
RESEARCH ARTICLE

Mapping Muscles Activation to Force
Perception during Unloading
Simone Toma1,2*, Francesco Lacquaniti1,2,3

1 Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy, 2 Laboratory of Neuromotor
Physiology, IRCCS Santa Lucia Foundation, Rome, Italy, 3 Department of Systems Medicine, University of
Rome, Tor Vergata, Rome, Italy

* stoma1@asu.edu

Abstract
It has been largely proved that while judging a force humans mainly rely on the motor com-

mands produced to interact with that force (i.e., sense of effort). Despite of a large bulk of

previous investigations interested in understanding the contributions of the descending and

ascending signals in force perception, very few attempts have been made to link a measure

of neural output (i.e., EMG) to the psychophysical performance. Indeed, the amount of cor-

relation between EMG activity and perceptual decisions can be interpreted as an estimate

of the contribution of central signals involved in the sensation of force. In this study we

investigated this correlation by measuring the muscular activity of eight arm muscles while

participants performed a quasi-isometric force detection task. Here we showed a method to

quantitatively describe muscular activity (“muscle-metric function”) that was directly com-

parable to the description of the participants' psychophysical decisions about the stimulus

force. We observed that under our experimental conditions, muscle-metric absolute thresh-

olds and the shape of the muscle-metric curves were closely related to those provided by

the psychophysics. In fact a global measure of the muscles considered was able to predict

approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects

differences in psychophysical sensitivity showed high correlation with both participants'

muscles sensitivity and participants' joint torques. Overall, our findings gave insights into

both the role played by the corticospinal motor commands while performing a force detec-

tion task and the influence of the gravitational muscular torque on the estimation of vertical

forces.

Introduction
To carry out most of our everyday actions, both internal forces—e.g., muscular torques as
well as external forces—e.g., gravity—must be taken into account. For instance, the simple
action of maintaining the arm in a fixed posture without external support entails an active
muscular torque to resist the downward gravitational force acting on the arm. Moreover, if
an additional external force is applied to the arm while in the same posture, our percept of
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the external force will result from the combination of two kinds of signals: one derived from
the descending motor commands necessary to counteract the external force and to maintain
the posture, and the second one derived from the resulting afferent somaesthetic signals. Sev-
eral different approaches, such as psychophysics, analysis of kinematics and dynamics, elec-
tromyography (EMG), and computational modeling of motor control, have been used to
investigate both the mechanisms of how the central nervous system (CNS) interacts with
external forces and how it merges descending and ascending signals to perform a perceptual
decision.

On the one hand, psychophysical methods have been largely exploited in those studies
where central and peripheral signals were decoupled during force detection or discrimination
tasks. Common tasks for these studies were active and passive force/mass perception [1,2,3],
torque and stiffness discrimination [4], force perception during voluntary and induced muscle
contractions [5,6], perception of force under fatigued and non-fatigued muscles conditions
[7,8,9], force discrimination of healthy and de-afferented subjects [10,11,12,13], participants
under anaesthetized hand conditions [14,15,16], as well as perception of muscular effort
involving different groups of muscles [17]. The common observation of these works of a per-
ceptual sensitivity reduction when efferent signals were manipulated gave behavioral support
to the idea that force perception is mainly mediated by central signals [5,16,18,19].

On the other hand relevant insights into the mechanisms underpinning motor organization
in response to external dynamic changes came from behavioral studies where either a force
perturbation (i.e., force field) or a load was applied to the moving arm [20]. In these investiga-
tions either motor errors (see [21,22] for a review) or EMG activity [23] were analyzed. Among
these studies, Thoroughman et al. [24] designed an elegant force field protocol where both
motor errors and EMG changes were recorded simultaneously. These authors showed that
descending motor commands associated with changes in EMG signals correlate with the for-
mation of an internal representation of dynamics.

