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Articulatory copy synthesis (ACS), a subarea of speech inversion, refers to the re-
production of natural utterances and involves both the physiological articulatory
processes and their corresponding acoustic results. This thesis proposes two novel
methods for the ACS of human speech using the articulatory speech synthesizer Vo-
calTractLab (VTL) to address or mitigate the existing problems of speech inversion,
such as non-unique mapping, acoustic variation among different speakers, and the
time-consuming nature of the process.

The first method involved finding appropriate VTL gestural scores for given natural
utterances using a genetic algorithm. It consisted of two steps: gestural score initial-
ization and optimization. In the first step, gestural scores were initialized using the
given acoustic signals with speech recognition, grapheme-to-phoneme (G2P), and a
VTL rule-based method for converting phoneme sequences to gestural scores. In the
second step, the initial gestural scores were optimized by a genetic algorithm via an
analysis-by-synthesis (ABS) procedure that sought to minimize the cosine distance
between the acoustic features of the synthetic and natural utterances. The articu-
latory parameters were also regularized during the optimization process to restrict
them to reasonable values.

The second method was based on long short-term memory (LSTM) and convolu-
tional neural networks, which were responsible for capturing the temporal depen-
dence and the spatial structure of the acoustic features, respectively. The neural net-
work regression models were trained, which used acoustic features as inputs and
produced articulatory trajectories as outputs. In addition, to cover as much of the
articulatory and acoustic space as possible, the training samples were augmented
by manipulating the phonation type, speaking effort, and the vocal tract length of
the synthetic utterances. Furthermore, two regularization methods were proposed:
one based on the smoothness loss of articulatory trajectories and another based on
the acoustic loss between original and predicted acoustic features.

The best-performing genetic algorithms and convolutional LSTM systems (evalu-
ated in terms of the difference between the estimated and reference VTL articulatory
parameters) obtained average correlation coefficients of 0.985 and 0.983 for speaker-
dependent utterances, respectively, and their reproduced speech achieved recogni-
tion accuracies of 86.25% and 64.69% for speaker-independent utterances of German
words, respectively. When applied to German sentence utterances, as well as En-
glish and Mandarin Chinese word utterances, the neural network based ACS sys-
tems achieved recognition accuracies of 73.88%, 52.92%, and 52.41%, respectively.
The results showed that both of these methods not only reproduced the articulatory
processes but also reproduced the acoustic signals of reference utterances. More-
over, the regularization methods led to more physiologically plausible articulatory
processes and made the estimated articulatory trajectories be more articulatorily
preferred by VTL, thus reproducing more natural and intelligible speech. This study
also found that the convolutional layers, when used in conjunction with batch nor-
malization layers, automatically learned more distinctive features from log power
spectrograms. Furthermore, the neural network based ACS systems trained using
German data could be generalized to the utterances of other languages.
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Chapter 1

Introduction

1.1 Background and Motivation

Speech is the most common mode of human communication. As shown in Figure
1.1, the process of communication involves three main events: the production of
speech, the propagation of speech, and the perception of speech. These three events
constitute the speech chain. Humans (speakers) move air particles using their vo-
cal organs, which cause vibrations in the air. This results in a sequence of pres-
sure waves that propagate through the air, a compressible medium. Regardless of
whether the sound waves are recorded, transmitted via a digital device, or propa-
gated directly through the air, these waves will enter a listener’s ears and activate
a network of tiny bones and cells that eventually enable them to hear the speaker.
Hence, the investigation of speech can be roughly divided into three distinct but in-
terdependent aspects: production, propagation, and perception, which correspond
to the articulatory, acoustic, and auditory/perceptual domains, respectively.

Production Propagation Perception

)ﬁ( & k’l WJ i ———

Articulatory Acoustic Auditory

Speech inversion

FIGURE 1.1: Diagram of speech chain and speech inversion.

Within the articulatory domain, researchers investigate how the sounds that com-
prise speech are produced. This usually involves a basic understanding of the
anatomy of human vocal organs. For example, lungs produce the necessary energy
in the form of a stream of air, the larynx serves as a modifier to the airstream and is
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responsible for phonation, and the vocal tract modifies and modulates the airstream
through several articulators (lips, tongue, velum, etc.). From the perspective of the
auditory/perceptual domain, researchers investigate the mechanisms behind the
perception of human speech. This includes how the auditory system analyzes the
sound waves received and how it extracts features before transmitting this informa-
tion to the listener’s brain. Within the acoustic domain, researchers investigate the
physical properties of the speech signal by exploring the physical characteristics of
human speech, such as its frequency.

As a result of the findings derived from these three aspects, many attendant re-
search topics and applications have emerged, including automatic speech recogni-
tion (ASR), speech synthesis, speech coding, etc. For example, by revealing that
human ears are more sensitive to lower frequency regions than higher frequency re-
gions and that a series of critical frequency bands in the human auditory system
are roughly linearly-spaced on the mel scale, mel-frequency cepstral coefficients
(MFCC) were proposed and are widely used as acoustic features in tasks such as
ASR and speaker recognition. As one of speech synthesis techniques, articulatory
synthesis is proposed by modeling human vocal tract, vocal folds, and the articula-
tory processes of speech production.

Speech inversion is another research topic closely associated with the three aspects
of the speech chain. As shown in Figure 1.1, instead of investigating speech from
the forward direction in the speech chain (from speech production, through speech
propagation, to speech perception), speech inversion attempts to gain insights from
the opposite direction. Specifically, it refers to "inverse problems with respect to vo-
cal tract shape, area function, articulatory parameters or control commands appear
both in the theory of speech production and perception, and in technical applica-
tions like speech recognition, synthesis and compression" (Sorokin, 2006). Owing
to the advancements in our understanding of speech production and perception, as
well as in the development of technical applications, speech inversion has been ex-
tensively investigated over the last few decades and in turn facilitated many speech-
related research fields. The rest of this section explains why speech inversion is
worth studying, particularly in terms of its applications.

Applications of Speech Inversion

Speech inversion converts the acoustic representation of a sound to its articulatory
representation. The articulatory representation is considered less variable and more
robust than the acoustic representation (Mitra et al., 2010; Mitra et al., 2014). The
estimated articulatory information can complement the acoustic information. This
allows speech inversion to be applied to various speech-related applications.

Speech Recognition

The performance of ASR systems is inhibited due to the differences in the acous-
tic variations of the same phonemes as a result of speaker differences as well as
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prosodic and contextual influences. However, from the perspective of speech pro-
duction, articulatory knowledge can mitigate the effects of such variations. In ad-
dition, the motor theory of speech perception suggests that people perceive spo-
ken words by identifying the vocal tract gestures with which they are pronounced
rather than by identifying the sound patterns that the speech generates (Liberman
and Mattingly, 1985; Galantucci, Fowler, and Turvey, 2006). Articulatory informa-
tion is thus considered to be beneficial to the performance of ASR systems, which
has been verified in various studies (e.g., Nam et al., 2010; Mitra et al., 2013; and
Mitra et al., 2014).

In addition, ASR systems usually use hand-crafted acoustic features as inputs, which
may lose distinctive information for ASR due to the simplified assumptions during
extraction (e.g., the decorrelation operation for extracting MFCC). However, artic-
ulatory features derived from speech inversion can provide additional information
for speech recognition, which is extremely helpful when the acoustic inputs are of
low quality due to noise or insufficient training data. For example, by combining
articulatory and acoustic features, Frankel and King (2001) achieved better perfor-
mances for both speech classification and recognition on TIMIT sentences in com-
parison to using either feature alone. Mitra et al. (2014) also demonstrated that ar-
ticulatory representation enhanced the noise robustness of ASR systems.

Speech Synthesis and Speech Modification

Articulatory information can be incorporated into synthesis systems to modify the
characteristics of synthetic speech. As an intermediate step between motor com-
mands and acoustic features, articulatory features are physiologically meaningful
and can provide a straightforward connection between the two. For example, Ling
et al. (2009) proposed a method for integrating articulatory features into a hidden
Markov model (HMM) based parametric speech synthesis system. The HMM states
for the joint distribution of acoustic and articulatory features were first estimated
using paired articulatory-acoustic training data. Acoustic features were then gener-
ated from their unified model during synthesis. A review of speech inversion with
a particular focus on its application to speech synthesis can be found in Richmond,
Ling, and Yamagishi (2015).

In terms of speech modification, some aspects such as duration and fundamental
frequency (fp) can be easily manipulated in the acoustic domain, while others such
as regional/foreign accents as well as articulation styles can be relatively challeng-
ing. To address the latter, speaker-dependent characteristics and linguistic informa-
tion should be decoupled. Felps, Geng, and Gutierrez-Osuna (2012) hypothesized
that the articulatory domain provides better separation between linguistic informa-
tion and speaker-dependent characteristics than the acoustic domain. In addition,
they suggested that articulatory features are less speaker-dependent than acoustic
teatures. They verified this hypothesis by tackling the problem of foreign accent
conversion. They first recorded an articulatory-acoustic dataset produced by a na-
tive speaker and a non-native speaker. They then resynthesized the utterances of
the non-native speaker by replacing the most accented segments with alternatives
from his other utterances. These alternative segments were selected based on their
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articulatory or acoustic similarity to those uttered by the native speaker. Listen-
ing experiments showed that this approach of selecting segments in the articula-
tory domain could achieve a 20% reduction in perceived accent (Felps, Geng, and
Gutierrez-Osuna, 2012).

Aryal and Gutierrez-Osuna (2013) investigated the application of speech inversion
and synthesis to articulatory-based speech modification. In their inversion module,
they used an articulatory-acoustic dataset to train a feed-forward radial basis func-
tion (RBF) network to estimate the six parameters of the Maeda synthesizer from
MEFCC features extracted via STRAIGHT (Kawahara et al., 2008). In their synthesis
module, they designed a Gaussian mixture model (GMM) based forward mapping
model which estimated spectral features from articulatory parameters, then used
STRAIGHT to resynthesize speech with an estimated spectral envelope, aperiodic-
ity, and pitch. The effectiveness of this proposal was validated by measuring the
correlation and the root mean square error (RMSE) between the estimated and orig-
inal articulatory trajectories in the articulatory domain, mel cepstral distortion be-
tween synthetic and original speech in the acoustic domain, and a listening test in
the perceptual domain.

Language Learning and Speech Therapy

In computer-aided language learning (CALL), the 3D animation of vocal tracts can
provide language learners with instructive information on how the articulators move
when producing the sounds associated with standard speech. Badin et al. (2010a)
and Badin et al. (2010b) developed a talking head that provided visual articula-
tory feedback for phonetic correction for second language learners. They built an
OroFacial Clone (OFC) system using magnetic resonance imaging (MRI), computer
tomography (CT), and video data acquired from a French speaker, henceforth re-
ferred to as the model speaker. The OFC demonstrated the articulatory process,
including the movements of the internal articulators. More importantly, by recog-
nizing new utterances from the model speaker and resynthesizing the articulatory
trajectories originally measured from electromagnetic articulography (EMA) data,
the OFC tool could display the new articulatory movements. Wang, Hueber, and
Badin (2014) verified the usefulness of using articulatory information for second
language pronunciation training. They used an articulatory talking head to teach
Mandarin Chinese speakers to enunciate French vowels. The results showed that
learners receiving audiovisual stimuli performed better than learners who only re-
ceived auditory stimuli. In addition, articulatory features can be used to synthesize
natural facial animation for language tutoring due to the close connection between
articulatory features and facial features during speech production. For example,
Ben-Youssef, Shimodaira, and Braude (2014) developed a talking head where the
motion of the lips and head were controlled by articulatory features estimated from
acoustic signals.

Virtual talking heads usually only provide standard pronunciations of audio exam-
ples together with prerecorded articulatory movements. Learners acquire new or
correct pronunciations by imitating the pre-generated samples. However, as they
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cannot see the real-time movements of their own articulators, learners cannot vi-
sually compare the relative differences between their own speech and the standard
articulation during speech imitation. CALL systems can thus provide customiz-
able learning materials and provide instructive feedback based on the results of the
learner’s imitations. An example process is as follows: (1) The CALL system, either
with or without standard pronunciations, prompts learners to produce an utter-
ance. Meanwhile, the corresponding audio signal produced by the learners will be
recorded. (2) The pronunciation errors will be diagnosed via the pronunciation error
detection module. The learners” articulatory processes will be estimated using the
speech inversion module. (3) The articulatory parameters of mispronounced speech
will be corrected and resynthesized via the speech modification module. (4) Finally,
the CALL system will provide learners with correctly resynthesized speech and a
corresponding visualization of the articulatory process (e.g., a 3D animation of the
tongue and lips). This approach makes it possible for language learners to hear and
see both their own incorrect version of an utterance and the correct, native-like ver-
sion spoken in their own voice. This direct comparison of both versions will help the
learners more rapidly identify the mistakes in their pronunciation as well as receive
feedback on how it could be improved.

Speech inversion can also be applied to speech therapy. For example, by provid-
ing information about tongue contact, movement, and shape via electropalatogra-
phy and ultrasound imaging, articulatory visual feedback significantly improved
the speech production of hearing-impaired speakers (Bernhardt et al., 2003).

Other Applications

Besides the above-mentioned applications, speech inversion can also benefit the un-
derstanding of speech production and perception by investigating the relationships
between acoustic characteristics of natural utterances and corresponding articula-
tory and phonatory configurations. For example, speech inversion has been suc-
cessfully applied to investigate the mechanisms of coarticulation and lenition by
training tract-variables (TVs) estimators with paired articulatory-acoustic data (Xu,
Birkholz, and Xu, 2019) or resynthesizing human speech via an articulatory syn-
thesizer (Sivaraman et al., 2015). Moreover, it can help understand infants’ early
language acquisition (Kuhl, 2004; Gerazov et al., 2021). Speech inversion allows to
modify specific parameters of computational speech acquisition models (the rele-
vant concepts will be introduced in Section 2.2) and then observe and analyze the
effects on speech acquisition (Howard and Messum, 2007; Philippsen, Reinhart, and
Wrede, 2016).

Creating paired articulatory-acoustic datasets is another application. By using avail-
able segmentation or deriving gestural annotation from natural utterances, gestural
scores (this concept will be introduced in Section 3.1) could be obtained which were
further converted to articulatory trajectories via articulatory synthesizers (Nam et
al., 2012; Sering et al., 2019). The derived articulatory trajectories together with
acoustic features extracted from the original human utterances constitute the paired
articulatory-acoustic datasets.
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1.2

Discussion of Limitations of Previous Research

Although speech inversion has been extensively studied over the past few decades,
it has not yet been perfected. Panchapagesan and Alwan (2011) summarized four
main difficulties faced by the analysis-by-synthesis (ABS) based methods of speech
inversion. When extended to include all kinds of speech inversion methods, these
difficulties can be reformulated as follows:

Insufficient data, especially in terms of the articulatory data, to train and/or
evaluate inversion models. Articulatory data are usually expensive and labo-
rious to acquire; even recording such data is invasive to subjects.

Inherent non-uniqueness. Specifically, speech inversion has a one-to-many
characteristic; for example, any given segment of a speech signal can be gener-
ated by different combinations of articulatory configurations, much less long
utterances like words, phrases, and sentences. This can be explained by the
theory of motor equivalence, which states that "motor equivalence enables mo-
tor tasks to be achieved in a variety of ways" (Perrier and Fuchs, 2015). The fact
that the same acoustic observations can be produced by different articulatory
processes is an inherent challenge faced by inversion tasks.

The high nonlinearity of the acoustic-to-articulatory mapping. Specifically, the
influence of changes in the articulatory domain on variations in the acoustic
domain is non-linear. Consequently, data points that are represented in the
form of a vector in acoustic space do not linearly correspond to those same
points in articulatory space. Hence, simple strategies, such as codebook-based
methods, usually exhibit inferior performances in speech inversion tasks.

Physiological differences. Specifically, there are anatomical differences be-
tween the vocal tracts and vocal folds of model speakers and the speakers
whose utterances are to be reproduced. Inversion methods can usually achieve
good results for speaker-dependent tasks. However, these performances tend
to degrade when applied to speaker-independent scenarios.

Incomplete knowledge about speech production and perception. This influ-
ences many aspects of speech inversion such as acoustic feature selection, syn-
thesizer design, similarity measurement, etc.

Speech inversion methods are computationally expensive. Some tasks require
forward mapping from the articulatory to acoustic domains, e.g., acoustic sim-
ulation, which usually takes more time than other modules. In addition, some
methods do not have analytical solutions. Hence, articulatory movements
usually have to be estimated in an iterative loop, such as via an ABS-based
procedure, which is very time-consuming.

Local optima of the cost function. Some inversion methods are strongly depen-
dent on the initial state of the model, such as those based on self-exploration
or random searches. A poor initial state will take significantly longer time to
find solutions, even the final results are only locally optimal.
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Due to these difficulties, most speech inversion studies have one or more of the
following limitations. A detailed review of related studies will be conducted in
Chapter 2.

1.

The construction of mapping models relies on recorded articulatory data, which
is expensive and laborious, and even invasive to speakers during data collec-
tion.

The inversion methods are only suitable for short-utterances like isolated vow-
els, "VV" sequences or simple "CV", "CVC" or "VCV" syllables.

The mapping is based on speaker-dependent models; in other words, both the
training and testing data come from the same speaker(s).

ABS-based methods are time-consuming and cannot be generalized; i.e., the
inversion has to be performed individually for each new utterance.

. The performance is only evaluated in the articulatory domain; specifically, it

only evaluates the correlation or RMSE between estimated and reference artic-
ulatory trajectories. Whether the estimated trajectories are suitable for synthe-
sizing speech is not considered. Some studies that produced speech using an
estimated articulatory process did not provide a systematic evaluation of the
quality of the synthesized speech in terms of its intelligibility.

Given that speech inversion has various applications as summarized in Section 1.1,
as well as the fact that there are still some limitations to the existing methods listed
in this section, this study attempted to circumvent or mitigate these limitations.

1.3 Structure and Contributions of the Thesis

This study tackled the speech inversion problem with a particular focus on artic-
ulatory copy synthesis (this concept will be introduced in Section 2.3). This section
outlines the content of each chapter and summarizes the main contributions of this
thesis.

Thesis Structure

® Chapter 1 introduces the background of the generic research field, speech

inversion, from the point of view of the speech chain. It then provides an
overview of its practical and potential applications. After that, it highlights
the difficulties of speech inversion and limitations of existing methods that
motivated further investigation in this work.

Chapter 2 introduces the field of speech inversion in greater detail. It is di-
vided into three distinct but interdependent subareas: acoustic-to-articulatory
inversion, computational speech acquisition, and articulatory copy synthesis.
The representative literature of each of these fields is reviewed.
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¢ Chapter 3 introduces the fundamentals that allow to experimentally validate
the proposals of this study. It first introduces the basic concepts of the articula-
tory synthesizer used in this study, VocalTractLab, which connects the articu-
latory and acoustic domains throughout the experiments in Chapters 4 and 5.
This chapter also introduces the datasets, especially the ones deliberately de-
signed for this study, as well as the acoustic representation of utterances (i.e.,
the acoustic features).

¢ Chapter 4 presents a novel approach to articulatory copy synthesis based on a
genetic algorithm, which consists of two steps: the initialization and optimiza-
tion of a gestural score for a given utterance. It also presents the regularization
of the deviations of articulatory parameters as well as the automatic perfor-
mance evaluations in the acoustic and perceptual domains.

* Chapter 5 presents a second approach to articulatory copy synthesis based
on artificial neural networks. Specifically, long short-term memory (LSTM)
neural networks and convolutional LSTM neural networks are employed to
establish the mapping of acoustic features to the articulatory parameters of
VocalTractLab. It also presents the regularization of articulatory trajectories
by introducing additional losses into the loss function during the training of
neural networks. In addition to the automatic performance evaluation by ma-
chines in the articulatory and perceptual domains, this chapter introduces an
online perceptual experiment to evaluate the quality of reproduced speech by
human listeners. Furthermore, it examines the generalization ability of the
speech inversion models to utterances of other languages.

¢ Chapter 6 concludes this study by summarizing and discussing the findings
as well as providing a description of potential future work.

Thesis Contributions
The contributions of this thesis are as follows:

1. Both the genetic algorithm and deep neural network based methods not only
reproduced the articulatory processes but also reproduced the acoustic signals
of reference utterances.

2. The genetic algorithm proved to be more powerful than the coordinate descent
algorithm for gestural score optimization.

3. The recurrent characteristics of LSTM were capable of modeling the temporal
dependence of both articulatory parameters and acoustic features. Using con-
volutional layers together with batch-normalization layers resulted in better
acoustic representations than hand-crafted features.

4. This study confirmed the effectiveness of regularizing articulatory parame-
ters during articulatory copy synthesis. A forward model that involved the
mapping of articulatory parameters to acoustic representation was proposed,
which outperformed traditional regularization methods.
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5. The universality of articulatory representation regardless of language was ver-
ified by applying the speech inversion models trained on German data to En-
glish and Mandarin Chinese utterances.

6. Two datasets were deliberately created for this work. One was a phonemically-
balanced acoustic corpus, the PBACU corpus, which allowed this study to use
the least number of utterances to cover as many German phonemes as possi-
ble. The other was a paired articulatory-acoustic dataset, the VTL-Kiel corpus,
which was created using VocalTractLab as well as the Kiel Corpus and allowed
for the training of other speech inversion systems. Both of these datasets and
the methods used to create them could be applied to other research tasks.
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Chapter 2

Literature Review

Speech inversion is a generic concept that describes the mapping of acoustic repre-
sentations to articulatory representations. This research field can be roughly divided
into three research topics according to the aim, the data formats, and its theoretical
basis. Acoustic-to-articulatory inversion (AAI) refers to the conversion of acoustic
signals to articulatory variables that generally represent the positions of the artic-
ulators. Computational speech acquisition (CSA) refers to the development of lan-
guage learning agents that acquire motor commands from ambient speech to pro-
duce human-like speech. Articulatory copy synthesis (ACS) refers to the articula-
tory reproduction of a target reference by estimating the actual articulatory process
and subsequently resynthesizing an acoustic duplicate. The relationships between
these research topics are shown in Figure 2.1(a).

Voice quality similarity

(a) (b) | | |
Domains/Levels Evaluation metrics
1 Correlation
1 Articulatory
1 RMSE
:
1
' Spectral distance/similarity
Acoustic ;
, Salience
: Diversity
:
! Intelligence
1 Perceptual Naturalness
:
Y

FIGURE 2.1: (a) Relation among acoustic-to-articulatory inversion

(AAI), computational speech acquisition (CSA), and articulatory copy

synthesis (ACS), which are represented by the red, blue, and black cir-
cles, respectively; (b) Evaluation metrics of different domains/levels.

Although the literature will be separately reviewed for each of these three research
topics, there are some similarities between them. For example, each of these research
topics requires acoustic and articulatory representations as well as inversion algo-
rithms, as indicated by the overlapping area "II" in Figure 2.1(a). There are also areas
shared by only two of these research topics. Area "I" is shared by AAI and ACS but
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not by CSA because both AAI and ACS require the acoustic signals and estimated
articulatory trajectories to be matched frame-by-frame, while CSA is more focused
on whether motor commands (i.e., articulatory trajectories) are mastered as well as
whether the reproduced speech is linguistically meaningful; the latter does not need
the speech learned by agents and ambient speech to be temporally matched. Simi-
larly, area "III" is shared by CSA and ACS but not by AAI This is because AAI only
derives articulatory representations from acoustic signals; it does not produce new
speech.

The performance of speech inversion methods can be evaluated according to differ-
ent domains/levels (Figure 2.1(b)). In order from simple to complex, they are the
articulatory, acoustic, and perceptual domains/levels, each of which is evaluated
using different metrics. The AAI tasks are only evaluated in the articulatory do-
main/level since they merely estimate articulatory trajectories, and do not produce
any new speech. The most common way to evaluate these tasks is by calculating the
correlation coefficients and RMSE between the estimated and the reference articu-
latory trajectories. In contrast, CAS tasks usually aim to master speech production.
Therefore, the performance of these models is mainly evaluated in the perceptual
domain/level, such as by measuring the intelligibility and naturalness of speech
produced by CAS systems. It can also be evaluated in the acoustic domain/level,
such as by measuring the "salience" and "diversity" of the sounds produced by early-
stage CAS agents; this will be explained in greater detail in Section 2.2. ACS tasks
not only estimate the articulatory process of original utterances but also synthesize
the acoustic duplicates to be temporally matched with the given speech. Hence,
the performance of ACS tasks can be evaluated in each domain. The reproduction
of reference utterances involves both the articulatory processes and the acoustic re-
sults of speech production. In the perceptual domain, the ultimate goal is to make
the reproduced speech sound equivalent to the original.

In terms of the results of speech inversion, the estimated articulatory trajectories
may perfectly match the reference trajectories, and the reproduced speech may be
judged to be acoustically similar enough to the original recordings. Nevertheless,
human listeners generally perceive the reproduced speech to be inferior to that pro-
duced by human speakers. This is due to several factors ranging from obvious errors
and audible artifacts in the synthetic speech to the voice quality of different speak-
ers (Steiner, 2010). In this context, voice quality refers to auditory characteristics that
reflect elements of a speaker’s voice, caused by a variety of laryngeal and suprala-
ryngeal features. It should be noted that, to our knowledge, although it affects the
perceptual judgment of speech similarity, the reproduction of voice quality has not
been included in any speech inversion studies, including this work.

In the following sections, AAI, CSA, and ACS will be introduced in greater detail
in Sections 2.1, 2.2, and 2.3, respectively. Section 2.4 provides some concluding re-
marks.
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2.1 Acoustic-to-Articulatory Inversion

AAI requires paired articulatory-acoustic data in which the movements of articu-
lators and their corresponding acoustic signals are recorded concurrently. Early
recordings of articulatory data were based on X-rays. However, the dangers of expo-
sure to X-ray radiation massively limited their use, especially with the development
of other medical techniques. X-ray microbeam (XRMB) cinematography is an al-
ternative tool in which subjects receive lower total doses of radiation. In addition,
MRI scanner is a safer tool that can measure articulatory data from multiple ori-
entations. Recording data with MRI, however, is very noisy and relatively costly.
Ultrasound is another cheap and safe tool used to record articulatory data, although
it provides rather limited information about articulators. Electromagnetic articu-
lography (EMA) is the most common data collection technique in speech inversion
tasks despite its downsides, such as measurement errors introduced by its tracking
methods and the limited number of tracking points. Table 2.1 summarizes several
articulatory-acoustic datasets widely used for AAl investigations.

TABLE 2.1: Summary table of commonly-used paired articulatory-
acoustic datasets.

Dataset Data format Speaker Utterance
Westbury, Turner, and . 25 males and 32 Mix of vowels, syllable,
Dembowski, 1994 XRMB Audio, X-ray females words and sentences
MOCHA- Audio, EMA, 460 sentences for each
Wrench, 1999 TIMIT EPG 1 male and 1 female speaker
Richmond, Hoole, and Audio, video,
King, 2011 mngu0 EMA, MRI 1 male 1300 sentences
Rudzicz 8 speakers with
Namasiva arrrl and TORGO Audio. EMA dysarthria and 7 Mix of syllable, words and
Wolff yZOl 2’ ! non-dysarthric sentences
! speakers
Narayanan et al., 2014 USC-TIMIT Audio, EMA, 5 males and 5 females 460 sentences for each
MRI speaker
Tiede et al., 2017 HPRC Audio, EMA 4 males and 4 females 720 sentences

Although articulatory data such as EMA and MRI data are relatively expensive and
laborious to acquire, they provide significantly different and complementary infor-
mation compared to traditional acoustic signals. Due to the development of articu-
latory data acquisition and inversion algorithms, AAI has become much more fea-
sible and has developed considerably over the last two decades. Table 2.2 summa-
rizes the representative literature on AAIL Depending on whether there is an overlap
of speakers whose data are used for the training and testing of the inverse model,
AAI can be divided into two types: speaker-dependent inversion (SDI) or speaker-
independent inversion (SII). The different acoustic characteristics between the train-
ing and testing speakers make SII tasks more challenging than SDI tasks.
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TABLE 2.2: Summary table of literature on acoustic-to-articulatory in-
version (AAI). The "SI" in the second column indicates whether the
study is speaker-independent, i.e., "Y" for SII and "N" for SDI.

SI Utterance Dataset Acoustlc‘ Inverse algorithm
representation
English
Dusan and Deng, 2000 Y vowels, XRMB Formant, MFCC Codebook, ex.tended
syllables, Kalman Filter
sentences
Hiroya and Honda, Japanese their own
2004 N sentences EMA data Mel-cepstra HMM
Richmond, 2006; English MOCHA- . Trajectory mixture density
Richmond, 2007 N sentences TIMIT Mel-filterbank networks
English MOCHA-
Zhang and Renals, 2008 N sentences TIMIT MECC HMM
TADA
. . . TMDN, FF-ANN,
Mitra et al., 2010 N English words syn?:ts;zed MECC, AP AR-ANN,, SVR, DSL
Uria, Renals, and Enelish
Richmond, 2011; Uria | N &18 mngu0 LSF DBN-DNN, deep TMDN
sentences
etal., 2012
. . . TADA MFCC,
Mitra < 211 22%111 Mitra |y sSrrllt%elrll?:};s synthesized RASTA-PLP, DNN
v data NMCC, SyDOCC
Afshan and Ghosh, Y English MOCHA- MECC Generalized smoothness
2015 sentences TIMIT criterion
Zhu, Xie, and Chen, N English mngu0 LSE, MECC BLSTM
2015 sentences
Liu etal., 2015 N English mngu0 LSF BiLSTM, RMDN
sentences
Sivaraman etal, 2016 | Y English XRMB MFCC Feed-forward neural
sentences network
English TADA
Mitra et al., 2017 Y & synthesized NMC, NMCC DNN, CNN
sentences
data
. . Filterbank, phonetic
Shahrebabakietal, | English HPRC and attribute BiLSTM
2019 sentences
features

By dividing the articulatory-acoustic function into sub-functions with a set of phono-
logical coproduction units that were similar to diphones, Dusan and Deng (2000)
constructed a codebook of articulatory and acoustic parameters. The articulatory
trajectories were estimated by using an extended Kalman filtering technique from
acoustic representation. HMMs were also explored as a tool for AAI tasks. For
example, Hiroya and Honda (2004) proposed an HMM production model that con-
sisted of the articulatory HMM for each phoneme and an articulatory-to-acoustic
mapping for each HMM state; this allowed for a maximum a posteriori probability
(MAP) estimate of articulatory parameters that could be determined for each acous-
tic feature.

Richmond completed his PhD on the topic of the inversion mapping in which he
compared mixture density networks (MDN) with feed-forward multilayer percep-
tron (MLP) for estimating articulatory parameters from acoustic signals, showing
that MDN was more appropriate than MLP to tackle the non-uniqueness problem of
speech inversion (Richmond, 2002). Extensions to this work were trajectory MDN,
referred to as TMDN, by augmenting MDN with dynamic features together with an
algorithm for estimating maximum likelihood trajectories (Richmond, 2006; Rich-
mond, 2007). All these studies were conducted to estimate the 14 EMA variables
of MOCHA dataset (Wrench, 1999). Richmond and his colleagues also released
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their own dataset ("mngu0") containing 12 EMA variables (Richmond, Hoole, and
King, 2011), upon which deep belief network together with deep neural network
(DBN-DNN) and deep TMDN were trained to estimate articulatory trajectories from
acoustic signals (Uria, Renals, and Richmond, 2011; Uria et al., 2012). By feeding the
estimated articulatory trajectories into the feature-space-switched multiple regres-
sion HMM (FSS-MRHMM) synthesizer and then measuring the quality of synthetic
speech in the acoustic domain in terms of RMSE of line spectral frequencies (LSF),
Ling, Richmond, and Yamagishi (2012) evaluated the performance of a range of in-
version mapping methods.

By using the Haskins Laboratories” Task Dynamic model (TADA) developed by
Nam et al. (2004), Nam, Mitra, and their colleagues conducted a series of studies
on AAL For example, they first generated the articulatory control parameters and
corresponding synthetic speech for 420 words using TADA. Then they compared
TMDN, feedforward artificial neural networks (FF-ANN), support vector regression
(SVR), autoregressive artificial neural network (AR-ANN), and distal supervised
learning (DSL) for training the SDI models and concluded that the speech inversion
model based on a 3-hidden layer FF-ANN outperformed the models based on other
algorithms (Mitra et al., 2010). They also applied the estimated articulatory informa-
tion to speech recognition tasks. By generating articulatory-acoustic data of 111929
words with TADA, they first tried training SII models with shallow neural networks
in Mitra et al. (2013) and Mitra et al. (2014). Later, in Mitra et al. (2017), they tried
two neural network based inversion models with DNN and convolutional neural
networks (CNN) architectures respectively, and compared their performances with
regard to the correlation coefficients between the ground truth and the estimated
articulatory trajectories. They validated the usefulness of incorporating the artic-
ulatory information for improving the performance of speech recognition in these
three studies. Besides, instead of directly concatenating the acoustic features and ar-
ticulatory parameters as used in Mitra et al. (2013) and Mitra et al. (2014), they also
attempted the hybrid convolutional neural network (HCNN) in which two parallel
neural networks were used to model the acoustic and articulatory spaces respec-
tively while the two branches of neural networks sharing the last network layer
were jointly trained with one objective function (Mitra et al., 2017).

To tackle the problem of speaker variations in SII, Sivaraman et al. (2016) inves-
tigated vocal tract length normalization (VTLN) to reduce speaker-specific differ-
ences. They first normalized the acoustic data of each training speaker towards the
acoustic space of a target test speaker using VILN, then used the transformed data
to train the SII systems. Ghosh and Narayanan (2011) conducted another study to
circumvent the mismatch of acoustic characteristics between the utterances of train-
ing and test speakers. They normalized acoustic features using a generic acoustic
space (GAS). They also proposed several unsupervised and supervised approaches
to clustering GAS from a large pool of speakers and investigated the adaption of
GAS using acoustic data of speakers in an inversion model (Afshan and Ghosh,
2015).

Zhang and Renals (2008) proposed an HMM based inversion system by jointly op-
timizing a combined two-stream model in which a trajectory HMM and a regu-
lar GMM-HMM modeled the articulatory and acoustic streams, respectively. The



16 Chapter 2. Literature Review

experiment results on the MOCHA-TIMIT corpus showed that the jointly trained
model achieved a lower RMSE than the separately trained ones. However, the per-
formance of this HMM-based model was still inferior to that of TMDN-based inver-
sion models applied to the same corpus (Richmond, 2006; Richmond, 2007). Fur-
thermore, both LSTM based models (e.g., in Zhu, Xie, and Chen (2015) and Shahre-
babaki et al. (2019)) and CNN based models (e.g., in Mitra et al. (2017)) outper-
formed the regular feed-forward neural networks due to their modeling capability
of temporal and spatial dependence, respectively. For example, by applying bidirec-
tional LSTM neural networks (BiLSTM) to the All task, Zhu, Xie, and Chen (2015)
reduced the RMSE to 0.565 mm on the mngu0 corpus, compared to the RMSE of
0.885 mm achieved by TMDN models in Uria, Renals, and Richmond (2011) and
Uria et al. (2012). Liu et al. (2015) suggested that, with LSF as acoustic features for
AAI, BiLSTM performed better than deep recurrent mixture density network (DR-
MDN). It is worth mentioning that Zhu, Xie, and Chen (2015) also concluded that
MEFCC outperformed LSF for AAI tasks despite the fact that LSF is a kind of more
articulatory-originated feature.

2.2 Computational Speech Acquisition

Computational speech acquisition (CSA), also known in other studies as sensori-
motor learning, (imitative) vocal learning, and vocal/speech imitation, refers to the
development of the ability to imitate the articulatory process, acquire new sounds,
and produce vocalizations. It is inspired by how humans learn to speak and in-
volves three primary spaces: motor, sensory, and internal spaces. These correspond
to the articulatory, acoustic, and perceptual spaces in generic speech inversion tasks,
respectively. Motor commands (i.e., articulatory configurations) generate a sensory
consequence (i.e., acoustic signals) which is then converted to a neural representa-
tion (i.e., processed features) in the perceptual space. An inversion framework con-
necting these three spaces trains the learning agent like an infant by awarding the
vocal actions whose acoustic output is positively evaluated; this mimics the process
by which an infant’s vocalization is encouraged by a caregiver.

