical path Xn,
Xi, calculate Ti,s;
Encode q into a chromosome;
Create the initial population randomly;
obtain the �tness values for each of chromosomes in the population;
while L § Iterationmax do

Select parents using tournament method;
Do crossover operation with probability �;
Do mutation operation with probability �;
endwhile

end

5.7 Numerical results

In this section, simulation results are provided to validate the performance of our
joint communication and computation cooperation dynamic computation o�oading
algorithm (IMCO) compared to the following approaches:

• All local: The tasks are fully executed on UEs.

• All server: The tasks are fully o�oaded to the MEC server.
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• Computation cooperation: The users can only act as helper nodes to execute
the computation tasks.

• Communication cooperation: The users can only act as relay nodes to trans-
mit the tasks to the MEC server.

The simulation parameters are listed in Table 5.1. The average cost function for

Table 5.1: Simulation parameters
Parameters Value
Number of tasks of each user (K ) 10
Number of users in the network (N) 5
Task deadline (Tmax

n ) 4.5 s
Data size of task k (bk) 200 – 500 kb
Required CPU cycles per bit of task k (ck) 110 cycles/bit
Channel bandwidth (B) 5MHz
Channel gain between the UE_n and UE_i 1 – 1.5ˆ 10–2

Channel gain between the UE_n and MEC 1 – 1.5ˆ 10–5

Variance of the Gaussian channel noise (�2) 10–9

Transmission power of UEs (Ptr
n,k ) 0.1 – 0.15mW

CPU cycles frequency of UEs(f ln,k) 4 – 7ˆ 108 cycles/s
Maximum CPU cycles frequency of MEC server (f max

S ) 10ˆ 109 cycles/s
E�ective switched capacitance (�) 10–27 F
Area considered for UE mobility 500*500 m2

Energy budget(Ebudget
i ) 0.25

Energy weight(�E) 0.5
Time weight(�T ) 0.5
D2D range 100 m
Number of GA iterations 150
Population size 30
Crossover probability � 0.5
Mutation probability � 0.05

50 runs is shown in Figure 5.3. As can be observed, when the required computa-
tions per bit of the task k increases, the average energy consumption of all methods
increases as well due to the more computation power required to complete the ex-
ecution process. As the CPU resource requirements of tasks become larger, the
performance bene�t of our joint communication and computation cooperation ap-
proach is more observable.
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Figure 5.3: Average energy consumption vs. tasks’ computation demands.

The average energy consumption for di�erent methods, with data size changing
from 0 to 800 kb, is shown in Figure 5.4. By increasing the size of the task, more com-
putation resources are needed to �nish the execution process. This leads to the in-
creases of the average energy consumption of all methods. The energy consumption
of our joint communication and computation cooperation is still lower compared to
the other methods. Figure 5.5 shows the GA convergence speed of our method for

Figure 5.4: Average energy consumption vs. data size.

di�erent number of tasks. As it can be seen, the algorithm for 5 and 10 number of
total tasks converges to the minimum amount after approximately 15 and 20 itera-
tion steps, respectively. This shows the e�ectiveness of our GA and its fast speed for
obtaining the results. However, for higher number of total tasks the more iterations
are required.
Figure 5.6 shows the cost function for our method with and without cooperation
considering task complexity increase. The non-cooperation method does not in-
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Figure 5.5: Fitness function vs. number of iterations.

clude any resource sharing by helpers and relays and therefore there is no incen-
tivising involved. As can be seen, the optimized method performs better than the
non-cooperation for any CPU cycles required for task execution and by increasing
the complexity the performance is getting better compared to non-cooperation al-
gorithm which shows the need for our optimized method for having more suitable
o�oading decision algorithm under worse task situations.

Figure 5.6: Cost function vs. task complexity.
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5.8 Conclusion

In this chapter, we studied the optimization of computation o�oading decision algo-
rithm in a multi-user multi-task MEC system considering the tasks’ dependency and
time deadline required to �nish the application using GA. The �nal goal was minimiz-
ing the users’ battery life time while satisfying the latency, mobility and cooperation
requirements. Simulation results show that our method can achieve the best per-
formance by jointly optimizing the computation and communication resource alloca-
tions. For future work, the scenario may be made even more realistic by considering
the frequency reuse for more e�cient bandwidth usage.
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6 Conclusion and Future Research
Directions

Part of the content of this chapter was previously published in:
Mehrabi, Mahshid, et al. "Device-enhancedMEC: Multi-access edge computing
(MEC) aided by end device computation and caching: A survey." IEEE Access 7
(2019): 166079-166108 [2].

This chapter outlines the thesis contributions as well as themajor open issues and
goes on to outline possible future research directions tomake device-enhancedMEC
computation o�oading a more attractive, e�cient, and e�ective tool. In Section 7.1,
the summaries of the contributions in this thesis are presented. In Section 7.2, the
future research directions are stated and �nally, in Section 7.3 a list of the publica-
tions resulted from this thesis are mentioned.

6.1 Summary of contributions

In this thesis, we addressed the issue of multi-user multi-task cooperative computa-
tion o�oading in a device-enhancedMEC system. We considered that an application
such as the distributed Ibis application presented in [9] or a video navigation applica-
tion running on a smartphone [149] can be divided to several separated tasks which
are dependent. We then studied di�erent strategies for each task including local exe-
cution on the device, helper execution, direct server execution and server execution
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via a relay considering the application requirements, mobility and users’ incentives
in a device-enhanced MEC network. The o�oading decision algorithm optimization
problems are MINLP and NP-hard. We therefore, proposed e�cient strategies to
overcome the di�culty of solving this NP-hard problems [161].
In our �rst contribution presented in Chapter 3, we considered a basic three node
device-enhancedMEC systemwith themain goal of minimizing the energy consump-
tion of the user while satisfying the task dependencies and the application deadline
requirements. In order to solve such a problem, we �rst transform ourmixed integer
non linear algorithm to a QCQP approach and then using SDR method, an approx-
imation of the original problem can be obtained. Finally, a randomization method
is applied to obtain optimum o�oading strategy. Simulation results show that the
proposed algorithm can achieve superior performance compared to the other state-
of-the-art algorithms. It can save up to 65.47% of energy when compared with on
device execution of the tasks and 49.29% when compared with an all server execu-
tion strategy for complex tasks scenarios.
In our second contribution presented in Chapter 4, we investigated the problems
introduced by mobility to the D2D links and o�oading process breakage as well as
the handover and service migration further delay and energy cost in a multi-user
multi-cell scenario. The mobility e�ects of users in this chapter captured by sojourn
time concept. It was obtained by a DL algorithm called PECNet which uses the his-
torical data of motion paths. Minimizing the total energy consumption for all users
in the system while satisfying the time deadline constraints of the tasks was themain
goal of this work. The same solving method was used in this chapter to capture the
complexity involved in optimization problem and simulation results show the supe-
rior performance of our method compared to other algorithms. It can save up to
56.34% of energy when compared with on device execution of the tasks and 33.73%
when compared with an all server execution strategy for complex tasks scenarios.
The fact that users should be pursued to share their computation and communica-
tion resources was captured in Chapter 5 by extending our scenario to themulti-user
multi-task dynamic scenario. Considering the samemobility model using DLmethod,
we formulated our optimization problem to minimize the sum of energy consump-
tion and the �nish time of the tasks. In order to solve such a MINLP algorithm, we
applied GA to minimize the energy consumption required for execution of the tasks
while satisfying the execution time deadline of users’ applications. Simulation results
show the superior performance of our method compared to other algorithms. It can
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save up to 56.88% of energy when compared with on device execution of the tasks
and 44.82% when compared with an all server execution strategy for complex tasks
scenarios.

6.2 Open challenges and future research directions

Device-enhanced MEC computation o�oading is a research area in �ux and prob-
lem understanding under development. Numerous open problems and challenges
remain that need to be resolved in this area. They are grouped into four main clus-
ters, from the control and management of the device-enhanced MEC mechanisms,
via improvements of the performance and scalability of the device-enhanced MEC
mechanisms, to security and privacy, as well as performance evaluation aspects.