The aim of our study was to provide a measure of neural output (i.e., EMG) in relation to
psychophysical performance (i.e., sense of muscular effort) to give insights into the neural basis
of force perception. Indeed, the amount of correlation between EMG activity and perceptual
decisions can be interpreted as an estimate of the contribution of central signals involved in
force perception. Differently from one of the few studies quantifying [11,12] the correlation
between muscles activity and subjects’ perceived muscular effort that provided an index of dis/
concordance, we show a method to quantitatively describe muscular activity (“muscle-metric
function”) that was directly comparable to the description of psychophysical decisions in a
force detection task.

Inspired by the concepts of neuro-metrics exploring the links between neural activity and
perceptual decisions (see [25] for a review), we interpreted the concomitant arm muscles activ-
ity as the result of specific central neural modulations associated with the stimulus force
applied on the subject’s arm. Indeed, a body of evidence exists demonstrating a direct link
between the primary motor cortex (M1) and force perception. These works, for instance,
showed that transcranial magnetic brain stimulation (TMS) applied on M1 both increased par-
ticipants' sense of effort [26] and attenuated improvements in the ability to accurately judge
force output [27]. In the light of these previous findings, the primary aim of this study was to
investigate to what extent the activity of eight arm muscles, considered as a major output of spi-
nal alpha-motoneurons and indirectly reflecting corticospinal motor commands, were able to
predict participants’ perceptual decision about force. Secondly we discussed our findings in
terms of the influence of the gravitational muscular torque on the perception of vertical forces
applied on arm.
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Materials and Methods

Participants
Fourteen volunteers participated in this study (seven males and seven females, mean age = 25.4
yrs ± 5.5; mean height = 1.69 m ± 0.6; mean weight = 65.1 kg ± 8.8). All participants were
right-handed (as assessed by a short questionnaire based on the Edinburgh scale), were naïve
with respect to the aim of the study, and gave their written informed consent. None of them
had neuromuscular disorders and all had normal or corrected-to-normal vision. The study was
approved by the independent ethics committee of Fondazione Santa Lucia, Rome.

Apparatus
Fig 1 shows the device we used (i.e., Track-Hold, TH, [28,29]) to track subject’s arm motion
and to produce upward forces on their arm. TH is a passive device composed of a fixed base
and of a movable interaction element which is adapted to be located integrally to the subject’s
arm in order to permit most of the natural upper limb workspace. Moreover TH creates lever
arms of its various rigid links as a result of the load (i.e., counterweight, Cw) applied on its bal-
ancer. In particular the downward force exerted by Cw produces an upward force F that is
equal to Cw/3 (see paragraph 1.1 in S1 Text) at the point where the device is applied on sub-
ject’s arm, i.e., Xf (see Fig 1 and paragraph 1.1 in S1 Text), and it is assumed to be constant at

Fig 1. Apparatus. Trackhold (TH) device and subjects’ arm posture at the moment of force detection, namely
when the black sphere (i.e. cursor) was within the gray sphere (i.e., target). Cw represents the load applied on
the device balancer. F indicates the consequent upward force exerted on subjects’ arm (F = CW /3). Xf is a
distance from elbow joint representing the point of force application on subjects arm.O3 is the contact point
between subject’s arm and TH (cradle),O1 is the fulcrum of TH horizontal lever arm andO’3 is the center of
TH balancer. While in target, mean value of shoulder adduction angles across subjects was 8.3° ± 7°,
shoulder flexion angle was 12.3° ± 5.1° and elbow elevation angles was 83.1° ± 4°.

doi:10.1371/journal.pone.0152552.g001
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any configuration of the device, that is at any configuration of participants’ arm. Individual TH
application point Xf is expressed as a point along the forearm specified by a distance from the
elbow joint whose mean ± SD values across subjects was 9.04 ± 0.57 cm. The counterweights
applied on the TH balancer consisted of the combination of 12 brass cylinders: three samples
of 1.5 N, five samples of 3 N, two samples of 10 N and two of 30 N. Thus the range of loads
applied on TH balancer was from 0 to 99.5 N with a minimum step of change of about 1.5 N
and a load of 1 N necessary to compensate the weight of the TH movable interaction element.
Consequently the actual upward forces F applied on participants' arm at point Xf ranged from
0 to 33 N (F = 99 N/3) with a minimum delta of change (i.e., step size) of 0.5 N.