A growing number of computational approaches to speech acquisition have been
investigated in recent years. A comparative review of the studies involving vocal
imitation by sensorimotor learning models can be found in Pagliarini, Leblois, and
Hinaut (2020). In this review, the authors collated the research about song learning
in birds and speech acquisition in humans into a general topic. In addition to an
introduction to the biological context of vocal learning, they reviewed the models in
terms of the motor control device (e.g., how the models mapped muscle commands
to the representation of sound); sensory system (i.e., the perceptual representation
of sensory stimuli); and the learning framework, which included the architecture,
learning rules, the exploration strategies, and the evaluation measures. In this study,
we summarizes the representative studies and researchers that have made great or
continuous contributions to CSA (Table 2.3).
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TABLE 2.3: Summary table of literature on computational speech ac-
quisition (CSA). The "SI" in the second column indicates whether the
study is speaker-independent, i.e., "Y" for SII and "N" for SDIL
Synthesizer
SI Utterance . (No. of Acoustlc. Inver.swn Evaluation
involved representation algorithm
parameters)
5 English Subjective
Howard and vowels and Maeda JSRU vocoder Multilayer comparison of
Huckvale, 2005 Y /b/ and /g/ synthesizer (9) features perceptron spectrogram and
! and their informal listening
combinations test
Howard and N 8 English Maeda Salience Self-exploration Informal listening
Messum, 2007 vowels synthesizer (9) and reinforcement test
Howard and English Vs, Maed.a Salience and Self-exploration Informal listening
N CVs, VCs and synthesizer . . X
Messum, 2011 diversity and reinforcement test
CVVs (10)
Philippsen, MSE in acoustic
Reinhart, and N ST{;E?;; Vocal(Tzr;)ctLab MFCC ESN domain, informal
Wrede, 2014 Y listening test
Phlhppsen, German /a/, DIVA version Radial basis Ave%‘age
Reinhart, and N /i), Ju/, e/ of Maeda Cochleograms function network reproduction rate of
Wrede, 2015 ’ ! synthesizer(10) cluster centers
Murakami N German /a/, VocalTractLab DRNL filterbank ESN, reinforcement F t similari
etal., 2015 /i/, /u/ (16) features learning ormant similarity
Philippsen, German /a/, . . Competence of
Reinhart, and N /i/, /u/, /e/, Vocal(l;r;)ctLab MEFCC furi?g)lilr})eii\lrirk acoustic
Wrede, 2016 /o/ reproduction
Subjective
Howard and 14 German VocalTractLab Filter-bank Multilayer comparison of
. N spectrogram and
Birkholz, 2018 vowels (14) features perceptron . s
informal listening
test
Subjective
Howard and 8 German VocalTractLab | Salience, diversity Self-exploration comparison of
. N . spectrogram and
Birkholz, 2019 vowels (14) and effort and reinforcement . . .
informal listening
test
English Soft-DTW-triplet,
Shitov, 2020 N vowel-to- Vocal(TZr;ctLab MFCC reinforcement Soft-DTW distance
vowel learning
German /a/, Euclidean distance
Philippsen, N /i/, /u/, /e/, VocalTractLab MECC Radial basis in acoustical goal
2021 /o/, /ba/, (21) function network space and
/ma/ articulatory space

Howard and his colleagues used computational models to conduct a series of stud-
ies on speech acquisition. They divided speech acquisition into two phases: the
babbling phase and the reinforcement phase. The babbling phase has two pur-
poses. The first purpose was to train the agent/infant (i.e., the articulatory synthe-
sizer) to discover potentially useful articulatory configurations; this was done in an
unsupervised manner. For example, the motor patterns (i.e., the articulatory con-
tigurations) were first generated through vocal self-exploration. The correspond-
ing speech was subsequently synthesized via acoustic simulation. The quality of
the synthetic sounds was evaluated using acoustic metrics, such as salience and
diversity (Howard and Messum, 2007; Howard and Messum, 2011; Howard and
Birkholz, 2019). Salience is a sensor metric that measured the quality of discovered
sound. It is calculated as the weighted sum of the acoustic power, touch contact,
and spectral balance. In contrast, diversity is a motor metric that measured how
diverse the new motor pattern and its acoustic and tactile sensory consequences
were compared to those of previously discovered motor patterns; it is calculated
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using the weighted sum of motor diversity, tactile diversity, and sensory diversity
(Howard and Messum, 2011). Motor patterns with high scores or low cost were used
to develop the babbling ability of the agent/infant. The other purpose of the bab-
bling phase is to create training samples for the reinforcement phase. For example,
the predefined articulatory configurations were fed into the synthesizer to produce
synthetic speech. The articulatory configurations and acoustic features extracted
from the corresponding synthetic speech constituted the articulatory-acoustic sam-
ples. In the reinforcement phase, the agent/infant reinforced its ability to produce
speech-like sounds by interacting with caregivers. Alternatively, a neural network
(i.e., the inverse model) could be trained by using acoustic features as its inputs
and articulatory configurations as its targets (Howard and Huckvale, 2005; Howard
and Birkholz, 2018). Following these two phases, articulatory configurations could
be obtained by imitating the given speech or feeding the acoustic features into the
trained inverse model.

Philippsen and her colleague have also been making continuous contributions to
CSA. Philippsen, Reinhart, and Wrede (2014) implemented an articulatory-acoustic
model where the forward and inverse mappings were learned by an echo state
network (ESN). The model was initially trained on a small set of training sam-
ples before being improved by the imitation-based refinement, which allowed for
syllable production. They also investigated goal-directed babbling methods, in-
spired by infants” speech learning, for vowel acquisition with an active selection
of targets (Philippsen, Reinhart, and Wrede, 2015) or adaptive exploration noise
(Philippsen, Reinhart, and Wrede, 2016). Their recent approach to CSA consisted
of two phases. The first phase established a low-dimensional goal space from am-
bient speech. The second phase involved an iterative loop of goal-directed babbling
in which an inverse model that mapped the acoustic goal space to the articulatory
space was learned via exploration and adaptation steps. The final model success-
fully learned how to produce five German vowels as well as the /ba/ and /ma/
syllables (Philippsen, 2021).

Shitov, Pirogova, and Lech (2018) assessed four types of acoustic features (formant,
MFCC, MFCC-PCA, and the hidden states of neural networks with MFCC as input)
in modeling speech acquisition, and concluded that the features that were automati-
cally learned by convolutional neural networks using LSTM layers outperformed all
other features. In his PhD thesis, Shitov (2020) also designed neural network based
CSA models for static vowel and vowel-to-vowel imitation. He proposed the Soft-
DTW-triplet model for learning distinctive features for word discrimination tasks,
the training data for which were composed of reference, positive, and negative sam-
ples. Soft dynamic time warping (Soft-DTW) distance was incorporated into the
loss function to train the triplet neural network models. The trained model was then
used as a feature extractor in a speech imitation task where reinforcement learning
was employed to learn the policies that controlled the vocal tracts of VocalTract-
Lab as well as the dynamics of speech production. However, this study involved
only five English vowels (including isolated vowels and their vowel-vowel com-
binations). Furthermore, these proposals were validated using speaker-dependent
data; in other words, both the training and testing utterances were created using the
same synthesizer.
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Unlike AAI, which uses articulatory-acoustic data recorded in parallel, CAS uses
an articulatory synthesizer as the learning agent. Another difference is that CSA
is normally used to investigate the acquisition of short utterances (see the "Utter-
ance" column of Table 2.3). Different acoustic features inspired by biological re-
search are also used in CSA, such as the cochleograms used in Philippsen, Reinhart,
and Wrede (2015) and the dual resonance nonlinear (DRNL) filterbank features used
in Murakami et al. (2015). In addition, all studies, with the exception of the study
by Howard and Huckvale (2005), developed speaker-dependent (SD) CSA systems.
The ambient speech used as the learning reference is often created in advance using
the same synthesizer. In the context of speech acquisition, this means that the infant
and the caregiver were acoustically the same. Howard and Huckvale (2005) sug-
gested that the main limitations in the performance of resynthesis systems were not
due to convexity problems or the lack of goal-directed learning, but were more likely
to be due to normalization issues between the CSA system and human speakers.

2.3 Articulatory Copy Synthesis

ACS differs from AAI and CSA because it emphasizes the exact reproduction of ref-
erence utterances, and involves both the physiological articulation process and its
corresponding acoustic results. In addition to obtaining the estimated articulatory
process from acoustic signals (as is done in AAI), the term "synthesis" in ACS em-
phasizes the resynthesis of an acoustic duplicate that matches the original utterance
as closely as possible. Similarly, ACS involves the acquisition of natural and intel-
ligible speech like in CSA; however, the term "copy" in ACS emphasizes the tem-
porally exact imitation of the target speech. Hence, the results produced by ACS
generally encompass those obtained by AAI or CSA.

Table 2.4 summarizes the representative literature on ACS. Like CSA, ACS also
needs an articulatory synthesizer; the only exception is the work of Richmond, Ling,
and Yamagishi (2013) who used a statistical synthesis model. ACS performance can
be evaluated using reference utterances in the acoustic, articulatory, and perceptual
domains since the results contain both estimated articulatory trajectories and repro-
duced acoustic signals.

Since the "copy" ability of ACS was achieved by reproducing reference speech, Prom-
on and his colleagues attempted to use ACS to find the underlying articulatory con-
tigurations of Thai vowels (Prom-on, Birkholz, and Xu, 2013; Prom-on, Birkholz,
and Xu, 2014). They used neutral positions of the articulators as the starting point
for articulatory parameters of VocalTractLab. Specifically, the articulatory configu-
ration of the “schwa” sound was used since it was closest to the neutral positions
of articulators. They found the optimal articulatory configurations of Thai vowels
using stochastic gradient descent; these configurations were subsequently fed into
VocalTractLab to synthesize acoustic signals. The results demonstrated excellent
agreement between the reproduced and reference utterances in both the acoustic
and articulatory domains. A listening test was also used to evaluate the percep-
tual quality of the reproduced speech. Their ACS framework was refined by using a
particle swarm optimization (PSO) algorithm to speed up the search process (Fairee,
Sirinaovakul, and Prom-on, 2015).
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TABLE 2.4: Summary table of literature on articulatory copy synthesis
(ACS). The "SI" in the second column indicates whether the study is
speaker-independent, i.e., "Y" for SII and "N" for SDL

Synthesizer
SI Utterance . (No. of Acoustlc. Inver.swn Evaluation
involved representation algorithm
parameters)
Dang and v Japanese Dang & Honda Formants Difference iﬁgﬁiﬁ;g‘d
Honda, 2002 vowels synthesizer (9) method . y
distances
Panchapagesan 11 English Maeda Formants and Codebook and Acqustlc and
and Alwan, N vowels or synthesizer (7) cepstra uasi-Newton articulatory
2011 diphthongs y p ! distances
Nam et al., . Log spectra and .
2010; Nam Y English TA].DA linear prediction DTW Spectral dlstap ce
sentences synthesizer (8) and Correlation
et al., 2012 spectra
Aryal and CMM Correlation, RMSE,
Gutierrez- English . Mel cepstral
N statistical MEFCC RBF network . )
Osuna, sentences synthesizer (6) distortion, and
2013 Y listening test
Richmond, Enelish F?S?ﬁlgg&%v[ Linear projection, Correlation and
Ling, and N sent% nces svnthesizer LSF Codebook, MLP, RMSE, LSF RMSE
Yamagishi, 2013 Y (12) and TMDN and listening test
English: 5
vowels and a .
Prom-on, . . Correlation of
Birkholz, and Y word; VocalTractLab MFCC St.ochastlc formants and EMA
German: 2 (18) gradient descent . .
Xu, 2013 four-syllable trajectories
utterances
Prom-on, 81 Thai . Sum of Squared
Birkholz, and Y vowel-vowel Vocal("l;r;ctLab MFCC rafl’;(e)ﬁ}t\?is(:;f:ent error (SSE),
Xu, 2014 sequences & listening test
Fairee,
Sirinaovakul, 5 Thai VocalTractLab Sum of Squared
and Prom-on, Y vowel-vowel (15) MFCC PsoO error (SSE)
2015
Gao, Stone, and 41 German VocalTractLab MEFCC, voicing of . . Acoustic distance,
. Y (2 of each . Genetic algorithm . .
Birkholz, 2019 words gesture) probability listening test
Gao, Stemer, German VocalTractLab MEFCC, voicing of RMSE, correle.lt.lon,
and Birkholz, Y e LSTM word recognition
sentences (30) probability
2020 accuracy
English and . . . .
Sun and Wu, . Convolutional Signal to noise ratio
2020 Y SS:;;;&:S TRM (42) Mel-spectrograms BLSTM (SNR)

Unlike articulatory trajectories, articulatory processes can be organized at a higher
level. For example, articulatory phonology defines the realization of a word as a
constellation of vocal-tract constriction actions, referred to as gestures. The realiza-
tion of an utterance involving multiple gestures is organized by a gestural score.
Therefore, another type of ACS is the estimation of gestural scores from acoustic
signals. This kind of speech inversion is based on the ABS procedure, in which in-
version is conducted by iteratively adjusting the articulatory parameters (e.g., the
duration, timing, and targets of gestures) to minimize the acoustic distance between
the resynthesized and original utterances. Nam et al. (2012) proposed a framework
for estimating gestural scores from acoustic signals. They first fed the canonical
transcriptions of utterances into a linguistic gestural model which generated initial
gestural scores using a segment-to-gesture dictionary and a set of syllable-based
inter-gestural coupling (phasing) principles. The initial gestural scores were then
refined via the ABS procedure which aimed to minimize the DTW-based spectral
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distance between synthetic speech generated with the gestural score and the refer-
ence speech. However, their work made two strong assumptions: (1) The content of
utterances (e.g., the canonical transcription) was assumed to be known in advance;
(2) Only the durations and relative timings of gestures were allowed to vary while
the dynamical parameters (target and stiffness) of gestures were held constant from
instance to instance.

In our previous study (Gao, Stone, and Birkholz, 2019), we also proposed an ACS
approach for the estimation of gestural scores from acoustic signals using Vocal-
TractLab. For a given natural utterance, an appropriate gestural score was obtained
in two steps: initialization and optimization. In the first step, a rule-based method
was employed to create an initial gestural score. This initial gestural score was op-
timized in the second step by using a genetic algorithm such that the cosine dis-
tance between the acoustic features of the synthetic and natural utterances was min-
imized. This study made assumptions similar to the first assumption presented in
Nam et al. (2012). However, in addition to the duration and timings of gestures,
"time constant” (a dynamical parameter similar to “stiffness”) was also estimated.
Depending on the optimized values of the “time constant” parameters, this method
allowed the articulators to approach their underlying target positions with different
degrees, which accounted for the mechanism of coarticulation.

We also investigated ACS using VocalTractLab and an LSTM neural network based
regression model, which were responsible for the articulatory-to-acoustic mapping
and its inversion, respectively (Gao, Steiner, and Birkholz, 2020). We used a rule-
based method to create gestural scores from texts, which were converted to articula-
tory trajectories and subsequently synthesized to produce the corresponding acous-
tic signals. To make the subsequent mapping more robust, the acoustic and artic-
ulatory spaces were expanded by manipulating the speaking effort, voice quality,
pitch level, and vocal tract length of the created gestural scores or acoustic signals,
producing 81 variants for each utterance. With acoustic features as inputs and ar-
ticulatory trajectories as targets, we trained the LSTM models on the acoustic-to-
articulatory inversion process. By providing the trained LSTM model with acous-
tic features of testing utterances, the estimated articulatory trajectories could be
obtained; these were subsequently fed into VocalTractLab to acquire reproduced
speech.

Sun and Wu proposed an embodied self-supervised learning (EMSSL) algorithm
and successfully applied it to speech inversion (Sun and Wu, 2020). The algorithm
used an ABS-based procedure to train a neural network that could infer articulatory
parameters from speech signals. Instead of preparing all training data in advance
before exclusively training the neural networks, they integrated the data sampling
and neural network training into a single iterative framework. During the sampling
step, the acoustic features of natural utterances served as the inputs for the neural
networks. The outputs were sampled articulatory parameters which were subse-
quently fed into the Tube Resonance Model (TRM) articulatory speech synthesizer
(Hill, Taube-Schock, and Manzara, 2017). In the training step, the sampled articu-
latory parameters and corresponding acoustic features of the synthetic TRM speech
were used to update the weights of the neural networks. These two steps were
performed alternatingly to obtain the final neural networks which could estimate
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articulatory parameters of reference utterance with arbitrary length and generalize
well to unseen speakers or even new languages. However, they used the signal-
to-noise ratio (SNR) of the mel-spectrograms between the synthetic and reference
utterances as the metric of similarity. This work did not evaluate the reproduced
speech in terms of intelligibility and naturalness, nor did they evaluate its similarity
from an articulatory perspective.

In addition, some studies also attempted to introduce articulatory constraints to
speed up the ACS process or make the estimated articulatory process more physi-
ologically plausible. To this end, the regularization term, usually calculated as the
sum of squares of articulatory parameters minus their nominal values, was designed
to prevent vocal tract parameters from significantly deviating from their mean or
neutral position. The continuity or smoothness term, usually calculated as the sum
of squares of the first order time-derivatives of articulatory parameters, was de-
signed to generate smoother articulatory trajectories. For example, in addition to
the acoustic distance between the synthetic and reference utterances, Panchapage-
san and Alwan (2011) incorporated the regularization and continuity terms into the
loss function to address the non-uniqueness problem and increase the smoothness
of estimated articulatory trajectories. Besides, to address the problem of nonlinear
one-to-many mapping, Dang and Honda (2002) incorporated a physiological con-
straint (specifically, the quantitative relationship between frequency difference of
the first two formants and tongue dorsum position) into the inversion procedure.

It should be mentioned that there is another type of ACS that uses articulatory data
concurrently recorded together with the acoustic signals. For example, Steiner and
Richmond (2009) and Steiner (2010) used EMA data as reference to resynthesized ut-
terances, including German CV sequences and sentences, by creating gestural scores
using the VocalTractLab synthesizer. Laprie et al. (2013) and Elie and Laprie (2016)
derived glottal source parameters such as fj, voicing feature, and formants, from
original acoustic signals and nominal values found in literature; they also derived
area functions from X-ray films. By using the Maeda synthesizer, they then accu-
rately reproduced the formant trajectories as well as the prosodic and phonetic con-
trasts of the original utterances. Although this type of methods rely on articulatory
data recorded in advance for each utterance to be reproduced, the findings and other
modules of those studies may be beneficial to other speech inversion investigations.

24 Concluding Remarks

This chapter introduced three kinds of speech inversion, together with selected rep-
resentative studies, from many aspects, mainly including tested utterances, artic-
ulatory data, acoustic features, articulatory synthesizers used for CSA and ACS,
inversion algorithms, and evaluation metrics.

AALI relies on paired articulatory-acoustic datasets in which the articulatory move-
ments and corresponding acoustic signals are simultaneously recorded. The pri-
mary downsides of speech inversion based on articulatory data are that data collec-
tion is expensive and laborious, and even sometimes invasive to subjects, especially
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when it involves the recording and labeling of data. In addition, since massive artic-
ulatory recordings can be too expensive to obtain, the AAI models are trained with
data from a small number of subjects; hence these models are not robust to utter-
ances from unknown speakers. Furthermore, methods that rely on recorded articu-
latory data have limited applications, especially in scenarios that require real-time
responses. Therefore, methods that do not require recorded articulatory data, and
that use synthetic data generated by articulatory synthesizers instead, are becoming
increasingly prevalent.

CSA is usually conducted on short utterances and in a speaker-dependent fashion.
The speech of the caregiver, regarded as ambient speech, is usually synthesized by
the same synthesizer. To simulate the acoustic variations of the same phonemes pro-
duced by different speakers in the real world, researchers usually add random noise
to predefined vocal tract configurations while keeping the anatomy of the model
speaker constant before synthesizing different variants for each phone. However,
this deviates significantly from real-world scenarios because the acoustic character-
istics of human speech vary considerably from speaker to speaker, much less the
difference between synthetic and natural speech.

ACS appears to be more challenging since it not only estimates articulatory pro-
cesses but also reproduces acoustic duplicates for the given utterances. However, it
mitigates the limitations of AAI and CSA to some extent by relying on the power
of articulatory synthesizers and a large collection of synthetic articulatory-acoustic
samples. In addition, ACS inherently provides more articulatory information than
AAI and CSA. Most inversion studies based on recorded articulatory data only es-
timate the articulatory processes of the supraglottal region, i.e., vocal tract parame-
ters. For example, since X-ray pellets or EMA coils are usually placed either in the
oral cavity or on the face, AAI studies based on such recordings cannot provide in-
formation about the laryngeal region. For CSA studies involved in the learning of
vowel production, the configuration of the vocal cords is usually set to that of the
modal phonation in advance and is fixed during the learning process. Lacking artic-
ulatory information about the glottal region may limit their application to scenarios
introduced in Section 1.1.

It is important to note that there is no real distinction between AAI, CSA, and ACS.
Although these three research topics have different motivations, aims, and termi-
nologies, they share many similar technical modules, such as the acoustic and artic-
ulatory representations of utterances and inversion algorithms. Generally speaking,
most of the modules that are used in AAI or CSA tasks are also involved in ACS
tasks. It should also be mentioned that the performance of different methods re-
viewed in this study are not directly comparable unless they use the same datasets
and are evaluated using the same metrics. In general, speech inversion for longer
utterances like sentences and phrases is generally more difficult than shorter ones
like words and isolated vowels. Speaker-independent tasks are more difficult than
speaker-dependent ones. Speech inversion to reproduce a target sound is more diffi-
cult than the one without that aim. Normally, speech inversion is also more difficult
when more articulatory parameters are involved, e.g., larger degrees of freedom for
articulatory synthesizers.
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ABS-based approaches tend to be computationally expensive. Therefore, initializa-
tion strategies are used to speed up the optimization and search procedures, such as
goal-directed babbling for CSA or rule-based methods for creating initial gestural
scores for ACS. The use of regularization and continuity terms in the loss function
is also effective at resolving the issues related to non-uniqueness and local optima
in ABS-based inversion. This study investigated the use of an ABS-based method in
conjunction with a genetic algorithm for ACS (this is presented in full in Chapter 4).
It was further developed to not require the utterance transcriptions in advance. A
new adaptive regularization method was also tested.

Another solution is to directly model the mapping of acoustic features to articula-
tory trajectories. To train such inversion models, a large number of training samples
are required. In addition, the training samples need to be diverse enough to cover
as much of the acoustic and articulatory space as possible. The review of the litera-
ture suggests that neural network based methods generally outperform traditional
methods for training such mapping models. Among them, neural networks with a
recurrent architecture are capable of modeling the temporal dependence of acoustic
and articulatory data, allowing them to produce smoother articulatory trajectories
for testing utterances. In addition, acoustic features processed by the neural net-
works with convolutional layers tend to be more distinctive for speech inversion.
Therefore, LSTM neural networks as well as convolution LSTM neural networks,
were examined for ACS (Chapter 5).

The speech produced by CSA and ACS can be evaluated by using perceptual ex-
periments. Nevertheless, only a few studies used listening tests to assess the qual-
ity of their reproduced speech. Therefore, Chapter 5 presents the results of a per-
ceptual experiment in which human listeners were recruited to rate the quality of
the reproduced speech through a recognition task. In addition, the ACS systems
built with neural network regression models were expected to be applicable to for-
eign languages, as articulatory synthesis is considered to be relatively language-
independent compared to other synthesis techniques. Therefore, Chapter 5 also ex-
amined the generalization ability of the proposed method. More specifically, the
ACS systems trained with German data were used to reproduce utterances of two
foreign languages: English and Mandarin Chinese.
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Fundamentals

Before elaborating upon the ACS methods proposed in this study, some fundamen-
tals must be introduced which will allow for the proposals to be validated experi-
mentally. Section 3.1 introduces VocalTractLab, the articulatory speech synthesizer
used in this study. It is the medium through which the articulatory and acoustic do-
mains are connected. All articulatory parameters involved in this study adhere to
the formats defined in VocalTractLab. Estimating articulatory parameters of Vocal-
TractLab and reproducing acoustic signals for given utterances constitute the main
body of this thesis. However, it should be mentioned that none of the methods
proposed in this study are constrained to any specific articulatory synthesizers or
datasets. Section 3.2 presents the datasets used to train and/or evaluate the speech
inversion models. Section 3.3 introduces the acoustic features used in this study to
represent utterances in the acoustic domain. Section 3.4 lists the main computation
platform, software, and tools used to conduct the experiments. Section 3.5 provides
some concluding remarks.

3.1 Articulatory Speech Synthesizer VocalTractLab

As reviewed in Section 2, lots of studies used articulatory speech synthesizers for
speech inversion. Articulatory synthesizer produces human-like speech by model-
ing human vocal tract and vocal folds and simulating articulatory, phonatory, and
control processes involved in speech production. Hence, it is used as the forward
model in CSA and ACS, mapping articulatory parameters to acoustic signals. The
commonly used synthesizers include the Maeda synthesizer (Maeda, 1990) as well
as its implementation variant (Tourville and Guenther, 2011), Dand & Honda syn-
thesizer (Dang and Honda, 2001), Task Dynamics and Application (TADA) model
(Nam et al., 2004), Tube Resonance Model (TRM) (Hill, Taube-Schock, and Manzara,
2017), and VocalTractLab (Birkholz, 2013). Among these articulatory speech synthe-
sizers, VocalTractLab (see Figure 3.1) is the most complete, flexible, feature-rich, and
continuously developed one, which makes it the widely used articulatory synthe-
sizer in speech inversion tasks, especially in recent years. Therefore, VocalTractLab
was adopted as the synthesizer in this study.
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FIGURE 3.1: The screenshot of VocalTractLab graphical user interface
showing the gestural score page in the back with the 3D vocal tract
model in front of it.

VocalTractLab (VTL) was originally developed by Birkholz (2005) and later contin-
uously refined by Birkholz and his colleagues (Birkholz, Kroger, and Neuschaefer-
Rube, 2011; Birkholz, 2013; Birkholz et al., 2017). VIL implemented various mod-
els, including a 3D vocal tract model representing the supraglottal airways and ar-
ticulators, vocal fold models providing source excitation, and acoustic simulation
models. The 3D articulatory defines the vocal tract and uses 19 degrees of freedom
(vocal tract parameters) to control articulator states. VIL implemented three vo-
cal fold models, among which the geometric model (Birkholz, Drechsel, and Stone,
2019) generally proved to provide a better synthesis quality. The geometric model
is hence selected as the vocal fold model for this study. The articulatory parameters
modeled in VTL are listed in Table 3.1.
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TABLE 3.1: Articulatory parameters of VocalTractLab (version 2.3).
Model Parameter Description Min. Max. Unit
HX Hyoid horizontal position 0 1 cm
HY Hyoid vertical position -6 -3.5 cm
JX Jaw position -0.5 0 cm
JA Jaw angle -7 0 deg
LP Lip protrusion -1 1 cm
LD Lip (vertical) distance 2 4 cm
VS Velum shape 0 1 -
VO Velum opening -0.1 1 -
TCX Tongue body center horizontal position -3 4 cm
Vocal tract model TCY Tongue body center vertical position -3 1 cm
TTX Tongue tip horizontal position 1.5 5.5 cm
TTY Tongue tip vertical position -3 2.5 cm
TBX Tongue blade horizontal position -3 4 cm
TBY Tongue blade vertical position -3 5 cm
TRX Tongue root horizontal position -4 2 cm
TRY Tongue root vertical position -6 0 cm
TS1 Tongue (root) side elevation 0 1 cm
152 Tongue (back and dorsum) side elevation 0 1 cm
TS3 Tongue (tip and blade) side elevation -1 1 cm
{0 Fundamental frequency 40 600 Hz
pressure Subglottal pressure 0 20000 dPa
x_bottom Vocal fold lower displacement -0.05 0.3 mm
x_top Vocal fold upper displacement -0.05 0.3 mm
chink_area Chink area -0.25 0.25 mm?
Vocal fold model lag Phase lag 0 3.1415 deg
rel_amp Relative amplitude -1 1 -
double_pulsing Double pulsing 0 1 -
pulse_skewness Pulse skewness -0.5 0.5 -
flutter Flutter 0 100 %
aspiration_strength Aspiration strength -40 0 dB

There are 30 articulatory parameters in total (19 for vocal tract model and 11 for
vocal fold model) if the geometric vocal fold model is used. Since TRX and TRY
are usually calculated by linear regression from the remaining parameters, there are
only 17 actual degrees of freedom for the vocal tract model. For each parameter,
a sequence of samples (with an interval of 2.5 ms) over time constitutes an articu-
latory trajectory. VTL takes these articulatory trajectories as inputs and simulates
acoustic signals as outputs. Therefore, ACS can be regarded as its inversion process
that, for a given utterance, estimates the underlying articulatory trajectories whose
corresponding VTL-synthesized speech matches the original one as closely as pos-
sible. In addition to the elementary level representation of articulatory configura-
tions (i.e., the 30 control parameters), VIL also provides a higher level organization
format, gesture, originally developed in the framework of articulatory phonology
(Browman and Goldstein, 1992). According to articulatory phonology, gestures are
the fundamental units that constitute an utterance. In VTL, a gesture describes the
movement of participating articulators/parameters toward a target configuration of
the vocal tract model or the vocal fold model.

Gestural score is an organization pattern of all gestures for an utterance to indi-
rectly control the articulatory process. The realization of each phoneme is cooper-
atively governed by multiple gestures, each of which consists of three parameters
(Birkholz, Steiner, and Breuer, 2007): a gesture value, a duration, and a time constant,
which define target positions of articulators, their duration, and how quickly the
participating articulators reach the targets (i.e., speaking effort), respectively. All
involved gestures for the realization of an utterance are distributed over eight tiers
of a gestural score. As shown in Figure 3.1, from top to bottom, they are vowel, lip,
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tongue tip, tongue body, velic, glottal shape, fj, and lung pressure tiers. All gestures
that are temporally arranged and coordinated over these tiers constitute a gestural
score. In fact, the gestural score will be internally converted to articulatory trajec-
tories in VTL, because the motions of articulators in response to discrete gestures
are controlled by linear dynamical systems, thus producing articulatory trajectories
along the time-axis (Birkholz, Kroger, and Neuschaefer-Rube, 2011). Subsequently,
acoustic signals are simulated by a time-varying branched acoustic tube system.

3.2 Corpora

In order to evaluate the effectiveness of the proposed approaches, two corpora were
deliberately designed. One was a speech corpus of phonemically balanced and
commonly used German words, referred to as PBACU corpus, which enabled to use
least utterances to cover all German phonemes. This corpus contained the acoustic
signals of a set of 160 German words produced by two male native speakers. In this
study, the PBACU corpus was used as the target utterances for ACS in Chapters 4
and 5. Another one was the paired articulatory-acoustic dataset, referred to as VTL-
Kiel corpus, which was created using VocalTractLab and Kiel Corpus. Together with
the original natural utterances of Kiel corpus, the VI'L-Kiel corpus was used to train
and evaluate the neural network based ACS systems in Chapter 5.

3.2.1 PBACU Corpus

Although there are a lot of speech corpora available, they were usually designed for
specific tasks, such as speech recognition, speech synthesis and speaker identifica-
tion. They are not proper to evaluate the proposed method in Chapter 4 for several
reasons. First, the method in Chapter 4 relies on the ABS-based procedure in which
reproducing a given utterance is very time-consuming. The iteration-based method
usually takes several minutes, on the condition of using multiple CPU cores, to fin-
ish the optimization of VIL parameters for a word. The longer the utterance is,
the more gestures or articulatory parameters it has, and thus the more time it takes
to optimize. Besides, the utterances produced in a spontaneous style are highly
co-articulated, i.e., the phones are usually realized in a reduced way. Using such
utterances with complicated linguistic phenomena makes it hard to focus on the al-
gorithm itself. In this study, therefore, a speech corpus of phonemically balanced
and commonly used German words, referred to as PBACU corpus, was constructed
to validate the proposed methods. The corpus should be succinct, i.e. it should have
as few utterances as possible, so that it can save not only the cost of recording speech
but also the time of running algorithms. Furthermore, it should have a good cover-
age of phonemes and also be phonemically balanced so that it can provide enough
phoneme combinations to fully analyze the performance of the algorithms.

Word List Design

First, a word list together with the canonical phonetic transcription was designed.
The candidate words came from two sources: the pronunciation dictionary of the
open source German ASR system proposed in Radeck-Arneth et al. (2015); the words
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together with their pronunciations used in the phonetically balanced BITS corpus
(Ellbogen, Schiel, and Steffen, 2004). The words as well as their pronunciations
from these two sources were merged before selection. Even though the proposed
approaches can be applied to optimize any complex utterances in principle, in this
study only two- and three-syllable words that contained "CV" or "CVC" syllables
were used since their gestures or parameters could be optimized with acceptable
computational effort and the results allowed us to analyze the effectiveness of pro-
posed methods. Therefore, two lexicons were created from the merged candidate
word list with canonical pronunciations: one for two-syllable words and another for
three-syllable words. Next, for each lexicon, the entries of commonly used words
with the frequency level higher than 15, by referring to the frequency-based rank-
ing list "derewo-v-ww-bll-320000g-2012-12-31-1.0'", were selected, yielding a new
lexicon of commonly used words, which was used as the initial lexicon in the next
step.

After that, the minimal set of words covering all German phonemes at least once
were further selected using a least-to-most-ordered algorithm (Wu et al., 2016). As-
sume that L was the initial lexicon containing all words for selection, where W =
{ws, ..., wn} and N was the number of candidate words. Let T is the target word set
and P = {p1, ..., pm} was the phoneme set to be covered by the pronunciations of
the target words. Starting from the initial lexicon, a set of target words were selected
as follows.

* Step-1 for initialization: The sub-list for each target phoneme W(p;) = {wy), ..., w, i}

was constructed in which the pronunciation of the word w{ contained the tar-

get phoneme p; at least once and n/ was the number of the words containing
this target phoneme in the lexicon L.

¢ Step-2 for phoneme selection: The phoneme with least frequency occurring in
the lexicon L was selected,

Pt = arg min f (p)) (3.1)

]'CP

where f(p;) denoted the frequency of phoneme p; occurring in the lexicon L.

¢ Step-3 for word selection: The word with highest score from the sub-list for
the phoneme p* was selected,

w* =arg max s; (3.2)

w; CW(p*)

where the score s; was the entropy of phonemes when the word w; was in-
serted into the target word set.

¢ Step-4 for update of target word and phoneme sets and the lexicon:

lhttps://wwwl.ids—mannheim.de/s/corpus—linguistics/projects/
methods—-of-analysis/corpus—based-lemma-and-word-form-lists.html?L=1
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L+ {L—w*} (3.3)
T+ {T+w"} (34)
P+ {P— Py} (3.5)

where P« was the phoneme set covered by the pronunciation of the word w*.

¢ Step-5 for iteration: The above four steps were repeated until the target phoneme
set P was empty.

Performing the above steps separately for each initial lexicon, the least-to-most-
ordered algorithm selected a minimal set of words covering all German phonemes
at least once. In Step-2, the phoneme least-frequently occurring in the lexicon was
always preferentially selected. This selection criterion tended to select the words
whose corresponding phonemes were hardest to cover, which conduced to the small-
est target word set. In Step-3, the word was preferentially selected when the phoneme
entropy of resulting target word set was highest. This entropy-based criterion tended
to make the phoneme set of all selected words more phonemically balanced.

To cover more combinations of different consonants and vowels, this above selection
procedure was repeated five time separately for the two-syllable word lexicon and
three-syllable word lexicon. In addition, to examine the capability of the proposed
method for dealing with consonant clusters, extra 20 words were manually selected,
such as the words "zuviel", "Prototyp" and "Campingplatz" containing [ts], [pr] and
[pl], respectively. Finally, these words selected from two lexicons were merged into
one union set, resulting in a word list containing 160 words (80 two-syllable words
and 80 three-syllable words), which is listed in the Appendix A.