6.2.1 Control and management

6.2.1.1 Device-enhanced MEC management framework

One crucial information element for informed optimization processes is knowledge
of the computational capabilities of end devices. Currently, no framework exists to
exchange these information, neither in real-time, nor near-real-time manner in or-
der to inform o�oading decisions. Proprietary or stand-alone solutions, such as
connection sharing in smartphones, do not scale because of the need for per device
setup and activation, which prohibits automation. Consequently, an urgent need to
develop and evaluate frameworks for control and management of device-enhanced
MEC emerged.

One intuitive point of entry for developing such device-enhancedMEC control and
management frameworks is to make use of recent successes of SDN control [41,42],
especially in scalable control plane operation [162, 163], �ow control [164], tra�c
engineering [165,166], routing [167–169], and Internet of Things management [170,
171]. In addition, SDN principles have been successfully employed for control and
management of general wireless networks, see e.g. [43, 172–176]. Extending ap-
plications of the SDN controllers, management mechanisms could be incorporated
for device-enhanced MEC [177–179]. This is resembling the principles of hybrid
SDN [180,181], which allows for the control andmanagement of hybrid systems that
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combine conventional devices that are not SDN-enabled as well as SDN-enabled de-
vices.

An equally important aspect for such a framework are considerations of the re-
sponsiveness for control and management. Over a localized network area, signaling
of real-time computational and caching capabilities can be achieved quickly [182,
183], but for larger network areas, substantial signaling delays may be introduced.
Ergo, future control and management frameworks for device-enhanced MEC will
have to incorporate some fast localized decision making process with global co-
ordination on a slower timescale, similar to what has recently been used in multi-
timescale wireless resource allocation studies [125–130].

In addition, these future control andmanagement frameworks for device-enhanced
MEC will need to be robust towards heterogeneity across the variety of the di�erent
system characteristics, such as heterogeneity of the Radio Access Technology (RAT),
end devices, and applications. For instance, manufacturers’ everchanging use of var-
ious heterogeneous wireless medium access and transmission technologies has an
impact on UE battery life time, link speed, and link reliability. Depending on the use
case, the application needs, and the communications scenario, these trade-o�s be-
tween UE battery lifetime, link speed, and link reliability could lead to a preference
of a particular medium access technology, or a combination of medium access tech-
nologies, which then in turn may imply heterogeneous achievable communications
ranges and UE discoverability. Future device-enhanced MEC control and manage-
ment frameworks will need to be aware of these trade-o�s across the standardized
layers of the wireless networking protocol stack, from the physical layer, up to and
including the application layer [2].

6.2.1.2 Interference management

Whenever several UEs o�oad their tasks to MEC servers or adjacent end devices
use the same resources (e.g., time slots and frequency channels) at the same time,
interference among multiple ongoing D2D communication links and between D2D
communication and cellular communication arises. Aggravatingly, this interference
worsens with increasing density of UEs in a network cell [184]. Dedicating radio re-
sources exclusively to D2D communications solves the interference problem [185],
but this is gained the expense of reduced reuse e�ciency. To address this, multi-
ple complementary interference management techniques, such as power control,
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mode selection, and radio resource allocation, are generally used jointly to improve
the network capacity as well as spectrum reuse e�ciency.

A particularly challenging situation for interferencemanagement occurs in hetero-
geneous IoT networks with the limited computational resources of typical IoT nodes,
where signi�cant bene�t from device-enhanced MEC is to be expected, mainly be-
cause of the massive numbers of expected connected IoT devices. Furthermore, the
strongly heterogeneous transmit power levels of IoT devices result in equally hetero-
geneous interference levels. Consequently, several open challenges present them-
selves to e�ciently manage the interference arising from device-enhanced MEC in
IoT networks. One possible approach to address them is linking the transmission
mode selection algorithm with the mechanisms for device-enhanced MEC compu-
tation o�oading in order to make dynamic o�oading decisions jointly, i.e. in ac-
cordance with the interference in the network environments. [186] introduced the
general concept of adaptive mode selection. Coupling the mode decision making
with the o�oading decision making to obtain overall optimized o�oading decisions
considering the interference levels should be e�ectively studied in the future re-
search [2].

6.2.2 Performance improvements and scalability

6.2.2.1 Social-aware D2D cooperative communication

The data exchange in D2D networks can be facilitated by exploiting the social char-
acteristics of UEs. One example for social communities can be the location of UEs
[187]; therefore, users’ movements can lead to social disconnections. Thus, future
research should study mechanisms to dynamically capture the location changes.
Some users in the network may produce dishonest information to enhance their
own performance; therefore, social network discovery mechanisms must safeguard
against this [188].

Furthermore, UEs should consume energy to maintain the social awareness in a
D2D cooperative communications; Hence, energy-e�cient social awareness in D2D
cooperative communication should be investigated in future research studies [2,
189].
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6.2.2.2 Learning algorithms

ML is widely accepted as a promising solution to autonomously and optimally con�g-
ure future wireless networks, among other things. The approach makes use of infor-
mation learned from recorded or otherwise observed network systembehaviors [42,
190–194]. In fact, it has been speculated that most problems considered “hard” can
be formulated as ML problems and solved by iteration and policy search [195]. The
channel selection problem in D2D communication for example can be modeled as
a simple multi-armed bandit game which falls into the category of reinforcement
learning algorithms [196]. Much more involved and complex approaches for this
and similar problems of control have been developed in the recent years. Similarly,
techniques for wireless power control based on distributedQ-learning (another rein-
forcement learning approach) have been developed in [197]. Attractive as they may
be, the required multiple iterations (often into the hundreds of thousands of steps)
make ML approaches often a highly time-consuming a�air. Future research should
focus on time- and resource-e�cient ML algorithms [198].

6.2.3 Security and privacy

When o�oading computation tasks to adjacent devices, security of privacy is a con-
siderable problem. Side channel attacks continue to be demonstrated with the even-
tual exploitation of UEs’ personal information [199] , thus violating data security and
privacy. Such data security breaches, if encountered and employed in the wild, could
deter users from adopting task o�oading schemes and hinder deployment of any
such application, and slow development of the necessary frameworks. Aggravating,
such security breaches could counteract the positive e�ects of o�oading incentive
mechanisms. As a result, considerable numbers of users may lose interest in partic-
ipating in cooperation if they are at continuous risk. One further important problem
is user mobility, which requires adaptive security mechanisms that account for the
varying user locations.

Future research needs to comprehensively and on an ongoing basis address the
security and privacy aspects of device-enhanced MEC. One approach could be build
with a focus on the social user communities. For instance, UEs could be grouped
based on their social relationships, interests, and locations. The resulting groups
would be associated with a security level, and a given member of that group may or
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may not participate in task o�oading. A severer drawback of such groupings of UEs,
and any other limitation of exposure, is the potential loss of collaboration opportu-
nities due to hesitation to engage in collaborations with nearby strangers [200]. And
of course, throughout the topic, the overhead of security methods for the network
communication need to be carefully traded o� against their bene�ts [188]. With im-
plementation of procedures protecting against various attacks however, this over-
head should be limited.

6.2.4 Performance evaluation

For the further advancement of the device-enhanced MEC area it will be critical to
quantitatively compare various approaches and identify weaknesses that can then
be addressed in future research. In order to facilitate quantitative performance com-
parisons, future research should develop comprehensive evaluation frameworks that
specify the set of performancemetrics aswell as the performance evaluationmethod-
ologies that ensure rigorous replicable evaluations. The evaluation frameworks should
include workload speci�cations, as well as wireless channel and mobility models,
that the research community agrees on as being representative for common device-
enhanced MEC scenarios.

6.3 Publications

This section presents the publications resulted from this thesis.

• Journals:
—Mehrabi, Mahshid, et al. "Device-enhanced MEC: Multi-access edge comput-
ing (MEC) aided by end device computation and caching: A survey." IEEE Access
7 (2019): 166079-166108 [2].
—Mehrabi, Mahshid, et al. "Mobility-and Energy-Aware Cooperative Edge Of-
�oading for Dependent Computation Tasks." Network 1.2 (2021): 191-214 [4].

• Conferences:
—Mehrabi, Mahshid, et al. "A Survey onMobility Management forMEC-enabled
Systems." IEEE 2nd 5G World Forum (5GWF), 2019 [201].