Visual feedback
In order to help participants to maintain a quasi-isometric posture during upward force appli-
cations on their arm, we provided them with a 3D visual feedback of their forearm position. A
target sphere (7.5 cm radius, depicted in gray in Fig 1) was placed at the center of the Virtual
Reality workspace (see paragraph 1.2 in S1 Text). A cursor sphere (5.5 cm radius, black in Fig
1) represented the position of participants’ right hand, and it moved on the scene following
participants’motions (see paragraph 1.2 in S1 Text). The time delay between the real motion
of the hand and its projection on the screen was about 30 msec (as determined by separate cali-
brations of the system). In order to make the virtual target sphere easily reachable, its distance
from the subject (i.e., z axis) was adjusted with respect to the forearm length of each individual
participant. Subjects’ forearm and hand were out of sight throughout the experiment, being
occluded by the horizontal projection panel (Fig 1). To rule out the possibility that upper arm
and TH links might be partially seen during the task, we shifted target and cursor position
upward along the y-axis to display both spheres always approximately at subject’s eye height
and aligned with the subject’s hand (Fig 1).

Procedure
Participants stayed upright in front of the virtual reality system with the TH device applied on
their right forearm at the pre-calculated Xf point (see Apparatus). Before the experiment, par-
ticipants were asked to place their upper arm aligned with the trunk and forearm parallel to
ground. Then, to avoid that neither the TH ring nor the TH cradle where the arm laid could
touch subjects’ trunk, participants were asked to place the upper arm slightly forward (shoulder
flexion angle averaged across subjects: 12.3° ± 5.1° SD) and slightly outward (shoulder adduc-
tion angles across subjects: 8.3° ± 7.0°) with respect to the trunk (Fig 1). Once in this position,
subjects’ arm posture (i.e., shoulder, elbow and wrist coordinates) was stored, and both target
and cursor spheres were displayed in the same position as described in the previous paragraph
and depicted in Fig 1. This measure of desired arm posture at the target position was used
throughout the experiment to prevent subjects from changing arm configuration across trials.
Each trial started with participant's arm in a starting position that consisted in placing the
hand on a tripod located in the same vertical and sagittal plane of the target, but approximately
5 cm rightward (x axis) from target position (Fig 1). With this configuration, participants were
able to easily place the cursor within the target sphere just with a relative small inward motion.
While participants were in the starting position, the experimenter, who was placed behind the
subject, either loaded or unloaded the TH balancer with a given counterweight Cw to change
the level of the upward force (F) exerted on subjects' arm to a new unpredictable level(see
below). Once the loading/unloading operation was terminated and the new upward force level
was applied on the subject’s arm, the trial was started by the experimenter and a sound
informed subjects to make the small movement required to bring the cursor within the target.