Speech Recording

In order to make sure that the words were produced with a natural way, all the target
words were further embedded in the carrier sentence “Ich habe <word> gesagt” (En-
glish: "I have said <word>"). By means of the carrier words, the articulators were
placed in the resting position before and after target words. Two German male
speakers (SPK-1: 31 years old; and SPK-2: 26 years old) produced the set of 160
words. They were native Germans studying in Chair of Speech Technology and
Cognitive Systems of TU Dresden and had normal speech and hearing functions
with no history of any communication disorders. The recordings took place in the
Audio-Studio of Institute of Acoustics and Speech Communication equipped with a
recording console (Behringer Eurorack MX1602). The studio microphone (Microtech
Gefell M930) was placed at a distance of approximately 20 cm from the speaker’s
mouth. After a brief instruction and practice, the speaker was asked to read all of
the 160 sentences containing the target words. All utterances were recorded with
a sampling rate of 22.05 kHz and a quantization of 16-bit. The 160 utterances pro-
duced by each speaker were recorded in a long recording.
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Post-processing of Recordings

An automatic forced-alignment was first carried out via the WebMAUS service (Kisler,
Reichel, and Schiel, 2017) on both word and phoneme levels, outputting a TextGrid
format annotation of Praat (Boersma and Weenink, 2019). Then, the boundaries
were manually adjusted, taking into account both the acoustic landmarks and zero-
crossing positions by referring to both visual and audio cues simultaneously. Based
on the derived word-level boundaries, the acoustic signal and corresponding man-
ual segmentations for each target word were cut out from the respective long record-
ings and TextGrid based annotation files.

The segmented signals sometimes did not taper to zero at borders, which were in-
congruent with the real-world signals. To reduce the impact of cutting signal on the
statistical properties of the signal, one half of a Blackman window was applied to
smooth both sides of each segmented signal, making the amplitude of it taper to
zero at the borders. Its effect is similar to that of a Tukey (tapered cosine) window.
The window of length N is defined mathematically as:

2 4
w(n) = 0.42 — 0.5 cos (ﬂ) +0.08cos (ﬂ) . n=01,.,N-1. (3.6
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FIGURE 3.2: Smoothing borders of segmented signal using Blackman
window.

A Blackman window of 40 ms was used to smooth each segmented acoustic signal.
The window was split into two parts, as shown in the upper subplot of Figure 3.2,
which were applied to the beginning and end parts of the segmented spoken word.
The blue lines in the lower subplot of Figure 3.2 represents two parts of original
signal (here, only 50 ms is shown for each side). By multiplying each part of the
original signal with half of the Blackman window (20 ms for each side, respectively),
the smoothed signals (the red curves) go to zero at the borders.
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After that, an extra silence of 100 ms was added before and after the obtained wave-
form for each word, so that there was some leeway in real use, e.g., creating the ges-
tural scores based on acoustic signals for ACS. Accordingly, extra silent segments
of 100 ms were also inserted into the phone tier of TextGrid files. In the last step,
each utterance was also normalized to -3 dB (amplitude normalization) to adjust the
volume. Finally, the two sets of 160 target spoken words containing acoustic sig-
nals and corresponding manual segmentations storied in TextGrid files constitute
the PBACU corpus. It should be noted that the proposed ACS methods only needed
acoustic signals as inputs. The annotation files were not used as inputs of the pro-
posed ACS methods, but only for evaluating the performance of some processing
modules.

3.2.2 VTL-Kiel Corpus

Introduction of Kiel Corpus

The VTL-Kiel corpus was designed using VIL and the Kiel Corpus of Spoken German
(Kohler, Peters, and Scheffers, 2018) which contains (read or spontaneous speech)
recordings of sentences, short stories, and dialogues. The text used in read speech
part came from seven text corpora, which are listed in Table 3.2. In this study only
the sentence recordings of the read speech part were used and the very long record-
ings of stories ("Butter" and "The North Wind and the Sun") were excluded.

TABLE 3.2: Text corpora used in read speech part of Kiel corpus.

Text corpus Text Abbreviation
Berlin 100 Berlin sentences be
Marburg 100 Marburg sentences mr
Butter The Butter Story in 3 parts buttl/2/3
Nordwind | The North Wind and the Sun in 2 parts nord1/2
20 CNET sentences cn
63 Kohler sentences ko
Restkorp 45 SEL sentences sl
25 additional SEL sentences s2
15 Schiefer /Sommer sentences s3
30 Tillmann /Kohler sentences tk
Erlangen 100 Erlangen sentences er
Siemens 100 Siemens sentences si

Each sentence was spoken by one or several speakers who were seated in a sound-
treated booth and read the sentence through a window from a monitor. The original
Kiel corpus also provides users with detailed annotations. Listing 3.1 show an ex-
ample of the annotation file. The first line indicates the file name itself. The second
line is the orthographic text. The fourth line contains the canonical transcription
automatically generated via G2P tools. The sixth line contains the segmental labels.
The remaining lines contain the segmentation information created by manual time
alignment of segmental labels. The prosodic labels, not shown in this listing, are
also provided in the annotation files with the "*.s2" extension.
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dlmer044.s1
ja , gut das wars dann , vielen Dank .
oend
j ‘at , g 'ur 't das+ v ’ait: 6s dant , f 'i: l @
—n d ‘aNk
kend
c: j 'a: , -p: %g -gh 'u: t- d -dh a s+ v ’a:6 s d -
~+dhan+t , -p: f ’i: 1@ n d-dh "aN k -kh
hend

13786 #c: 0.8615625
13786 ##] 0.8615625
14739 $’a: 0.9211250
16646 #, 1.0403125
16646 #-p: 1.0403125
19501 ##%g 1.2187500
20249 $-gh 1.2655000
20676 $'u: 1.2921875
21539 $t- 1.3461250
21539 ##d 1.3461250
22348 $-dh 1.3966875
22614 %a 1.4133125
23667 $s+ 1.4791250
24526 ##v 1.5328125
25049 $’a:6 1.5655000
26885 $s 1.6802500
36871 ##d 2.3043750
37024 $-dh 2.3139375
37180 $’a 2.3236875
39165 $N 2.4477500
39752 $k 2.4844375
40147 $-kh 2.5091250
40424 #. 2.5264375

LISTING 3.1: Example of an annotation file of Kiel corpus.

Gestural Score Creation

For this study, the utterances produced by female speakers were excluded since the
model speaker ("JD2.speaker”) of VTL was created based on a German male speaker.
The resulting 1998 utterances (corresponding to 598 distinct sentences) produced by
14 male speakers were used as the basis for creating paired articulatory-acoustic
utterance samples. The procedure of creating gestural scores based on utterances of
Kiel corpus consisted of the following steps:

1. Pre-processing of annotation files. This step was to get the clean SAMPA
based segmentation from the annotation files. As can be seen from Listing
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3.1, the annotation file contains special symbols other than SAMPA symbols
(see segmentations from Line seven), such as the sentence beginning marker
"#c", segmental label markers like "##" and "$#", "$", stress marker """, and
punctuation markers like "," and ".". These special symbols together with the
very first few lines (i.e., filename, orthographic and canonical transcriptions)

were removed.

. Removing non-verbal segments and padding fixed-length silence. This step

was conducted for both segmentation files and waveforms. The very long non-
verbal segments at the beginning and the end, and pause segments marked by
"-p" and breathing segments marked by "-h" in the middle of recordings were
removed from the annotation files. Accordingly, the corresponding acoustic
signals were trimmed. A silent segment of 100 ms was padded to both ends of
each resulting signal.

. Segmentation to segment sequence file of VTL. The processed segmentation

tiles were converted to the segment sequence files that were supported by
VTL. Below is the content of a segment sequence fie ("dlmer044.seg"). Each
line defines one segment in terms of its name (in SAMPA) and duration. The
first and last lines indicate the 100 ms silent segments padded to the beginning
and end of speech.

name = ; duration_s = 0.1;

name = j; duration_s = 0.059562;
name = a:; duration_s = 0.11919;
name = g; duration_s = 0.073438;
name = u:; duration_s = 0.053937;
name = d; duration_s = 0.067187;
name = a; duration_s = 0.065813;
name = s; duration_s = 0.053687;
name = d; duration_s = 0.019313;
name = a; duration_s = 0.12406;
name = N; duration_s = 0.036687;
name = k; duration_s = 0.042;
name = ; duration_s = 0.1;

. Segment sequence file to gestural score file. This step was done using a rule-

based method implemented in VIL application programming interface (VIL-
API), which will be introduced in greater detail in Section 4.1.2.

. Replacing the pitch tier of gestural score with estimated pitch targets. The

gestural scores created from last step contained only pseudo gestures for the
fo tier. Therefore, the fj related gestures had to be estimated separately, which
was performed by TargetOptimizer 2.0 (Krug et al., 2021). The estimated f
gestures were then merged to the gestural scores by replacing the pseudo ones.
The detailed description of gestural score creation will be introduced in Section
4.1.2.
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Data Augmentation

As mentioned in Section 3.1, for acoustic simulation, VIL will internally convert
gestural scores into articulatory trajectories over time. For a single time step, the ar-
ticulatory configuration is a vector of 30 articulatory parameters. Figure 3.3 shows
an example of gestural score created from the last section and its corresponding syn-
thetic speech above it. Acoustic features were extracted form the synthetic speech.
The frame shift for extracting acoustic features was also 2.5 ms that equaled the time
interval of between two adjacent articulatory parameters vectors. Hence, the articu-
latory representations (i.e., the articulatory parameter vectors) and the acoustic rep-
resentation (i.e., extracted acoustic features) temporally matched frame-by-frame.
They constituted the paired articulatory-acoustic sample for an utterance. A large
scale corpus of was paired articulatory-acoustic data constructed using the above
procedure with Kiel corpus, which could be then used to train supervised speech
inversion systems.
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FIGURE 3.3: Example of gestural score for Kiel corpus and correspond-
ing acoustic signal.

It should be pointed out that the arrangement and coordination of gestures involved
in a gestural score were determined by the rule-based method (see Section 4.1.2 for
details). The corresponding synthetic speech was normally natural and intelligible.
However, such utterances only covered the most common articulatory configura-
tions (and thus the corresponding synthetic speech with less acoustic variations)
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because the rule-based method converting segment sequences to gestural scores al-
ways used the same default values for some gesture parameters. For example, the
"time constant" parameter reflecting speaking effort was always set to 12 ms (0.012
second) for supra-glottal gestures which, in turn, determined the same transition
pattern from one phone to another for all instances. This is obviously inconsistent
with that occurring in natural speech, because people usually speak with different
speaking effort. Even for a specific speaker, different speaking effort will be used
when he/she speaks for example with different speaking rates and/or emotions.
Also, the voice quality (phonation) varies from speaker to speaker. Moreover, peo-
ple have different vocal tract lengths, resulting in higher f; and formant frequencies
normally for a shorter vocal tract length or lower ones for a longer vocal tract length.

A gestural score created with default values were referred to as the prototype one. In
order to sufficiently cover the articulatory and acoustic space, which in turn makes
the ACS models more robust, 12 variants for an utterance were created by manip-
ulating the default configurations. First, its glottal gestures associated with voiced
phones were always set to the "modal" phonation type by default, which was re-
placed by either "pressed" or "breathy" glottal gestures, thus producing different
voice quality for voiced segments. Then, the default value (0.012 second) for time
constant of supra-glottal gestures of the prototype gestural score was replaced by
a random value sampled from a normal distribution with a mean of 0.012 and a
standard deviation of 0.002. It should be mentioned that this manipulation was
individually performed for each gesture, which could create more transition pat-
terns. If the randomly sample values fell outside the valid range of time constant
(here, [0.01, 0.0396] second defined in VTL), the sampling was repeated again. Up
to this point, there were six gestural scores (three phonation types x two sets of
time constant) in which the prototype one was included. Next, VTL synthesized
six acoustic signals using these gestural scores. After that, the vocal tract length (to
be more precise, the formant frequencies) was manipulated using the "change gen-
der" functionality of Praat (Boersma and Weenink, 2019). The formant shift ratio for
an acoustic signal was set to a random value sampled from a normal distribution
with a mean of 1 and a standard deviation of 0.1 with a limited range of [0.8, 1.2].
Because the manipulation of vocal tract length was only operated in acoustic do-
main, the corresponding articulatory trajectories of the original six gestural scores
were used again to form the articulatory-acoustic samples. In other words, each of
six sets of articulatory trajectories corresponded to two acoustic signals: one with
VTL model speaker vocal tract length and another with randomly manipulated vo-
cal tract length. Up to this point, 12 articulatory-acoustic samples (three phonation
types X two sets of time constant x two vocal tract lengths) were created based one
original utterance of Kiel corpus. Finally, a set of 23 976 paired articulatory-acoustic
samples were obtained with VIL and original utterances of Kiel corpus and referred
to as the VTL-Kiel corpus.

3.3 Acoustic Features

Acoustic features can serve as two main functions in the context of ACS. Firstly, by
encoding audio signals, they represent utterances in a compact format. Secondly,
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they are used as parameters for measuring similarity of utterances, for example, by
comparing extracted acoustic features between reproduced and original utterances.

Both human natural speech and articulatory synthetic speech are produced by time
varying vocal tract systems excited by time varying sources. Hence, acoustic signals
are essentially non-stationary. However, the engineering way of processing speech
is to assume the signal to be stationary in short time segments. More specifically,
speech signal is assumed to be stationary when it is processed in frames of 20~40
ms. A lot of acoustic features can be extracted for various tasks by applying short
term processing (STP) to such short segments. This section introduces the acous-
tic feature used in this study, including mel-frequency cepstral coefficients (MFCC)
together with spectrogram and some other complementary features.

3.3.1 Spectrogram and MFCC

Human speech is comprised of many frequency components. A speech spectro-
gram, calculated by repeatedly applying Fourier Transform to overlapped frames
of a signal, shows the magnitude of the frequency components as it varies with
time. The phones within utterances are characterized by the time-frequency struc-
ture of spectrogram. Therefore, spectrogram as well as its derivatives can be used
as acoustic representation of utterances and widely used in speech signal process-
ing. Mel-frequency cepstral coefficients (MFCC) are one of its derivatives and are
the most widely used features in speech-related applications, such as recognition
systems (Dave, 2013; Ittichaichareon, Suksri, and Yingthawornsuk, 2012), speaker
recognition (Tiwari, 2010; Ganchev, Fakotakis, and Kokkinakis, 2005), and music
information retrieval (Miiller, 2007).
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xm) | Pre-emphasis| - DFT ™11 fitter-bank

Y
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= 4 BYiG) b |derivatives| —2Y) IDFT [« Yo
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FIGURE 3.4: The general diagram of extracting MFCC.

The generic procedure of extracting MFCC is shown in Figure 3.4. Since the spec-
trogram is an intermediate product of extracting MFCC, its extraction will not be
individually introduced. The extraction of MFCC features consists of the following
steps:
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Pre-emphasis

Voiced speech usually has a negative spectral slope (attenuation) due to the physio-
logical characteristics of the speech production system (Picone, 1993). Pre-emphasis
refers to emphasizing the higher frequency components so that the high frequency
components have similar magnitude with respect to low frequency components.
The following equation converts the original signal x(n) into the pre-emphasized

signal x'(n).
x(n)=x(n)—097x(n—1) (3.7)

Framing and Windowing

Human speech is a time-varying signal and usually quasi-stationary. Therefore,
speech is usually split into successive overlapping short segments, each of which
is assumed to be acoustically stationary. Short-term spectral analysis is typically
carried out over 20 ~ 40 ms frames and shifted every 10 ~ 20 ms. In Figure 3.4, the
subscript t is the time index of frames. For each analysis frame, a window is applied
to taper the signal toward the frame boundaries. The most commonly used window
is Hamming window, which is defined as:

27n
N -1

w(n) = 0.54 — 0.46 cos ( ) , n=0,1,.,N—1, (3.8)

where N is the length (in number of samples) of the Hamming window.

Discrete Fourier Transform (DFT)

Discrete Fourier transform (DFT) converts each Hamming-windowed frame into
magnitude spectrum as follows:

X(k)y=Y_ x(n)e v , k=0,1,.,N—1. (3.9)

Mel-frequency Filter-bank Processing

Since human perception of frequencies is not linear in Hz scale but proportional
in logarithm scale, the spectral representation is usually further processed in mel-
frequency scale. A typical approximation of Hz-to-Mel conversion is defined as:

fIMel] = 2595 log,, (1 +f ;I;OZ]) (3.10)

To further simulate human auditory sensitivity to critical band, triangular filter-
banks equally spaced in mel scale are applied to the magnitude spectrum.
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Y(m) = Nf |X(k)|Hp(k), m=0,1,..,M—1, (3.11)
k=0

where M is the number of triangular filter-banks. H,,(k)is the weight given to the
k-th energy spectrum bin contributing to the m-th output band (Huang et al., 2001;
Rao and Vuppala, 2014). In addition, the logarithmic power spectrum, log |Y (m)|?,
is usually used to approximate roughly the sensitivity of the human ears.

Discrete Cosine Transform (DCT)

Since the vocal tract is smooth, the energy levels in adjacent bands tend to be cor-
related. Besides, the envelope of the vocal tract changes slowly, while the excita-
tion changes much faster. Therefore, discrete cosine transform (DCT) is required to
reduce the correlation between the transformed mel-frequency coefficients, which
produces a set of cepstral coefficients.

M-1
v(i) = 3 tog (I¥(m)F) cos |j (m— 3 )|, j=017-1 612

where | is the number of cepstral coefficients. Normally the first 12 ~ 13 dimensions
are used in speech recognition systems.

Dynamic Features: Deltas and Delta-deltas of MFCC

As time-varying signal, human speech is a sequence of transitions between phonemes.
However, MFCC features are calculated for each given frame, which can only reflect
the static information. A common method of capturing the dynamic characters of
phoneme transitions is to compute the first and second derivatives of cepstral coef-
ticients, which are defined as follows (Rao and Vuppala, 2014), respectively:

Byi(j) = =5 (3.13)

Ay(j) = ——— (3.14)
Yy i

i=—T

where the Ay;(j) and A%y;(j) denote the delta and delta-delta of the j-th dimension
feature of the t-th time-indexed frame, respectively. T, normally taken from {1, 2, 3},
is the number of successive frames considered for dynamic feature computation.
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3.3.2 Other Features
Short Time Energy

Short time energy refers to the energy associated with short term region of speech,
which is calculated based on the amplitude of the speech signal. As shown in Equa-
tion 3.15, the short time energy of a frame with N samples is defined as the sum of
the squared values of these samples.

SE= Y x} (3.15)

The signal of an utterance is composed of a chain of successive segments which
can be voiced, unvoiced or silent (Atal and Rabiner, 1976). Figure 3.5 shows the
waveform and spectrogram as well as the annotation of all phones for the word
"durchhalten" from the PBACU corpus. As we can see from the upper panel, the
amplitude of the waveform varies with time, which characterizes different segments
to some extent. The silent segments can be the regions in the beginning and end of
the utterance or short pauses between spoken words. They usually contain least or
negligible energy compared to the real speech parts. The silent segments can also be
the closure phases of plosive consonant, e.g., the closure for the phone [t]. Although
this kind of silent segments are relatively short and appear within the spoken words,
they are still distinctive from segments of their surrounding phones. Moreover, the
voiced segments tend to sound louder than the unvoiced segments, i.e., the energy
of voiced speech is generally higher than that of unvoiced speech (Bachu et al., 2010).
Therefore, the features related to amplitude variations, in particular in the form of
energy, are commonly used in speech analysis.
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FIGURE 3.5: The waveform and spectrogram as well as the annotation
of all phones for the word "durchhalten".
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Short Time Zero Crossing Rate

The zero crossing rate (ZCR) refers to the rate at which a signal changes its algebraic
sign from positive to negative or vice versa within a given signal, which reflects how
fast the signal changes over time. It can be calculated according to Equation 3.16,

1 N
ZCR = N ; sgn(xn) —sgn(x,—1)| (3.16)

where sgn is the sign function. The factor "2" in the denominator is usually respon-
sible for reflecting the fact that there are two zero crossings per cycle of a signal.

ZCR can be used as an indirect indicator of the frequency information of the signal.
A high ZCR means the signal is changing rapidly and accordingly it may contain
high frequency information while a low ZCR indicates the signal is changing slowly
and hence it may contain low frequency information.

Voiced speech is excited by the periodic air flow from the glottis and usually shows
a low ZCR while unvoiced speech is excited by the noise-like source and usually
shows a high ZCR (Bachu et al., 2010). As can be seen from Figure 3.5, the waveform
of the unvoiced palatal fricative [C] has a very high ZCR. The ZCRs for the /h/
sound and the closure release phase of the [t] sound also show distinctive patterns
from other segments.

Fundamental Frequency and Probability of Voicing

Voiced sounds are produced with the vocal folds vibrating and air going out through
the vocal tract. As the result of vocal folds’ regular opening and closing, the peak
of air pressure in the sound wave appears periodically. The fundamental frequency
(fo) of a speech signal refers to the approximate frequency of the periodic structure
of voiced speech signals, i.e., the number of complete repetitions (cycles) of a pat-
tern of air pressure variation occurring in a second (Ladefoged and Johnson, 2014).
Another concept closely related to fj is pitch, which describes how fj is perceived
by human ears and brains in terms of periodicity. fy conveys important linguistic
and paralinguistic information, such as forming stress and accents, distinguishing
lexical meaning in tonal languages, expressing emotions and attitudes and so on. In
the task of ACS, reproducing the original fj is very important since it affects how
similar the reproduced utterance is to the reference one in both the acoustic and
perceptual domains. Therefore, it is also considered in this study.

Another feature together with fj is probability of voicing (POV) that describes the
voicing status of speech signals. In addition to the binary status (voiced vs. un-
voiced), voicing status can be quantified using continuous values. It can be used
not only in speech analysis but also in speech recognition (e.g., Zorila, Kandia, and
Stylianou, 2012; Ghahremani et al., 2014). The POV feature is also important in the
current study in that the realization of each phoneme in VTL is separately controlled
by the vocal tract and vocal fold parameters. For example, a tongue-tip alveolar plo-
sive consonant vocal tract configuration will produce the [d] sound with a voiced
vocal fold configuration while it will produce the [t] sound with an unvoiced one.
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The fy extraction from original utterances and f; reproduction in synthetic utter-
ances are performed with Praat (Boersma and Weenink, 2019) and TargetOptimizer
(Krug et al., 2021), respectively, which will be introduced in Chapter 4. The POV fea-
ture was extracted with TANDEM-STRAIGHT (Kawahara et al., 2008). The TANDEM-
STRAIGHT first calculates the temporally stable power spectrum of a periodic sig-
nal, TANDEM spectrum, by adding two power spectra using a pair of time windows
temporally separated for half of the fundamental period. Next, the interference-free
spectrum, STRAIGHT spectrum, is calculated upon the TANDEM spectrum using
the consistent sampling method. The fluctuation spectrum as well as its weighted
Fourier transform are subsequently defined by combining these two spectra. Finally,
for each fj candidate, a periodicity score is calculated by integrating all weighted
Fourier transforms of the fluctuation spectrum. The detailed technical implementa-
tions are introduced in Kawahara et al. (2008) and Kawahara and Morise (2011).

3.4 Experiment Platform, Software, and Tools

All experiments in this study were conducted on the High Performance Computing
(HPC) system? of TU Dresden. The HPC system are equipped with about 60,000
CPU cores, 448 GPU accelerators, and a shared storage containing about 2000 high
capacity disks. Therefore, it is efficient for compute-intensive and data-intensive ex-
periments of various scientific research. The account of the author was equipped
with a "/home" directory of 50 GiB storage and a project directory of 300 GiB fast
speed storage, and a shared computation storage. The experiment jobs were man-
aged by the Slurm job scheduler. The Listing 3.2 shows an example of Slurm based
experiment job file.

#!/bin/bash

#SBATCH ——time=10:00:00 # walltime

#SBATCH —-nodes=1  # number of nodes

#SBATCH —-ntasks=1 # limit to one node

#SBATCH —-cpus—-per—-task=24 # number of processor cores (i.e.
< threads)

#SBATCH —-partition=haswell

#SBATCH —-mem-per-cpu=4096M  # memory per CPU core

#SBATCH —--mail-user=yingming.gao@mailbox.tu-dresden.de #
— email address

#SBATCH —-mail-type=BEGIN,END

#SBATCH —-output=log.main. txt

module load modenv/scsb

module load MATLAB/2019b

matlab —-nodisplay —nodesktop —nosplash -r
— main_genetic_algorithm

LISTING 3.2: Example of Slurm based experiment job file.

Zhttps://tu-dresden.de/zih/hochleistungsrechnen
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As for the software and tools, the experiments of Chapter 4 were conducted mainly
in the Matlab-2019b environment®. The parallel pool of 24 workers (i.e., 24 CPU
cores) were used to speed up the running of algorithms. The experiments of Chap-
ter 5 were conducted mainly in the Python-3.8 environment. The neural network
models were implemented with PyTorch-1.6 (Paszke et al., 2019). The graphics pro-
cessing unit (GPU) was used to speed up computation. The NVIDIA Tesla V100 or
A100 GPUs were used, depending on the available resources during job submission.

3.5 Concluding Remarks

This chapter laid the foundations for the development and evaluation of ACS sys-
tems. The VTL synthesizer was introduced with a particular focus on the organi-
zation pattern of the articulatory process, such as articulatory parameters, gestures,
and gestural scores, which were estimated from acoustic signals in this study.

Furthermore, two corpora were deliberately designed for this study. The PBACU
corpus was designed to cover all phonemes with as few words as possible. To this
end, a set of 160 words that were both phonemically-balanced and commonly used
were selected from a large list of words using an entropy-based greedy selection
algorithm. The words were spoken by two German native speakers to allow re-
searchers to test the effect of speaker variation on ACS. In Chapter 4, this corpus
was used as the target utterances and reproduced using an ACS system based on a
genetic algorithm. The VTL-Kiel corpus was designed to create paired articulatory-
acoustic data which could be used to train and evaluate supervised speech inversion
models. The segment sequence files were obtained by processing the annotation
tiles of the Kiel corpus. The segment sequence files were then converted to gestu-
ral scores with a rule-based method implemented in VIL-API; these could then be
further converted to articulatory trajectories using the acoustic simulation model of
VTL to conduct the articulatory-to-acoustic conversion, thus producing the corre-
sponding synthetic acoustic signals. In addition, to sufficiently cover both the artic-
ulatory and acoustic space, each original utterance was augmented by creating 12
variants which, to some extent, accounted for variations in speech production. The
acoustic features extracted from synthetic speech, together with the articulatory tra-
jectories generated from gestural scores, constituted the paired articulatory-acoustic
data. These were used in Chapter 5 to build the neural network based regression
models that mapped acoustic features to articulatory trajectories.

Finally, the acoustic features and the respective extraction methods were introduced.
Since the genetic algorithm based ACS systems calculated acoustic similarity frame-
by-frame, the acoustic features used in Chapter 4 included MFCC, short time energy;,
zero crossing rate, and probability of voice. The neural network based ACS systems
used all frames of an utterance as a whole and could account for the temporal depen-
dence between frames of inputs and outputs. Therefore, Chapter 5 only employed
and compared MFCC and spectrogram.

Shttps://www.mathworks.com/products/matlab.html
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Chapter 4

Articulatory Copy Synthesis Based on
a Genetic Algorithm

This chapter investigates an ACS approach based on a genetic algorithm. For a
given utterance to be copy-synthesized, a two-step procedure for estimating the un-
derlying gestural score reproducing the target utterance is required. Section 4.1 in-
troduces the first step, gestural score initialization, which generates the initialized
gestural scores from given acoustic signals. Section 4.2 introduces the second step,
gestural score optimization, which is based on a genetic algorithm. The articulatory
parameters ("duration” and "time constant") of the initialized gestural scores from
the first step were iteratively adjusted to minimize the acoustic distance between
the reproduced and reference acoustic signals. In addition, the regularization of the
deviation of the "time constant" parameter from its preferred values was also in-
vestigated to mitigate the non-uniqueness problem. Section 4.3 describes how the
experiments were conducted and how the proposed methods were evaluated. The
experiments and analysis are presented in Section 4.4. Section 4.5 provides some
concluding remarks.

4.1 Gestural Score Initialization

The proposed ACS method for given utterances was based on the ABS procedure.
The articulatory parameters of gestural scores were iteratively adjusted until the
synthetic speech of the final gestural score had the least acoustic distance to the ref-
erence speech. A good starting state could reduce the time required by this ABS
based procedure. To be more precise, if the initial values of gesture parameters
(duration and time constant) within a gesture score were already close to the final
optimal ones, the less effort was needed to further optimize them. This section in-
troduces a rule-based method of initializing gestural scores for given utterances, the
framework of which is shown in Figure 4.1.

4.1.1 Speech Transcription and Segmentation

Unlike the studies (Nam et al., 2012; Gao, Stone, and Birkholz, 2019) that assumed
the transcriptions of utterances were known in advance, the proposed method only
needed acoustic signals of utterances to generate initial gestural scores. As shown
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WAV audio file
WebMAUS WebMAUS Praat
Aligner ASR
Transcription — PitchTier file
— — | with FO samples
Perl Script WebMAUS Target-
G2P Optimizer

—— | Segment file
of VocalTractLab

SAMPA sequence and
number of syllables

TextGrid file [

I

Gestural score file
of pitch tier gestures

-

VocalTracLab |

API: seg2ges

1)

[l

Gestural score file

K X Initialized Gestural Score
with plain FO gestures

FIGURE 4.1: Information flow diagram for initial gestural score cre-
ation.

in the middle column of Figure 4.1, for a given utterance, the audio file was first
transcribed using the WebMAUS ASR service (Kisler, Reichel, and Schiel, 2017).
This online service accepted speech signal (e.g., in the format of “.wav” file) as input,
internally called the speech recognition API, and returned the recognized words as
output (e.g., in the format of “.txt” file ). In this study, the Google Cloud Speech-to-
Text API was selected as the backend recognizer'.

The recognized words were further mapped into the phoneme level sequence us-
ing the WebMAUS G2P conversion service (Reichel, 2012; Reichel and Kisler, 2014).
This online service accepted the orthographic text as input and internally used sta-
tistically trained decision trees to estimate the most likely string of phonemes, and
tinally returned the corresponding canonical phonological transcript (standard pro-
nunciation) as output. In this step, the speech assessment methods phonetic al-
phabet (SAMPA) was used as the output symbol inventory. Besides, the option
of 'Syllabification’ was set to 'yes’, which made the SAMPA sequence con-
tain the syllable boundaries. The output format was set to the BAS Partitur Format
(BPF) file with the orthographic (ORT) and canonical (KAN) tiers. Applying the

lhttps://cloud.google.com/speech—to—text
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G2P conversion to the recognized orthographic text yielded the canonical SAMPA
transcriptions.

The third step was to segment the audio files using the WebMAUS aligner, more
specifically with the "General" mode. As shown in the left column of Figure 4.1, this
online service took audio files and corresponding phonological transcriptions cre-
ated by the G2P service as inputs, and generated the TextGrid based segmentation
files containing the alignment between acoustic signals and segmental labels. Fig-
ure 4.2 shows an annotation file (in the TextGrid format of Praat) for the utterance
"besonders" segmented by the WebMAUS aligner. The upper two panels display
the waveform and spectrogram. Below them are the annotation tiers. The tiers
"ORT-MAU" and "KAN-MAU" show the orthographic and canonical transcriptions
respectively for the word level segmentation. The "MAU" tier shows the phone
level segmentation. Silence or short pauses (represented as "<p:>" in the WebMAUS
system) could be automatically inserted into the input phonological transcription if
they existed, especially at the beginning and end of the audio file.
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FIGURE 4.2: Annotation for the utterance "besonders" segmented by
the WebMAUS aligner. Inaccurate segmentation can be found for the
onset of the [s] sound.

4.1.2 Initial Gestural Score Creation

Gestures control the movement of participating articulators/parameters toward tar-
get configurations of the vocal tract model or the vocal fold model. The arrangement
and coordination of multiple gestures involved in a gestural score determine the
acoustic results. Creating a gestural score which can synthesize natural-sounding
speech faces two main challenges. The first is how to arrange the timing of ges-
tures. This involves not only the timing of gestures on the same tier but also the
coordination of gestures distributed over multiple tiers. For example, the [t] sound
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in the word "guten" should be realized by the combination of a "tongue-tip-alveolar-
closure" gesture on the tongue tip tier and a "voiceless-plosive" gesture on the glot-
tal tier. If they do not coordinate well, the resulting sound might be perceived like
[d] since its neighboring phones are voiced and have the "modal" gestures on the
glottal tier. Directly using the duration of acoustic segments is not a satisfactory
solution, as the gestures and acoustic boundaries do not temporally coincide. The
acoustic results usually appear with a delay compared to the corresponding ges-
tures. How much earlier the gestures should be placed is difficult to predict because
it is influenced by factors like phonetic context, speaking rates and speaking effort.
The second is how to determine the starting and finishing time for lung pressure
which particularly depends on the types of utterance-initial and -final phones. The
poor coordination between the lung pressure gesture and other gestures will lead
to unnatural utterance, even the initial and/or final phones might totally disappear.
Therefore, the proper way of creating initial gestural scores is of great importance.
This study used a rule-based method implemented in VTL-API to create initial ges-
tural scores, whose corresponding synthetic speech was generally natural and intel-
ligible.

Segment Sequence to Gestural Score

The TextGrid files generated from Section 4.1.1 were first parsed by a Perl language
script, which collected the segments in the "MAU" tier of TextGrid file and assem-
bled them into the segment sequence file (*.seg) with the formats defined in VTL.
The segment sequence file represented the structure and metadata of an utterance.
Although the "*.seg" files supported many additional attributes to describe the ut-
terance, such as information about syllables, words, phrases and sentences, only
phones and corresponding duration were used in this study. The example below
shows the segment sequence file for the utterance "besonders". Each line defines
one segment in terms of its name in SAMPA symbol and duration in second.

name = ; duration_s = 0.087125;
name = b; duration_s = 0.08;
name = @; duration_s = 0.03;
name = z; duration_s = 0.09;
name = O; duration_s = 0.11;
name = n; duration_s = 0.1;
name = d; duration_s = 0.04;
name = 6; duration_s = 0.19;
name = s; duration_s = 0.11;

The next step was to convert the segment sequence file (*.seg) to the gestural score
(*.ges) file using the function vt1SegmentSequenceToGesturalScore of VIL-
API, referred to as seg2ges in Figure 4.1. This function was implemented based on
a set of rules made by Peter Birkholz. The major steps are summarized as follows.

1. To pre-process the input SAMPA sequence including:

¢ To split affricates into a plosive and a fricative.



4.1. Gestural Score Initialization 49

* To set flag for the alveolars [d, t, n, 1] whether they should be realized as
post-alveolar consonants. The flag was set as True when they were next
to [S, Z] in the same consonant cluster.

* To traverse all segments and find the beginning and the end of the valid
(non-pause) segments, respectively.

* To use the "modal" phonation type as the default setting for the gestures
of the glottal tier.

2. To create the basic lung pressure gesture from the beginning of the first valid
segment to the end of the last valid segment.

* The lung pressure started to rise 50 ms earlier than the first valid segment
when it was a plosive, otherwise it started 20 ms earlier.

* The lung pressure started to drop 70 ms earlier than the end of the last
valid segment when it was a plosive, otherwise it started to drop 120 ms
earlier.

3. To traverse all segments and create gestures for the vowel tier.

* To replace all diphthongs by monophthongs, e.g., [al] by [a] plus [e], [aU]
by [a] plus [o], [OY] by [O] plus [e].

* To append all vowel gestures.

* To append a final schwa gesture that filled the gap until the end of the
segment sequence.

4. To traverse all segments and create fricative gestures.

* To set the onset 72 ms and the offset 47 ms earlier than the beginning and
the end of the segment, respectively, when it was a fricative.

* To further set the onset 5 ms earlier than the beginning when it was
voiced.

* To set the onset to the very beginning of the utterance when the segment
was the first valid phone.

* To set the onset and offset for glottal gestures like the corresponding
supraglottal gestures.

* To extend the glottal gesture by 30 ms when the current segment was a
voiceless fricative followed by a voiceless plosive.

5. To traverse all segments and create the plosive, nasal, lateral, glottal stop, and
glottal fricative gestures.

* To determine voice onset times for plosives with the reference values
(Klatt, 1975).

* To set the closure duration not shorter than half the segment duration
and not shorter than 20 ms when it was a plosive but not the very first
segment.
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¢ To set the glottal gesture of plosive 10 ms and 40 ms earlier for onset and
offset than the beginning and end of the segment, respectively.