119



—Mehrabi, Mahshid, et al. "Accurate Energy-E�cient Localization Algorithm for
IoT Sensors." IEEE International Conference on Communications (ICC), 2020 [202].
—Mehrabi, Mahshid, et al. "Energy-aware cooperative o�oading framework for
inter-dependent and delay-sensitive tasks." IEEE Global Communications Confer-
ence, 2020 [3].
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Acronyms

5G Fifth Generation of Cellular Communication Networks.

AP Access Point.

AR Augmented Reality.

BS Base Station.

CPU Central Processing Unit.

CSI Channel State Information.

CUE Computing User Equipment.

D2D Device to Device.

DAG Directed Acyclic Graph.

DL Deep Learning.

EPC Evolved Packet Core.

ETSI European Telecommunications Standards Institute.

FD Full Duplex.

FDD Frequency Division Duplex.
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FDMA Frequency-Division Multiple Access.

GA Genetic Algorithm.

HUE Helper User Equipment.

ICN Information Centric Network.

IoT Internet of Things.

ISG Industry Speci�cation Group.

MBS Macro Base Station.

MCC Mobile Cloud Computing.

MDP Markov Decision Process.

MEC Multi-Access Edge Computing.

MINLP Mixed Integer Nonlinear Programming.

ML Machine Learning.

MSC Mobile Small Cell.

MTC Machine Type Communication.

NCC Network-coded Cooperation.

NFC Near Field Communication.

NFV Network Function Virtualization.

NLP Non-Linear Programming.

NN Neural Network.

OFDMA Orthogonal Frequency-Division Multiple Access.

QCQP Quadratically Constrained Quadratic Programming.

QoE Quality of Experience.

QoS Quality of Service.
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RAN Radio Access Network.

RAT Radio Access Technology.

RB Resource Blocks.

SDN Software De�ned Networking.

SDP Semide�nite Programming.

SDR Semide�nite Relaxation Method.

SFC Service Function Chains.

TDMA Time-Division Multiple Access.

TI Tactile Internet.

UE User Equipment.

V2I Vehicle to Infrastructure.

V2N Vehicle to Network.

V2V Vehicle to Vehicle.

V2X Vehicle to Anything.

VAE Variational Auto-Encoder.

VR Virtual Reality.

WLAN Wireless Local Area Network.

123





Bibliography

[1] R. Parsamehr, A. Esfahani, G. Mantas, A. Radwan, S. Mumtaz, J. Rodriguez,
and J.-F. Martínez-Ortega, “A novel intrusion detection and prevention scheme
for network coding-enabled mobile small cells,” IEEE Transactions on Computa-
tional Social Systems, vol. 6, no. 6, pp. 1467–1477, 2019.

[2] M. Mehrabi, D. You, V. Latzko, H. Salah, M. Reisslein, and F. H. Fitzek, “Device-
enhanced mec: Multi-access edge computing (mec) aided by end device com-
putation and caching: A survey,” IEEE Access, vol. 7, pp. 166079–166108, 2019.

[3] M. Mehrabi, S. Shen, V. Latzko, Y. Wang, and F. H. Fitzek, “Energy-aware coop-
erative o�oading framework for inter-dependent and delay-sensitive tasks,”
in GLOBECOM 2020-2020 IEEE Global Communications Conference. IEEE, 2020,
pp. 1–6.

[4] M. Mehrabi, S. Shen, Y. Hai, V. Latzko, G. P. Koudouridis, X. Gelabert,
M. Reisslein, and F. H. Fitzek, “Mobility-and energy-aware cooperative edge of-
�oading for dependent computation tasks,” Network, vol. 1, no. 2, pp. 191–214,
2021.

[5] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik, and A. Gaidon, “It
is not the journey but the destination: Endpoint conditioned trajectory predic-
tion,” in European Conference on Computer Vision. Springer, 2020, pp. 759–776.

[6] J. Rodriguez, A. Radwan, C. Barbosa, F. H. P. Fitzek, R. A. Abd-Alhameed, J. M.
Noras, S. M. R. Jones, I. Politis, P. Galiotos, G. Schulte, A. Rayit, M. Sousa, R. Al-

125



heiro, X. Gelabert, and G. P. Koudouridis, “SECRET – Secure network coding
for reduced energy next generation mobile small cells: A European training
network in wireless communications and networking for 5G,” in Proc. Internet
Technologies and Applications, Wrexham, Sep. 2017, pp. 329–333.

[7] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE Vehicular
Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[8] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge comput-
ing—a key technology towards 5g,” ETSI white paper, vol. 11, no. 11, pp. 1–16,
2015.

[9] R. Kemp, N. Palmer, T. Kielmann, F. Seinstra, N. Drost, J. Maassen, and H. Bal,
“eyedentify: Multimedia cyber foraging from a smartphone,” in 2009 11th IEEE
International Symposium on Multimedia. IEEE, 2009, pp. 392–399.

[10] F. Liu, Z. Huang, and L. Wang, “Energy-e�cient collaborative task computation
o�oading in cloud-assisted edge computing for iot sensors,” Sensors, vol. 19,
no. 5, p. 1105, 2019.

[11] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task o�oading and resource
allocation in mobile-edge computing with inter-user task dependency,” IEEE
Transactions on Wireless Communications, vol. 19, no. 1, pp. 235–250, 2019.

[12] L. Pu, X. Chen, J. Xu, and X. Fu, “D2d fogging: An energy-e�cient and incentive-
aware task o�oading framework via network-assisted d2d collaboration,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3887–3901,
2016.

[13] X. Yang, X. Yu, H. Huang, andH. Zhu, “Energy e�ciency based joint computation
o�oading and resource allocation in multi-access MEC systems,” IEEE Access,
in print, pp. 1–1, 2019.

[14] X. Wang, Y. Ji, J. Zhang, L. Bai, and M. Zhang, “Low-latency oriented network
planning for MEC-enabled WDM-PON based �ber-wireless access networks,”
IEEE Access, in print, pp. 1–1, 2019.

[15] M. A. Habibi, M. Nasimi, B. Han, and H. D. Schotten, “A comprehensive survey
of RAN architectures towards 5G mobile communication system,” IEEE Access,
vol. 7, pp. 70 371–70421, 2019.

126



[16] B. Shi, J. Yang, Z. Huang, and P. Hui, “O�oading guidelines for augmented re-
ality applications on wearable devices,” in Proc. ACM Int. Conf. on Multimedia,
Brisbane, Australia, 2015, pp. 1271–1274.

[17] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger, C. Thuemmler, H. Feussner,
and A. Schneider, “Enabling real-time context-aware collaboration through 5G
and mobile edge computing,” in Proc. Int. Conf. on Information Technology-New
Generations, Las Vegas, NV, USA, Apr. 2015, pp. 601–605.

[18] Z. Xiang, F. Gabriel, E. Urbano, G. T. Nguyen, M. Reisslein, and F. H. Fitzek,
“Reducing latency in virtual machines: Enabling tactile internet for human-
machine co-working,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 5, pp. 1098–1116, 2019.

[19] Cisco VNI Forecast, “Cisco visual networking index: Global mobile
data tra�c forecast 2017-2022,” Cisco Inc., Tech. Rep., November
2018. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white-paper-c11-741490.html

[20] G. P. Fettweis, “The tactile Internet: Applications and challenges,” IEEE Vehicular
Technology Magazine, vol. 9, no. 1, pp. 64–70, Mar. 2014.

[21] A. Al-Fuqaha, M. Guizani, M.Mohammadi, M. Aledhari, andM. Ayyash, “Internet
of things: A survey on enabling technologies, protocols, and applications,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[22] H. Shariatmadari, R. Ratasuk, S. Iraji, A. Laya, T. Taleb, R. Jäntti, and A. Ghosh,
“Machine-type communications: Current status and future perspectives to-
ward 5G systems,” IEEE Communications Magazine, vol. 53, no. 9, pp. 10–17,
Sep. 2015.

[23] F. Al-Turjman, “5G-enabled devices and smart-spaces in social-IoT: An
overview,” Future Generation Computer Systems, vol. 92, pp. 732–744, Mar.
2019.

[24] J. Iqbal, M. A. Iqbal, A. Ahmad, M. Khan, A. Qamar, and K. Han, “Comparison of
spectral e�ciency techniques in device-to-device communication for 5G,” IEEE
Access, vol. 7, pp. 57 440–57449, 2019.

127



[25] L. Militano, G. Araniti, M. Condoluci, I. Farris, and A. Iera, “Device-to-device com-
munications for 5G Internet of things,” EAI Endorsed Transactions on Internet of
Things, vol. 1, no. 1, pp. 1–15, 2015.

[26] R. Paul and Y. J. Choi, “Autonomous interface selection for multi-radio D2D
communication,” IEEE Access, vol. 7, pp. 108090–108100, 2019.

[27] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 84–106, Jan. 2013.

[28] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge
computing: The communication perspective,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[29] H. Qi and A. Gani, “Research on mobile cloud computing: Review, trend and
perspectives,” in Proc. Int. Conf. on Digital Information and Communication Tech-
nology and It’s Applications, Bangkok, Thailand, May 2012, pp. 195–202.

[30] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art and
research challenges,” Journal of Internet Services and Applications, vol. 1, no. 1,
pp. 7–18, May 2010.

[31] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, andW.Wang, “A survey onmobile
edge networks: Convergence of computing, caching and communications,”
IEEE Access, vol. 5, pp. 6757–6779, 2017.

[32] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge comput-
ing—a key technology towards 5G,” ETSI white paper, vol. 11, no. 11, pp. 1–16,
2015.

[33] I. Morris, “ETSI drops mobile from MEC,” Sep. 2016. [Online]. Avail-
able: https://www.lightreading.com/mobile/mec-(mobile-edge-computing)
/etsi-drops-mobile-from-mec/d/d-id/726273

[34] E. Ahmed and M. H. Rehmani, “Mobile edge computing: Opportunities, solu-
tions, and challenges,” Future Generation Computer Systems, vol. 70, pp. 59–63,
May 2017.

128



[35] L. Chen, S. Zhou, and J. Xu, “Computation peer o�oading for energy-
constrained mobile edge computing in small-cell networks,” IEEE/ACM Trans.
on Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[36] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M. Zhou, “MEETS: Maximal
energy e�cient task scheduling in homogeneous fog networks,” IEEE Internet
of Things Journal, vol. 5, no. 5, pp. 4076–4087, Oct. 2018.

[37] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless powered
mobile-edge computing with binary computation o�oading,” IEEE Trans. on
Wireless Commun., vol. 17, no. 6, pp. 4177–4190, Jun. 2018.

[38] X. Hu, K. Wong, and K. Yang, “Wireless powered cooperation-assisted mobile
edge computing,” IEEE Trans. on Wireless Commun., vol. 17, no. 4, pp. 2375–
2388, Apr. 2018.

[39] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint o�oading and computing optimization
in wireless powered mobile-edge computing systems,” IEEE Trans. on Wireless
Commun., vol. 17, no. 3, pp. 1784–1797, Mar. 2018.

[40] B. Blanco, J. O. Fajardo, I. Giannoulakis, E. Kafetzakis, S. Peng, J. Pérez-Romero,
I. Trajkovska, P. S. Khodashenas, L. Goratti, and M. Paolino, “Technology pil-
lars in the architecture of future 5G mobile networks: NFV, MEC and SDN,”
Computer Standards & Interfaces, vol. 54, pp. 216–228, 2017.

[41] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, and H. L. Owen, “Ad-
vancing software-de�ned networks: A survey,” IEEE Access, vol. 5, pp. 25 487–
25526, 2017.

[42] W. Kellerer, P. Kalmbach, A. Blenk, A. Basta, M. Reisslein, and S. Schmid, “Adapt-
able and data-driven softwarized networks: Review, opportunities, and chal-
lenges,” Proc. IEEE, vol. 107, no. 4, pp. 711–731, 2019.

[43] S. Jeon, C. Guimarães, and R. L. Aguiar, “SDN: Based mobile networking for
cellular operators,” in Proc. ACM Workshop on Mobility in the Evolving Internet
Architecture, Maui, Hawaii, USA, 2014, pp. 13–18.

[44] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, “Survey on
multi-access edge computing for Internet of things realization,” IEEE Commu-
nications Surveys & Tutorials, vol. 20, no. 4, pp. 2961–2991, 2018.

129



[45] C.-M. Huang, M.-S. Chiang, D.-T. Dao, W.-L. Su, S. Xu, and H. Zhou, “V2V data of-
�oading for cellular network based on the software de�ned network (SDN) in-
sidemobile edge computing (MEC) architecture,” IEEE Access, vol. 6, pp. 17 741–
17755, 2018.

[46] E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, and T. Braun, “CDS-MEC:
NFV/SDN-based application management for MEC in 5G systems,” Computer
Networks, vol. 135, pp. 96–107, 2018.

[47] Y. Li andM. Chen, “Software-de�ned network function virtualization: A survey,”
IEEE Access, vol. 3, pp. 2542–2553, 2015.

[48] R.Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, “Net-
work function virtualization: State-of-the-art and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[49] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, “Network functions virtualization:
The long road to commercial deployments,” IEEE Access, vol. 7, pp. 60 439–
60464, 2019.

[50] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Tra�c steering for service
function chaining,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp.
487–507, 2018.

[51] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, “Service function chaining in next generation networks: State
of the art and research challenges,” IEEE Communications Magazine, vol. 55,
no. 2, pp. 216–223, 2016.

[52] G. Sun, Z. Xu, H. Yu, X. Chen, V. Chang, and A. V. Vasilakos, “Low-latency and
resource-e�cient service function chaining orchestration in network function
virtualization,” IEEE Internet of Things Journal, in print, 2019.

[53] Z. Zhou, Q. Wu, and X. Chen, “Online orchestration of cross-edge service func-
tion chaining for cost-e�cient edge computing,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 8, pp. 1866–1880, 2019.

[54] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore, N. Sas-
try, O. Holland, S. Tayade, B. Han, D. Bega, D. Aziz, and H. Bakker, “Network

130



slicing to enable scalability and �exibility in 5G mobile networks,” IEEE Commu-
nications Magazine, vol. 55, no. 5, pp. 72–79, May 2017.

[55] X. Foukas, G. Patounas, A. Elmokash�, and M. K. Marina, “Network slicing in
5G: Survey and challenges,” IEEE Communications Magazine, vol. 55, no. 5, pp.
94–100, May 2017.

[56] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez, T. Schmidt,
and M. Waehlisch, “Information-centric networking (ICN) research challenges,”
pp. 1–38, 2016, Internet Research Task Force (IRTF), Request for Comments
7927.

[57] G. Piro, L. A. Grieco, G. Boggia, and P. Chatzimisios, “Information-centric net-
working andmultimedia services: Present and future challenges,” Transactions
on Emerging Telecommunications Technologies, vol. 25, no. 4, pp. 392–406, Apr.
2014.

[58] A. V. Vasilakos, Z. Li, G. Simon, and W. You, “Information centric network: Re-
search challenges and opportunities,” Journal of Network and Computer Appli-
cations, vol. 52, pp. 1–10, Jun. 2015.

[59] R. Wang, X. Peng, J. Zhang, and K. B. Letaief, “Mobility-aware caching for
content-centric wireless networks: Modeling and methodology,” IEEE Com-
mun. Mag., vol. 54, no. 8, pp. 77–83, Aug. 2016.

[60] F. Al-Turjman, “5g-enabled devices and smart-spaces in social-iot: an
overview,” Future Generation Computer Systems, vol. 92, pp. 732–744, 2019.

[61] G. Ahani and D. Yuan, “BS-assisted task o�oading for D2D networks with pres-
ence of user mobility,” in Proc. IEEE Vehicular Techn. Conf. (VTC2019-Spring),
2019, pp. 1–5.

[62] Q. Lin, F. Wang, and J. Xu, “Optimal task o�oading scheduling for energy e�-
cient D2D cooperative computing,” IEEE Communications Letters, vol. 23, no. 10,
pp. 1816–1820, Oct. 2019.