¢ To shorten the glottal gesture of plosive by 20 ms if the next segment was
a voiced fricative.

¢ To further shorten the glottal gesture of plosive by 80 ms when the plosive
was followed by a nasal or lateral with the same place of articulation,
otherwise by 55 ms.

¢ To extend the glottal gesture by 100 ms when a voiceless plosive was the
last segment.

¢ To set the onset of the velic gesture 20 ms earlier than the beginning of the
nasal segment when it was followed by a plosive.

¢ To set the onset and offset of the velic gesture 5 ms earlier and 5 ms later
than beginning and end of the nasal segment respectively, when it was
followed by a fricative.

¢ To set the onset and offset of the velic gesture 35 ms earlier and 5 ms later
than beginning and end of the nasal segment respectively, when it was
followed by the later segment [1].

¢ To shift the onset and offset of the [h] and glottal stop gestures to the left
by 60 ms.

* To shift the onset and offset of gestures of [1] to the left by 65 ms and 55
ms, respectively.

The segment sequence files (*.seg) were converted to the gestural score files (*.ges)
with the function vt1SegmentSequenceToGesturalScore. In this step, the f
tiers of gestural scores were initialized with pseudo fj gestures, corresponding to a
plain intonation, and hence had to be replaced by real gestures separately estimated
from the given utterances.

Pitch Target Estimation for Gestural Score

The intonation realization affects not only the acoustic simulation but also the per-
ceptual similarity between the reproduced synthetic speech and the given natural
utterance. In this study, the reproduction of intonation was performed with the
software TargetOptimizer-2.0 (Krug et al., 2021). It used the pitch targets to con-
trol the intonation under the theory of target approximation model (TAM). TAM
assumed one underlying pitch target for each syllable of an utterance, and the sur-
face pitch contour was the sequential realization of all pitch targets of the utterance.
TargetOptimizer-2.0 estimated the underlying pitch targets from the surface pitch
contours in the sense of least cost that was the sum of the Euclidean distance of the fj
samples between the original and the reproduced pitch contours and the deviation
of estimated parameters from their preferred values. TargetOptimizer-2.0 accepted
the fy values in the format of PitchTier files (*.PitchTier) of Praat and either syllable
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boundaries or number of syllables as inputs and returned the estimated pitch tar-
gets in the format of gestural score file (*.ges) or CSV files (*.csv) or the modeled fy
in the format of PitchTier files (*.PitchTier).

The fy range usually varied from speaker to speaker. To make the fy extraction
more accurate, the fy of the original utterances was extracted by a two-pass proce-
dure following the strategy proposed by Hirst (Hirst, 2011). In the first pass, fo was
extracted using the default range of 75 ~ 600 Hz of Praat. Then, the first and third
quartiles (i.e. g1 and q3) were calculated across all fy samples for each speaker. In
the second pass where the fj floor and ceiling for each speaker were set to 0.75 - q;
and 1.5 - g3, respectively, fy was extracted again. Using a personalized search range
greatly reduced the estimation errors of fj extraction, which was confirmed by com-
paring speakers’ fy histograms. In this way, long tails disappeared and f; samples
were more centralized around the mean values. In this study, the fy samples of the
original utterances were extracted every 10 ms and saved as PitchTier spreadsheet
tiles (*.PitchTier) of Praat. Below is an example of the PitchTier file.

"ooTextFile"

"PitchTier"

0 0.97212500000000002 41

0.1660625 113.28215490025224
0.17606249999999998 113.45882776753524
0.18606249999999999 118.31278340139376
0.1960625 123.86812703177232
0.20606249999999998 127.23721853633627
0.21606249999999999 128.78126272026506
0.79606250000000001 98.299397422904164
0.80606250000000002 98.730611991176247
0.81606250000000002 98.63015808792251
0.82606250000000003 97.107997238043481
0.83606250000000004 97.011675162327009
0.84606250000000005 97.993257607234327

The first two lines are the header of the PitchTier file. The third line indicated the
beginning and end of the utterance (in second), and the number of voiced frames,
i.e., the duration of the processed speech is 0.97 second and 41 fy, samples in Hz
were extracted within this period. The remaining lines show the locations and f
values with one line for each pair.

Another input for the TargetOptimizer-2.0 was the number of syllables which came
from the G2P conversion step as shown in Figure 4.1. The G2P conversion yielded
not only the canonical transcriptions but also the syllabification information when
the option Syllabification = True. The pitch targets for each utterance were
estimated using the TargetOptimizer-2.0 command line mode with the name of
PitchTier file, the corresponding number of syllables, and the "-g" option of out-
put format as arguments. The resulting file was the gestural score which contained
only the gestures of the f tier.
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As shown in Figure 4.1, in the final step of creating the initial gestural score, the
gestures of the fj tier of gestural scores initialized by VIL-API were replaced by
those estimated by the TargetOptimizer-2.0. An example of initialized gesture score
is shown in Listing 4.1. It should be noted that since the gestures of the fy tier
were separately estimated, their controlling parameters were already optimal and
hence would be fixed during gestural score optimization. Only gestures of other
tiers needed to be optimized in the next step.

<gestural_score>
<gesture_sequence type="vowel-gestures" unit="">
<gesture value="i" slope="0.000000" duration_s="0.363055"
< time_constant_s="0.012" neutral="0" />
<gesture value="0" slope="0.000000" duration_s="0.354069"
<~ time_constant_s="0.012" neutral="0" />
<gesture value="@" slope="0.000000" duration_s="0.020000"
— time_constant_s="0.012" neutral="0" />
</gesture_sequence>
<gesture_sequence type="lip-gestures" unit="">
</gesture_sequence>
<gesture_sequence type="tongue-tip-gestures" unit="">
<gesture value="" slope="0.000000" duration_s="0.318055"
— time_constant_s="0.012" neutral="1" />
<gesture value="tt-alveolar—-lateral" slope="0.000000"
<~ duration_s="0.104069" time_constant_s="0.012"
— neutral="0" />
</gesture_sequence>

<gesture_sequence type="f0-gestures" unit="st">
<gesture value="85.387572" slope="0.000000" duration_s
<~ ="0.180481" time_constant_s="0.010" neutral="0" />
<gesture value="83.243764" slope="-0.392107" duration_s
— ="0.156684" time_constant_s="0.015" neutral="0" />
<gesture value="79.039295" slope="-5.588275" duration_s
— ="0.394679" time_constant_s="0.025" neutral="0" />
</gesture_sequence>
<gesture_sequence type="lung-pressure—-gestures" unit="dPa">
<gesture value="0.000000" slope="0.000000" duration_s
«— ="0.047125" time_constant_s="0.012" neutral="0" />
<gesture value="8000.000000" slope="0.000000" duration_s
— ="0.569999" time_constant_s="0.005" neutral="0" />
<gesture value="0.000000" slope="0.000000" duration_s
— ="0.170000" time_constant_s="0.012" neutral="0" />
</gesture_sequence>
</gestural_score >

LISTING 4.1: Example of an initialized gestural score (in the format of
XML file) for the word "Kilo" spoken by the speaker SPK-1.
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4.2 Gestural Score Optimization Based on a Genetic Al-
gorithm

Feeding the initialized gestural scores into VIL could synthesize highly natural and
intelligible speech. However, the goal of ACS was to accurately reproduce the real
articulatory processes and acoustic signals for given utterances. The current gestu-
ral scores were not good enough for two reasons. First, the initialization procedure
might introduce errors such as the G2P conversion errors and misalignment by the
WebMAUS aligner. Second, the rule-based method of creating initial gestural scores
by VTL-API used the default value (12 ms) for the "time constant" parameters of all
supra-glottal gestures. That means it used a fixed transition pattern for all phones.
However, different speakers, even a particular speaker under the conditions of dif-
ferent speaking rates or emotions, use different speaking effort for implementing
phone transition. Therefore, the fine-tuning adjustments of gestural scores (to be
more precise, duration and time constant of gestures) were often needed.
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FIGURE 4.3: Schematic diagram of gestural score optimization using
genetic algorithm.
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Genetic algorithm has been demonstrated to be effective for real parameter opti-
mization, especially for non-differentiable problems (Wright, 1991). The introduc-
tion of genetic algorithms and their applications can be found in Tang et al. (1996)
and Katoch, Chauhan, and Kumar (2021). This section proposed a gestural score op-
timization method based on the genetic algorithm. Figure 4.3 shows the schematic
diagram of gestural score optimization using the genetic algorithm where the ges-
tural score was represented as a chromosome, and the parameters of the gestures
were encoded as genes. Through the loop consisting of "crossover", "'mutation", and
"selection", a population of individuals (candidate gestural scores) evolved under
the law of survival of the fittest. The fittest gestural score corresponded to the syn-
thetic utterance with the least acoustic distance to the reference utterance. The final
gestural score with best fitness was selected as the solution.

Encoding Gestural Score as Chromosome
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FIGURE 4.4: Diagram of creating the initial chromosome from the ini-
tialized gestural score (with the word "Kilo" as the example).

The proposed method started from encoding gestural score as chromosome so that
the optimization of gestural score could follow the generic framework of genetic
algorithms. Figure 4.4 shows the creation of the initial chromosome from the ini-
tialized gestural score (with the word "Kilo" as the example). In this study, what
should be optimized by genetic algorithms was the "duration" and "time constant"
parameters of gestures, which were encoded as genes using a real-valued encoding
scheme (Wright, 1991; Janikow and Michalewicz, 1991). A gesture parameter (either
duration or time constant) was encoded as a gene. Therefore, a valid gesture was
encoded as two genes: one for duration and another for time constant. For example,
the gesture for vowel "i" in Figure 4.4 was represented by two genes: G; and G,. For
an empty gesture, only one gene was used since only its duration was valid. For
example, the first gesture in the tongue tip tier was encoded as gene G7. A gene was
represented by a 4-dim vector. The first dimension, x, was the value of duration or
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time constant to be optimized. The second dimension, ¢, was the standard deviation
associated with x which would be used as the step size during gene mutation. The
third dimension, t, was the tag to indicate the current gene was for a duration or
time constant parameter. The fourth dimension, v, was the preferred value for this
gesture parameter. The gestural score shown in Figure 4.4 was encoded as 20 genes,
each of which was a 4-dim vector. All encoded genes constituted the chromosome
for the gestural score indicated by the dashed blue rectangular.

As one of the evolutionary algorithms, the genetic algorithm operated on a group
of individuals, which was referred to as population. As shown in Figure 4.3, before
the optimization steps, an initial population (or initial parents) of a certain size was
generated by randomly manipulating genes of the initial chromosome. To be more
precise, the x value of each gene was changed by adding a random value sampled
from a normal distribution while the other variables of genes (¢, t, and, v) were
tixed. Up to this point, a population comprising a large number of individuals was
initialized. By decoding genes (the x value) into duration or time constant, a new
gestural score with manipulated values could be reconstructed. That is to say, each
individual of the population represented a candidate gestural score to be optimized.

Crossover
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FIGURE 4.5: Diagram of gene crossover operation.

The crossover operation was applied to the initial population/parents to obtain new
combinations of genes, the new Kids. Figure 4.5 shows the gene crossover operation.
Unlike the regular strategy where the crossover occurs between two selected par-
ents, the crossover in this study was performed in a global form, allowing randomly
taking genes for one new individual from potentially all individuals available in the
parent population. This manner is also termed recombination of evolutionary algo-
rithms (Back and Schwefel, 1993), which could increase the gene randomization for
the population. Each gene of a new kid came from a gene of a randomly selected
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parent. In the example shown in Figure 4.5, for the k-th new kid, its first gene Gy ;
came from the second parent, P, its second gene G, came from the first parent, P,
its third gene Gy 3 came from the m-th parent, P, and so on.

Mutation

Gene G; of Kid k Gene G;j' of Kid k'
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FIGURE 4.6: Diagram of gene mutation operation.

In this step, each gene of a new kid would mutate by adding a random value. Figure
4.6 shows the mutation operation for a gene of a kid. The mutation operation was
individually performed for each gene x; (1 < i < n,n is the total number of the
"duration” and "time constant" parameters of a gestural score to be optimized) by
adding a normally distributed random value with a mean of zero and a standard
deviation ¢;. The mutated gene x/ was defined as:

x1'~ =X;+0;- Ni(O, 1) (41)

where 0; is the so-called step size, which is the second dimension of the gene vector.
This study used an adaptive step size that changed in each generation over time.
The mutation was then rewritten as (Back, Hammel, and Schwefel, 1997):

o =o;-exp (r' - N(0,1)) +r-N;(0,1)) (4.2)

xi = x;+0! - N;j(0,1) (4.3)

where ' = —= and r = —“— are the learning rates (c = 1 is a reasonable choice
V2n \/2\/n

when the number of evolution generations is between 20 and 100, as suggested in
Beyer and Schwefel (2002)).
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Selection

For the assessment of the fitness of mutated kids, their genes were decoded into
duration or time constant to reconstruct gestural scores, which were further fed into
VTL to synthesize acoustic signals.

This study adopted the acoustic distance between the synthetic and reference ut-
terances as the similarity metric. More specifically, cosine distance of acoustic fea-
tures (MFCC, energy, ZCR, and POV) between the synthetic and reference speech
was used since it was less sensitive to feature magnitudes than Euclidean distance,
which was proved by Bulla (2017). The smaller the distance is, the more similar
the reproduced and original utterances are. Therefore, the cosine distance was ex-
pressed as the loss function during optimization which was calculated as:

(4.4)

. % a Y1 Xi K
8T N&=Y M M %
Nid o X, /ot &

where ¢ is the generation index of the population, N is the frame number of the
reference utterance, and M is the dimension of acoustic features per frame. X;; and

Xi,]- are the j-th dimensional features of the i-th frame of the reference and synthetic
utterances, respectively. Therefore, the term in the parenthesis was the cosine dis-
tance of acoustic features for the i-th frame. The cosine distances of all frames were
then averaged.

As mentioned in Chapter 1, speech inversion suffered from the problem of non-
uniqueness due to motor equivalence phenomena in speech production (Perrier and
Fuchs, 2015). For ACS, different gestural scores might result in synthetic signals that
had same degree of similarity relative to the reference speech. As a result, the com-
binatorial explosion made the search space of optimization grow rapidly. Never-
theless, the problem could be alleviated by introducing additional articulatory and
phonological constraints (Dusan and Deng, 2000; Dang and Honda, 2002). Here, by
incorporating deviations of time constants from their preferred values into the loss
function, gestural score parameters could be constrained to plausible values:

1 Y *M XX, 1 & e
Lo=—Y [1- = +— Y exp | ——I|% — | (4.5)
8 ~

N3 \/Zin1 X2, \/z]Ai X)) K V28

where K is the number of time constants to be optimized. 7 is the current value of
the k-th time constant at the g-th generation while 7 is preferred value which is the
fourth dimension of the gene vector. The first term is the cosine distance of acoustic
features and can be referred to as acoustic loss while the second term reflects the
deviations of time constants from their preferred values and can be referred to as
articulatory loss. « is a weight to balance the magnitudes of these two kinds of
losses. The exponential function used in the second term is to exaggerate the loss
when some specific time constants deviate too much from their preferred values.
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That is to say, the penalty of time constant deviation is non-linear. It should be noted
that the generation index, g, is also included in the second term which modulates
the magnitude of the articulatory loss. Its effect will be explained in Section 4.4.

For each mutated kid, the genes were decoded to reconstruct a gestural score which
was further fed into VTL. Based on these equations, the fitness of the mutated kid
(i.e., the similarity between its synthetic and reference speech) was obtained. The
mutated kids that had better fitness (i.e., closer distance to the reference utterance)
would be selected as new parents of the next generation, forming the new population.
The population evolved until the maximum number of iterations was reached. The
aim of the evolutionary strategy was to produce increasingly better individuals over
time, so finally, the optimal kid corresponded to the best gestural score for the target
utterance.

4.3 Experiments

The proposed methods introduced in Sections 4.1 and 4.2 were evaluated using the
PBACU corpus. Three ACS methods were implemented in this section: (1) coordi-
nate descent without regularization of time constants, (2) genetic algorithm without
regularization of time constants, and (3) genetic algorithm with regularization of
time constants. During gestural score optimization, the first two methods used the
loss function defined by Equation 4.4 while the third method used the loss func-
tion defined by Equation 4.5. This section introduces how the experiments were
conducted and analyzes corresponding intermediate results. The reproduced utter-
ances of ACS and analysis will be given in the next section.

These three methods were used to estimate the articulatory processes, in the form
of gestural scores, of the 320 human utterances of the PBACU corpus. Because the
PBACU corpus contained only acoustic signals, it was impossible to directly com-
pare the estimated articulatory trajectories and the real ones. Therefore, synthetic
utterances were created with VTL. 16 words (10 %) out of the whole word-list of the
PBACU corpus produced by the speaker SPK-1 were selected: "bayrisch”, "beson-

"non

ders", "Chemie", "dadurch", "genauso", "Hierarchie", "Komiker", "Lehrerin", "neben-
bei", "neugierig", "Performance", "rigoros", "symbolisch", "Teufel", "Verkauf", "wun-
derbar". Based on these acoustic signals produced by the speaker SPK-1, a set of
gestural scores were created by manually adjusting the duration and time constant
of gestures so that their corresponding synthetic speech exactly matched the origi-
nal acoustic signals. That is to say, manual copy synthesis was performed to obtain
the optimal gestural scores for human utterances. Finally, the manually created ges-
tural scores and their corresponding synthetic speech were used the complementary

evaluation data of the PBACU corpus.

Initial Gestural Score Creation

Although the 320 utterances of the PBACU corpus have been manually segmented,
only the acoustic signals were used to create initial gestural scores. Their transcrip-
tions were obtained by recognizing the acoustic signals via the WebMAUS ASR ser-
vice with Google engine as its backend. Comparing the recognized transcriptions
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with the ground truth (i.e., the corresponding words) achieved a word recognition
accuracy of 98.44%, indicating the very high intelligibility of these natural utter-
ances. There were five incorrectly recognized words as shown in Table 4.1. A close
observation revealed that most of these recognition errors were due to the transient
acoustic property of incorrectly recognized phones. For example, the first sylla-
ble in “bezahlen” and the plosive consonant in “Pole” were very short and weak.
Besides, the very similar pronunciation (e.g, "Journal" vs "Ronal"), the same artic-
ulation place (e.g., tongue-tip-alveolar consonants: [1] of “Kilo” and [n] in “Kino”)
and the same articulation manner (e.g., plosive consonants: [p] of “Pole” and [k]
of “Kohle”) might also cause the recognition errors. These recognition errors were
manually corrected before the next step.

TABLE 4.1: Incorrectly recognized utterances by WebMAUS ASR.

Speaker Reference Recognized

1 SPK-1 "bezahlen" "zahlen"
2 SPK-1 "Pole" "hole"

3 SPK-1 "Kilo" "Kino"

4 SPK-2 "Journal"  "Ronal"
5 SPK-2 "Pole" "Kohle"

Conducting the G2P conversion for the recognized transcriptions (i.e., 160 unique
words) yielded their canonical SAMPA transcriptions. Two conversion errors were
found: the [t] of “mitmachen” was converted to [p] and the [d] of “besonders” was
converted to [n]. When an input word had different pronunciation variants, the
WebMAUS G2P service always returned the most likely phoneme sequence. How-
ever, speakers might produce the given word with another pronunciation variant.
For example, both speakers produced the [C] sound for the initial consonant of the
word “Chirurg” while the WebMAUS G2P yielded the phoneme [k]. These G2P
conversion errors were manually corrected before the next step.

The 320 audio files and their phonological transcription (encoded in SAMPA) were
fed into the WebMAUS aligner, which output the segmentation, i.e., TextGrid files.
The derived boundaries were compared with those manual annotations of the 320
utterances. Table 4.2 lists the average deviation of boundaries between the Web-
MAUS alignment and manual segmentation. The WebMAUS aligner caused the
average segmentation deviation of approximately 20 ms for both speakers. A close
observation revealed that the WebMAUS aligner suffered from inaccurate segmen-
tation (an example of segmentation is shown in Figure 4.2) due to two reasons. First,
the boundaries of manual segmentation were continuous values in the time axis
while the frame shift of calculating acoustic features in WebMAUS aligner was 10
ms. That is to say, the searched boundaries were always integral multiples of 10 ms.
Second, the segmentation for plosives and fricatives was not accurate, especially for
utterance-initial or -final ones. The closure phase of plosives was acoustically simi-
lar to the silence. And the acoustic characteristics of voiceless fricatives were similar
to that of background noise. Hence, locating the boundaries for the utterance-initial
or -final plosives and fricatives was not accurate. For example, very poor alignments
were found for fricatives in the utterances of "Physik", "Parteilos", and "Positiv".
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TABLE 4.2: The average deviation per boundary of the WebMAUS
alignment from manual segmentation in ms.

Speaker SPK-1 | SPK-2 | Total
Avg. deviation | 19.36 | 19.20 | 19.28

The gestures on the fj tier of the 320 gestural scores were estimated by TargetOptimizer-
2.0. Its performance of modeling fy contour was evaluated in terms of RMSE and
Pearson correlation coefficient (p) between the original f) samples and the modeled
ones. It should be mentioned that TargetOptimizer-2.0 internally converted the f
values from Hertz scale (Hz) to Semitone scale (St) with the reference of 1 Hz. Ta-
ble 4.3 shows the average values for the 320 utterances. When RSME was larger
than 1 St or p was smaller than 0.9, the f; samples extracted by Praat were manually
checked and then the pitch targets were estimated again by TargetOptimizer-2.0.

TABLE 4.3: Average RSME and correlation coefficient (p) between the
original and modelled f; by TargetOptimizer.

SPK-1 | SPK-2 | Total
RMSE | 0.396 | 0.412 | 0.404
0 0947 | 098 | 0.964

Acoustic Features

As introduced in Section 4.2, the acoustic distance between the synthetic and ref-
erence speech was calculated in the frame-by-frame fashion (see Equations 4.4 and
4.5). The following acoustic features were used to measure the acoustic similarity:
MECC, energy, ZCR, and POV (see Section 3.3 for details). The 13-dim MFCC, 1-dim
short time energy, 1-dim ZCR, and 1-dim POV were extracted by a window size of
20 ms shifted every 10 ms. This manner did not consider the relation between ad-
jacent frames. Therefore, the first-order derivatives of these extracted features were
calculated. Concatenating them yielded a 32-dim acoustic feature vector for each
frame.

Dimension-wise Z-score normalization was performed after feature extraction for
two considerations. First, different dimensions of acoustic features had different
magnitudes. Those dimensions with relative higher magnitudes were dominant
during distance calculation. Normalizing all dimensions resulted in their compa-
rable magnitudes. Second, due to speaker variation, the acoustic observations of
the same phone produced by different speakers might also show differences, even
on the same feature dimension. Therefore, each dimension of extracted acoustic fea-
tures was Z-score normalized, which is similar to the technique of cepstral mean and
variance normalization (CMVN) widely used in ASR systems. The generic CMVN is
individually performed for each frame with mean and standard deviation estimated
from its current utterance or all utterances of its current speaker. Such a way is suit-
able for long utterances but the performance usually degrades when the utterance is
too short or there is no insufficient data for parameter estimation. Considering that
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the target utterances of the PBACU corpus were isolated words, parameter estima-
tion by calculating acoustic features individually for each utterance was improper.
Therefore, global mean and standard deviation of acoustic features were separately
estimated from another corpus, the BITS corpus (Ellbogen, Schiel, and Steffen, 2004).
BITS corpus is phonetically balanced and contains 6732 sentences produced by four
German native speakers (two males and two females). The acoustic statistics of each
dimension of acoustic features were estimated from the BITS corpus in advance.
During gestural score optimization of an utterance, each dimension of acoustic fea-
tures of both synthetic and reference speech were Z-score normalized by the same
global statistics of that dimension.

Optimization Based on Coordinate Descent Algorithm

In order to compare the performance of genetic algorithms with that of other al-
gorithms, a baseline optimization method based on a coordinate descent algorithm
(Wright, 2015) was implemented. Similar to genetic algorithms, the coordinate de-
scent algorithm also minimized the loss via an iterative procedure. At each time
step, this algorithm chose a coordinate via a coordinate selection rule (e.g., a ran-
dom or fixed order), then a line search along the selected coordinate direction was
performed to determine the appropriate step size to move from the current position.
During the search, the other parameters were fixed. One iteration was done until ev-
ery coordinate was selected once. This procedure was repeated until the maximum
number of iterations was reached.

The difference between them is that the genetic algorithm was performed on a pop-
ulation of individuals (i.e., a group of candidate gestural scores) while the coordi-
nate descent algorithm was performed only on one gestural score. As shown in
Algorithm 1, the input was the initial gestural score which was fed into VTL to syn-
thesize acoustic signal. The initial global loss variable, global_loss, was calculated
by Equation 4.4 between the reference speech and the synthetic speech of the initial
gestural score. After that, the initial gestural score was iteratively optimized. In each
iteration, all parameters to be optimized (i.e., duration and time constant) were tra-
versed. For each parameter, an appropriate step was searched from a step-size array
while fixing all other parameters. If a small change of the selected parameter, in the
form of moving a step (i.e., adding a value to the current parameter value), resulted
in a new gestural score that had smaller loss than global_loss, the current parameter
was updated. In this study, the maximal iteration was 100 which was in line with the
number of evolution generation of gene population. The steps were searched from
eight candidate values around the current positions (i.e., the parameter values). The
step-size array was set to { —20, —15, —10, —5, 5,10, 15,20} (in ms) for the "duration"
parameters or {—4, —3,—2,—1,1,2,3,4} (in ms) for the "time constant" parameters.
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Algorithm 1 Coordinate Descent

1: Input: Initial gestural score

2: Output: Optimized gestural score and the minimal global loss, global_loss

3: global_loss < Loss of initial gestural score

4: for iteration =1,2,...do

5 for parameter = paramy, paramy, . .. do

6: for step = sizey, sizep, ... do

7: Temporarily update parameter by adding step

8 Calculate temporary loss, temp_loss, of the temporary gestural score
9 if temp_loss < global_loss then

10: Update parameter by adding current step
11: global_loss < temp_loss

12: end if

13: end for

14: end for

15: end for

Optimization Based on Genetic Algorithm

For each gestural score to be optimized, a population with a certain size (size of pop-
ulation) of candidate gestural scores were created. During crossover, a group of new
kids were created via gene recombination from the whole population. After gene
mutation, each new kid was decoded into a gestural score which was further fed
into VTL. The new kids who had better fitness (i.e., smaller loss) were selected as
the new parents of the next generation. This procedure was repeated until the max-
imal number of evolution generations (here, 100 used in this study) was reached.
It should be noted that the step size ¢ for gene mutation was assigned with a fixed
value for all "duration” genes and another fixed value for all "time constant" genes in
initial population and that the step sizes of all genes of all chromosomes individually
adapted in each generation over time (Back, Hammel, and Schwefel, 1997).

TABLE 4.4: Valid parameter ranges and their preferred values defined
in VocalTractLab (in ms).

Parameter Min | Max | Preferred
Time constant of glottal gestures 10 | 39.6 12
Time constant of the first valid lung pressure gesture | 5 | 39.6 5
Time constant of other gestures 5 1396 12
Duration 1 - -

VTL defined valid ranges and preferred values for the "time constant” and "dura-
tion" parameters, which are listed in Table 4.4. During the step of gene mutation
for gestural score optimization, the random values from normal distributions were
used (see Equation 4.3) which might cause the new values of genes to fall outside
the valid parameter ranges of VTL. In this cases, the mutated genes were set to the
closest valid boundary. For example, if the mutated gene of a glottal gesture had a
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value smaller than 5 ms, then it was reset to 5 ms. The preferred values of gesture
parameters were used for loss calculation of the optimization method with time
constant regularization (see Equation 4.5).

The hyper-parameters of the genetic algorithm were determined by the grid search
strategy for all combination of the size of population, the number of new kids, the
initial step size for gene mutation (see Equation 4.1), and the weight a (see Equation
4.5). The grid search for hyper-parameter was performed with a maximal of 50 it-
erations on 10 out of the 320 utterances of the PBACU corpus. The optimal values
of hyper-parameters whose combination obtained the smallest average loss were
selected. Table 4.5 lists the search ranges and resulting optimal values of hyper-
parameters. After that, the gestural score of each of the 320 utterances was individ-
ually optimized by the genetic algorithm with the optimal hyper-parameters. The
number of evolution generations for each utterance was set to 100.

TABLE 4.5: Hyper-parameters of genetic algorithm based methods for
gestural score optimization.

Hyper-parameter Search Range Optimal
Size of population {10, 15, 20, 25, 30} 15
No. of new kids {100, 110, ..., 200} 150

Initial o for duration {0.001, 0.002, ..., 0.01} 0.005
Initial ¢ for time constant | {0.001, 0.002, ..., 0.01} 0.002
Weight o {10, 20, 50, 100, 200} 100

4.4 Evaluation of the Optimization Results

The aim of ACS was not only to obtain the actual articulatory process of given nat-
ural utterance, but also to reproduce a synthetic speech which acoustically matched
the original signal as closely as possible. The performance of the optimization meth-
ods could be measured in three domains: acoustic domain, articulatory domain, and
perceptual domain.

4.4.1 Acoustic Evaluation

During optimization, the three optimization methods used different loss functions:
two without and one with time constant regularization. However, to fairly compare
their performance in the evaluation stage, only acoustic loss term was used, i.e., the
cosine distance of acoustic features as defined by Equation 4.4. Figure 4.7 shows
the average acoustic losses of three methods for the 320 utterances over 100 gen-
erations of genetic population or iterations of coordinate descent algorithm. "CD",
"GA w/oReg", and "GA w/ Reg" indicate the reproduced utterances by coordinate
descent algorithm, genetic algorithm without time constant regularization, and ge-
netic algorithm with regularization, respectively. Within the first five generations
or iterations, the acoustic distances between synthetic speech of optimized gestural
scores and the original speech sharply decreased. After the first five generations or
iterations, the acoustic distance remained almost constant for the coordinate descent
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FIGURE 4.7: Comparison of acoustic distance among different opti-

mization methods after each generation or iteration. "CD", "GA w/o

Reg", and "GA w/ Reg" indicate the reproduced utterances by coordi-

nate descent algorithm, genetic algorithm without regularization, and
genetic algorithm with regularization, respectively.

method while it continued to decrease for the other two methods. After 50 genera-
tions, the genetic algorithm without regularization slightly outperformed that with
regularization in terms of acoustic distance. However, this did not necessarily mean
that the method without regularization could reproduce good-quality utterances
since they might have unnatural segments. The benefit of regularizing time con-
stant was prominent in terms of articulatory and perceptual metrics.

The optimized gestural scores were fed into VTL to synthesize speech, which was
referred to as the reproduced speech. For the PBACU corpus, the resulting gestural
scores and corresponding reproduced speech together with original utterances as
well as a few animation examples of reproduced utterances can be found in Google
Drive repository? °. In the acoustic domain, the performances of different optimiza-
tion methods were measured in terms of acoustic similarity between the reproduced
and original speech.

Figure 4.8 shows the spectrograms of the natural and reproduced speech for the
word "bayrisch" originally produced by the speaker SPK-1. For the sake of conve-
nient comparison, the spectrogram of the natural utterance is used as the reference
and plotted in the middle subplot. More specifically, from top to bottom are the
spectrograms of the synthetic speech of initialized gestural score ("Init"), the syn-
thetic speech of optimized gestural score by coordinate descent algorithm ("CD"),

2All gestural scores and audio files for the PBACU corpus: https://drive.google.com/
drive/folders/1e31XjVDVxihtxQvOT8JdOmEVCboQQ9KS?usp=sharing

3A  few animation examples: https://drive.google.com/drive/folders/
lcoFeI2u—-NutYYv5S1S1972Lgjj2YP6_32usp=sharing


https://drive.google.com/drive/folders/1e3lXjVDVxihtxQvOT8jdOmfVCboQQ9KS?usp=sharing
https://drive.google.com/drive/folders/1e3lXjVDVxihtxQvOT8jdOmfVCboQQ9KS?usp=sharing
https://drive.google.com/drive/folders/1coFeI2u-NutYYv5SlS1972Lgjj2YP6_3?usp=sharing
https://drive.google.com/drive/folders/1coFeI2u-NutYYv5SlS1972Lgjj2YP6_3?usp=sharing
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the original speech produced by human speaker ("Orig"), the synthetic speech of op-
timized gestural score by the genetic algorithm without time constant regularization
("GA w/o Reg"), and the synthetic speech of optimized gestural score by the genetic
algorithm with time constant regularization ("GA w/ Reg"), respectively. The "Init"
utterance has the worst acoustic alignment with the "Orig" utterance while the ut-
terances of optimized gestural scores have relative good alignment. The reproduced
utterances by genetic algorithms have better similarity to the "Orig" utterance than
that by coordinate descent algorithm (e.g., compare the high frequency regions of
the segment between 0.2 second and 0.4 second and the formant transitions occur-
ing around 0.22 second).
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FIGURE 4.8: Spectrograms of the original and reproduced utterances

for the word "bayrisch" produced by the speaker SPK-1. From top to

bottom are the "Init", "CD", "Orig", "GA w/o Reg" and "GA w/ Reg",
respectively.

Figure 4.9 shows the frame-wise cosine distances of between acoustic features of the
reproduced utterances and the original utterance for the word "bayrisch" produced
by the speaker SPK-1. Again, the "Init" utterance has the largest distance relative to
the original utterance, especially for the beginning and end parts. The "CD" utter-
ance also has a poor reproduction of the beginning part and a larger distance com-
pared to those of "GA" utterances. Moreover, the acoustic distances of two "GA"
utterances are comparable for most frames with the exception of specific segments
(e.g., see the segment around 0.44 second), indicating the usefulness of regularizing
time constant of gestures.

4.4.2 Articulatory Evaluation

In the articulatory domain, the performances of different optimization methods
were measured in terms of statistics of optimized VIL parameters, articulatory loss,
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FIGURE 4.9: Frame-wise cosine distances between the reproduced and
original utterances for the word "bayrisch" produced by the speaker

SPK-1.

and articulatory similarity between the original and reproduced articulatory trajec-

tories.

Table 4.6 shows the mean values and standard deviations of time constant of gestu-
ral scores optimized by different methods. The unit used here is millisecond, which
is indicated in squared brackets. All gestures are roughly divided into two cate-
gories: vocal tract gestures and glottal gestures. The "Vocal tract" category con-
tains vowel gestures and consonant gestures while the "Glottis" category contains
the glottal gestures of common phonation types. Other glottal gestures for special
phonation type like "pressed"”, "breathy", "hoarse" and "whisper" were not involved
in this chapter. Since all words of the PBACU corpus have the "CV[C]" syllable

structure, the glottal "stop" gesture was not involve

d.

TABLE 4.6: Mean values (standard deviation in parenthesis) of time
constant of gestures of optimized gestural scores by different methods.

Vocal tract

Gesture name Time constant [ms]
CD GA w/o Reg | GA w/ Reg
a 11.1(32) | 138(64) | 12.1(L3)
e 12.1 (3.9) 15.1 (7.9) 12.1 (1.8)
i 10.3 (3.4) 10 (4.3) 11.6 (1.4)
o 11.9 (3.5) 13.5 (6.1) 12.3 (1.2)
u 10.9 (2.8) 12.6 (4.6) 12 (2.2)
2 11(14) | 13342 12 (0.3)
y 113@3) | 11.8(39) 12.4(0)
I 10.7 (4.1) 15.3 (10) 11.7 (1.6)
E 12.1 (3.6) 14.6 (3.8) 12.3 (1.3)

0.9
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Table 4.6 continued from previous page

Gesture name Time constant [ms]
CD GA w/o Reg | GA w/ Reg
@) 11 (3.3) 11 (6.2) 12.2 (1.8)
U 10.9 (3.4) 11.3 (5.4) 10.9 (2.6)
9 7 (1.4) 15.1 (6.8) 12.2 (4.8)
Y 135 (4.3) | 15.1 (4.3) 11.5 (04)
@ 122(@d5) | 192(104) | 11.9(0.9)
6_low 154 (9.2) 20.1 (12) 13.4 (4.7)
lI-dental-fricative 11.7 (1.3) 14.2 (7.9) 11.9 (1)
lI-labial-closure 11.6 (2.3) 14.9 (8.2) 11.9 (1.6)
tt-alveolar-closure 12.9 (3.3) 17.4 (9.6) 12.6 (2.7)
tt-alveolar-fricative 11.3 (2.8) 11.6 (6.2) 11.7 (1.6)
tt-alveolar-lateral 13 (4.8) 15.9 (9.4) 12.4 (1.7)
tt-postalveolar-fricative | 11.5 (2.4) 12 (6.2) 11.8 (1.2)
tb-palatal-fricative 12.5(2.5) 12.9 (6.2) 12.1 (1.1)
tb-uvular-fricative 13.1 (3.8) 17.4 (9.1) 12.7 (2.4)
tb-velar-closure 134 (3.1) 17.5 (9.6) 12.9 (2.3)
velic-opening 14 (3.2) 16.2 (6.4) 12.3 (1.1)
modal 132(32) | 16.3(7.8) 12 (12)
voiced-fricative 13.5(3.1) 18.3 (8.5) 12.2 (1.5)
Glottis voiced-plosive 13.7(3.2) | 21.8(10.3) 12.1 (0.8)
voiceless-fricative 13.3 (3.5) 15.9 (7.3) 12 (0.7)
voiceless-plosive 12.9 (2.7) 16.4 (8) 11.8 (1.1)
h 143(56) | 17.1(9.6) 12 2)

The "time constant” parameters should have smaller values for gestures realized
with more speaking effort which corresponds to faster transitions between adja-
cent phones. On the contrary, the gestures realized with less speaking effort should
have larger time constant value which corresponds to slow transitions. It is worth
mentioning that the gestures are not equivalent to phones although they are bound
tightly. The realization of the latter usually involves the coordination of several ges-
tures. The default value for time constant defined in VTL is 12 ms for all gestures
with the exception for lung pressure gestures. Time constant should vary not only
from gesture to gesture but also from speaker to speaker. Table 4.6 shows the mean
values for each type of gestures across two speakers’ gestural scores optimized by
three different methods. There are several findings regarding time constant from
this table:

* The mean values of time constant of gestures optimized by the genetic algo-
rithm with regularization were closest to the initial default value (12 ms) spec-
ified by VIL-API, followed by the other two methods without regularization:
the one by the coordinate descent algorithm and the one by the genetic algo-
rithm without regularization.

¢ The effect of regularization could also be reflected by the standard deviation
of time constant of optimized gestures. Among the two methods based on ge-
netic algorithms, regularizing the search range around the default value (i.e.,
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the preferred one) led to smaller standard deviations of time constant of ges-
tures. Among the two methods without using time constant regularization,
their standard deviations were still different. This could be explained by the
different ways of searching the optimal values. The genetic algorithm searched
the optimal time constants by randomly sampling values from normal distri-
butions while the coordinate descent algorithm searched the values in a lim-
ited set. More specifically, the coordinate descent algorithm exhausted the
eight candidate values from the step-size array {—4, —3,—-2,—1,1,2,3,4} (in
ms).

¢ Time constant of glottal gestures were generally larger than those of vocal
tract gestures. The values of time constant were larger than the default val-
ues (12 ms) for all glottal gestures with the exception of the "voice-plosive"
gestures optimized by the genetic algorithm with regularization. The mean
values of time constants for vocal tract gestures after optimization were dis-
tributed around the initial default value. This was mainly due to the valid
VTL parameter ranges. All gestures shared the same upper bound (39.6 ms)
for time constants while they had different lower bounds (5 ms for vocal tract
parameters and 10 ms for glottal gestures).

* The values of the open schwa gesture "6_low" were most variable compared
to those of other gestures. The "6_low" gesture defined one of the vocalized
allophones of the phoneme [r], which appeared in the final part of diphthongs.
Its realization tended to be mostly influenced by its preceding vowels, which
was also suggested in Ulbrich and Ulbrich (2007).
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FIGURE 4.10: Comparison of two losses of the best kid after each gen-
eration (averaged across all utterances): (a) acoustic and articulatory
losses; (b) corresponding slopes.

The effect of regularizing time constant could also be examined in terms of optimiza-
tion losses over time. When time constant regularization was introduced during
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gestural score optimization based on the genetic algorithm, there were two kinds of
losses (see Equation 4.5): the acoustic loss (i.e., cosine distance of acoustic features)
and the articulatory loss (i.e., exponential deviation of time constants from their
preferred values). In Figure 4.10, (a) shows the two losses of the best kid after each
generation (averaged across all utterances) for the method using the genetic algo-
rithm with regularization while (b) shows their rates of changes for these two losses
over time. The acoustic and articulatory losses demonstrate the same tendency that
they dramatically decrease in the first ten generations, continue to decrease until
about the 40th generation, and approximate the plateaus. Besides, although they
have slightly different magnitudes, their amplitudes of variation (i.e., the maximal
minus the minimal) are comparable.

Figure 4.11 shows the average deviation of time constants of the best kid and the ar-
ticulatory loss after each generation (averaged across all utterances) for the method
using the genetic algorithm with regularization. The orange curves in Figures 4.10
and 4.11 are the same. Here, the articulatory loss is the whole second term of the loss
function defined by Equation 4.5 while the deviations of time constants is the abso-
lute values of differences between the optimized and their preferred values. As can
be seen from Figure 4.11, the average absolute deviation of time constant (i.e., the
blue curve) first increases and then decreases after about the sixth generation. How-
ever, the articulatory loss has a monotone decreasing curve. This was realized by
the adaptive weight a used in Equation 4.5. Otherwise, the articulatory loss would
have non-monotonic curve like that for the absolute deviation of time constant, and
then influence the total loss, which might in turn result in local optimum or other
side effects for optimization.
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FIGURE 4.11: Average absolute deviation of time constant (in second)
and articulatory loss of the best kid of each generation (averaged across
all utterances).
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Figure 4.12 shows the two losses between the best kid and the population after each
generation (averaged across all utterances) for the method using the genetic algo-
rithm with regularization. The blue and orange curves in the subplot (a) demon-
strate the acoustic losses for the best kid and the whole population after each gen-
eration, respectively. Both of them decreased with the population evolving and the
best kids had smaller losses than the whole population. However, the loss gap be-
tween the best kids and the whole population gradually became narrower with pop-
ulation evolving. That is to say, more good genes were created and kept while poor
genes were eliminated (i.e., durations and time constants gradually approached the
optimal values). The articulatory losses shown in the subplot (b) show a similar
pattern.
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FIGURE 4.12: Comparison of losses between the best kid and the pop-
ulation after each generation: (a) acoustic loss; (b) articulatory loss.

The "duration" parameters of gestures could also be examined in terms of their
changes over time. Figure 4.13 shows the average deviation of duration param-
eters from their initial values after each generation in second (averaged across all
utterances). Subplot (a) shows the average absolute deviation of duration parame-
ters from their initial values for the best kids and the whole population. With the
population evolving, the duration parameters increasingly moved away from their
initial values and approached their optimal ones. Unlike time constant, the dura-
tion deviation curves for the best kids and the whole population overlapped from
the beginning to the end. During optimization, the duration parameters of gestures
within a tier may become smaller or larger while the total duration may not change.
In other words, the duration reduction of a gesture might be "absorbed" by its ad-
jacent gestures or other gestures within its belonging tier. Therefore, the sum of
duration deviations within the gestural score was also calculated by summing up
all differences (i.e., the new duration of each generation minus the initial duration,
which is not the absolute value). The sum of duration deviation could roughly re-
flect the duration change of the whole gestural score. Subplot (b) shows the sum of
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(a) Average absolute duration deviation of gestures (b) Sum of duration deviation of gestures
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FIGURE 4.13: Duration deviation of gestures from initial values after

each generation in second (averaged across all utterances): (a) average

absolute duration deviation of gestures; (b) sum of duration deviation
of gestures.

duration deviation (averaged across all utterances) which has the same trend like
the absolute deviation but with greater magnitudes. After 100 generations of opti-
mization, the average value for the duration deviations of the whole gestural scores
is still smaller than 0.2 second. It can be speculated that the duration change mainly
occurred in the form of adjusting the duration parameters among gestures, i.e., the
boundary shift between gestures.

The performances of different optimization methods were further measured in terms
of articulatory similarity between the estimated and reference articulatory trajecto-
ries. Since there are no ground truth articulatory trajectories for the 320 human
utterances of the PBACU corpus, the 16 synthetic utterances created in Section 4.3
were used to measure the articulatory similarity. The gestural scores of these ut-
terances were manually created with human speech as reference. Then, the corre-
sponding synthetic utterances were used as the target of ACS. Repeating the steps
of gestural score initialization and optimization like the procedure conducted for
natural speech, 16 optimized gestural scores were obtained. The resulting gestu-
ral scores and corresponding reproduced speech together with original utterances
can be found in Google Drive repository*. Both the ground-truth and optimized
gestural scores were then converted to articulatory trajectories. The correlation co-
efficients (averaged across all dimensions) between the estimated and the ground-
truth articulatory trajectories were calculated for different optimization methods.
The cosine distance for each frame was also calculated and then averaged over all
frames. Table 4.7 shows the articulatory similarity of the original and reproduced

*All gestural scores and audio files for 16 synthetic utterances: https://drive.google.com/
drive/folders/1sstYowFSxX5vRYS5ZCtZ6INMxeNWzdzZVt ?usp=sharing


https://drive.google.com/drive/folders/1sstYowFSxX5vRY5ZCtZ6INMxeNWzdZVt?usp=sharing
https://drive.google.com/drive/folders/1sstYowFSxX5vRY5ZCtZ6INMxeNWzdZVt?usp=sharing
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utterances. Again, optimization by the genetic algorithm with time constant regu-
larization achieved the highest correlation coefficients and smallest cosine distance.
The genetic algorithms outperformed the coordinated descent algorithm. It can be
imagined that the estimated and ground-truth articulatory trajectories almost ex-

actly match each other, which was confirmed by visual examination (not shown
here).

TABLE 4.7: Articulatory similarity in terms of correlation coefficient
and cosine distance between the estimated and reference articulatory
trajectories for speaker-dependent ACS.

Correlation coefficient | Cosine distance
Init 0.90642 30.08 x 10~*
CD 0.95987 11.39 x 10~*
GA w/o Reg 0.97518 6.98 x 10~%
GA w/ Reg 0.98473 238 x 10~%

4.4.3 Perceptual Evaluation

In the perceptual domain, the performances of different optimization methods were
measured in terms of the intelligibility and speech quality of reproduced utterances.
These two metrics were not assessed by human listeners but by computer programs.
Although the automatic evaluation by machines could not fully replace the judge-
ment by human listeners, it could be used as a complementary indicator to compare
the performance of different methods. Besides, it was particularly convenient and
efficient when a large number of utterances had to be evaluated.

Evaluation by ASR

ASR accuracy was used an indicator of the intelligibility of utterances in this study.
Using the same procedure adopted in Section 4.1.1, the original and reproduced
speech was recognized by Google speech recognizer. For each utterance, the recog-
nized transcription was compared with the reference one. Here, the target transcrip-

tion was the word, the spoken utterance of which was expected to be reproduced
by ACS methods.

TABLE 4.8: Overall utterance intelligibility measured in terms of
Google ASR accuracy for ACS of human speech.

Utterance types | SPK-1 | SPK-2 | Average
Original 98.13 | 98.75 98.44
Init 81.88 | 91.25 86.56
CD 76.88 85 80.94
GA w/oReg 76.88 | 83.13 80
GA w/ Reg 85 87.5 86.25

Table 4.8 shows the overall ASR accuracy of the 320 PBACU utterances reproduced
by different methods. The original utterances spoken by human speakers and the
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initialized utterances created by the VTL rule-based method were also recognized
by the Google ASR program and their accuracies are listed in the table for the sake
of comparison. The detailed recognition results for each word distinguished by the
way how it was created are shown in Appendix B.

As we can see from Table 4.8, the "Original" utterances had the best intelligibility
with an accuracy of 98.44% since they were produced by human speakers. The
other four types of utterances were synthetic speech created from either initialized
or optimized gestural scores. A close observation of the incorrectly recognized orig-
inal utterances revealed that most phones of them could be correctly recognized
and only a few segments were recognized to similar phones of the reference ones.
Among the synthetic utterances, the "Init" type had the generally best intelligibility
with an accuracy of 86.56%.

The reproduced utterances by optimizing gestural scores with coordinate descent
had a relatively lower accuracy of 80.94% compared to those of the "Init" type. This
was because the gestural scores were initialized using the VTL rule-based method,
which could generate utterances with generally high intelligibility on the condition
that the segment durations were similar to those of natural speech. However, the
gestural score optimization aimed at adjusting parameters of gestures so as to make
the synthetic and reference utterances temporally match and obtain the least acous-
tic distance between them. This process may destroy the articulators” physiological
constraints, resulting to abnormal movements of articulators. With time constant
regularization, the utterances optimized by the genetic algorithm achieved a com-
parable accuracy (i.e., similar level of intelligibility) compared to that of the "Init"
utterances and simultaneously had better acoustic match with the reference utter-
ances.

Furthermore, the intelligibility of utterances also shows the difference resulting from
speaker variation. Although the original utterances were similarly intelligible for
the two human speakers in terms of Google ASR accuracy, the utterances spoken by
the speaker SPK-1 appeared to be more difficult to reproduce by the ACS methods
than those by the speaker SPK-2. To be more precise, the recognition accuracies of
utterances related to the speaker SPK-2 were generally higher than those related to
the speaker SPK-1.

The above ASR results reflect the performance of the ACS methods on utterances
produced by human speakers, i.e., the speaker-independent ACS. To measure their
performance in the speaker-dependent scenario that was what most previous stud-
ies did, these methods were applied to VTL speech, i.e., the reference utterances to
be reproduced were VTL synthetic speech. Table 4.9 shows the ASR results for the
original and reproduced synthetic speech. Since both the original and reproduced
utterances were synthetic speech of VIL, (i.e., the speaker-dependent ACS), the re-
production of reference utterances was much easier. Only three tokens were not
correctly recognized which were found in the "Init" or "GA w/o Reg" types.
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TABLE 4.9: Detailed utterance intelligibility measured in terms of
Google ASR accuracy for ACS of synthetic speech. "1" indicates the
utterance was correctly recognized.
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Evaluation by PESQ and STOI

In addition to the evaluation by ASR, there are several objective metrics to measure
speech quality in perceptual domain. Among them, perceptual evaluation of speech
quality (PESQ) (Rix et al., 2001) and short term objective intelligibility (STOI) (Taal
et al., 2011) are two popular metrics to evaluate speech quality and intelligibility,
respectively. They are widely used for the speech assessment in the field of speech
enhancement (Tan and Wang, 2018; Fu et al., 2019). This study also adopted them to
evaluate the quality of reproduced speech. We used the python implementations for
measuring PESQ° and STOI®. The PESQ and STOI scores range from -0.5 to 4.5 and
from 0 to 1, respectively. Both of the two metrics are the higher the better. For each
measurement, both of them accepted two inputs: the clean speech as the reference
and the processed speech. In the ACS task, the reference speech was always the
original utterance and the processed was one of the reproduced utterances.

Figure 4.14 shows the boxplots of PESQ scores of pooled words and human speakers
for different methods. The values next to the boxes indicate the mean scores. Com-
pared to the "Init" utterances (whose gestural scores were created using the VIL
rule-based method), the utterances produced by the optimized gestural scores ob-
tained higher PESQ scores. The "GA" methods also outperformed the "CD" method
and had a slight difference between with or without regularization. The PESQ scores
were further subjected to a two-way analysis of variance (ANOVA) with factors
of OptimizationMethod and HumanSpeaker, showing that the main effect of Opti-
mizationMethod (F(3,1272) = 36.29, p < 0.001) was significant. Also, the main

Shttps://github.com/ludlows/python-pesq
bhttps://github.com/mpariente/pystoi
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4.4. Evaluation of the Optimization Results

75

kkk
T kkk |
I %k kK | s
f 1
025~ Xk i
S il ml _
(2] 1 1 1
g 2 - ! ! ! 1
0 : : :
O 15~ 1.533 1.563 1569 |
Emsm .
Al = - i i ]
\ \ \ \
Init CD GA w/o Reg GA w/ Reg

FIGURE 4.14: Boxplots of PESQ scores for different optimization meth-
ods. The numbers next to the boxes indicate the mean values. (Consid-
ering Bonferroni correction: **p < 0.0017; **p < 0.0002).

effect of HumanSpeaker was also significant (F(1,1272) = 9.37, p = 0.002) with the
speaker SPK-2 having a higher average PESQ score than the speaker SPK-1 (1.534 vs.
1.489), which means the utterances produced by the speaker SPK-2 were relatively
easier to reproduce in terms of the PESQ metric. Their interaction effect was not
significant (F(3,1272) = 0.33, p = 0.803). The post-hoc tests were applied to each
specific pairs. The paired t-test showed that the differences of PESQ scores between
any pair of optimization methods were significant at a level of 0.001 except for the
last pair (i.e., "GA w/o Reg" vs. "GA w/ Reg"). The lines with asterisks between two
groups indicate the difference of PESQ scores was statistically significant. It should
be mentioned that the significant level was adjusted using the Bonferroni correction.

‘ kKK
k% k
XK K XK
: : Xk Xk
o 1F ‘ *k ‘ 1
3 - - o -
208 | | | . |
O 1
5 Elo.eﬁz 0.672 0.673
0.6 0.600 . , . =
| | : |
04 l . . . i
—_
0.2 | | |
Init CD GA w/o Reg GA w/ Reg

FIGURE 4.15: Boxplots of STOI scores for different optimization meth-
ods. The numbers next to the boxes indicate the mean values. (Consid-
ering Bonferroni correction: **p < 0.0017; ***p < 0.0002).

Figure 4.15 shows the boxplots of STOI scores of pooled words and human speak-
ers for different methods. The pattern of STOI scores among different optimiza-
tion methods are similar to that of PESQ. The STOI scores were subjected to a two-
way analysis of variance (ANOVA) with factors of OptimizationMethod and Hu-
manSpeaker, showing that the main effect of OptimizationMethod (F(3,1272) =
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28.82, p < 0.001) was significant. Also, the main effect of HumanSpeaker was signif-
icant (F(1,1272) = 49.33, p < 0.001) with the speaker SPK-2 have a higher average
STOI score than the speaker SPK-1 (0.675 vs. 0.629), which means the utterances pro-
duced by the speaker SPK-2 were relatively easier to reproduce in terms of the STOI
metric. Their interaction effect was not significant (F(3,1272) = 0.07, p = 0.975).
The post-hoc t-tests were also applied to each specific pairs. The pairs with a sig-
nificant difference are indicated by connecting lines with asterisks. Three optimiza-
tion methods achieved significantly higher scores than the "Init" method. The "GA"
methods performed significantly better the "CD" method. Likewise, no significant
difference in terms of STOI score was found for the "GA" methods between with
and without regularization.

4.5 Concluding Remarks

This chapter investigated an ACS approach based on the genetic algorithm. For
each of the given utterances, the articulatory process (in the form of gestural score)
was estimated in an iterative ABS procedure which consisted of two steps: gestural
score initialization and optimization. The method proposed in this study was simi-
lar to those described in Nam et al. (2012) and Gao, Stone, and Birkholz (2019), such
as using the ABS based procedure and gestural scores for organizing articulatory
process. However, the method proposed in this study did not rely on the assump-
tion that transcriptions of the target utterances were known in advance; this was
circumvented with the help of ASR. In the first step, the acoustic signals were first
transcribed via ASR systems, yielding orthographic text; these were then converted
to canonical phonetic transcriptions. A forced-alignment tool was used to generate
the annotation files with coarse segmentation using acoustic signals and canonical
transcriptions. The VTL rule-based method was applied to create an initial gestu-
ral score, which was used as a starting point for further optimization. The duration
and time constant parameters of the initialized gestural score were encoded as genes
during optimization. As the population evolved (a loop consisting of crossover, mu-
tation, and selection), the reproduced utterances became increasingly similar to the
reference ones.

Furthermore, unlike Nam et al. (2012) where the stiffness and the target of gestures
were not allow to change, this study could "copy" the speaking effort of target utter-
ances. The dynamical parameter "time constant” (similar to the "stiffness" parameter
in their study) was jointly estimated with duration and timing of gestures. Conse-
quently, this method allowed articulators to approach their underlying "target" po-
sitions with different degrees since the target realization of VTL followed the target
approximation model (Prom-On, Xu, and Thipakorn, 2009; Birkholz, Kroger, and
Neuschaefer-Rube, 2011). In this sense, the "target" parameters of gestures were
allowed to vary to some extent. For example, if the optimized time constant of a
gesture was large, then the participating articulators would not fully reach their
underlying positions, which could simulate the mechanisms of coarticulation and
lenition; this was true even in the case of disappeared phones where the targets of
gestures were completely undershot due to very large time constants.
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There were other extensions. To address the problem of one-to-many mapping, the
regularization of the time constant was introduced into the loss function by adopt-
ing an adaptive hyperparameter that was used to control the trade-off between the
two loss terms over time. The regularization of the time constant constrained the
genetic algorithm’s search for the optimal values to specific ranges, which not only
reduced the number of generations that the genetic algorithm needed to run, but
also allowed it to find more plausible values for the parameters to be optimized. In
addition, more acoustic features were used to measure the frame-wise similarity be-
tween the reproduced and original speech, and more metrics were used to evaluate
the model’s performance.

The proposal was validated using the 320 utterances produced by two human speak-
ers. To make it possible to directly compare the articulatory similarity between the
estimated and reference articulatory trajectories, 16 synthetic utterances were also
used. The evaluation in the acoustic, articulatory, and perceptual domains showed
that the best performance was achieved by the genetic algorithm with time constant
regularization; this was in comparison to the coordinate descent algorithm and the
genetic algorithm without regularization.

Figures 4.10, 4.11, and 4.13 revealed another finding. When the loss of optimiza-
tion decreased, the gestural scores gradually approached their final states. At the
start of the gestural score optimization process, the loss reduction came from the
changes in both the “duration” and “time constant” genes. However, as the popu-
lation evolved, the changes in the time constant parameter were slower than those
in the duration parameter. This was reflected by the relation between articulatory
loss and the average absolute deviation of the time constants parameter (see Figure
4.11). Although the time constant parameters first increasingly deviated from their
preferred values in the initial stages, they gradually returned to their preferred val-
ues. The average absolute deviation of the time constant parameters was smaller
than 0.001 second.

Finally, there were still some general problems with the method proposed in this
chapter. First, although the genetic algorithm appeared to converge (i.e., the loss
function quickly plateaued) after approximately 30 generations, it was still very
time-consuming. This was because a significant amount of synthetic speech (i.e.,
candidate kids) had to be synthesized for each generation. In addition, the itera-
tive nature of the ABS based method made it difficult to speed up the optimization
procedure. Furthermore, this method relied on the recognition results and G2P con-
version. Incorrect recognition or G2P conversion may result in poor initial gestu-
ral scores which could increase the difficulty of reproducing the target utterances.
Chapter 5 attempted to address these issues using the neural network based ACS
methods.
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Chapter 5

Articulatory Copy Synthesis Based on
Deep Neural Networks

In Chapter 4, articulatory processes were estimated in an iterative loop in which the
optimal gestural scores were obtained by an ABS strategy using a genetic algorithm.
Although this approach had advantages such as its non-reliance on training data, it
had some disadvantages such as its relatively time-consuming nature and its lack
of generalization ability. To circumvent the problems of the approach described in
Chapter 4, this chapter investigated another ACS approach based on deep neural
networks. The premise of this new approach was to train a regression model that
accepted acoustic features as inputs and produced estimated articulatory trajecto-
ries as outputs. The ACS systems built with deep neural networks and VTL are
introduced in Section 5.1. To make the estimated trajectories smoother and be more
articulatorily preferred by VTL, two strategies of regularizing articulatory trajecto-
ries were attempted in Section 5.2. The proposals were experimentally validated in
Section 5.3, which was followed by results and analysis in Section 5.4. Section 5.5
presents a perceptual experiment in which human listeners evaluated the intelligi-
bility of the reproduced speech. To validate the generalization ability of the trained
ACS models, a complementary evaluation using the utterances of other languages
was performed in Section 5.6. Section 5.7 provides some concluding remarks.

5.1 ACS Based on Deep Neural Networks

As introduced in Section 2.3, ACS aims at: (1) estimating the actual articulatory pro-
cesses from given natural utterances; (2) producing synthetic speech that resembles
the original speech as closely as possible. This section represents a novel ACS ap-
proach built with VIL and artificial neural networks. Figure 5.1 demonstrates the
schematic diagram, which consists of three main stages. The first stage was to cre-
ate paired articulatory-acoustic samples. It started from processing human speech
of available corpora (in the bottom middle of the schematic diagram), over creat-
ing gestural scores, to converting them to articulatory and acoustic representations.
The second stage was to train a supervised neural network (e.g., LSTM) regression
model using the training samples created in the first stage. More specifically, the
acoustic features and articulatory trajectories of the training samples were used as
inputs and targets of the regression model. The third stage was to estimate articula-
tory process for new utterances. The acoustic features were first extracted from the
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speech signal of a testing utterance, and then fed into the trained neural network
regression model. For each frame of speech, the trained model estimated a vector
of articulatory parameters. The estimated articulatory parameters of all frames con-
stituted articulatory trajectories, which were further fed into VTL to produce the
synthetic speech that was considered as a duplicate of the original speech.
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FIGURE 5.1: Schematic diagram of articulatory copy synthesis using
VocalTractLab and artificial neural networks.

From the perspective of speech production, the articulatory synthesizer, VTL, plays
the role of the forward model that maps the articulatory parameters to synthetic
speech via acoustic simulation. Estimating articulatory parameters from given acous-
tic signals could then be defined as learning a backward model that inverses the map-
ping of the forward model. In this study, the well-developed articulatory synthe-
sizer, VIL, was used as the forward model. Therefore, the focus of this chapter was
to train a robust backward model based on neural networks.

5.1.1 LSTM Neural Networks

As reviewed in Section 2.4, lots of studies suggests that the neural network based
methods generally outperform the traditional methods for training the mapping
models of acoustic features to articulatory representations. Among the neural net-
works, the ones with a recurrent architecture are considered to be able to model
the temporal dependence of acoustic and articulatory data, thus producing smooth
articulatory trajectories for testing utterances.

Recurrent neural network (RNN) (Hopfield, 1982; Rumelhart, Hinton, and Williams,
1986) is a kind of artificial neural networks. Compared to the feedforward neural
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networks, RNNs use their internal state (memory) to retain information from past
input, thus exhibiting temporal dynamic behavior. Besides, this recurrent mecha-
nism allows them to process variable length sequences of inputs. The most basic
RNN is called vanilla RNN. In theory, the vanilla RNN can maintain information in
"memory" over time. However, due to the vanishing and exploding gradient prob-
lems, it is difficult to train vanilla RNNSs to solve practical tasks that have long-term
temporal dependencies. Therefore, other variants of RNNs are proposed, such as
RNNs with gated recurrent unit (Cho et al., 2014) and long short-term memory unit
(Hochreiter and Schmidhuber, 1997), usually just called "GRU" and "LSTM", respec-
tively. By introducing a set of gates to control the flow of information, these RNN
variants can learn long-term dependencies. The key difference between GRU and
LSTM is that, the GRU unit has two gates ("reset" and "update") while the LSTM
unit has three gates ("input", "output”, and "forget"). Accordingly, LSTM has more
parameters and generally outperforms better than GRU. The LSTM neural networks
have been successfully applied to speech inversion (Liu et al., 2015; Shahrebabaki
et al., 2019; Gao, Steiner, and Birkholz, 2020; Sun and Wu, 2020). Therefore, this
chapter adopted LSTM neural networks to build the backward model for ACS.

Concatenation

/
Second Backward Layer

Second Forward Layer .

Concatenation

First Backward Layer

First Forward Layer

FIGURE 5.2: Diagram of a two-layer bi-directional long short-term
memory (LSTM) neural networks.

As a variant of vanilla RNN, LSTM has the recurrent architecture. Figure 5.2 shows
the diagram of a two-layer LSTM neural networks, which is unfolded in three time
steps over the input sequence. The inner architecture of a LSTM layer is abstracted
as a block of LSTM units, which is also termed "cell" (depicted by a rectangle). The
solid arrows indicate the information flow from lower layers to higher layers while
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the dotted arrows indicate the information flow along time axis (i.e., between ad-
jacent time steps). There are two kinds of dotted arrows: one with the left-to-right
direction and another with the right-to-left direction, which connect the forward
and backward layers, respectively. The unidirectional LSTM, indicated by forward
layers, only preserves information from past inputs. For example, at the time step ¢,
the input of each "LSTM Block" is the concatenation of the output of its lower layer
(or original features) at the current time step and the output of the current "LSTM
Block" from the previous time step t — 1. On the contrary, the backward layers deal
with input sequences from the opposite direction so that they can make full use
of future information. Therefore, each layer of a bi-directional LSTM (BiLSTM) has
two layers side-by-side: the forward layer accepts the input sequence as it is and
the backward layer accepts a reversed copy of the input sequence. Besides, their
outputs are concatenated together and then passed to the next/higher layer.
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FIGURE 5.3: The inner architecture of a LSTM block/ cell.

Figure 5.3 shows the inner architecture of a LSTM block/cell at the time step ¢. Its
internal flow of information is regulated by the gate mechanism. There are three
gates (forget gate, input gate, and output gate) which learn the importance of infor-
mation and determine how much it should be kept or thrown away. The input of
the LSTM cell at current time step is the concatenation of the output from its previ-
ous time step and the current input features (or output of previous layers), [h;_1, x¢].
The concatenated inputs are used to create gates controlling the flow of information.
The LSTM cell is mathematically implemented by the following equations:

fe=0o (Wf[ht—lfxt] + bf) (5.1)



5.1. ACS Based on Deep Neural Networks 83

iy = o (Wilhi—1, x¢] + b;) (5.2)
C; = tanh (W¢[hy_1, x¢] + b¢) (5.3)
Ci=fioCr1+itoC (5.4)

or = 0 (Wolhi—1, x¢] + bo) (5.5)
hy = ot o tanh (Cy) (5.6)

where f;,i;, and o; represent the forget, input, and output gates, respectively. W
and b with subscripts (f,i, or 0) denote the weight and bias, respectively, for the
corresponding gates. ¢ is the sigmoid function and o represents element-wise mul-
tiplication.

The forget gate f; decides what information should be thrown away or kept. The
input gate i; decides what new information should be stored in the cell state. Here,
the new information is C;, which is calculated from the current concatenated inputs.
Then, the current state of the cell can be updated by Equation 5.4 in which its pre-
vious state C;_; is multiplied by the forget gate f; and the new information C; is
multiplied by the input gate i;. After that, the updated cell state C; serves two pur-
poses. It will be compressed to between -1 and 1 and then multiplied by the output
gate o;, producing the output of the cell ;. In the meanwhile, the updated cell state
C: will be directly passed to next time step.

5.1.2 Convolutional LSTM Neural Networks

Convolutional neural network (CNN) (Fukushima and Miyake, 1982; Ciregan, Meier,
and Schmidhuber, 2012) is another kind of neural network which is widely used in
image processing field due to its powerful capability of capturing spatial structure
and hierarchical pattern of grid-like features like images. CNN and LSTM taken
together constitute the new architecture, referred to as convolutional LSTM, which
can capture not only the spatial structure of features but also the temporal consis-
tence among consecutive inputs. Convolutional LSTM is first proposed by Shi et al.
(2015) to predict the future rainfall intensity from radar echo map sequences. In
speech research field, it has been successfully used, for example, in emotion recog-
nition (Ma et al., 2018) and speech enhancement (Tan and Wang, 2018). The idea
behind this strengthened neural network is to let the convolutional layers capture
the spatial structure (mainly along the frequency axis) of acoustic features, while the
LSTM layers capture the temporal dynamics (i.e., along the time axis).

We also adopted the convolutional LSTM neural networks for ACS. Its architecture
implemented in this study is shown in Figure 5.4. The acoustic features, in the form
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FIGURE 5.4: Architecture of convolutional LSTM neural networks for
ACS.

of spectrogram, were first extracted form audio signals. Then, the convolutional lay-
ers were constructed to effectively learn spatial patterns of spectrogram. After that,
the LSTM layers were used to model the temporal dependence among consecutive
frames. Finally, the fully-connected (FC) layers were used to estimate articulatory
trajectories. Besides, the batch normalization technique (Ioffe and Szegedy, 2015)
was applied by attaching a batch normalization layer to each convolutional layer,
which normalized the feature maps before they were fed into the next convolutional
layer.

Convolutional Neural Network

Kernel configuration:
Kernel size: 3x3
Stride: 1 for time axis, 2 for frequency axis

Frequency axis

Time axis

FIGURE 5.5: The process of learning features from spectrogram by con-
volutional neural networks (CNN).
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A convolutional neural network (CNN) consists of an input layer, a convolutional
layers and an output layer. The convolutional layer is its core component which con-
sits of one or multiple kernels (or filters). Each convolution kernel slides along the
input matrix for the layer, generating a feature map. The feature maps generated by
all kernels are then used as inputs for the next layer. Figure 5.5 shows the process of
learning features from spectrogram by CNN. Unlike the kernel configuration used
in image processing tasks, the stride of kernels used in this study was always set to
1 for the time axis and 2 for the frequency axis. This assured that, through each con-
volutional layer, the dimension of learned features was halved while the number of
frames was unchanged. That is to say, the CNN only transformed the spectrogram
to a compressed, distinctive representations but did not change its width (i.e., the
convolution operation kept the length of original inputs).

Batch Normalization

During the neural network training stage, when parameters of previous layers are
updated, the distribution of following layers’ inputs also change. This fact compli-
cates the training of neural network models, such as a slow training speed resulting
from the required smaller learning rate and careful parameter initialization. This
phenomenon is usually referred to as internal covariate shift. Ioffe and Szegedy
(2015) proposed the batch normalization method to address this problem by incor-
porating normalization as a part of the neural network architecture. This technique
can not only speed up the training process by allowing higher learning rates and
less careful parameter initialization, but also regularize the model and/or reduce
the need for dropout operation. Algorithm 2 shows the procedure of batch normal-
ization. For a mini-batch samples, the statistics (mean u and standard deviation 0)
were first estimated based on all values within this mini-batch. Next, each value
was normalized in a Z-score fashion with the estimated statistics and then scaled
and shifted by  and 8, which were learnable parameters.

Algorithm 2 Batch Normalization

1: Input: Values of x over a mini-batch: B = {x1_,,};
2: Parameters to be learned: 7, B
3: Output: {y; = BN, g (x;)}

4 Up % Y"1 x; // mini-batch mean

5 0% Ly, (x;— ug)? // mini-batch variance

6: Xj + ——FE // normalize

\Vogte
7: yi < X+ p = BN, g (x;) // scale and shift

Batch normalization is widely used for processing the outputs of convolutional lay-
ers. Figure 5.6 illustrates the diagram of collecting outputs of convolutional layers
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for statistical parameter estimation used in batch normalization. Each cuboid rep-
resented the output of the convolutional layer for a training sample. It consisted
of multiple feature maps (i.e., output channels) produced by the respective number
of convolutional kernels. A particular feature map indicated by a colored slice of a
cuboid was a matrix whose elements were the result of applying a particular kernel
of the convolutional layer to its inputs. All feature maps corresponding to a par-
ticular convolutional kernel were collected into a group. The mean y and standard
deviation ¢ for this channel were then estimated using all elements of this group.
The following steps (Lines 6 and 7 in Algorithm 2) were further performed to pro-
duce transformed outputs.

No. of feature maps
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FIGURE 5.6: Diagram of collecting outputs of convolutional layers for
statistical parameter estimation used in batch normalization.

5.2 Regularization Applied to Loss Function

Because the articulatory parameters of VIL were continuous values, estimating ar-
ticulatory trajectories by neural network models was a regression task. Therefore,
the mean squared error (MSE) between the target and estimated articulatory trajec-
tories was used as the loss function for training neural network regression models,
which was written as follows:

Lo =Y Y LY (o = ome? 7
art = S M Ys,m,t ys,m,t) 7)

s=1 m=1 t=1

Sl =
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where S is the number of samples (i.e., utterances) in a mini-batch, M is the number
of articulatory trajectories of utterances (i.e., the number of VIL parameters mod-
eled in the regression task), and T is the number of time steps of utterances (i.e., the
number of frames). The variable ¥ ,,, + denotes the estimated articulatory parameter
at the t-th time step for the m-th parameter of the s-th sample while the variable
Ys,m,t denotes the corresponding target. Accordingly, L, is referred to as articula-
tory loss.