[63] J. Liu, K. Luo, Z. Zhou, and X. Chen, “ERP: Edge resource pooling for data stream
mobile computing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4355–4368,
Jun. 2019.

131



[64] W. Xiao, X. Zhu, W. Bao, L. Liu, and J. Yao, “Cooperative data sharing for mo-
bile cloudlets under heterogeneous environments,” IEEE Trans. on Network and
Service Management, vol. 16, no. 2, pp. 430–444, Jun. 2019.

[65] J. Xie, Y. Jia, Z. Chen, Z. Nan, and L. Liang, “D2D computation o�oading op-
timization for precedence-constrained tasks in information-centric IoT,” IEEE
Access, vol. 7, pp. 94 888–94898, 2019.

[66] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment and resource
allocation for D2D-enabled mobile-edge computing,” IEEE Trans. on Commun.,
vol. 67, no. 6, pp. 4193–4207, Jun. 2019.

[67] C. You and K. Huang, “Exploiting non-causal CPU-state information for energy-
e�cient mobile cooperative computing,” IEEE Trans. on Wireless Commun.,
vol. 17, no. 6, pp. 4104–4117, Jun. 2018.

[68] K. N. Doan, T. V. Nguyen, H. Shin, and T. Q. S. Quek, “Socially-aware caching in
wireless networks with random D2D communications,” IEEE Access, vol. 7, pp.
58 394–58406, 2019.

[69] J. Huang, C. Huang, C. Xing, Z. Chang, Y. Zhao, and Q. Zhao, “An energy-e�cient
communication scheme for collaborative mobile clouds in content sharing:
Design and optimization,” IEEE Trans. on Industrial Informatics, vol. 15, no. 10,
pp. 5700–5707, Oct. 2019.

[70] W. Li, C. Wang, D. Li, B. Hu, X. Wang, and J. Ren, “Edge caching for D2D en-
abled hierarchical wireless networks with deep reinforcement learning,” Wire-
less Communications and Mobile Computing, vol. 2019, no. 2561069, pp. 1–12,
2019.

[71] C. Ma, M. Ding, H. Chen, Z. Lin, G. Mao, Y. Liang, and B. Vucetic, “Socially aware
caching strategy in device-to-device communication networks,” IEEE Trans. on
Vehicular Technology, vol. 67, no. 5, pp. 4615–4629, May 2018.

[72] A. Said, S. Shah, H. Farooq, A. Mian, A. Imran, and J. Crowcroft, “Proactive
caching at the edge leveraging in�uential user detection in cellular D2D net-
works,” Future Internet, vol. 10, no. 10, pp. 93.1–93.17, 2018.

132



[73] S. Soleimani and X. Tao, “Caching and placement for in-network caching in
device-to-device communications,” Wireless Commun. and Mobile Computing,
vol. 2018, no. 9539502, pp. 1–9, 2018.

[74] N. Zhao, X. Liu, Y. Chen, S. Zhang, Z. Li, B. Chen, and M. Alouini, “Caching D2D
connections in small-cell networks,” IEEE Trans. on Vehicular Technology, vol. 67,
no. 12, pp. 12 326–12338, Dec. 2018.

[75] W. Zhang, D. Wu, W. Yang, and Y. Cai, “Caching on the move: A user interest-
driven caching strategy for D2D content sharing,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 3, pp. 2958–2971, Mar. 2019.

[76] D. Wu, Q. Liu, H. Wang, D. Wu, and R. Wang, “Socially aware energy-e�cient
mobile edge collaboration for video distribution,” IEEE Trans. on Multimedia,
vol. 19, no. 10, pp. 2197–2209, Oct. 2017.

[77] D. Wu, Q. Liu, H. Wang, Q. Yang, and R. Wang, “Cache less for more: Exploiting
cooperative video caching and delivery in D2D communications,” IEEE Trans-
actions on Multimedia, vol. 21, no. 7, pp. 1788–1798, Jul. 2019.

[78] G. Fodor, S. Parkvall, S. Sorrentino, P. Wallentin, Q. Lu, and N. Brahmi, “Device-
to-Device Communications for National Security and Public Safety,” IEEE Access,
vol. 2, pp. 1510–1520, 2014.

[79] S. Mumtaz and J. Rodriguez, Smart Device to Smart Device Communication.
Springer, New York, 2014.

[80] L. Lei, Z. Zhong, C. Lin, and X. Shen, “Operator controlled device-to-device com-
munications in LTE-advanced networks,” IEEE Wireless Communications, vol. 19,
no. 3, pp. 96–104, 2012.

[81] M. Höyhtyä, O. Apilo, andM. Lasanen, “Review of latest advances in 3GPP stan-
dardization: D2D communication in 5G systems and its energy consumption
models,” Future Internet, vol. 10, no. 1, p. 3, Jan. 2018.

[82] A. Masmoudi, S. Feki, K. Mnif, and F. Zarai, “E�cient scheduling and resource
allocation for D2D-based LTE-V2X communications,” in Proc. IEEE Int. Wireless
Commun. & Mobile Computing Conf. (IWCMC), 2019, pp. 496–501.

133



[83] G. Nardini, A. Virdis, C. Campolo, A. Molinaro, and G. Stea, “Cellular-V2X com-
munications for platooning: Design and evaluation,” Sensors, vol. 18, no. 5, pp.
1527.1–1527.22, 2018.

[84] S. Singh, J. Lianghai, D. Calabuig, D. Garcia-Roger, N. H. Mahmood, N. Pratas,
T. Mach, and M. C. DeGennaro, “D2D and V2X communications,” in 5G Sys-
tem Design: Architectural and Functional Considerations and Long Term Research.
John Wiley & Sons, 2018, pp. 409–449.

[85] T. Bertram, Fahrerassistenzsysteme 2018: Von der Assistenz zum automatisierten
Fahren: 4. Internationale ATZ-Fachtagung Automatisiertes Fahren. Wiesbaden:
Springer Vieweg, 2019.

[86] A. Feroz et al., “Vehicle to vehicle communication for collision avoidance,” Inter-
national Journal of Emerging Technology and Innovative Engineering, vol. 5, no. 7,
2019.

[87] Y. Cao, T. Jiang, O. Kaiwartya, H. Sun, H. Zhou, and R. Wang, “Toward pre-
empted EV charging recommendation through V2V-based reservation sys-
tem,” IEEE Trans. on Systems, Man, and Cybernetics: Systems, in print, pp. 1–14,
2019.

[88] A. A. Ateya, A. Muthanna, and A. Koucheryavy, “5G framework based on multi-
level edge computing with D2D enabled communication,” in Proc. Int. Conf. on
Adv. Commun. Techn. (ICACT), Feb. 2018, pp. 507–512.

[89] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation and communi-
cation cooperation for mobile edge computing,” in Proc. Int. Symp. on Modeling
and Optimization in Mobile, Ad Hoc, andWireless Networks, Shanghai, China, May
2018, pp. 1–6.

[90] C. You and K. Huang, “Exploiting non-causal CPU-state information for energy-
e�cient mobile cooperative computing,” IEEE Transactions on Wireless Commu-
nications, vol. 17, no. 6, pp. 4104–4117, Jun. 2018.

[91] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching networks:
Basic principles and system performance,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 1, pp. 176–189, Jan. 2016.

134



[92] P. Zhang, X. Kang, Y. Liu, and H. Yang, “Cooperative willingness aware collabo-
rative caching mechanism towards cellular D2D communication,” IEEE Access,
vol. 6, pp. 67 046–67056, 2018.

[93] E. Bastug, M. Bennis, andM. Debbah, “Living on the edge: The role of proactive
caching in 5Gwireless networks,” IEEE Communications Magazine, vol. 52, no. 8,
pp. 82–89, Aug. 2014.

[94] L. Li, G. Zhao, and R. S. Blum, “A survey of caching techniques in cellular net-
works: Research issues and challenges in content placement and delivery
strategies,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1710–
1732, 2018.

[95] D. Satria, D. Park, andM. Jo, “Recovery for overloadedmobile edge computing,”
Future Generation Computer Systems, vol. 70, pp. 138–147, May 2017.

[96] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment and wireless
resource allocation for cooperative mobile-edge computing,” in Proc. IEEE Int.
Conf. on Communications, Kansas City, MO, May 2018, pp. 1–6.