Some speech inversion studies statically estimated a vector of articulatory param-
eters for a frame of acoustic features with no regard for the dynamical properties
or continuity of the articulatory trajectories over time. Therefore, to make the es-
timated articulatory trajectories smoother, researchers usually employed filters to
smooth the output of inversion models, e.g., the 15-point median filter used in
Howard and Huckvale (2005) and the Kalman filter used in Mitra et al. (2010) and
Sivaraman et al. (2016). Moreover, some studies directly incorporated additional
constraints into the process of speech inversion. For example, Panchapagesan and
Alwan (2011) incorporated the regularization term, calculated as the sum of squares
of articulatory parameters (the relative values to neutral ones), and the continuity/s-
moothness term, calculated as the sum of squares of the first order time-derivatives
of articulatory parameters into the loss function so that the articulatory parame-
ters were smooth and not going far from the mean or neutral positions. Dang and
Honda (2002) incorporated a physiological constraint (specifically, the quantitative
relationship between frequency difference of the first two formants and tongue dor-
sum position) into the inversion procedure. These strategies solved the one-to-many
problem of speech inversion to some extent and increased smoothness of estimated
articulatory trajectories.

In this study, the regularization or constraint techniques were also used. Chapter 4
incorporated the deviations of the "time constant” parameters from their preferred
values into the loss function. This chapter investigated another two regularization
or constraint terms (in the form of additional losses) in the loss function.

5.2.1 Smoothness Loss

In this study, the MSE between target and estimated articulatory trajectories was
used as the loss function for training neural network regression models. One can
imagine a case there are two sets of estimated articulatory trajectories, both of which
have the same MSE loss. However, the first set of trajectories are relatively smooth
while the second set of trajectories frequently fluctuate around the target ones. Ob-
viously, the first set of estimated trajectories are better than the second. Therefore,
the usefulness of smoothness loss was investigated in this study, which was moti-
vated by the task of planning motion trajectory for robots (Dai et al., 2020a). Hogan
(1984) pointed out that the smoothness of a trajectory could be quantified as a func-
tion of jerk. Mathematically, jerk is the third order time derivative of location (i.e.,
position or displacement). In other words, jerk is the time derivative of accelera-
tion. In this study, the squared jerk of articulatory trajectories was calculated with
the following equation:
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1 5 1 M 1 T ysmt+2_2ysmt+1+2ysmt71_ysmt—z 2
Lsmooth = S Zl M Zl T tzl ( 13 > (5.8)
S= m= =

where F is the time interval between two adjacent frames. In fact, the jerk is the cen-
tral finite difference for the third order time-derivative of articulatory trajectories.
Accordingly, L0011 is referred to as smoothness loss. It can be further incorporated
with the articulatory loss, L4+, forming a new loss function as follows:

Eartsmo = Eart + ‘Xﬁsmooth (5'9)

where the weight « is used to balance the two loss terms.

5.2.2 Acoustic Loss

Incorporating the smoothness loss L0t With the articulatory loss L, into the
loss function might further make the estimated articulatory trajectories smoother,
thus obtaining higher correlation between the target and estimated articulatory tra-
jectories. However, this is still insufficient to effectively train neural network mod-
els for ACS. Although some speech inversion studies (especially for the AAI task)
can achieve very high correlation on the articulatory recordings, it is still unclear
whether the estimate articulatory parameters are fully consistent with those of nat-
ural articulatory process of human speakers. One can imagine another case there
are two sets of estimated articulatory trajectories that are parallel to the target ones
and hence have the same correlation coefficient. However, the first set is very close
to the target while the second set has a big overall shift (i.e., an offset value) relative
to the target. There is no doubt that the synthetic speech of the first set of estimated
articulatory trajectories has better quality than that of the second set. Therefore,
another regularization method was proposed for ACS in this study.

As mentioned in Section 5.1, VTL played the role of the forward model that mapped
the articulatory parameters to synthetic speech via acoustic simulation while the
neural networks played the role of backward model that inversely mapped the
acoustic representations to the articulatory representations. The forward model was
only used to create training samples or synthesizing speech from estimated articula-
tory trajectories during testing. In order to regularize the ACS system, the forward
model was also implemented as a part of the neural networks. Figure 5.7 shows
the diagram of regularizing the model by concatenating the backward and forward
neural networks and jointly training them to minimize the sum of articulatory and
acoustic losses. The LSTM based backward model in the subplot (a) accepted acous-
tic features as inputs and used articulatory trajectories as targets. The same training
samples were used to train the forward model, demonstrated in the subplot (b),
which accepted the articulatory trajectories as inputs and used the acoustic features
as targets. Not directly using VTL as the forward model was due to that it was hard
to obtain the gradients of acoustic loss with respect to the articulatory parameters.
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FIGURE 5.7: Diagram of neural network regression model for ACS

with an acoustic loss regularization: (a) the encoder/backward model;

(b) the decoder/forward model; (c) the encoder-decoder (backward-
forward) model.

The MSE between estimated "acoustic features" and the real acoustic features was
calculated by the following equation:

L= Y L3 LS (s £ 5.10)
aco—EZﬁ Z?Z Xsn,t — Xsn,t .

where N is the dimension of acoustic features and x; , ; and £; ,, ¢ are the real and esti-
mated acoustic features, respectively. Accordingly, £, is referred to as the acoustic
loss. It can be further incorporated with the articulatory loss, L;+, into a new loss
function as follows:

Eartaco — Eart + ﬁﬁaco (5-11)

where the weight B is used to balance the two loss terms. The model in the sub-
plot (c) was the concatenation of the backward model and the forward model. To
speed up the training process, the forward and backward were separately trained
in advance using the same samples but with an opposite way of determining inputs
and targets. After that, they were jointly trained once again using the articulatory-
acoustic samples to minimize the sum of the articulatory loss and the acoustic loss,
Lartaco- The original inputs were acoustic features and the outputs of the forward
model were estimated acoustic features. In this sense, the whole neural network
could also be regarded as an encoder-decoder model. In the testing stage, only the
trained backward model was used to estimate articulatory trajectories. The esti-
mated articulatory trajectories by the backward model (i.e., the encoder) were the
latent representations of the original inputs and the forward model (i.e., the de-
coder) could recover the original inputs from the encoded features.
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5.3 Experiments

5.3.1 Dataset

To train a robust neural network based regression model, a large number of paired
articulatory-acoustic samples are required, which are expected to cover acoustic and
articulatory space as fully as possible. The text to be spoken should cover as many
linguistic phenomena as possible and be produced by as many speakers as possi-
ble, thus yielding different acoustic and articulatory realizations for the same lin-
guistic units. Acquiring such data is very hard and even impractical. One way to
circumvent this problem is to use synthetic data generated by articulatory synthe-
sizers. This strategy has been attempted in Mitra et al. (2013) and Mitra et al. (2014)
where synthetic articulatory-acoustic data were created with the TADA synthesizer
and then used to train speech inversion models. This study also created a synthetic
articulatory-acoustic dataset using the VTL synthesizer with a deliberate coverage
on the acoustic and articulatory diversity.

Creation of Articulatory-Acoustic Samples

As shown in Figure 5.1, the left part demonstrates the stage of creating articulatory-
acoustic samples. It started from a standard speech corpus. In this study, the Kiel
Corpus of Spoken German (Kohler, Peters, and Scheffers, 2018) was used as the ba-
sis. Its text consisted of seven text corpora that had a good coverage of German
phoneme combinations. Those sentences of the text corpora used in this study
sentence were spoken by 14 speakers, thus covering, for example, different speak-
ing rates and pitch levels. The speech segmentation was already done via force-
alignment followed by manual adjustment in the original corpus. The segmentation
tiles were processed and then converted to gestural score files via VTL-APIL The f
gestures were separately estimated from acoustic signals and then used to replace
correspond pseudo fy gestures in the gestural scores created via VIL-API. Next,
the "merged" gestural scores were fed into VIL which internally converted them
into articulatory parameters and then synthesized speech via the acoustic simula-
tion model. Finally, acoustic features (MFCC or spectrogram) were extracted from
synthetic speech with the frame rate equal to that of VTL articulatory parameter
vectors. Figure 5.8 shows the diagram of splitting an acoustic signal into successive
overlapped frames and their alignments with VTL parameter frames. The frame
rate of VIL was 400 frames/second and the window length used in this study to
extract acoustic features (MFCC or spectrogram) was 20 ms. A frame of VTL pa-
rameters described the articulatory state at a specific time point while a frame of
acoustic signal was a segment (i.e., an interval) of speech. Therefore, in this study,
a frame of acoustic signal was aligned with the VTL parameter frame (i.e., a vector)
whose time point was equal to the center of the acoustic frame, thus forming an
articulatory-acoustic data frame. For example, the center of the first acoustic frame
was at 10 ms position which was aligned with the fifth VTL parameter frame, and
the center of the second acoustic frame was at 12.5 ms which was aligned with the
sixth VTL parameter frame, and so on. All such frames of an utterance constituted
an articulatory-acoustic sample. In this fashion, the first and last four VTL frames
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were discarded. In practice, the silence frames in the beginning and end of utter-
ances were excluded from training samples.

VTL frames
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FIGURE 5.8: Diagram of splitting acoustic signal into overlapped
frames and their alignments with VocalTractLab parameter frames.

However, the training samples created by this method only covered limited articu-
latory and acoustic variations since VTL-API used a rule-based method to convert
segment sequences to gestural scores, during which the time constant was always
set to 12 ms for supra-glottal gestures, thus producing almost same transition pat-
terns for the phoneme combinations. Nevertheless, for an utterance, different speak-
ers, even for a particular speaker under different conditions (e.g., speaking rates or
emotions), have different realizations of articulatory processes and acoustic results.
Therefore, upon the created gestural scores and synthetic speech, more variants of
synthetic articulatory-acoustic samples were created so as to cover larger articula-
tory and acoustic space.

First, for the created gestural score of each utterance of the Kiel corpus, the glot-
tal gestures with the "modal" phonation type were globally replaced by either the
"breathy" or "pressed" gestures. Up to this point, for an utterance, there were three
gestural scores that differed in the phonation type. It should be noted that, only the
"modal" glottal gestures that were mainly related to sonorants were replaced and
the other gestures related to fricatives, plosives, and glottal-stop were fixed. Af-
ter that, for each of the three gestural scores, the "time constant" parameter of each
gesture was individually manipulated by sampling values from a normal distribu-
tion. This step yielded another three new gestural scores that differed in the "time
constant" parameters from their corresponding ones. Then, the six gestural scores
for an utterance were fed into VTL, producing acoustic signals. Next, the vocal
tract length of the speaker was manipulated not by changing anatomical parame-
ters of the VTL model speaker but by transforming acoustic features of synthetic
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speech while keeping the corresponding gestural scores unchanged. This opera-
tion was motivated by vocal tract length perturbation (VILP), a technique used in
speech recognition (Jaitly and Hinton, 2013). To increase the robustness of ASR sys-
tems, the training samples can be augmented by transforming inputs in a way that
does not change the label. VTLP should not be confused with vocal tract length
normalization (VTLN) in ASR research. Unlike the VILN technique that reduces
speaker variation by fitting a warp factor to acoustic features of each training and
testing speaker (or utterance), VILP increases the input diversity for each label by
manipulating acoustic features of training samples with a random perturbation fac-
tor. In this study, the vocal tract length (to be more precise, the formant frequencies
of synthetic speech of gestural scores) were manipulated with the "change gender"
functionality of Praat (Boersma and Weenink, 2019), during which a random value
controlling the formant shift ratio was sampled from a normal distribution.
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FIGURE 5.9: The relationships of 12 VTL-Kiel samples corresponding
to an original utterance of the Kiel corpus (with "dlmsi025" as an exam-

ple).

The detailed description of creating paired articulatory-acoustic samples was given
in Section 3.2.2. Applying the above-mentioned method to utterances of the Kiel
corpus generated a paired articulatory-acoustic corpus, which was referred to as
VTL-Kiel corpus. For each original utterance, there were 12 articulatory-acoustic
samples (3 phonation-types x 2 time-constants x 2 vocal-tract-lengths). Figure 5.9
demonstrates the relationships of these 12 VTL-Kiel samples corresponding to an
original utterance of the Kiel corpus. Sample-0 ("dlmsi025") is the original utter-
ance of the Kiel corpus and the other 12 samples are synthetic utterances. Sample-1
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("dlmsi025_modal_taul_VTLengthl") corresponds to the "prototype" gestural score
which was created by the VTL-API rule-based method with the utterance "dImsi025"
as reference. The other 11 samples were its variants created by manipulating the
"Sample-1" sample in the articulatory or acoustic domain. The first three letters of
the sample names indicate the speaker index. Therefore, all these 13 samples had
the same speaking rate and pitch level of the speaker "dlm" since the duration and
pitch information of the original utterance were not manipulated. The following
five letters or digits indicate the sentence index, suggesting that they had the same
phonetic transcription of the sentence "si025". The remaining fields delimited by
underscores indicate how the commonalities and differences among the 12 sam-
ples. The samples falling into one of the green rectangles had the same sub-glottal
articulatory configurations ("modal", "breathy", or "pressed"). The samples whose
time constant parameters are within the yellow rectangles ("taul") had the same
supra-glottal articulatory configurations. However, the supra-glottal parameters of
other samples are different because the time constant parameters of their gestural
scores were individually manipulated with random factors. The samples with the
"VTLengthl" indicated by the dashed orange rectangles had the same vocal tract
length of the model speaker of VTL. The vocal tract lengths of other samples were
individually manipulated with random factors in the acoustic domain.

Data Partition

Table 5.1 gives a summary of the numbers of sentences, speakers, and utterances of
the Kiel corpus. There were 598 unique sentences, each of them was produced by
one or several speakers, yielding 1998 natural utterances in total. Using the method
proposed in this study created 12 articulatory-acoustic samples for each original
natural utterance. Therefore, the VTL-Kiel corpus contained 23976 samples in total.

TABLE 5.1: Summary of the numbers of sentences, speakers, and utter-
ances of the Kiel corpus.

Text Corpus (No. of No. of
Speakers total
sentences)
utterances
Berlin (100) K01, k03, lﬁgg’ k61, k63, 600
Marburg (100) K07, k09, tg’ k61, k67, 600
Erlangen ((110(?3)+ Siemens dlm, hpt, kko 600
CNET (20) + Kohler (63) +
SEL (70) + Schiefer/Sommer k61 198
(15) + Tillmann/Kohler (30)
Total 598 14 1998

The 598 sentences of the Kiel corpus were partitioned into three groups with the
proportions of 80%, 10%, and 10%, the corresponding created articulatory-acoustic
samples of which formed the training, validation, and test subsets of the VTL-Kiel
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corpus, respectively. That is to say, there was speaker-overlap but no text-overlap
among these three subsets. Table 5.2 gives a summary of utterances of the three
subsets of the synthetic VTL-Kiel corpus. The detailed dataset partition for training
and validating the neural network based ACS systems is given in Appendix C.

TABLE 5.2: Summary of the number of utterances of VTL-Kiel corpus.

No. of No. of natural No. Of.
Subset synthetic
sentences utterances
utterances
Training 478 1601 19212
Validation 60 199 2388
Test 60 198 2376

5.3.2 Voice Activity Detection for Lung Pressure Trajectory

The subglottal pressure is need for acoustic simulation of articulatory synthesis. In
VTL, this is controlled by the lung pressure parameter. Compared to other articu-
latory parameters, the lung pressure parameter is less variable. The lung pressure
trajectory can be roughly divided into three phases: (1) lung pressure’s ramp up
from 0 dPa to 8000 dPa, which corresponds to the utterance initial part (i.e., voice
activity onset); (2) lung pressure’s plateau with the fixed value of 8000 dPa, which
corresponds to the long stable part during speech production; (3) lung pressure’s
ramp down from 8000 dPa to 0 dPa, which corresponds to the utterance final part
(i.e., voice activity offset). Therefore, only three valid lung pressure gestures are
usually enough to describe the lung pressure trajectory of an utterance.

In this study, the lung pressure parameter was not modeled in the neural network re-
gression models but separately estimated from acoustic signals. Here, the voice ac-
tivity detection (VAD) technique, also known as speech activity detection or speech
detection, was used to determine the onsets and offsets of three lung pressure phases.
VAD refers to the automatic determination of whether an acoustic segment is speech
or silence, i.e., the presence of speech. This technique is widely used in the pre-
processing stage of many applications such as speech coding and speech recogni-
tion.

In this study, VAD was done using the python version interface' of the VAD imple-
ment of the WebRTC project of Google, which is one of the best available, fast, and
free VAD tools. WebTRC-VAD accepts a frame of speech (10, 20, or 30 ms) as input
and returns the binary decision ("0" for silence and "1" for speech). It provides users
with an option to specify the aggressiveness mode which is an integer between 0
and 3. "0" is the least aggressive about filtering out non-speech, "3" is the most ag-
gressive. VAD for utterance-initial or -final plosives and fricatives are vulnerable
since they are easily confused with the background noise. In this study, the aggres-
siveness mode was set to "2" which was a compromise choice that dealt with well for
all phone types. The frame size was set to 10 ms. For an utterance, WebTRC-VAD
was applied to a sequence of non-overlapped frames, outputting a binary string of

Ihttps://github.com/wiseman/py-webrtcvad
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decisions. After that, post-processing was done to determine the voice activity on-
sets and offsets. A sliding window of 100 ms (10 audio frames) scanned the binary
decision string. Since extra silences (100 ms) were padded to the utterances in this
study, the VAD results were always "0" for the beginning and end parts of the ut-
terance. The voice activity onset was triggered when the number of speech frames
within the sliding window was above nine (90% of the frames). Likewise, the voice
activity offset was triggered when 90% of the frames in the sliding window were
non-speech. Figure 5.10 shows examples of WebTRC-VAD results: one for a natural
utterance ("Badminton" produced by the speaker SPK-1 in the PBACU corpus) and
another for a synthetic utterance ("dlmsi036_modal_taul_VTLengthl" in the VTL-
Kiel corpus). The red vertical lines indicate the detected onsets or offsets. It should
be mentioned that the detected utterance onsets and offset were always integer mul-
tiples of 10 ms.
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FIGURE 5.10: Examples of voice activity detection results. The upper

and lower subplots are the results for a natural utterance of the PBACU

corpus and a synthetic utterance of the VTL-Kiel corpus, respectively.
The red vertical lines indicate the detected onsets or offsets.

Based on the VAD results, the lung pressure trajectory was created using a rule-
based method. During the conversion of segment sequences to gestural scores, VTL
used the values of 5 ms and 12 ms for time constants of the first and last valid lung
pressure gestures, respectively. That is to say, the ramp up phase of lung pressure
from 0 dPa to the stable state (8000 dB) was achieved faster than the ramp down
phase from the stable state to 0 dPa. Therefore, different durations were used for
specifying the ramp phases in this study. The left half of a Blackman window (30
ms) and the right half of another Blackman window (70 ms) were used to create the
lung pressure ramp up and ramp down phases, respectively. Figure 5.11 shows an
example of VAD based lung pressure trajectory created with Blackman windows.
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The time points, T; and T, are the detected voice activity onset and offset, respec-
tively.
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FIGURE 5.11: VAD based lung pressure trajectory using Blackman win-
dows. The time points, T1 and T, are the detected voice activity onset
and offset, respectively

To make the utterance-initial and -final phones sound natural, the lung pressure
usually starts earlier than the utterance VAD onset while it ends later than the
utterance VAD offset. Improper alignments between detected VAD onset/offsets
and lung pressure boundaries will either make the utterance-initial or -final phones
sound very weak or disappear, or introduce extra unexpected sounds due to the
combination of valid lung pressure and open vocal tract. In this study, the proper
time interval between VAD and lung pressure boundaries for each side was deter-
mined by searching the optimal number of shifted frames. This was done upon 50
randomly selected words from the PBACU corpus. Their initialized gestural scores
were converted to articulatory trajectories. WebTRC-VAD was applied to the cor-
responding synthetic speech. Based on the detected VAD boundaries, the new lung
pressure trajectories were created with a particular frame shit size, which then re-
placed the original ones. The resulting articulatory trajectories were fed into VIL
to produce new synthetic speech. After that, WebTRC-VAD was applied to the new
synthetic speech, the results of which were compared with those of original syn-
thetic speech. The optimal number of VTL shifted frames was searched from the
array {1,2,...,20} (each VTL frame interval corresponds to 2.5 ms) with the aim
of minimizing the average deviation of detected boundaries of between synthetic
speech created with prototype gestural scores and that created with manipulated
gestural scores whose lung pressure trajectories were generated based on Blackman
windows. It should be mentioned that, searching optimal value for boundary shift
can be done upon any other utterances other than the 50 synthetic speech created
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based on the PBACU utterances. This would not influence performance measure-
ment, since the proposal would be evaluated using original natural utterances. The
final optimal boundary shift is shown in Figure 5.11. To be more precise, the lung
pressure should start 8 frames (20 ms) earlier than the detected VAD onset while it
should end 6 frames (15 ms) later than the detected VAD offset.

5.3.3 Pitch Target Estimation for f;, Trajectory

Like lung pressure trajectory, the fy trajectory was also not modeled in the neural
network regression models but separately estimated from acoustic signals. Again,
this was done using TargetOtimizer-2.0 (Krug et al., 2021). The raw f; samples were
extracted by Praat (Boersma and Weenink, 2019) and stored in the PitchTier files.
The number of pitch targets was determined by counting the number of vowels
from the phonological transcription of the given utterance. In this sense, the tran-
scription was assumed to be known. However, this can be avoided by performing
ASR like that used in gestural score initialization in Section 4.1. The number of
pitch targets for a given utterance can also be roughly specified based on utterance
duration, e.g., by dividing the total duration by an average German phoneme du-
ration calculated from other corpora. For simplicity, this study directly counted the
number of vowels from annotation files and used them as the number of targets for
pitch target estimation by TargetOptimizer-2.0. Except for this, the annotation files
were never used in other steps. The average RSME and correlation coefficient (p)
between the original and reproduced fy by TargetOptimizer-2.0 were 0.575 st and
0.966 for the natural utterances of the Kiel corpus, respectively.

5.3.4 Training Neural Networks

Two kinds of neural networks (LSTM and convolutional LSTM) and two kinds of
teatures (MFCC and spectrogram) were compared in this study. For each utterance
of the VTL-Kiel corpus, MFCC and spectrogram were extracted from the acoustic
signal with a frame size of 20 ms and a frame rate of 2.5 ms. The MFCCs consisted
of the original 13-dim features and their first order derivatives. The MFCC features
were Z-score normalized individually for each utterance. The spectrograms used
in this study were the log power spectrograms extracted by the 1024-point discrete
Fourier transform (DFT), thus having 513 frequency bins. When log power spec-
trograms were used as input features, no explicit normalization was applied. It
was expected that the convolutional layers together with batch normalization lay-
ers could deal with feature normalization. However, for the encoder-decoder model
that introduced acoustic loss, the log power spectrograms were also used as the tar-
gets of the forward model. The magnitude of log power spectrograms was much
larger than the output of forward model. It was very hard for the neural network
models to converge if acoustic loss was directly calculated between them. There-
fore, the backward model used the raw log power spectrograms as inputs while the
forward model used the normalized log power spectrograms as targets. Here, the
Z-score normalization was individually applied to each spectrogram.

Although VTL had 30 articulatory parameters, ACS was simplified by fixing some
parameters or separately estimating some parameters from acoustic signals. In
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this study, the lung pressure trajectory was determined by VAD together with a
rule-based method and Blackman windows. The fj trajectory was estimated by
TargetOptimizer-2.0. The tongue root parameters ("TRX" and "TRY") were excluded
from modeling because they were automatically determined by VTL when all other
parameters were given. The upper vocal fold displacement was always set to be the
value of the lower counterpart plus a fixed value (0.01). There were also five fixed
vocal fold parameters that used the VTL default values: phase-lag, double-pulsing,
pulse-skewness, flutter, and aspiration-strength. The remaining 20 articulatory pa-
rameters were modeled by the neural network regression models. Each VIL articu-
latory parameter, y,;;, was scaled to the range [—1, 1] with the following equation:

Yotl_scaled = ZM —1 (5.12)

Ymax — Ymin

where, y,,;, and Yy are constants (see Table 3.1). They are the minimal and max-
imal values of the VIL parameter that the variable y,;; corresponds to. The neu-
ral network models used the scaled articulatory parameters as targets for training.
At the testing stage, each estimated value vy,.; was scaled back to its correspond-
ing original VTL parameter range with Equation 5.13. The articulatory trajectories
composed of estimated VTL articulatory parameter y,; .1 were fed into VIL to
synthesize speech.

Yesti_vtl = (ymax - ymin)(yesti + 1) + Ymin (5.13)

N —

Since the convolutional layers usually accepts spectrogram as inputs in other stud-
ies, this study mainly trained two kinds of ACS systems: one using LSTM with
MEFCC as input features and another using convolutional LSTM with log power
spectrogram as input features. Some complementary systems (e.g. the one using
LSTM with spectrogram as input features) were also trained to support the findings
of this study. All neural network models were implemented with PyTorch (Paszke
etal., 2019). The models were trained using the mini-batch gradient descent method
(Dekel et al., 2012). Within a mini-batch, zeros were padded to short utterances so
that all samples had the same length. It should be noted that those padded segments
were excluded using the masking technique during loss calculation. The weights
of neural network models were updated by the Adam optimizer (Kingma and Ba,
2017) with default values for all parameters in PyTorch except for the learning rate.
Moreover, to prevent the neural networks from getting over-fitted to the training
data, the dropout technique (Hinton et al., 2012) was applied to the output of hidden
layers of LSTM (except for the last layer). The probability of an element to be zeroed
used the default value (0.5) in PyTorch. Finally, the linear layer was attached to the
last layer of LSTM, which transformed the LSTM outputs to the final outputs, i.e.,
the estimated articulatory trajectories.

Table 5.3 lists the feature dimensions and the candidate hyper-parameters that were
searched for two kinds of neural network models. The optimal hyper-parameters
indicated by the bolded values were determined by a grid-search strategy with re-
gard to the MSE loss. There were many combinations of hyper-parameters, which



5.3. Experiments

99

resulted in comparable MSE losses. The same set of optimal configurations for all
systems were determined in terms of running time, performance, and comparability
between different systems.

TABLE 5.3: Feature dimensions and candidate hyper-parameters of
two kinds of neural networks. The bold text indicates the optimal val-
ues after grid search, which were used as the configuration for subse-
quent neural network models.

LSTM +

MEFCC ConvLSTM + Spectrogram

Feature dimension

26

513

Convolution layers

No. of layers: {4, 5, 6}
No. of kernels per layer: {16, 32, 64}

LSTM layers

Direction of LSTM: {Unidirectional, Bidirectional}

No. of layers: {2, 3, 4}

Nodes per layer: {100, 200, 300, 400}

Learning-rate

{0.0005, 0.001}

Using the same set of hyper-parameters, a series of ACS systems were trained in this
study in order to ascertain which features and neural network architectures were
more useful, how to use the training data, what strategies were useful to improve
the performance, and so on. Each system was trained for a maximum of 50 epochs
with the early stopping strategy by monitoring the validation loss with a tolerance
of five epochs. Figure 5.12 shows an example of using the early stopping strategy
during training a neural network model. Since the MSE loss of validation subset
achieved a minimal value after 22 epochs and never decreased again in the following
tive epochs, the training stopped after 27 epochs. The model saved after 22 epochs
was used as the final model in this example.
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FIGURE 5.12: Example of using early stopping strategy with a tolerance
of five epochs during training a neural network model. The training
was stopped after 27 epochs, because the validation loss did not get
smaller in the following five epochs since it obtained the smallest value

after 22 epochs.
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5.4 Results and Analysis

Different ACS systems were built and compared in terms of neural network architec-
tures, acoustic features, normalization methods, regularization strategies and other
aspects. The experiments always started from the basic configurations and were in-
crementally extended to other aspects. If some attempts did not work, they would
be discarded in subsequent experiments.

The first ACS system was trained using LSTM neural networks with MFCC as in-
puts. The MFCC features were extracted from VTL synthetic speech of the VTL-Kiel
corpus whereas the final goal of ACS was to apply the trained model to natural
speech produced by human speakers. The mismatch of acoustic characteristics be-
tween synthetic and natural speech undoubtedly affected the testing performance in
the speaker-independent scenario. Therefore, the MFCC features extracted from the
original natural speech of the Kiel corpus were also employed to examine whether
they were useful to increase the system robustness against unknown speakers. Since
the Kiel corpus did not contain real articulatory data, the "prototype" articulatory
trajectories of the VIL-Kiel corpus were used as the corresponding targets for the
MECC features extracted from natural speech of the Kiel corpus. One can take the
Figure 5.9 as an example to understand such an articulatory-acoustic training sam-
ple. The MFCC features were extracted from the natural utterance "dlmsi025" while
the articulatory trajectories of Sample-1 ("dlmsi025_modal_taul_VTLengthl") were
used as corresponding targets/labels which were generated from the "prototype"
gestural score. Accordingly, 1998 new samples (VTL articulatory trajectories of pro-
totype gestural scores and acoustic features of human speech of the Kiel corpus)
were created. Such samples were referred to as the "VTL-Human" samples with a
total length of 1.28 hours. The samples whose articulatory trajectories and acoustic
signals were created by VTL were referred to as "VIL-VTL" samples with a total
length of 15.39 hours. Their combination was referred to as the "Mixed" samples
with a total length of 16.67 hours.

The second ACS system was built using LSTM neural networks with the Mixed sam-
ples. Although the human speakers” MFCC features and VTL articulatory trajecto-
ries did not perfectly match, they may be beneficial to training robust ACS models.
These samples were also divided into three subsets (80% for training, 10% for vali-
dation, and 10% for testing) according to the data partition used in Section 5.3.1 (see
Table 5.2 for a summary and Appendix C for details). After the training of these two
ACS systems, their performances were evaluated on the test subset in terms of cor-
relation coefficients between the estimated and the target articulatory trajectories.
Table 5.4 lists the average correlation coefficients for each VIL parameter across all
testing utterances of the VIL-Kiel corpus. Even though the second ACS system was
trained with the Mixed samples, the average correlation coefficients (i.e., the third
column in this table) were calculated only for the testing utterances of the VTL-Kiel
corpus, i.e., the same test subset used for the first ACS system. As can be seen from
Table 5.4, the average correlation coefficients are very close to each other not only
between different articulatory parameters but also for these two systems. It should
be noted that this table only shows the results for the 20 VTL parameters that were
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TABLE 5.4: Average correlation coefficients between the original and

estimated VIL parameters across all testing utterances of the VTL-Kiel

corpus for two LSTM-MFCC based ACS systems trained with different
training samples.

System trained with | System trained with
VTL-VTL samples Mixed samples

Horizontal Hyoid position (HX) 0.983 0.98
Vertical Hyoid positon (HY) 0.985 0.984
Horizontal jaw position (JX) 0.985 0.984
Jaw angle degree (JA) 0.986 0.985
Lip protrusion (LP) 0.976 0.976
Lip distance (LD) 0.978 0.982
Velum shape (VS) 0.982 0.982
Velic opening (VO) 0.991 0.99
Tongue body X (TCX) 0.99 0.989
Tongue body Y (TCY) 0.986 0.984
Tongue tip X (TTX) 0.985 0.983
Tongue tip Y (TTY) 0.987 0.987
Tongue blade X (TBX) 0.979 0.982
Tongue blade Y (TBY) 0.983 0.987
Tongue side elevation 1 (TS1) 0.971 0.973
Tongue side elevation 2 (TS2) 0.986 0.985
Tongue side elevation 3 (TS3) 0.982 0.983
Lower displacement 0.985 0.988
Chink area 0.965 0.965
Relative amplitude 0.99 0.989

modeled by neural networks. As mentioned before, fo and lung pressure were sepa-
rately estimated from acoustic signals and not modeled by neural networks. All of
these 20 VIL parameters achieved very high correlation coefficients. Among them,
the average correlation coefficient of the "chink_area" parameter that appeared to be
more difficult to estimate than other parameters still had a high value (0.965).

Table 5.5 gives a summary of the average correlation coefficient and cosine dis-
tance between the original and estimated VTL articulatory parameters across all
dimensions and all testing utterances of the VTL-Kiel corpus for the two LSTM-
MEFCC based ACS systems trained with different training samples. These two sys-
tems achieved very similar results in terms of articulatory trajectory similarity. The
system trained with Mixed samples performed slightly better than the one trained
with VTL-VTL samples alone. The performance of the ACS systems based on LSTM
neural networks was comparable with that of the genetic algorithm based ACS ap-
proach proposed in Chapter 4 (c.f. Table 4.7). It should be noted that the results in
Table 4.7 was computed on a set of 16 utterances of isolated words while the results
in Table 5.5 were computed on a set of 198 utterances of sentences.

Figure 5.13 shows the articulatory trajectories for an utterance of the VIL-Kiel test
subset. The blue solid curves indicate the original articulatory trajectories while the
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TABLE 5.5: Average correlation coefficients and cosine distance be-
tween the estimated and target articulatory parameters across all di-
mensions and all testing utterances of the VIL-Kiel corpus for two
LSTM-MFCC based ACS systems trained with different training sam-

ples.
System trained with | System trained with
VTL-VTL samples Mixed samples
Average correlation coefficients 0.98315 0.98329
Average cosine distance 4.998 x 10+ 4.821 x 10~*

dashed red curves indicate the estimated ones. This figure also illustrates the good
consistence between the original and estimated articulatory trajectories.
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FIGURE 5.13: Comparison of articulatory parameter trajectories for

the utterance "dImsi025_modal_taul_VTLengthl" of VTL-Kiel test sub-

set. The blue solid curves indicate the original articulatory trajectories
while the dashed red curves indicate the estimated ones.

The above results suggested that the ACS systems based on LSTM neural networks
achieved very high correlation coefficients and very small cosine distance between
the estimated and target articulatory trajectories. However, both the training and
testing utterances (except for the "VIL-Human" samples) were produced by the
model speaker of VTL. That is to say, the above results can only reflect the speaker-
dependent performance of the trained models. Therefore, it was more expected to
evaluate the trained models in the speaker-independent scenario, for example, by
using the human utterances.
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Since there were no real articulatory trajectories together with the human speech
used in this study, evaluating the trained models on natural utterances could not
be done in the articulatory domain. Hence, the performance of the trained ACS sys-
tems on human speech was evaluated in the perceptual domain in terms of the intel-
ligibility of reproduced utterances. Like the method used in Chapter 4, the Google
ASR accuracy was adopted as the metric to measure the intelligibility of reproduced
utterances. The 320 natural utterances of the PBACU corpus were used to compare
the performance among different ACS systems. There were three reasons for using
utterances of the PBACU corpus instead of the testing utterances of the Kiel cor-
pus. First, conducting ASR on reproduced utterances of the PBACU corpus was less
expensive because the PBACU corpus had fewer and shorter utterances than the
test subset of the Kiel corpus. Second, as mentioned in the step of data partition,
the utterances of the Kiel corpus were divided into three subsets according to the
text. As a result, there was speaker-overlap between the training and test subsets
although there was no text-overlap. Nevertheless, both the text and the speakers
of the PBACU corpus could be considered unknown. Third, the utterances of the
PBACU corpus were isolated words while the utterances of the Kiel corpus were
sentences. Therefore, recognizing isolated words instead of sentences could disen-
tangle the speech intelligibility measurement from the influence of language model
of the speech recognizer, thus giving a relatively fair performance measurement.
Therefore, the Google ASR accuracy of the reproduced utterances of the PBACU
corpus was used in the subsequent experiments to compare different ACS systems.
Of course, to make the study more complete, the performance on the testing utter-
ances of the Kiel corpus was also evaluated (only for the best ACS systems) at the
end of this section.