[97] ——, “Joint task assignment and resource allocation for D2D-enabled mobile-
edge computing,” IEEE Transactions on Communications, vol. 67, no. 6, pp.
4193–4207, Jun. 2019.

[98] S. Gupta and A. Lozano, “Computation-bandwidth trading for mobile edge
computing,” in Proc. IEEE Annual Consumer Communications & Networking Conf.,
Las Vegas, NV, USA, Jan. 2019, pp. 1–6.

[99] F. Wang, J. Xu, and Z. Ding, “Optimized multiuser computation o�oading with
multi-antenna NOMA,” in Proc. IEEE Global Communications Conf. Workshops,
Singapore, Dec. 2017, pp. 1–7.

[100] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting massive D2D collabo-
ration for energy-e�cient mobile edge computing,” IEEE Wireless Communica-
tions, vol. 24, no. 4, pp. 64–71, Aug. 2017.

[101] F. Jiang, H. Wang, H. Ren, and S. Xu, “Energy-e�cient resource and power al-
location for underlay multicast device-to-device transmission,” Future Internet,
vol. 9, no. 4, p. 84, Nov. 2017.

135



[102] G. Hu, Y. Jia, and Z. Chen, “Multi-user computation o�oading with D2D for
mobile edge computing,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec.
2018, pp. 1–6.

[103] C. Wang, J. Qin, X. Yang, and W. Wen, “Energy-e�cient o�oading policy in D2D
underlay communication integrated with MEC service,” in Proc. Int. Conf. on
High Perf. Compilation, Comput. and Commun., 2019, pp. 159–164.

[104] G. Scutari, S. Barbarossa, and D. P. Palomar, “Potential games: A framework
for vector power control problems with coupled constraints,” in Proc. IEEE Int.
Conf. on Acoustics Speech and Signal Proc., vol. 4, 2006, pp. 241–244.

[105] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D Fogging: An energy-e�cient and incentive-
aware task o�oading framework via network-assisted D2D collaboration,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3887–3901,
Dec. 2016.

[106] F. Ekman, A. Keränen, J. Karvo, and J. Ott, “Working day movement model,” in
Proc. ACM SIGMOBILE Workshop on Mobility Models, 2008, pp. 33–40.

[107] Q. Jia, R. Xie, Q. Tang, X. Li, T. Huang, J. Liu, and Y. Liu, “Energy-e�cient compu-
tation o�oading in 5G cellular networks with edge computing and D2D com-
munications,” IET Communications, vol. 13, no. 8, pp. 1122–1130, May 2019.

[108] G. Qiao, S. Leng, and Y. Zhang, “Online learning and optimization for compu-
tation o�oading in D2D edge computing and networks,” Mobile Networks and
Applications, in print, 2019.

[109] D. Wang, Y. Lan, T. Zhao, Z. Yin, and X. Wang, “On the design of computa-
tion o�oading in cache-aided D2D multicast networks,” IEEE Access, vol. 6, pp.
63 426–63441, 2018.

[110] C.-Y. Wang, Y. Chen, and K. R. Liu, “Chinese restaurant game,” IEEE Signal Pro-
cessing Letters, vol. 19, no. 12, pp. 898–901, 2012.

[111] J. Lin, R. Chai, M. Chen, and Q. Chen, “Task execution cost minimization-based
joint computation o�oading and resource allocation for cellular D2D systems,”
in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications,
Bologna, Italy, Sep. 2018, pp. 1–5.

136



[112] J. Munkres, “Algorithms for the assignment and transportation problems,” Jour-
nal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1, pp. 32–38,
1957.

[113] X. Chen and J. Zhang, “When D2D meets cloud: Hybrid mobile task o�oadings
in fog computing,” in Proc. IEEE Int. Conf. on Communications, Paris, France, May
2017, pp. 1–6.

[114] S. Even, G. Even, and R. M. Karp, Graph Algorithms, 2nd ed. Cambridge, UK:
Cambridge University Press, 2012.

[115] H. Shah-Mansouri and V. W. S. Wong, “Hierarchical fog-cloud computing for
IoT systems: A computation o�oading game,” IEEE Internet of Things Journal,
vol. 5, no. 4, pp. 3246–3257, Aug. 2018.

[116] A. Orsino, I. Farris, L. Militano, G. Araniti, S. Andreev, I. A. Gudkova, Y. Kouch-
eryavy, and A. Iera, “Exploiting D2D communications at the network edge for
mission-critical IoT applications,” in Proc. EuropeanWireless Conf., 2017, pp. 68–
73.

[117] D. B. Johnson andD. A.Maltz,Dynamic source routing in ad hoc wireless networks.
Springer, 1996.

[118] R. Ranji, A. M. Mansoor, and A. A. Sani, “EEDOS: An energy-e�cient and delay-
aware o�oading scheme based on device to device collaboration in mobile
edge computing,” Telecommunication Systems, in print, pp. 1–12, 2019.

[119] K. Sucipto, D. Chatzopoulos, S. Kostap, and P. Hui, “Keep your nice friends
close, but your rich friends closer–computation o�oading using NFC,” in Proc.
IEEE Conf. on Computer Communications, Atlanta, GA, USA, May 2017, pp. 1–9.

[120] H. Flores, R. Sharma, D. Ferreira, V. Kostakos, J. Manner, S. Tarkoma, P. Hui, and
Y. Li, “Social-aware hybrid mobile o�oading,” Pervasive and Mobile Computing,
vol. 36, pp. 25–43, Apr. 2017.

[121] Y. He, F. R. Yu, N. Zhao, and H. Yin, “Secure social networks in 5G systems with
mobile edge computing, caching, and device-to-device communications,” IEEE
Wireless Commun., vol. 25, no. 3, pp. 103–109, Jun. 2018.

137



[122] H. Zhou, V. C. M. Leung, C. Zhu, S. Xu, and J. Fan, “Predicting temporal social
contact patterns for data forwarding in opportunistic mobile networks,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 11, pp. 10 372–10383, Nov.
2017.

[123] H. Flores, P. Nurmi, and P. Hui, “AI on the move: From on-device to on-multi-
device,” in Proc. IEEE Int. Conf. on Pervasive Comp and Commun. Workshops (Per-
Com Workshops), 2019, pp. 310–315.

[124] B. Gu, Y. Chen, H. Liao, Z. Zhou, and D. Zhang, “A distributed and context-
aware task assignment mechanism for collaborative mobile edge computing,”
Sensors, vol. 18, no. 8, p. 2423, 2018.

[125] X. Lyu, C. Ren, W. Ni, H. Tian, R. P. Liu, and Y. J. Guo, “Multi-timescale decen-
tralized online orchestration of software-de�ned networks,” IEEE Journal on Se-
lected Areas in Communications, vol. 36, no. 12, pp. 2716–2730, 2018.

[126] N. Prasad, M. Arslan, and S. Rangarajan, “A two time scale approach for co-
ordinated multi-point transmission and reception over practical backhaul,” in
Proc. Int. Conf. on Commun. Sys. and Netw. (COMSNETS), 2014, pp. 1–8.

[127] P. Shantharama, A. S. Thyagaturu, N. Karakoc, L. Ferrari, M. Reisslein, and
A. Scaglione, “LayBack: SDN management of multi-access edge computing
(MEC) for network access services and radio resource sharing,” IEEE Access,
vol. 6, pp. 57 545–57561, 2018.

[128] J. Tang, B. Shim, and T. Q. S. Quek, “Service multiplexing and revenue maxi-
mization in sliced C-RAN incorporated with URLLC and multicast eMBB,” IEEE
J. on Sel. Areas in Commun., vol. 37, no. 4, pp. 881–895, Apr. 2019.

[129] M. Wang, N. Karakoc, L. Ferrari, P. Shantharama, A. S. Thyagaturu, M. Reisslein,
and A. Scaglione, “A multi-layer multi-timescale network utility maximization
framework for the SDN-based layback architecture enabling wireless backhaul
resource sharing,” Electronics, vol. 8, no. 9, pp. 937–1–937–28, 2019.