TABLE 5.6: Google ASR accuracies (in %) of reproduced PBACU ut-
terances by LSTM-MFCC ACS systems trained with different training

samples.
Training samples | Total duration (in hours) | Accuracy
VTL-VTL 15.39 28.13
VTL-Human 1.28 43.75
Mixed 16.67 49.06

To examine the benefit of including VTL-Human samples to training neural net-
works, another ACS system was trained with the VIL-Human samples alone. Table
5.6 lists the Google ASR accuracies of the reproduced PBACU utterances for LSTM-
MEFCC based ACS systems trained with different training samples together with
respective total duration of them. The ACS system trained with the Mixed samples
improved the accuracy by approximately 21% compared to the one trained with
the VIL-VTL samples, which resulted from the inclusion of the additional VTL-
Human samples. Furthermore, the ACS system trained using the VIL-Human sam-
ples alone obtained an accuracy of 43.75%, which was still much higher than that
of the ACS system trained with VTL-VTL samples. That is to say, with fewer utter-
ances, the former achieved a much higher ASR accuracy than the latter (1.28 hours
vs. 15.39 hours). This further suggested the effectiveness of including acoustic fea-
tures of natural utterances into training the ACS systems.
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Although the ACS system trained with the Mixed samples performed better than
the other two systems, its performance in terms of ASR accuracy was still lower
than that of the genetic algorithm based ACS method proposed in Chapter 4. The
following experiments aimed to enhance the ACS performance using new neural
network architectures or regularization methods. Since the VIL-Human utterances
were more useful to train the neural networks for ACS than the VIL-VTL samples,
hereafter, other new ACS systems were only trained with the two types of samples:
VTL-Human and Mixed.

Another two systems (one with the VITL-Human samples and another with the
Mixed samples) were built using the convolutional LSTM neural networks with log
power spectrograms as inputs. They used the same configurations for the LSTM
and fully-connected layers like those used in the previous ACS systems. The main
difference was that six convolutional layers were inserted between acoustic features
and the LSTM layers. Unlike the LSTM-MFCC based ACS systems that used the
handcrafted acoustic features, the ConvLSTM-Spectrogram based ACS systems au-
tomatically learned features from spectrograms with convolutional layers. The ACS
systems trained only with articulatory loss (i.e., without other losses) were referred
to as the baseline systems. As mentioned in Section 5.2, to make the estimated ar-
ticulatory trajectories smoother, some studies usually applied low-pass filters to the
results in the post-processing stage. In this study, for the sake of comparing the
proposed regularization methods with the low-pass filter based method, the articu-
latory trajectories estimated by the baseline systems were smoothed by performing
zero-phase digital filtering (in both the forward and reverse directions) with a 12-
order Butterworth filter before being fed into VIL to synthesize speech.

After that, another four ACS systems were trained with the smoothness loss regu-
larization and they differed in the model architecture (LSTM-MFCC or ConvLSTM-
Spectrogram) and training samples (VIL-Human or Mixed). The hyper-parameter
« for the weight of smoothness loss in Equation 5.9 was separately specified for dif-
ferent ACS systems since the acoustic loss and smoothness loss might have different
magnitudes resulting from the different acoustic features and training samples used
in these ACS systems. The values for the weight & were set to 10 and 100 for the ACS
systems trained with VIL-Human samples and Mixed samples, respectively. That
is to say, the latter type used a larger weight. This is because the Mixed samples
contained the VIL-VTL samples (the acoustic features and articulatory trajectories
are matched) and their articulatory trajectories were easy to estimate. Hence, their
smoothness loss had a smaller magnitude than that of the ACS systems trained with
only the "mismatched" VIL-Human samples. Similarly, another four ACS systems
were trained with the acoustic loss regularization. The hyper-parameter p for the
weight of acoustic loss in Equation 5.11 was also separately specified for different
ACS systems. The value for the ConvLSTM-Spectrogram based ACS system trained
with Mixed samples was set to 0.001 while it was set to 0.05 for the other three ACS
systems.

Table 5.7 summarizes the Google ASR accuracies of the 16 sets of reproduced ut-
terances of the PBACU corpus. Each set contained 320 utterances reproduced by
a specific ACS system. For each ACS system, a capital letter before its accuracy
is assigned for the sake of convenient reference. In the "Baseline" row, System-A
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TABLE 5.7: Google ASR accuracies (in %) of reproduced utterances of
the PBACU corpus by different ACS systems.

VTL-Human Mixed
LSTM- ConvLSTM- LSTM- ConvLSTM-
MEFCC Spec MEFCC Spec
Baseline (A) 43.75 (B) 52.81 (C) 49.06 (D) 59.06
Baseline
(low-pass filter (A)42.5 (B) 54.38 (C) 50.94 (D) 58.75
smoothed)
Smoothness
loss regularized (E) 44.69 (F) 54.38 (G) 51.88 (H) 60.31
Acoustic loss
regularized (I) 46.88 (J) 55.31 (K) 63.13 (L) 64.69

and System-C are the above-mentioned LSTM-MFCC systems trained with VTL-
Human and Mixed samples (their results are already reported in Table 5.6) while
System-B and System-D were convolutional LSTM based systems trained with log
power spectrograms as inputs. This new model architecture increased the accuracy
by approximately 10%, suggesting the effectiveness of learning distinctive features
from spectrograms by convolutional layers. The effect on speech intelligibility of
smoothing estimated articulatory trajectories by the low-pass filter was not obvious
since the ASR accuracies of two cases (when applied to System-B and System-C) in-
creased while the ASR accuracies of another two cases (when applied to System-A
and System-D) decreased a little. However, the regularization methods proposed in
this chapter consistently outperformed the systems without regularization as well
as the post-processing method by the low-pass filter.

Moreover, the regularization of acoustic loss performed better than that of smooth-
ness loss. This may be explained as follows. For each of the acoustic loss regularized
systems ("I", "J", "K", and "L"), there were a forward model and a backward model.
They were separately trained in advance using the same articulatory-acoustic sam-
ples but with an opposite way of determining inputs and outputs. In this pre-
training stage, the forward model perhaps had learned the mapping of articulatory
trajectories to acoustic representations, which was similar to what VTL did. After
that, they were concatenated and further jointly trained using the same samples
once again. In this stage, the concatenated backward-forward model was trained to
minimize the weighted sum of the articulatory loss and the acoustic loss. Only when
the estimated articulatory trajectories were more preferred by the forward model, the
acoustic loss tended to decrease. In turn, this would make the estimated articulatory
trajectories be more preferred by VIL, thus producing more natural and intelligible
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FIGURE 5.14: The waveforms and spectrograms for the word "Camp-

ingplatz". The upper part is the original utterance produced by the

speaker SPK-1 in the PBACU corpus while the lower part is the repro-
duced utterance by ConvLSTM-Spectrogram ACS system.

speech. For the PBACU corpus, the estimated articulatory trajectories and repro-
duced utterances by System-K and System-L can be found in Google Drive reposi-
tory? 3. Figure 5.14 gives an example of waveforms and spectrograms for the word
"Campingplatz". The upper part is the original utterance produced by the speaker
SPK-1 in the PBACU corpus while the lower part is the reproduced utterance by the
best ACS system ("L").

Next, it was worth examining what the convolutional and bath normalization layers
learned. Figure 5.15 shows the log power spectrogram and learned features by CNN
of the System-D with the utterance "besonders" produced by the speaker SPK-2 as
an example. The obvious difference was their magnitudes. The values of log power
spectrograms usually ranged from -300 dB to -20 dB. It was very hard for models to
reach convergence if such values were directly used as inputs of neural networks. By
inserting CNN (convolutional and batch normalization layers) before LSTM layers,
the log power spectrogram were transformed to new features with a much smaller
range. The CNN-learned features almost fell into the range from -1 to 1, except
for the very beginning part of the waveform which was a silence segment. The
horizontal strips of CNN-learned features appeared to be straighter than those of
log power spectrogram.

One may think that the effect of CNN used in this study (i.e., convolutional and
batch normalization layers) was just to normalize the input features to a narrow

2The estimated articulatory trajectories and reproduced speech for the PBACU corpus:
https://drive.google.com/drive/folders/1oGub00-bdNnNGF1-N-WnVoRn3Jc9ADka?
usp=sharing

3A  few animation examples: https://drive.google.com/drive/folders/
lcoFeI2u—-NutYYv5S1S1972Lgjj2YP6_3?usp=sharing


https://drive.google.com/drive/folders/1oGub00-bdNnNGFl-N-WnVoRn3Jc9ADka?usp=sharing
https://drive.google.com/drive/folders/1oGub00-bdNnNGFl-N-WnVoRn3Jc9ADka?usp=sharing
https://drive.google.com/drive/folders/1coFeI2u-NutYYv5SlS1972Lgjj2YP6_3?usp=sharing
https://drive.google.com/drive/folders/1coFeI2u-NutYYv5SlS1972Lgjj2YP6_3?usp=sharing
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FIGURE 5.15: Waveform (a), log power spectrogram (b) and CNN-
based features (c) of the utterance "besonders" produced by the speaker
SPK-2.

range around 0. Therefore, four additional ACS systems were built to examine
whether CNN could be replaced by the normalization techniques. The idea was
to use the combination of LSTM and normalizd spectrogram, an example of which is
shown in Figure 5.16. In the subplot (a), Z-score normalization was globally applied
to the whole spectrogram. In the subplot (b), Z-score normalization was inidvid-
ually applied to each frequency bin. In the subplot (c), Z-score normalization was
inidvidually applied to each frame. Another one did not use any normalization
technique.

To save the training time, these four systems were trained with the VIL-Human fea-
tures and no regularization was used. Therefore, the accuracy of System-B (52.81%)
should be used as the reference for comparison. Table 5.8 lists the Google ASR ac-
curacies of the reproduced PBACU utterances for LSTM-Spectrogram systems with
different normalization methods. As can be seen from this table, the system without
normalizing the log power spectrograms hardly reproduced the natural utterances.
Applying Z-score normalization to the whole spectrograms performed better than
that performed individually along time or frequency axis. However, all of them
were inferior to that of System-B where the features were automatically learned and
implicitly normalized by the convolutional and batch-normalization layers.

The ACS systems trained with the Mixed samples were also tested using the sentence-
level utterances. They were used to reproduce the utterances of the VIL-Kiel test
subset (i.e., the speaker-dependent scenario). The reproduced utterances sounded
very similar to the original ones. The resulting estimated articulatory trajectories
and reproduced utterances by System-K and System-L can be found in Google Drive
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FIGURE 5.16: Z-score normalized log power spectrogram of the utter-

ance "besonders" produced by the speaker SPK-2 in the PBACU corpus:

(a) globally for the whole utterance; (b) individually for each frequency
bin; (c) individually for each frame.

TABLE 5.8: Google ASR accuracies (in %) of reproduced PBACU ut-
terances for LSTM-Spectrogram systems with different normalization

methods.
Accuracy
Global normalization for the whole spectrogram |  28.13
Individual normalization for each frequency bin 22.5
Individual normalization for each frame 14.06
Without normalization 3.13

repository®. Next, they were also used to reproduce the utterances of the Kiel test
subset (i.e., the speaker-independent scenario). The estimated articulatory trajecto-
ries and reproduced utterances by System-K and System-L can be found in Google
Drive repository™ ®. Figure 5.17 gives an example of waveforms and spectrograms
for the utterance "k03be019" of the Kiel corpus. The upper part is the original utter-
ance while the lower part is the reproduced utterance by System-L.

Table 5.9 shows the Google ASR accuracies of reproduced utterances of the Kiel test

“The estimated articulatory trajectories and reproduced speech for VTL-Kiel test subset:
https://drive.google.com/drive/folders/11iHfAk7sGyNc26b616G21d7Z_WAi2iJHcP?
usp=sharing

>The estimated articulatory trajectories and reproduced speech for the Kiel test subset:
https://drive.google.com/drive/folders/14bBAJEeo9tYYp2pOmLrScaFh2WpJdsF_Y?
usp=sharing

A few animation examples: https://drive.google.com/drive/folders/
1DXehX8iLWL_vc7YwoDvsr72LSUsomTPv?usp=sharing


https://drive.google.com/drive/folders/1iHfAk7sGyNc26b6l6G2ldZ_WAi2iJHcP?usp=sharing
https://drive.google.com/drive/folders/1iHfAk7sGyNc26b6l6G2ldZ_WAi2iJHcP?usp=sharing
https://drive.google.com/drive/folders/14bBAJEeo9tYYp2p0mLrScaFh2WpJsF_Y?usp=sharing
https://drive.google.com/drive/folders/14bBAJEeo9tYYp2p0mLrScaFh2WpJsF_Y?usp=sharing
https://drive.google.com/drive/folders/1DXehX8iLWL_vc7YwoDvsr72LSUsomTPv?usp=sharing
https://drive.google.com/drive/folders/1DXehX8iLWL_vc7YwoDvsr72LSUsomTPv?usp=sharing
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FIGURE 5.17: The waveforms and spectrograms for the utterance
"k03be019" of the Kiel corpus. The upper part is the original utterance
while the lower part is the reproduced utterance by System-L.

TABLE 5.9: Google ASR accuracies (in %) of reproduced utterances of
the Kiel test subset by different ACS systems.

LSTM-MFCC | ConvLSTM-Spec
Reproduced without Regularization (C) 50.32 (D) 53.50
Reproduced with smoothness loss regularization (G) 56.73 (H) 57.29
Reproduced with acoustic regularization (K) 73.88 (L) 58.11
Original natural utterances 92.78
Synthetic utterances of prototype gestural scores 68.52

subset. The ASR accuracies of original natural utterances and the synthetic utter-
ances created by the prototype gestural scores are also listed. There is no doubt
that the natural utterances produced by human speakers had the highest intelli-
gibility. The utterances synthesized with prototype gestural scores also had very
high intelligibility since their gestural scores were created using the VIL-API rule-
based method with manual segmentation as reference. The systems with regular-
ization outperformed those without regularization. On the same conditions, the
ConvLSTM-Spec based systems performed better than the LSTM-MFCC based sys-
tems except for the System-L. For ACS of the Kiel utterances, the LSTM-MFCC
based system with acoustic loss regularization achieved the best performance (73.88%
for System-K), the accuracy of which even exceeded that of synthetic utterances of
prototype gestural scores. The System-L did not work well probably due to the fact
that the inputs of the backward models were log power spectrogram whereas the
targets of the forward model were normalized log power spectrogram. This might
violate the idea of the encoder-decoder architecture, resulting in a degraded perfor-
mance. For the test subset of the Kiel corpus, the estimated articulatory trajectories
and reproduced utterances by System-K and System-L can be found in Google Drive
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repository”” 5.

5.5 Evaluation by Perception Experiment

As mentioned above, ASR by machines was convenient and could be used as a
complementary manner to human assessment. The subjective assessment of the au-
thor suggested that some reproduced utterances sounded intelligible whereas they
were not correctly recognized by the Google speech recognizer. Likewise, some
reproduced utterances sounded unnatural and unintelligible, whereas the Google
speech recognizer correctly recognized them. Hence, to examine the reliability of
the Google speech recognizer, the reproduced utterances by ACS systems were fur-
ther recognized by the IBM speech recognizer. Table 5.10 shows ASR accuracies of
the two speech recognizers on the reproduced PBACU utterances by Systems "K"
and "L" trained. The last column "Together" indicates the percentage of the utter-
ances that were correctly recognized by either of two speech recognizers or both,
i.e., they were considered recognizable.

TABLE 5.10: Google and IBM ASR accuracies (in %) of reproduced
PBACU utterances by different ACS systems.

Google | IBM | Together
System-K | 61.88 55 71.56
System-L | 63.44 | 53.43 72.5

As can be seen from Table 5.10, the Google speech recognizer performed generally
better than the IBM speech recognizer in this study. However, using them together
always achieved the highest recognition accuracy. This reflected the difference in in-
telligibility measurement by different machine recognizers. Therefore, to investigate
the intelligibility of reproduced utterances by human listeners and the reliability of
evaluation by machines, it was necessary to conduct a perception experiment.

5.5.1 Experiment Design

To reduce people’s physic contact during COVID-19 pandemic, the perception ex-
periment was conducted in the form of online listening test. Alchemer’, formerly
named SurveyGizmo, was used as the tool to create the listening test. Alchemer is an
online survey platform which provides users with various question types and flexi-
ble controls of survey design. With Alchemer, users can create an unlimited number
of surveys, each of which has no limit of the number of questions and respondents.
The tool can also automatically collect statistical information such as the starting and
submit time, city and IP address of subjects, and detect unreliable answers based on

"The estimated articulatory trajectories and reproduced speech for the Kiel test subset utterances:
https://drive.google.com/drive/folders/14bBAJEe09tYYp2p0mLrScaFh2WpJsF_Y?
usp=sharing

8A  few animation examples: https://drive.google.com/drive/folders/
1DXehX8iLWL_vc7YwoDvsr72LSUsomTPv?usp=sharing

9https://www.alchemer.com/


https://drive.google.com/drive/folders/14bBAJEeo9tYYp2p0mLrScaFh2WpJsF_Y?usp=sharing
https://drive.google.com/drive/folders/14bBAJEeo9tYYp2p0mLrScaFh2WpJsF_Y?usp=sharing
https://drive.google.com/drive/folders/1DXehX8iLWL_vc7YwoDvsr72LSUsomTPv?usp=sharing
https://drive.google.com/drive/folders/1DXehX8iLWL_vc7YwoDvsr72LSUsomTPv?usp=sharing
https://www.alchemer.com/
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Herzlich Willkommen,

Ich freue mich, dass Sie an meinem Experiment teilnehmen. Mein Name ist Yingming Gao. Ich bin Doktorand an der Fakultét Elektro- und Informationstechnik. Im
Rahmen meiner Doktorarbeit soll dieser Hértest durchgefiihrt und die Versténdlichkeit synthetischer Sprache untersucht werden. Ich benétige dafiir 30 Probanden,
um den Hértest durchzufiinren. Die Ergebnisse werden nur fir wissenschaftliche Zwecke verwendet. Die personenbezogenen Daten jeder Testperson (z.B. Name,
Alter, Geschlecht und E-Mail-Adresse) werden gem&f den gesetzlichen Bestimmungen geschiiizt. Der Versuch dauert etwa 20-30 min. Jede Person erhélt 10 Euro
fur die Teilnahme.

Experimentanforderungen:

-- Deutsch als Muttersprache.

-- Sie sind zwischen 18-45 Jahre alt.

-- Sie haben eine normale Sprach- und Hérfunktion, keine Krankheiten in der Vergangenheit, die das Gehor oder den Sprechapparat beeinflussen
-- Sie befinden sich in einer ruhigen Umgebung und haben einen Computer mit einem Headset.

FIGURE 5.18: Welcome page of the perception experiment.

the response time. Another feature is to support uploading and playing of audio
clips which especially meets the demand of the current study. Therefore, Alchemer
was chosen as the tool to conduct the listening test.

Figure 5.18 shows the welcome page of the listening test. It first introduced the basic
information of the experimenter and the purpose of this listening test. Then four
experiment conditions that subjects should meet were explained. Their translations
are listed below:

¢ German is your mother tongue.
* Your age is between 18-40 years.

* You have normal speech and hearing functions with no history of any com-
munication disorders.

* You have a quiet environment and a computer together with a headset.

When the subjects met these conditions according to their self-report, they could
click the "Next" button to jump to next page where their basic information would be
collected. As shown in Figure 5.19, the subjects needed to fill in their given names,
surnames, age, gender, email address, and bank or PayPal account.

After filling in their basic information, they jumped to the real test part shown in
Figure 5.20. Before listening to the stimuli, the subjects were reminded again that
they should sit in front of computer and wearing a headset in a quiet room. They
were also instructed that "There are 280 synthetic sounds in total. All of them are
simple and common words. Your task is to play each of them and recognize which
word it is." The translations of three additional instructions are listed below:

¢ Please write down only one word for each sound.

¢ Please do not write punctuation.
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Wenn Sie diese Anforderungen erfillen und an diesem Test interessiert sind, geben Sie bitte unten |hre perséhnlichen Daten ein und klicken Sie anschliefend auf
"Weiter/Next", um zur Tesiseite zu gelangen. Die Teilnahmegebuhr wird innerhalb von drei Tagen nach Eingang des Ergebnisses auf Ihr Bank- oder PayPal-Konto
Uberwiesen.

1. Vorname *

2. Nachname *

3. Alter *

4. Geschlecht (M/W/D)*

5. E-mail =

6. Bank- oder PayPal-Konto *

FIGURE 5.19: Information collecting page of the perception experi-
ment.

Bitte stellen Sie sicher, dass Sie in einem ruhigen Raum vor dem Computer sitzen und ein Headset tragen. Insgesamt gibt es 280 synthetische Sounds. Alle von
ihnen sind einfache und gebrauchliche Wérter. lhre Aufgabe ist es, jeden Sound abzuspielen und zu erkennen, um welches Wort es sich handelt.

Hinweis:
(1) Bitte schreiben Sie zu jeder Darbietung nur ein Wort auf.

(2) Bitte schreiben Sie keine Satzzeichen.
(3) Wenn Sie sich bei dem Wort nicht sicher sind, raten Sie bitte basierend auf lhrem ersten Eindruck.

Bitte spielen Sie jedes Audio ab und geben Sie das Wort, das Sie gehort haben, in das untere Feld ein.

. 000 « —o |

5 > e 0:00 4 —o N
9 > o 0:00 {) ——9 N
’ > e 0:00 4 —p K

o =muo=]

FIGURE 5.20: Instruction and stimulus page of the perception experi-
ment.
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¢ If you are not sure about the word, please guess based on your first impression.

After that, they began the real recognition part. Their task was to play each audio
and write the word they heard. Each pair of audio and answer field were numbered.
The subjects could replay the stimuli as many times as they wanted. The volume of
each audio was also adjustable.

The reproduced speech by the best system ("L") was used as stimuli for the listening
experiment. The 232 utterances that were correctly recognized by either Google or
IBM ASR systems or both were included in the listening test. To reduce the bur-
den of human listeners, the quality of the other 88 utterances was first subjectively
judged by the author. 48 of them having the chance of being recognized were also
included in the listening test. 30 subjects (15 females and 15 males) were recruited
to participate in the listening test. They were students of TU Dresden with average
ages of 25.2 and 25.6 years for females and males, respectively. The whole listening
test lasted for approximately 28 minutes for each subject. After the listening test,
they were financially compensated for their participation.

5.5.2 Results

Although the subjects were instructed that they should write only one word for
each audio, they sometimes typed two words or strings delimited by white space
for specific stimuli. They sometimes split a word into a stem together with a prefix
or a suffix. For example, some subjects wrote "zuwenig" as "zu wenig", "zuviel" as
"zu viel", and "hinterher" as "hinter her". Their responses sometimes had obvious
typos like writing "Rhythmus" as "Rhytmus" and "nirgendwo" and "niergendwo".
Such cases accounted for 1.67% of all responses. They were manually corrected
and regarded as correctly recognized by the listeners. However, there were some
cases where the subjects missed or inserted letters compared to the correct answers.
For example, they typed "vorhandene" for "vorhanden" and "gebilde" for "gebildet".
In these cases, it was hard to judge whether this was due to typos or they really
perceived the additional schwa sound for the reproduced "vorhanden" stimulus but
no /t/ sound for the reproduced "gebildet", respectively. Because these responses
were meaningful words in German, they were not regarded as typos but as real
responses. Accordingly, the corresponding stimuli were considered to be utterances
that were not correctly reproduced by the ACS system.

The recognition accuracy was used as the metric, for each word, which was calcu-
lated as the ratio of the number of correct responses to the number of all responses.
During accuracy calculation, all responses and the reference words were converted
to lower cases. The histogram of recognition accuracies for the 320 reproduced utter-
ances of the PBACU corpus is shown in Figure 5.21. The group in blue indicate the
232 utterances that were correctly recognized by the ASR systems. Most of them had
a recognition accuracy higher than 90% in terms of judgement by human listeners.
The group in dark orange indicate the 88 utterances that were not correctly recog-
nized by the ASR systems. It should be noted that the 48 reproduced utterances
that had the chance of being recognized were included in the listening test. Even
though they were neither correctly recognized by Google nor IBM ASR systems,
more than half of them had recognition accuracies higher than 50%. The remaining
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FIGURE 5.21: Histogram of recognition accuracies evaluated by per-
ception experiment.

40 utterances, represented by the first bar in Figure 5.21, were excluded from the lis-
tening experiment due to the low intelligibility. They are marked with recognition
accuracies lower than 0% so as to distinguish from those utterances included in the
listening test.

5.6 [Evaluation on Utterances of Other Languages

Since the articulatory synthesis is implemented by modeling human vocal tract, vo-
cal folds, and the articulatory processes of speech production, it is language inde-
pendent to some extent. To investigate the generalization of the trained models,
they were tested using English and Mandarin Chinese utterances in terms of intelli-
gibility of reproduced speech.

5.6.1 Oxford-805 Corpus

The English utterances were isolated words selected from the word list "Oxford
3000"Y, which contained the 3000 core words to learn in English. They were care-
tully chosen by language experts and experienced teachers as the words that had
the priority to be mastered during vocabulary study. According to the description
of Common European Framework of Reference (CEFR), these words were at A1-B2
levels, i.e., elementary and pre-intermediate levels of ability. Therefore, the words

Ohttps://www.oxfordlearnersdictionaries.com/about/oxford3000
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of Oxford 3000 were considered simple and common, and they were used as the
candidate words in this study.

The words having two, three or four syllables were first selected, resulting in a
subset of 1907 words. The audio files of their pronunciations came from Google
Dictionary which is an online dictionary service of Google. The definition of a
word together with its pronunciation can be accessed via a search query like "de-
fine:example" in Google Search. Users can also directly play and download the pro-
nunciation audio file. Below is the link of the audio file of the word "example".

https://ssl.gstatic.com/dictionary/static/sounds/oxford/
example—-—-_gb_1.mp3

Users can replace "example" in this link with any of English words to look up. The
accent of the searched word can be specified during querying, e.g. "gb" or "us" for
Great Britain or American English, respectively. The pronunciation audio files (in
MP3 format) of Great Britain accent of the 1907 words were downloaded using a
Python script, which were subsequently converted to the WAV format.

The pronunciation audios provided by Google Dictionary were sometimes produced
by female speakers while the VocalTractLab model speaker was recorded from a
male speaker. Hence, the audios produced by female speakers were excluded. The
remaining 805 audio files came from one male speaker based on the judgement of
his voice quality. These utterances of isolated English words, referred to as Oxford-
805 corpus, were used in this study for measuring the generalization ability of the
trained model to English utterances.

The six ACS systems trained with Mixed samples conducted ACS on the Oxford-805
utterances. The Google and IBM speech recognizers with the "gb" model were used
to recognize reproduced utterances. Table 5.11 shows their ASR accuracies together
with that of the original natural utterances (the detailed recognition results can be
found in Appendix D.1). This table shows a similar accuracy pattern among these
systems. The acoustic loss regularization performed better than the smoothness loss
regularization. Besides, except for System-L, the other systems based on ConvLSTM
and Spectrogram achieved higher accuracies than those based on LSTM and MFCC.
For the Oxford-805 corpus, the estimated articulatory trajectories and reproduced
utterances by System-K and System-L can be found in Google Drive repository'!” 12.

5.6.2 CAPL-1592 Corpus

The Chinese Interlanguage corpus for computer assisted pronunciation learning
(CAPL) (Cao and Zhang, 2009) was used for testing the ACS systems on Mandarin
Chinese utterances. This corpus consisted of six sub-corpora distinguished by the
number of syllables of the words. This study used the sub-corpus of 1592 disyl-
labic words produced by the male speaker "LH", referred to as CAPL-1592 corpus

UThe estimated articulatory trajectories and reproduced speech for Oxford-805 corpus:
https://drive.google.com/drive/folders/114n88qghVLsxazfx51ZN3EoCmgFOwW2fFT?
usp=sharing

12A few animation examples of reproduced Oxford-805 utterances: https://drive.google.
com/drive/folders/1t0txitwIhYtocHPUkg2gxcDfjxtID0sl?usp=sharing


https://ssl.gstatic.com/dictionary/static/sounds/oxford/example--_gb_1.mp3
https://ssl.gstatic.com/dictionary/static/sounds/oxford/example--_gb_1.mp3
https://drive.google.com/drive/folders/1i4n88qhVLsxaZfx5iZN3EoCmgFOw2fFT?usp=sharing
https://drive.google.com/drive/folders/1i4n88qhVLsxaZfx5iZN3EoCmgFOw2fFT?usp=sharing
https://drive.google.com/drive/folders/1t0txitw9hYtocHPUkg2qxcDfjxtID0s1?usp=sharing
https://drive.google.com/drive/folders/1t0txitw9hYtocHPUkg2qxcDfjxtID0s1?usp=sharing
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TABLE 5.11: ASR accuracies (in %, by Google and IBM) of reproduced
Oxford-805 utterances by different ACS systems.

LSTM-MFCC | ConvLSTM-Spec
Reproduced without Regularization (C) 31.06 (D) 46.34
Reproduced with smoothness loss regularization (G) 35.90 (H) 49.94
Reproduced with acoustic regularization (K) 52.92 (L) 50.93
Original natural utterances 98.63

in this study. The same six ACS systems conducted ACS on the 1592 Chinese spo-
ken words. During the performance measurement, the recognition accuracies for
character and base syllable were used as the metrics instead of word recognition
accuracy. The reason can be explained with the example shown in Figure 5.22.

Initial Final Base syllable Pinyin Character

i (mum)
p mal - > # (to wipe)

# (hemp)
Ao maz - ~ #2 (toad)
; 4 (horse)
m + a = ma \'} -------------- > ma3 -------- > ﬁg' (Welght/ COdE)

¥ (agate)

# (to scold)
NV mad s - ) i (grasshopper)

g (question particle)
\ —_
mas W (modal particle)

FIGURE 5.22: Example of relation between Chinese Pinyin and charac-
ter.

Mandarin Chinese is a well-known syllable-based tone language. Each base sylla-
ble consists of an optional initial and a mandatory final. A base syllable associated
with one of five pitch tones is termed Pinyin. Pitch tones play crucial phonemic
roles so that the same syllable with different tones has different lexical meanings.
Even for a specific Pinyin, there might exist one or several corresponding charac-
ters (i.e., homophones). Likewise, a disyllabic utterance may have different possible
character combinations. Without a context, it is sometimes hard to determine which
character is really spoken. In the current study, the ACS system perhaps correctly
reproduced the base syllable but the tone might be incorrect due to possible errors
during pitch (or pitch target) estimation. Even in the case both base syllable and
tone were correctly reproduced (i.e., the reproduced speech sounded the same to
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the reference one), the speech recognizer did not necessarily produce the same char-
acters without a context (here, the language model was nonfunctional for isolated
word utterances). Therefore, the recognition accuracies for both character and base
syllable were used as the metrics for measuring the performance of the trained ACS
systems on Mandarin Chinese utterances.

In this study, the recognized disyllabic words were split into two characters which
were further converted to the base syllables. Table 5.12 shows the accuracies for
characters and base syllables reproduced by the six ACS systems together with those
for the original natural utterances (the detailed recognition results can be found
in Appendix D.2). Compared to German and English isolated words, the Chinese
character recognition accuracy of natural utterances (86.33%) was much lower while
the recognition accuracy of base syllables was on the similar level. Again, the best
performance on Chinese CAPL-1592 was obtained by System-K. In the case of us-
ing acoustic loss regularization, the LSTM-MFCC based system outperformed the
ConvLSTM-Spectrogram based system. In other two cases (without regularization
or with the smoothness loss regularization), the pattern was the other way around.
For the CAPL-1592 corpus, the estimated articulatory trajectories and reproduced
utterances by System-K and System-L can be found in Google Drive repository'® 4.

TABLE 5.12: ASR accuracies (in %, by Google and IBM) of reproduced
CAPL-1592 utterances by different ACS systems.

Character Base syllable
LSTM- | ConvLSTM- | LSTM- | ConvLSTM-
MEFCC Spec MEFCC Spec
Reproduced without |~ »595 | (D)2686 | (C)3417 | (D)39.24
Regularization ' ' ' '
Reproduced with
smoothness loss (G) 26.8 (H) 27.71 (G) 35.18 (H) 39.78
regularization
Reproduced with
acoustic loss (K) 44.06 (L) 33.77 (K) 52.41 (L) 42.68
regularization
Original natural 86.33 96.47
utterances

5.7 Concluding Remarks

This chapter investigated ACS by training neural network based regression models
which accepted acoustic features as inputs and estimated articulatory trajectories as
outputs. To this end, the paired articulatory-acoustic samples were created using

13The estimated articulatory trajectories and reproduced speech for CAPL-1592 corpus:
https://drive.google.com/drive/folders/1N-ZHuU7MmHG3npRMOX3uMcVw4_ZESNhdI?
usp=sharing

14A  few animation examples: https://drive.google.com/drive/folders/
1GF81wRwJcoCjJKtVSeIFivJZGLGcXc8a?usp=sharing


https://drive.google.com/drive/folders/1N-ZHu7MmHG3npRMQX3uMcVw4_ZESNhdI?usp=sharing
https://drive.google.com/drive/folders/1N-ZHu7MmHG3npRMQX3uMcVw4_ZESNhdI?usp=sharing
https://drive.google.com/drive/folders/1GF8lwRwJcoCjJKtVSeIFivJZGLGcXc8a?usp=sharing
https://drive.google.com/drive/folders/1GF8lwRwJcoCjJKtVSeIFivJZGLGcXc8a?usp=sharing
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VTL and the Kiel natural utterances. To ensure that the training samples covered as
much of the articulatory and acoustic space as possible, 12 versions of the gestural
scores or waveforms for an original utterance were created; these versions differed
in terms of phonation types, speaking effort, and vocal tract length. The methods
proposed in this study could be used to create as many articulatory-acoustic samples
as needed to train supervised models. In addition, the diverse speaking rates and
pitch levels were also covered since the original utterances of the Kiel corpus were
produced by different speakers.

Two kinds of neural network architectures were compared: LSTM and convolu-
tional LSTM. As a variant of RNN, LSTM efficiently modeled the temporal depen-
dencies of input sequences using a bi-directional recurrent architecture. In addition
to the input features at a specific time step, the forward layers and backward layers
were allowed to make full use of past and future information stored in the memory
cells. The LSTM was adopted in this study to capture the temporal dependence of
the input sequence while a CNN was used to capture the spatial structure of acous-
tic features. This chapter investigated the use of a combination of convolutional
and batch normalization layers to automatically learn distinctive features from log
power spectrograms for speech inversion.

The speaker-dependent ACS was relatively simple. When both the training and
testing samples were produced by VTL, the ACS systems obtained very high cor-
relation coefficients and small cosine distance between the estimated and target ar-
ticulatory trajectories. This chapter then focused on training robust ACS systems
against speaker variation. To this end, the articulatory trajectories converted by
the prototype gestural scores and acoustic features of human utterances of the Kiel
corpus were combined and used as "paired" articulatory-acoustic samples to train
neural networks. Although they did not match perfectly with respect to the time
axis, incorporating them could make the trained models more robust to the utter-
ances of unknown speakers. The results showed that the systems trained with fewer
"mismatched" samples even achieved much better performance in terms of ASR ac-
curacy than the systems trained with a large number of synthetic samples in which
both the articulatory trajectories and the acoustic features were from VTL.

The results in this chapter suggested that the ConvLSTM-Spectrogram based sys-
tems generally outperformed the LSTM-MFCC based systems. The high ASR accu-
racy confirmed that the ConvLSTM could not only capture the temporal and spa-
tial patterns of acoustic features but also make the trained models more robust to
speaker variations. Complementary experiments were also conducted to ascertain
the effectiveness of CNN. Additional ACS systems were trained using LSTM with
normalized spectrograms as inputs. However, all manual normalization strategies
were found to be inferior to automatic feature learning by using a combination of
convolutional and batch normalization layers.

Furthermore, a large amount of effort was spent on investigating regularization
methods. In addition to smoothing the estimated articulatory trajectories in the
post-processing stage, two regularization methods were proposed which were in-
corporated into the loss function during training neural networks. The first method
used smoothness loss, which measured the smoothness of estimated articulatory
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trajectories. The second method used acoustic loss, which measured the preference
of estimated articulatory trajectories by VTL. This was implemented by training
both a backward model and a forward model using the same training samples in
advance. These two pre-trained models were then concatenated and jointly trained
again to minimize the weighted sum of the articulatory loss and the acoustic loss.
The acoustic loss tended to decrease only when the estimated articulatory trajec-
tories were more “preferred” by the forward model. Consequently, this made the
estimated articulatory trajectories be more preferred by VTL, thus producing more
natural and intelligible speech.