[130] W. Xia, T. Q. S. Quek, J. Zhang, S. Jin, and H. Zhu, “Programmable hierarchical
C-RAN: From task scheduling to resource allocation,” IEEE Trans. on Wireless
Commun., vol. 18, no. 3, pp. 2003–2016, March 2019.

138



[131] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-e�cient dynamic computation
o�oading and cooperative task scheduling in mobile cloud computing,” IEEE
Transactions on Mobile Computing, vol. 18, no. 2, pp. 319–333, 2018.

[132] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-optimal
mobile cloud computing under stochastic wireless channel,” IEEE Transactions
on Wireless Communications, vol. 12, no. 9, pp. 4569–4581, 2013.

[133] Cisco, “Fog computing and the internet of things: Extend the cloud to where
the things are,” 2016. [Online]. Available: https://www.cisco.com/c/dam/en_
us/solutions/trends/iot/docs/computing-overview.pdf

[134] A. Al-Fuqaha, M. Guizani, M.Mohammadi, M. Aledhari, andM. Ayyash, “Internet
of things: A survey on enabling technologies, protocols, and applications,” IEEE
communications surveys & tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[135] H. Shariatmadari, R. Ratasuk, S. Iraji, A. Laya, T. Taleb, R. Jäntti, and A. Ghosh,
“Machine-type communications: current status and future perspectives to-
ward 5g systems,” IEEE Communications Magazine, vol. 53, no. 9, pp. 10–17,
2015.

[136] C. Wang, J. Qin, X. Yang, and W. Wen, “Energy-e�cient o�oading policy in d2d
underlay communication integrated with mec service,” in Proceedings of the
3rd International Conference on High Performance Compilation, Computing and
Communications, 2019, pp. 159–164.

[137] Q. Jia, R. Xie, Q. Tang, X. Li, T. Huang, J. Liu, and Y. Liu, “Energy-e�cient compu-
tation o�oading in 5g cellular networks with edge computing and d2d com-
munications,” IET Communications, vol. 13, no. 8, pp. 1122–1130, 2019.

[138] G. Qiao, S. Leng, and Y. Zhang, “Online learning and optimization for compu-
tation o�oading in d2d edge computing and networks,” Mobile Networks and
Applications, pp. 1–12, 2019.

[139] D. Wang, Y. Lan, T. Zhao, Z. Yin, and X. Wang, “On the design of computa-
tion o�oading in cache-aided d2d multicast networks,” IEEE Access, vol. 6, pp.
63 426–63441, 2018.

139



[140] Y. Cheng, J. Zhang, L. Yang, C. Zhu, and H. Zhu, “Distributed green o�oading
and power optimization in virtualized small cell networks with mobile edge
computing,” IEEE Transactions on Green Communications and Networking, vol. 4,
no. 1, pp. 69–82, 2019.

[141] B. Yang, D. Wu, H. Wang, Y. Gao, and R. Wang, “Two-layer stackelberg game
based o�oading strategy for mobile edge computing enhanced �wi access
networks,” IEEE Transactions on Green Communications and Networking, 2020.

[142] R. Ranji, A. M. Mansoor, and A. A. Sani, “Eedos: an energy-e�cient and delay-
aware o�oading scheme based on device to device collaboration in mobile
edge computing,” Telecommunication Systems, vol. 73, no. 2, pp. 171–182,
2020.

[143] C. Wu, Q. Peng, Y. Xia, and J. Lee, “Mobility-aware tasks o�oading in mobile
edge computing environment,” in 2019 Seventh International Symposium on
Computing and Networking (CANDAR). IEEE, 2019, pp. 204–210.

[144] D. Wang, Z. Liu, X. Wang, and Y. Lan, “Mobility-aware task o�oading and mi-
gration schemes in fog computing networks,” IEEE Access, vol. 7, pp. 43 356–
43368, 2019.

[145] A. Mehrabi, M. Siekkinen, and A. Ylä-Jääski, “Energy-aware qoe and backhaul
tra�c optimization in green edge adaptivemobile video streaming,” IEEE Trans-
actions on Green Communications and Networking, vol. 3, no. 3, pp. 828–839,
2019.

[146] T. Zhang andW. Chen, “Computation o�oading in heterogeneousmobile edge
computingwith energy harvesting,” IEEE Transactions onGreen Communications
and Networking, vol. 5, no. 1, pp. 552–565, 2021.

[147] S. Chen, Y. Zheng, W. Lu, V. Varadarajan, and K.Wang, “Energy-optimal dynamic
computation o�oading for industrial iot in fog computing,” IEEE Transactions
on Green Communications and Networking, vol. 4, no. 2, pp. 566–576, 2019.

[148] H. Chen, D. Zhao, Q. Chen, and R. Chai, “Joint computation o�oading and radio
resource allocations in small-cell wireless cellular networks,” IEEE Transactions
on Green Communications and Networking, vol. 4, no. 3, pp. 745–758, 2020.

140



[149] S. E. Mahmoodi, R. Uma, and K. Subbalakshmi, “Optimal joint scheduling and
cloud o�oading for mobile applications,” IEEE Transactions on Cloud Comput-
ing, vol. 7, no. 2, pp. 301–313, 2016.

[150] W. Hao and S. Yang, “Small cell cluster-based resource allocation for wireless
backhaul in two-tier heterogeneous networks with massive mimo,” Ieee trans-
actions on vehicular technology, vol. 67, no. 1, pp. 509–523, 2017.

[151] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability in human
mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

[152] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[153] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of com-
puter computations. Springer, 1972, pp. 85–103.

[154] X. Xu, Y. Xue, L. Qi, Y. Yuan, X. Zhang, T. Umer, and S. Wan, “An edge computing-
enabled computation o�oadingmethodwith privacy preservation for internet
of connected vehicles,” Future Generation Computer Systems, vol. 96, pp. 89–
100, 2019.

[155] T. Yang, R. Chai, L. Zhang, andQ. Chen, “Worst case latency optimization-based
joint computation o�oading and scheduling for interdependent subtasks,” in
2020 International Conference onWireless Communications and Signal Processing
(WCSP). IEEE, 2020, pp. 1010–1015.

[156] L. Davis, “Handbook of genetic algorithms,” 1991.

[157] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware joint task
scheduling and resource allocation for cooperative mobile edge computing,”
IEEE Transactions on Wireless Communications, 2020.

[158] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. Leung, “An e�cient computation o�oad-
ing management scheme in the densely deployed small cell networks with
mobile edge computing,” IEEE/ACM Transactions on Networking, vol. 26, no. 6,
pp. 2651–2664, 2018.

141



[159] W. Fan, Y. Liu, B. Tang, F. Wu, and H. Zhang, “Exploiting joint computation of-
�oading and data caching to enhance mobile terminal performance,” in 2016
IEEE Globecom Workshops (GC Wkshps). IEEE, 2016, pp. 1–6.

[160] M. Mehrabi, H. Taheri, and P. Taghdiri, “An improved dv-hop localization algo-
rithm based on evolutionary algorithms,” Telecommunication Systems, vol. 64,
no. 4, pp. 639–647, 2017.

[161] S. Yu, “Multi-user computation o�oading in mobile edge computing,” Online].
https://www. researchgate. net/publication/328629402Multiuser Computation Of-
�oading in Mobile Edge Computing, 2018.

[162] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control: Survey, taxon-
omy, and challenges,” IEEE Communications Surveys & Tutorials, vol. 20, no. 1,
pp. 333–354, 2018.

[163] M. Karakus and A. Durresi, “A survey: Control plane scalability issues and ap-
proaches in software-de�ned networking (SDN),” Computer Networks, vol. 112,
pp. 279–293, 2017.

[164] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, “Toward adaptive and
scalable OpenFlow-SDN �ow control: A survey,” IEEE Access, vol. 7, pp. 107346–
107379, 2019.

[165] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for tra�c en-
gineering in SDN-OpenFlow networks,” Computer Networks, vol. 71, pp. 1–30,
2014.

[166] A. Mendiola, J. Astorga, E. Jacob, andM. Higuero, “A survey on the contributions
of software-de�ned networking to tra�c engineering,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 2, pp. 918–953, 2016.

[167] Z. N. Abdullah, I. Ahmad, and I. Hussain, “Segment routing in software de�ned
networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp.
464–486, 2018.