The ASR results showed that the systems with regularization performed better than
their counterparts that did not include regularization. The acoustic loss regulariza-
tion generally outperformed the smoothness loss regularization. The only excep-
tions were systems that used spectrograms as inputs. This study used log power
spectrograms as inputs that were not explicitly normalized in advance but were
implicitly normalized by the convolutional and batch normalization layers. How-
ever, in the case of the encoder-decoder based ACS system, the magnitudes of the
spectrograms were so large that using them directly as targets for the forward mod-
els made it difficult for the neural networks to converge. Therefore, the explicitly
normalized spectrograms were used as targets for the forward models. As this
backward-forward model architecture was inspired by the idea of encoder-decoder,
the mismatch between original inputs and the targets may degrade the performance
of such ACS systems.

A web-based online perception experiment was conducted to investigate the in-
telligibility of reproduced utterances and the reliability of automatic evaluation by
machines. 320 PBACU utterances reproduced by the best-performing ACS system
(System-L for German speech) were first assessed by the author. 280 of them were
judged to be recognizable by human listeners; these were used as the stimuli for
30 participants in the experiment. The recognition results showed that most of the
stimuli presented to human listeners were intelligible. In addition, some utterances
that were not correctly recognized by machines were correctly recognized by most
human listeners. Likewise, there were some utterances that were recognized by ma-
chines but difficult for human listeners to recognize.

Finally, English and Mandarin Chinese utterances were used to investigate the gen-
eralization ability of the trained models in terms of intelligibility of reproduce speech.
Although the ACS systems were trained using German utterances, they were capa-
ble of estimating articulatory trajectories from the acoustic signals for utterances of
other languages.
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Chapter 6

Conclusions and Future Work

6.1 Summary

Speech is the most common mode of human communication and is thus widely
investigated. The process of speech communication involves three main events:
the production of speech, the propagation of speech, and the perception of speech.
Together, these three events constitute the speech chain. Accordingly, speech can
be investigated in three distinct but interdependent domains: articulatory, acoustic,
and auditory/perceptual domains. This thesis studied the field of speech inversion,
which is closely associated with and built upon the three aspects of the speech chain.

Chapter 2 formulated the generic concept of speech inversion and divided it into
three research topics: acoustic-to-articulatory inversion (AAI), computational speech
acquisition (CSA), and articulatory copy synthesis (ACS). The relevant literature for
each of these three research topics was reviewed in terms of the acoustic and artic-
ulatory representations of utterances, inversion algorithms, evaluation metrics, etc.
Through the comparison of the similarities, differences, and existing challenges of
these three research topics, this study narrowed its focus to the field of ACS, which
emphasized the reproduction of reference utterances, and involved both the physi-
ological articulation processes and the corresponding acoustic results.

Chapter 3 laid the foundations for ACS research of this thesis. The articulatory syn-
thesizer VocalTractLab (VTL) as well as its organization patterns of articulatory pro-
cesses, acoustic representations of utterances, experiment platform and tools were
introduced. More importantly, two corpora were deliberately designed to validate
the proposals in this thesis.

Chapter 4 presented an ACS method based on a genetic algorithm. This method
involved two steps: gestural score initialization and optimization. It also attempted
to regularize deviations of the "time constant" parameters. Automatic evaluations in
the acoustic, articulatory, and perceptual domains were also conducted. Compared
to most previous studies, this proposal’s main contribution to the literature was that
the articulatory processes and acoustic signals of speaker-independent word-level
utterances could be reproduced without the need for transcriptions or the manual
segmentation of target utterances.

Chapter 5 presented another ACS method based on artificial neural networks and
VTL. Using the synthetic dataset generated by VIL, LSTM and convolutional LSTM
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neural network models were trained to estimate VTL articulatory parameters from
acoustic inputs. Compared to the handcrafted acoustic features (MFCC) that were
explicitly normalized before being used as inputs, the features that were automat-
ically learned by CNN (specifically, convolutional and batch normalization layers)
from spectrograms were more distinctive for ACS. Besides, two additional regular-
ization methods were also proposed. The smoothness or acoustic loss was directly
incorporated into the loss function during the training stage of ACS systems. In
terms of the ASR accuracy of the reproduced utterances, both of these regulariza-
tion methods outperformed smoothing the estimated articulatory trajectories in the
post-processing stage. In addition to making the estimated articulatory trajectories
smoother and reducing the training time, acoustic loss regularization resulted in
the estimated articulatory trajectories being more preferred by the forward model,
thus producing more natural and intelligible utterances. Furthermore, a percep-
tual experiment by human listeners was conducted to complement the automatic
evaluations by machines. The high speech recognition accuracy further verified the
intelligibility of reproduced utterances and also confirmed that some utterances that
were not correctly recognized by machines were still possibly recognizable by hu-
man listeners. Finally, this chapter also confirmed the generalization ability of the
ACS models trained on German utterances by testing utterances of other languages
(English and Mandarin Chinese).

This thesis addressed some of the limitations of other studies. The ACS meth-
ods proposed in this study did not require transcription and/or segmentation in
advance. The proposals were applicable to both speaker-dependent and speaker-
independent scenarios. The utterances to be reproduced were words and sentences
instead of isolated vowels or simple "CV[C]" syllables. The estimated articulatory
trajectories were more consistent with the actual articulatory process of human speak-
ers since they could be fed into VTL to synthesize natural and intelligible speech.

6.2 Discussion

To reduce the impact of the different magnitudes of feature dimensions on dis-
tance calculations, normalization of acoustic features is required before the similar-
ity calculation. The cepstral mean and variance normalization (CMVN) technique
is widely used in ASR systems. Normally, CMVN is individually performed for
each utterance using the statistics estimated from the current utterance or speaker.
This approach is suitable for long utterances but the performance usually degrades
for short utterances due to insufficient data. Therefore, in Chapter 4, four kinds
of acoustic features (MFCC, energy, ZCR, and POV) of both synthetic and natural
speech were normalized using the same set of statistics that were estimated from
another corpus in advance. However, this method did not necessarily reflect the
acoustic similarity for all segments. Using a few utterances, we conducted a pilot ex-
periment in which the conventional CMVN method was used. The results showed
that, compared to the current method used in Chapter 4, the conventional CMVN
method worked better for some of the testing utterances while it worked worse for
the rest. Hence, the results of the pilot experiment were not reported here. How
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to normalize acoustic features before similarity calculation is worth systematically
investigating.

In addition, the common global statistics used for Z-score normalization in Chapter
4 were calculated based on the BITS corpus. Although it was phonetically balanced,
all utterances were produced by only four speakers (two males and two females).
Using a corpus with more speakers or only using utterances from male speakers
might increase the robustness of the acoustic statistics. Besides, cosine distance was
used since it was less sensitive to feature magnitudes than Euclidean distance. How-
ever, the cosine distance was not always optimal. We also conducted a pilot experi-
ment using a few utterances of the PBACU corpus. The results showed that some of
the reproduced utterances whose gestural scores were optimized using Euclidean
distance were of better quality than their counterparts optimized using cosine dis-
tance.

The synthesizer VIL provided three vocal fold models: a geometric model, a two-
mass model, and a triangular glottis model. The vocal fold model used in this study
was the geometric model. The degree of complexity of the speech inversion de-
pended on the parameters chosen to represent both the articulatory and acoustic
space. To simplify the model, some articulatory parameters were not included in the
neural network models described in Chapter 5. For example, only the lower vocal
fold displacement was modeled while the upper vocal fold displacement was deter-
mined by adding 0.01 to the estimated value of the lower vocal fold displacement.
Five other vocal fold parameters were set to VIL's default values. Properly mod-
eling them together with the other parameters that were already included might
improve the quality of the reproduced utterances.

Furthermore, voice quality is not usually considered in speech inversion tasks. The
anatomical values of the VTL model speaker were fixed. If the voice quality similar-
ity was also included as a goal of ACS, then optimizing the default values of some
parameters as well as modifying the anatomical parameters of the model speaker
might be beneficial. A preliminary experiment was conducted but not included
in this study. Some stable segments of German vowels were extracted from natu-
ral utterances and used as the targets of ACS. The shapes of corresponding vowels
defined in VTL were used as the initial states. A particle swarm optimization algo-
rithm was then employed to adjust the articulatory parameters. This step was sim-
ilar to the study that identified the underlying articulatory targets of Thai vowels
from acoustic data (Prom-on, Birkholz, and Xu, 2014). The speech synthesized with
the resulting vowel shapes had much smaller acoustic distances than the speech
synthesized without optimizing vowel shapes. A further attempt was made to op-
timize the configurations of the VIL model speaker by fixing the vowel shapes and
adjusting the anatomical parameters of the model speaker. The results showed that
the acoustic distance continued to decrease while the speech synthesized with the
optimized speaker sounded unnatural. Due to insufficient knowledge about the
anatomical differences between the two speakers and the lack of physiological con-
straints during optimization, this naive strategy did not work well. However, these
attempts hinted at the possibility of further reducing the acoustic distance and in-
creasing the perceptual similarity between synthetic and reference speech. More
factors should be considered if voice quality is used as an additional goal of ACS.
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6.3 Future Work

In Chapter 4, several handcrafted acoustic features like MFCC and POV were used
to measure the frame-wise acoustic similarity between the reproduced and refer-
ence speech. These features may not work well for the acoustic variations of all
phones. The other generic features extracted from acoustic signals might improve
the overall performance for acoustic distance measurement. One possible solution
is acoustic word embedding (AWE). The AWE technique converts an audio signal
into a new representation in the AWE space where acoustically and/or linguisti-
cally similar utterances are clustered together. Hence, future work involving ACS
tasks can calculate acoustic similarity based on the distance in AWE space. In addi-
tion, the acoustic signals can be converted into a fixed dimensional representation
regardless of the length of utterances, making it appropriate for CSA.

Speech intelligibility determines how easily and accurately individual words within
an utterance can be recognized by a listener. The intelligibility of the utterances
reproduced in this study was evaluated via speech recognition (by both machines
and human listeners) and in terms of PESE and STOI in the perceptual domain.
Naturalness is another metric that describes the quality of the speech in terms of its
timing structure, pronunciation, rendering of emotions, etc. The naturalness of the
reproduced speech was not assessed in this study. In future work, other automatic
evaluations like NISQA-TTS (Mittag and Mbéller, 2020) can be used to assess the
naturalness of synthetic speech.

The gestural scores were optimized with respect to the acoustic distance between
synthetic and reference utterances while the neural network models were trained
in terms of articulatory loss and/or acoustic loss. However, neither of these mod-
els considered perceptual similarity during optimization or model training, even
though the quality of the reproduced utterances were evaluated from a perceptual
perspective. Therefore, future work should investigate the incorporation of other
quantitative metrics of acoustic, articulatory, and perceptual similarity or losses si-
multaneously when training the systems or optimizing gestural scores; this may
further increase the similarity between the reproduced and reference utterances.

In Chapter 5, during the training of backward models that mapped acoustic rep-
resentations to articulatory representations, the loss function was based on mean
square error (MSE), which treated all articulatory parameters equally. However,
perceptual features vary in a highly nonlinear manner with respect to changes in
articulatory parameters. Fang (2020) argued that the training samples of different
articulatory channels were usually unbalanced and played different roles in AAIL
Therefore, he proposed that each articulatory channel at each time instant could
be classified as critical or noncritical according to its role in the formation of con-
strictions along the vocal tract for a given phoneme. In this way, each articulatory
channel for a given utterance would be composed of a combination of critical artic-
ulatory portions (CAP) and non-critical articulatory portions (NCAP). He modified
the MSE-based cost function by selectively discarding the loss of NCAP samples
such that the trained model reduced the CAP prediction errors (Fang, 2020). In light
of this, future work could investigate the relative impact of different articulatory
parameters on both acoustic and perceptual similarity. Furthermore, using a set of
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weights for different articulatory parameters in MSE-based loss calculation could
improve the performance of neural network models.

The acoustic data used for validating the proposed methods were produced by hu-
man speakers. However, no real articulatory data were used in this study. The
articulatory trajectories of the testing utterances were created by VTL. In future
work, it is also worth evaluating the similarity of articulatory trajectories using real,
paired articulatory-acoustic data as testing utterances. For example, the ACS sys-
tems trained with neural networks in Chapter 5 can be applied to standard articulatory-
acoustic datasets like "mngu0" and "MOCHA-TIMIT". The estimated articulatory
trajectories can be compared with the real articulatory variables contained in EMA
data.
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Appendix A

The Word List of PBACU Corpus with

Canonical SAMPA Transcriptions

TABLE A.1: The word list of PBACU corpus with canonical SAMPA

transcriptions.
Orthography | SAMPA Transcription | Orthography | SAMPA Transcription
Badminton /bEt. mIn.t@n/ Mensa /mEn.za:/
bayrisch /bal.rIS/ Milieu /ml1l.j2:/
beheben /b@.he:.bm/ mitmachen /mlIt.ma.x@n/
Belohnung /b@.lo:.nUN/ Monarchie /mo:.na6.Ci:/
Berater /b@.ra:.t6/ monatlich /mo:.nat.l1I1C/
Bereich /b@.ralC/ Monitor /mo:.ni:.to6/
Besitz /b@.zIts/ Monopol /mo:.no:.po:l/
besonders /b@.z0On.d6s/ moralisch /mo:.ra:.11S/
bevor /b@. fo6/ Motiv /mo:. ti:f/
bezahlen /b@.tsa:.1@n/ Motorrad /mo:.to6.ra:t/
Bezirk /b@.tsl6k/ Mythos /my:.tOs/
Buchung /bu:.xUN/ Nachbarin /nax.ba:.rIn/
Bundeswehr /bUn.d@s.veb/ nachholen /na:x.ho:.1@n/
Campingplatz | /KkEm.pIN.plats/ | nebenbei /ne:.b@n.bal/
Chemie /Ce:.mi:/ nehmen /ne:. m@n/
Chirurg /Cii.rU6bk/ Neubau /nOY.baU/
Cowboy /kaU.bQY/ neugierig /nOY.gi:.rIC/
dadurch /da:.dU6C/ nirgendwo /nlr.g@nt.vo:/
dagegen /da:.ge.g@n/ parteilos /pa6.tal.lo:s/
Deutung /dOY . tUN/ Parteitag /pa6.tal.ta:k/
Doktor /dOk.t0O6/ Performance | /p96.fO6. mEns/
durchhalten /dU6C.hal.t@n/ Physik /fy.zik/
Dynamo /dy.na:.mo:/ Pole /po:.1@/
Fauna /falU.na:/ Politik /po:.li.titk/
Firma /f16 . ma:/ politisch /po:.lit. tIS/
Forderung /fO6.d@.rUN/ Polizei /po:.li:.tsal/
gebildet /g@.bll.d@t/ positiv /po:.zi.ti:f/
Geburt /g@.bU6t/ produziert /pro:.du:.tsi6t/
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128 Transcriptions
Table A.1 continued from previous page

Orthography | SAMPA Transcription | Orthography | SAMPA Transcription
Gegensatz /ge.g@n.zats/ Prototyp /pro.to:.ty:p/
Gegenteil /ge:.g@n.tall/ reduziert /re:r.du.tsi6t/
gehalten /g@ . hal.t@n/ Regie /re.Zi/

genau /g@.nal/ relativ /rE.la.ti: f/
genauso /g@.naU.zo:/ Rhythmus /rYt. mUs/
genug /g@.nu:k/ rigoros /ri:.go:.ro:s/
gerade /g@.ra:.d@/ Risiko /rii.zi.ko/
Geruch /ge . rUx/ rosa /ro:.za:/

Gesetz /g@.zEts/ sagen /za:.g@n/
Gesuch /g@. zu:x/ Seminar /ze.mi:.na:6/
Gipfel /glp.f@l/ Senator /ze.na:.to6/
haben /ha:.b@n/ sensibel /zEn.zi:.b@l/
Hamburger /ham.bU6.g6/ Service /s96.vIs/

Handy /hEn.di/ sogar /zo:.ga6/
Harmonie /ha6.mo.ni:/ sowieso /zo:.vi.zo:/
Hierarchie /hi:.ra6.Ci:/ symbolisch /zYm.bo:.11S/
hierher /hi6.heb6/ System /zYs.te:m/
Hindernis /hIn.d6.nls/ Tango /taN.go:/
hinterher /hIn.t6.he6/ Teufel /tOY.f@l/

hinzu /hiIn.tsu:/ Thema /te:.ma:/
historisch /hls.to:.rIS/ tierisch Jtii . r1S/

Hobby /hO.bi:/ Toleranz /to.l@.rants/
Honig /ho:. nIC/ Tournee /tU6.ne:/

human /hu:. ma:n/ typisch /ty:.plIS/

Humor /hu:. mo6/ Variante /va.rian.t@/
Jahrhundert /ja:6.hUn.dé6t/ vergleichbar | /fE6.glalC.ba:6/
jedoch /je:.dOx/ Verkauf /tE6.kaU f/
Journal /ZUr.na:l/ Verlag /tE6.la:k/

Jubel /ju:.b@l/ vermuten JEE6 . mu:.t@n/
Jura /ju:.ra/ verrichten JfE6.rIC.t@n/
Kardinal /kaé6.di:.na:l/ Versuch JEE6.zu: x/
keinerlei /kal.n6.lal/ vertretbar /fE6.tre:t.ba: 6/
Kilo /ki:. 1o/ vorbei /fo6.bal/

Kino /kii.no/ vorhanden /fob.han.d@n/
Kirche /kl6. C@/ wabhrlich /va:6.11C/

Koma /ko:.ma/ wenig /ve. .nlIC/
Komiker /ko:.mi.ké6/ wiederum /vii.d@.rUm/
komisch /ko:.mIS/ wieso /vi.zo:/

Komitee /ko.mi:.te:/ Wirklichkeit | /vI6ek.1IC . kalt/
Kopie /ko.pi:/ Wirkung /v16. kUN/
Kultur /kUIL.tu6/ wobei /vo:.bal/
kulturell /kUl.tu:.rE1l/ Wohnung /vo:..nUN/
Laptop /IEp.tOp/ worauf /vo:.rauf/
lediglich /le:.dIg.1IC/ wozu /vo:.tsu/
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Table A.1 continued from previous page
Orthography | SAMPA Transcription | Orthography | SAMPA Transcription
Lehrbuch /le6.bu:x/ wunderbar /vUn.d6.ba:6/
Lehrerin /le:.r@.rIn/ zugute /tsu:.gu . t@/
Liebhaber /lizp.ha:. b6/ Zuhause /tsu:.haU.z@/
logisch /lo:.glS/ Zulassung /tsu:.la.sUN/
Logo /lo:.go/ zuviel /tsu:. firl/
machbar /max.ba:6/ ZUvor /tsu:.fo:6/
Malerei /ma:.l@.ral/ zuwenig /tsu:.ve . nlIC/
Medizin /me:.di.tsi:n/ zynisch /tsy:.nlS/
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Appendix B

Detailed Recognition Results of
Original and Reproduced PBACU
Utterances by Google ASR system

TABLE B.1: Utterance intelligibility measured in terms of Google ASR

accuracy. The "1" indicates that the recognized content was consistent

with the word in the first column of the table, i.e., the target word was

correctly reproduced by the copy synthesis methods in terms of intelli-

gibility. The "0" indicates the recognized content was inconsistent with

the expected word. The last row and the last column are the total num-
bers of recognized utterances.

SPK-1 SPK-2 Sum

GA GA GA GA

Utterance Orig Init CD w/o w/ Orig Init CD w/o w/

Reg Reg Reg Reg
Badminton 1 1 0 0 0 1 1 0 0 1 5
bayrisch 1 1 1 1 1 1 1 1 1 1 10
beheben 1 0 0 1 1 1 1 0 0 1 6
Belohnung 1 0 1 1 1 1 1 1 1 1 9
Berater 1 1 1 1 1 1 1 1 1 1 10
Bereich 1 1 1 1 1 1 1 1 1 1 10
Besitz 1 1 0 0 1 1 1 1 1 1 8
besonders 1 1 1 1 1 1 1 1 1 1 10
bevor 1 1 1 1 1 1 1 1 1 1 10
bezahlen 0 1 0 0 1 1 1 1 1 1 7
Bezirk 1 1 0 1 1 1 1 1 0 0 7
Buchung 1 0 1 1 1 1 0 1 1 0 7
Bundeswehr 1 0 0 0 1 1 0 1 1 0 5
Campingplatz 1 1 1 0 0 1 1 1 1 0 7
Chemie 1 1 1 1 1 1 1 1 1 1 10
Chirurg 1 1 1 1 1 1 0 0 0 0 6
Cowboy 1 1 1 1 1 1 1 1 1 1 10
dadurch 1 1 1 1 1 1 0 1 1 1 9
dagegen 1 1 1 1 1 1 1 1 1 1 10
Deutung 1 0 0 1 1 1 0 0 0 1 5
Doktor 1 0 0 1 1 1 1 1 1 1 8
durchhalten 1 1 1 1 1 1 1 1 1 1 10
Dynamo 1 0 0 1 1 1 1 1 1 1 8
Fauna 1 0 0 0 0 1 0 1 1 1 5
Firma 1 0 0 0 0 1 1 0 0 0 3
Forderung 1 1 1 1 1 1 1 1 1 1 10
gebildet 1 1 1 1 1 1 0 1 0 0 7
Geburt 1 0 1 1 1 1 1 1 1 1 9
Gegensatz 1 1 1 1 1 1 1 1 1 1 10
Gegenteil 1 1 1 1 1 1 1 1 1 1 10
gehalten 1 0 1 1 1 1 1 0 0 1 7
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Appendix C

Text Partition of Kiel Read Speech
Corpus

TABLE C.1: Text partition of Kiel Read Speech Corpus

Subset Sentence ID

Training be001; be002; be003; be004; be005; be007; be008; be009; be010;
be011; be012; be016; be020; be021; be022; be023; be025; be026;
be027; be028; be029; be030; be031; be033; be036; be037; be038;
be039; be040; be041; be043; be045; be046; be047; be048; be049;
be050; be051; be052; be054; be055; be056; be059; be060; be061;
be062; be063; be065; be066; be069; be071; be072; be073; be074;
be075; be076; be077; be078; be079; be080; be081; be082; be083;
be084; be085; be086; be087; be088; be089; be092; be093; be095;
be096; be097; be098; be099; bel00; cn001; cn002; cn003; cn004;
cn006; cn007; cn008; cn009; cn010; cn011; cn012; cn013; cn015;
cn017; cn018; cn019; er001; er002; er004; er005; er007; er009;
er010; er011; er012; er014; er015; er017; er018; er019; er020; er021;
er023; er024; er025; er027; er030; er031; er033; er035; er036; er037;
er038; er039; er040; er041; er042; er043; er044; er045; er046; er047;
er049; er050; er051; er053; er054; er055; er056; er057; er058; er059;
er061; er062; er063; er064; er066; er067; er068; er069; er074; er075;
er077; er078; er079; er080; er081; er082; er084; er085; er086; er087;
er088; er089; er090; er091; er092; er093; er094; er095; er096; er097;
er098; er100; ko001; ko003; ko006; ko007; ko008; ko009; ko010;
ko011; ko012; ko013; ko014; ko015; ko019; ko020; ko021; ko023;
ko024; ko025; ko026; ko027; ko028; ko029; ko030; ko031; ko034;
ko035; ko036; ko037; ko038; ko039; ko040; ko041; ko042; ko043;
ko044; ko045; ko046; ko047; ko048; ko049; ko050; ko051; ko052;
ko053; ko054; ko055; ko056; ko057; ko058; ko060; ko061; ko063;
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Table C.1 continued from previous page
Subset Sentence ID
Training mr001; mr002; mr003; mr005, mr007; mr008;, mr009; mr010;
mr012; mr013; mr014; mr016; mr017; mr018;, mr019; mr020;
mr021; mr022; mr023; mr024; mr025; mr026; mr027; mr028;
mr029; mr030; mr031; mr033; mr034; mr035;, mr036; mr038;
mr040; mr042; mr043; mr044; mr045;, mr047; mr048; mr049;
mr050; mr051; mr052; mr053; mr054; mr055;, mr056;, mr057;
mr058;, mr059; mr060; mr061; mr062; mr063;, mr065; mr066;
mr067;, mr068; mr069; mr070; mr071; mr073; mr074; mr076;
mr077; mr078; mr079; mr081; mr082; mr083; mr084; mr085;
mr086; mr087; mr089; mr090; mr091; mr093; mr094; mr095;
mr096; mr097; mr098; mr100; s1001; s1002; s1003; s1004; s1005;
s1006; s1008; s1009; s1010; s1011; s1012; s1015; s1016; s1017;
s1018; s1019; s1020; s1021; s1022; s1023; s1024; s1025; s1026;
s1027; s1028; s1030; s1031; s1032; s1033; s1034; s1036; s1037;
s1038; s1040; s1041; s1042; s1043; s1044; s1045; s2002; s2003;
s2004; s2005; s2006; s2008; s2009; s2010; s2011; s2013; s2014;
s2017; s2018; s2021; s2022; s2023; s2024; s2025; si001; si002; si003;
si005; si006; si008; si009; si010; si011; si012; si013; si014; si015;
si016; si017; si018; si019; si020; si021; si022; si023; si026; si027;
si028; si029; si030; si031; si032; si033; si034; si035; si037; si040;
si041; si042; si043; si044; si045; si047; si049; si050; si051; si052;
si053; si055; si056; si057; si059; si061; si062; si063; si064; si065;
si066; si067; si068; si070; si071; si072; si073; si074; si076; si077;
si078; si079; si080; si082; si085; si086; si088; si089; si090; si091;
s1092; si093; si094; si095; si097; si098; si099; si100; sr001; sr002;
sr004; sr005; sr007; sr010; sr011; sr012; sr013; sr014; sr015; tk002;
tk003; tk005; tk006; tk008; tk010; tk012; tk013; tk015; tk016; tk017;
tk018; tk021; tk022; tk023; tk024; tk025; tk026; tk027; tk028; tk029;
tk030
Validation | be014; be017; be018; be032; be035; be044; be057; be090; be091;
cn014; er003; er006; er013; er028; er034; er052; er060; er065; er071;
er073; er076; ko002; ko004; ko018; ko022; ko033; ko059; ko062;
mr011; mr032; mr039; mr041; mr046;, mr072; mr075; mr08S;
mr(092; mr099; s1007; s1014; s1035; s1039; s2001; s2015; s2016;
si004; si007; si036; si038; si046; si048; si054; si060; si084; si087;
si096; sr008; tk004; tk019; tk020
Test be006; be013; be015; be019; be024; be034; be042; be053; be058;
be064; be067; be068; be070; be094; cn005; cn016; cn020; er008;
er016; er022; er026; er029; er032; er048; er070; er072; er083; er099;
ko005; ko016; ko017; ko032; mr004; mr006; mr015; mr037; mr064;
mr080; s1013; s1029; s2007; s2012; s2019; s2020; si024; si025; si039;
si058; si069; si075; si081; si083; sr003; sr006; sr009; tk001; tk007;
tk009; tk011; tk014
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TABLE D.1: Oxford-805 word list (the asterisk behind a word indi-
cates that its reproduced utterance was correctly recognized by ASR

according*
basically*
beautiful
begin

believe
beyond*
biscuit*
budget*

busy
certainly*
channel*
chocolate

city

client
collapse
coloured
comfort*
commitment®
communicate®
competitive*
disadvantage*
discussion*®
dismiss
divorced
double

badly
basic
beauty
behave
belong*
bicycle*
body
building*
button
certain®*
cheerful*
cinema*®
civil*
climate
colleague
column
command*
committee
community*
completely
disappointed*
discuss
display
document*
download*

systems).

balance*
basis
because*
behind*
below
billion
bottle
bullet
calculate
chairman*
chemical
circle*
classical
closely
collection*
combination
comment*
commit
company
complete
disappointing*
disease
distance*
domestic
downstairs*

banana*
basketball*
become*
being
benefit
biology*
bottom
businessman*
cartoon®
challenge*
chicken*
circumstance
classic
clothing
collect
comedy*
commercial*
commonly*
compete
complex
discipline*
dishonest
divide
dominate
downwards

baseball
battle
beginning*
belief
between*
birthday*
bubble
business*
ceiling
champion®
childhood
citizen*
clearly
coffee
college*
comfortable
commission®
common*
competition
dirty
discount
dislike
division
donate
dozen
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duty early earthquake* easily* eastern
easy economic* economy” edition edit
educated* educate education effectively effective
effect efficient effort eighteen* eighty
elderly* election* elect* element* elephant*
eleven® emergency” emerge* emotional* emotion*
emphasis emphasize* employee employ empty
enable* ending* enemy energy engaged
engage engine* enhance enjoy” enormous”
enough* entertainment*  entertain* entirely* equally
equal escape especially essay essential*
establish estate estimate ethical evaluate*
evening* event” even evidence* evil*
exactly* exact examine* example* exam*
excellent* except* exchange* excited* excitement*
exciting* excuse® executive exercise* exhibition*
existence* exist* expand* expectation expected*
expect” expedition* expense* expensive* expert*
explain* explanation® explode* explosion export
expose* extend* extent* external* fuel
tully function fundamental* funding funny*
garden gentleman* gentle giant global*
goodbye government* govern guilty habit
handle happen happily happiness happy
hardly harmful headache headline healthy*
heating heaven heavily* heavy hello*
helpful* herself hesitate* highlight* highly*
himself hobby hockey holiday* hollow
holy homework honest hospital hotel*
household* housing* human* hunting husband*
ideal* idea* identify* identity* illegal*
illness* image imagine* immediate* impact*
impatient* imply importance* important* import
impose* impossible incident* include including*
income indeed* independent*  indicate* indoors*
infection* influence* informal* information*  inform
initially* initial* initiative injured innocent*
insect inside* insight* insist* install
instance* instead* institute institution* intelligence*
intelligent* intended* intend* intense* intention
internal* internet* interview”* invention® invent
investigate* investment* invest* invitation* invite*
involved* involve* island* issue* item*
itself* jacket journalist* journal journey
judgement* july justice* justify* keyboard*
killing* kitchen* knowledge* label* lady
landscape* language* laptop largely latest
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lazy leadership* leading learning* legal*
lemon lesson level* licence* lifestyle
likely limited* limit* lion* liquid
listen* little* lively* living local*
located* locate* location* logical lonely*
loudly* lovely* lucky* machine* modern
modify moment* monday* money* monitor*
monkey morning* mostly motorcycle*  mountain
movement* movie* multiple multiply muscle
museum musical* musician music myself*
national* nation* native nearly* needle*
negative* neighbourhood nervous* network nevertheless*
nineteen* ninety nobody* noisy* normally
normal northern nothing* notice notion
novel obey* objective* object obligation
observation*  observe obtain obviously* obvious*
occasion ocean offence offend* offensive*
office* official* often ok* online*
only* opening* open* opinion* opponent*
opposed oppose opposite opposition option
organized* organize organ otherwise* ourselves
outcome outdoors outline* outside oven
package painful painter painting* palace
panel parking parliament participant participate*
partly party passage passion passport
patient* pattern payment peaceful pencil
penny pension people percentage*  perfectly
perfect* performance*  perform perhaps permanent*
permission* permit personally* personal* person®
perspective persuade* phenomenon*  philosophy photo
physical physics piano* pilot planet
planning plastic* platform pleasant plenty
pocket poem poet pointed* poisonous*
poison policeman* police* policy polite
political* politician politics pollution population
position* positive* possession possess possible*
possibly potato* potential* poverty powerful
psychologist*  psychology* publication* public publish*
punishment*  punish pupil purchase* purple
purpose pursue qualified* qualify quality
quantity question* quickly quietly quiet
quotation sadly safety sailing salad
sample sandwich* satellite satisfied satisfy
saturday* saving schedule* science scientific*
scientist season secondly* second* sector
selection* select sensible* sensitive* sentence
sequence servant* service* session* setting*
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settle* seventeen* seventy* seven* sexual*
shadow* shallow* shiny shooting shopping*
signal* significant* silence silent silly*
similarly* simple* simply singing single*
situation* sixteen* sixty skiing slightly
slowly* smoking?* social* society* solid
solution* somebody* someone* something* sometimes*
somewhat southern speaker specialist* special*
species specifically* specific spelling* spending*
spicy spoken* stable* stadium* standard*
statement station* statistic* statue status*
steady sticky stomach student* studio
study* stupid* subject submit* substance*
succeed successfully* successful* success” suddenly*
sudden* suggestion* suggest suitable* sunday*
supermarket* supply support* suppose* surely*
surface survey survive* suspect® swimming
symbol* sympathy* symptom system* tablet
table* talented* talent target taxi
teaching* technical* technique technology*  teenage
telephone* television* tennis themselves*  thinking
thirsty thirteen* thirty thousand* thursday*
ticket tidy tiny tired title
today toilet tomato tonight* topic
totally total towards* towel tuesday
tunnel tv* twenty typically typical*
ugly ultimately* unable* uncle uncomfortable*
unconscious®  understanding® understand* unemployed* unemployment*
unexpected*  unhappy* uniform* union* unique
united* unit* universe* unknown* unless*
unlikely unlike unpleasant® until unusual*
update upon upset* upstairs* upwards*
urban useful* usually* usual* vacation
valley* valuable value vegetable* vehicle*
venue version via victim video*
village* violence violent* virtual* vision
visit visual vital vitamin volume
warning washing weakness* wealthy weapon
website* wedding* wednesday* weekend* welcome*
western* widely wildlife* willing window*
within* without* witness woman* wonderful*
wooden working yellow* yesterday* yourself*
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List of Publications

Refereed Journal Articles

1. Yingming Gao, Hongwei Ding, Peter Birkholz, and Yi Lin (2021). “Comparing
fundamental frequency of German vowels produced by German native speak-
ers and Mandarin Chinese learners”. In: The Journal of the Acoustical Society of
America Express Letters 1.7, p. 075203

2. Yingming Gao, Hongwei Ding, and Peter Birkholz (2020). “An acoustic com-
parison of German tense and lax vowels produced by German native speakers
and Mandarin Chinese learners”. In: The Journal of the Acoustical Society of
America Express Letters 148.1, EL112-EL118

3. Ju Lin, Yingming Gao, Wei Zhang, Linxuan Wei, Yanlu Xie, and Jinsong Zhang
(2020). “Improving pronunciation erroneous tendency detection with multi-
model soft targets”. In: Journal of Signal Processing Systems 92.8, pp. 793-803

4. Ju Lin, Wei Li, Yingming Gao, Yanlu Xie, Nancy F Chen, Sabato Marco Sinis-
calchi, Jinsong Zhang, and Chin-Hui Lee (2018). “Improving Mandarin tone
recognition based on DNN by combining acoustic and articulatory features
using extended recognition networks”. In: Journal of Signal Processing Systems
90.7, pp. 1077-1087

Refereed Publications in Proceedings

1. Wenjie Peng, Yingming Gao, Binghuai Lin, and Jinsong Zhang (2021). “A prac-
tical way to improve automatic phonetic segmentation performance”. In: Pro-
ceedings of the 12th International Symposium on Chinese Spoken Language Process-
ing (ISCSLP). IEEE, pp. 1-5

2. Yingming Gao, Xinyu Zhang, Yi Xu, Jinsong Zhang, and Peter Birkholz (2020).
“An investigation of the target approximation model for tone modeling and
recognition in continuous Mandarin speech”. In: Proceedings of the Interspeech
2020, pp- 1913-1917

3. Wang Dai, Jinsong Zhang, Yingming Gao, Wei Wei, Dengfeng Ke, Binghuai
Lin, and Yanlu Xie (2020b). “Formant tracking using dilated convolutional
networks through dense connection with gating mechanism”. In: Proceedings
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10.

of the Interspeech 2020, 21st Annual Conference of the International Speech Commu-
nication Association, Virtual Event, Shanghai, China, 25-29 October 2020. Ed. by
Helen Meng, Bo Xu, and Thomas Fang Zheng. ISCA, pp. 150-154

Yingming Gao, Peter Steiner, and Peter Birkholz (2020). “Articulatory copy
synthesis using long-short term memory Networks”. In: Studientexte zur Sprachkom-
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ald Baayen (2019). “Resynthesizing the GECO speech corpus with VocalTract-
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