[168] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, “Unicast QoS routing
algorithms for SDN: A comprehensive survey and performance evaluation,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 388–415, 2017.

142



[169] F. Y. Okay and S. Ozdemir, “Routing in fog-enabled IoT platforms: A survey and
an SDN-based solution,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4871–
4889, 2018.

[170] N. Bizanis and F. A. Kuipers, “SDN and virtualization solutions for the Internet
of Things: A survey,” IEEE Access, vol. 4, pp. 5591–5606, 2016.

[171] I. Farris, T. Taleb, Y. Khettab, and J. Song, “A survey on emerging SDN and NFV
securitymechanisms for IoT systems,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 1, pp. 812–837, 2018.

[172] X. Costa-Perez, A. Garcia-Saavedra, X. Li, T. Deiss, A. de la Oliva, A. di Giglio,
P. Iovanna, and A. Moored, “5G-Crosshaul: An SDN/NFV integrated fron-
thaul/backhaul transport network architecture,” IEEEWireless Commun., vol. 24,
no. 1, pp. 38–45, 2017.

[173] I. Elgendi, K. S. Munasinghe, D. Sharma, and A. Jamalipour, “Tra�c o�oading
techniques for 5G cellular: a three-tiered SDN architecture,” Annals of Telecom-
munications, pp. 1–11, 2016.

[174] D. King, A. Farrel, E. N. King, R. Casellas, L. Velasco, R. Nejabati, and A. Lord, “The
dichotomy of distributed and centralized control: METRO-HAUL, when control
planes collide for 5G networks,” Optical Switching and Networking, vol. 33, pp.
49–55, 2019.

[175] J. d. C. Silva, J. J. P. C. Rodrigues, J. Al-Muhtadi, R. A. L. Rabelo,
and V. Furtado, “Management platforms and protocols for internet of
things: A survey,” Sensors, vol. 19, no. 3, 2019. [Online]. Available:
http://www.mdpi.com/1424-8220/19/3/676

[176] A. Thyagaturu, Y. Dashti, and M. Reisslein, “SDN based smart gateways (Sm-
GWs) for multi-operator small cell network management,” IEEE Trans. Netw.
Service Manag., vol. 13, no. 4, pp. 740–753, 2016.

[177] A. A. Abbasi, A. Abbasi, S. Shamshirband, A. T. Chronopoulos, V. Persico, and
A. Pescape, “Software-de�ned cloud computing: A systematic review on latest
trends and developments,” IEEE Access, vol. 7, pp. 93 294–93314, 2019.

143



[178] A. Binsahaq, T. R. Sheltami, and K. Salah, “A survey on autonomic provisioning
and management of QoS in SDN networks,” IEEE Access, vol. 7, pp. 73 384–
73435, 2019.

[179] A. A. Neghabi, N. Jafari Navimipour, M. Hosseinzadeh, and A. Rezaee, “Load
balancing mechanisms in the software de�ned networks: A systematic and
comprehensive review of the literature,” IEEE Access, vol. 6, pp. 14 159–14178,
2018.

[180] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey of existing
approaches,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3259–
3306, 2018.

[181] X. Huang, S. Cheng, K. Cao, P. Cong, T. Wei, and S. Hu, “A survey of deployment
solutions and optimization strategies for hybrid sdn networks,” IEEE Commu-
nications Surveys & Tutorials, vol. 21, no. 2, pp. 1483–1507, 2018.

[182] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, and
H. ElBakoury, “Ultra-low latency (ULL) networks: The IEEE TSN and IETF Det-
Net standards and related 5G ULL research,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 1, pp. 88–145, 2018.

[183] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey on low latency
towards 5G: RAN, core network and caching solutions,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 4, pp. 3098–3130, 2018.

[184] K. Doppler, M. Rinne, C. Wijting, C. Ribeiro, and K. Hugl, “Device-to-device com-
munication as an underlay to LTE-advanced networks,” IEEE Communications
Magazine, vol. 47, no. 12, pp. 42–49, Dec. 2009.

[185] D. You and D. H. Kim, “Multi-device-to-multi-device communication in cellular
network for e�cient contents distribution,” in Proc. IEEE Int. Conf. on Consumer
Electronics, Las Vegas, NV, USA, Jan. 2014, pp. 244–247.

[186] D. You, T. V. Doan, R. Torre, M. Mehrabi, A. Kropp, V. Nguyen, H. Salah, G. T.
Nguyen, and F. H. P. Fitzek, “Fog computing as an enabler for immersivemedia:
Service scenarios and research opportunities,” IEEE Access, vol. 7, pp. 65 797–
65810, 2019.

144



[187] B. Zhang, Y. Li, D. Jin, P. Hui, and Z. Han, “Social-aware peer discovery for D2D
communications underlaying cellular networks,” IEEE Transactions on Wireless
Communications, vol. 14, no. 5, pp. 2426–2439, May 2015.

[188] R. I. Ansari, C. Chrysostomou, S. A. Hassan, M. Guizani, S. Mumtaz, J. Rodriguez,
and J. J. P. C. Rodrigues, “5G D2D networks: Techniques, challenges, and future
prospects,” IEEE Systems Journal, vol. 12, no. 4, pp. 3970–3984, Dec. 2018.

[189] E. Datsika, A. Antonopoulos, N. Zorba, and C. Verikoukis, “Green cooperative
device–to–device communication: A social–aware perspective,” IEEE Access,
vol. 4, pp. 3697–3707, 2016.

[190] M. G. Kibria, K. Nguyen, G. P. Villardi, O. Zhao, K. Ishizu, and F. Kojima, “Big
data analytics, machine learning, and arti�cial intelligence in next-generation
wireless networks,” IEEE Access, vol. 6, pp. 32 328–32338, 2018.

[191] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks: A
comprehensive survey,” IEEE Communications Surveys Tutorials, vol. 20, no. 4,
pp. 2595–2621, Fourth Qu. 2018.

[192] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S.Mao, “Application ofmachine learning
in wireless networks: Key techniques and open issues,” IEEE Communications
Surveys Tutorials, in print, pp. 1–1, 2019.

[193] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey of machine
learning techniques applied to software de�ned networking (sdn): Research
issues and challenges,” IEEE Communications Surveys Tutorials, vol. 21, no. 1,
pp. 393–430, First Qu. 2019.

[194] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless
networking: A survey,” IEEE Communications Surveys Tutorials, vol. 21, no. 3, pp.
2224–2287, Third Qu. 2019.

[195] W. G. Hatcher and W. Yu, “A survey of deep learning: Platforms, applications
and emerging research trends,” IEEE Access, vol. 6, pp. 24 411–24432, 2018.

[196] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, “Machine learning
paradigms for next-generation wireless networks,” IEEE Wireless Communica-
tions, vol. 24, no. 2, pp. 98–105, Apr. 2017.

145



[197] Z. Fan, X. Gu, S. Nie, and M. Chen, “D2D power control based on supervised
and unsupervised learning,” in Proc. IEEE Int. Conf. on Computer and Communi-
cations, Chengdu, China, Dec. 2017, pp. 558–563.

[198] J. Xu, X. Gu, and Z. Fan, “D2D power control based on hierarchical extreme
learning machine,” in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio
Communications, Bologna, Italy, Sep. 2018, pp. 1–7.

[199] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic classi�cation
of side-channel attacks: A case study for mobile devices,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 1, pp. 465–488, 2017.

[200] M. Peng and K. Zhang, “Recent advances in fog radio access networks: Per-
formance analysis and radio resource allocation,” IEEE Access, vol. 4, pp. 5003–
5009, 2016.

[201] M. Mehrabi, H. Salah, and F. H. Fitzek, “A survey on mobility management for
mec-enabled systems,” in 2019 IEEE 2nd 5G World Forum (5GWF). IEEE, 2019,
pp. 259–263.

[202] M. Mehrabi, P. Taghdiri, V. Latzko, H. Salah, and F. H. Fitzek, “Accurate energy-
e�cient localization algorithm for iot sensors,” in ICC 2020-2020 IEEE Interna-
tional Conference on Communications (ICC). IEEE, 2020, pp. 1–6.

146