ArmMuscles Activity and Unloading Force Perception
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When the cursor was placed at the target, the cursor became green. Every time that Xf coordi-
nates (roto-translated in cursor coordinates every 10 ms) deviated from the center of target
sphere by more than 2 cm, the cursor turned red (60 Hz). After two seconds of permanence
within the target tolerance limits, the target sphere disappeared and from that time on partici-
pants could provide their answer to the experimental question: “do you feel an upward force
acting on your arm?”. Participants were asked to judge the experienced force only while they
had the arm still at the target, without considering any force perception sensed either during
the loading/unloading operation or during the small arm displacement towards the target. No
time limit was imposed to the subjects to give their answer, but they had to stay within the tar-
get tolerance limits until they provided the answer. Nevertheless, subjects mostly provided
their answers right after that target sphere was extinguished. Furthermore, to be sure that sub-
jects maintained approximately the same arm configuration at each trial, we also set a tolerance
motion limits of 5 cm for both the shoulder and the elbow joints in each of the three coordi-
nates. In fact as soon as participants moved either the elbow or the shoulder more than 5 cm
away from the desired arm posture set at the beginning of the experiment, the cursor sphere
turned black and the answer could not be entered unless the correct configuration of shoulder
and elbow joints was restored. Participants’ response was provided by pressing the keys of a
response box held in their left hand relaxed along the body. A positive answer to the experi-
mental question corresponded to a detection of an upward force, while a negative answer could
correspond to the perception of any other type of force, such as a null force or a downward
force. Once the answer was provided, a new sound was played to inform that the trial ended
and the participant had to come back to the starting, tripod position. Force presentation fol-
lowed a double (ascendant/descendant) interleaved UP-DOWN staircase [30,31] where the
stimulus level at each trial was selected with respect to the answer in the previous trial. The first
trial of the ascending staircase started with a zero upward force (0 N), while the descending
staircase started with the maximum upward force (30 N) (see Force Presentation plot in Fig
2A). The upward force was increased after a negative answer and it was decreased after a posi-
tive one. This method allowed us to obtain a convergence of responses after relatively few trials
(Force Presentation plot in Fig 2A), around a stimulus level that produced 50% of positive
answers (i.e., Point of Subjective Equality, PSE). Such a force level was assumed to be the indi-
vidual absolute threshold in detecting upward forces applied on the arm, that is, the stimulus
intensity above and below which participants will increase the probability of giving a positive
or negative answers, respectively. As suggested by previous work on vision and audition where
the range of threshold values were unknown a priori [31,32], we set a large step size (12 N) at
the beginning of both staircases and halved it during the first three reversals (6 N, 3 N, 1.5 N).
After these three reductions, the step size was kept constant at 1.5 N. The experiment ended
when there had been 13 inversions of answers (a positive response followed by a negative one
or vice-versa) in both the ascending and the descending staircase. For each subject, the last 10
reversals of each staircase (depicted in bold in Force Presentation plot of Fig 2A for one subject)
were averaged to extract individual ascending and descending PSE values. Since individual
ascendant and descendent PSE values did not statistically differ (no parametric paired sample
Wilcoxon Signed Rank test, n = 10, p< 0.05), they were averaged together to provide a unique
PSE value for further analysis. Each recording session of muscles activity started after that par-
ticipants remained within the tolerance target limits for more than 1 second.

Data acquisition
Arm position was recorded using both an electro-magnetic motion tracking system (Mid-
Range 3D Guidance Trackstar, Ascension, Footscray, Australia) and the Trackhold device (i.e.,
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TH). With the former device, we tracked the position of the wrist (styloid process of the ulna),
elbow (epicondylus lateralis), and shoulder (acromion) joints by means of three active markers
with a sampling frequency of 80 Hz and a spatial resolution better than 2 mm. The TH device
(100 Hz sampling rate) was used to track the point of force application Xf and we used this
stream of data to update visual cursor position. Surface electromyography (EMG) was recorded
by means of active bipolar surface electrodes (DE 2.1; Delsys, Boston, MA) from the following
eight muscles: brachio-radialis (BrRad); biceps brachii, long head (Bic); triceps brachii, long
head (Tric); deltoid, anterior (DeltA); deltoid, posterior (DeltP); trapezius middle (TrapM);
trapezius upper (TrapU); latissimus dorsi (LatD). EMG signals were band-pass filtered (20–
400 Hz) and amplified (total gain 1000, Bagnoli-16, Delsys Inc.). The signal was then digitized
at 1 KHz (PCI-6035E, National Instruments, Austin, TX). EMG data acquisition and synchro-
nization with motion tracking was performed with custom software written in LabView
(National Instruments, Austin, TX). A custom XVR routine controlled the experiment by
exchanging acknowledgments to a Matlab GUI (Mathworks, Natick, USA) that defined next
trial stimulus to be presented; by sending triggers to LabView to start and stop EMG recording;
by updating visual feedback position; and by logging the time of all relevant behavioral events
(e.g., answer provided, target tolerance limits exceeded).

Data analysis
Arm kinetic and EMG traces. All the analyses were performed with custom software writ-

ten in Matlab (Mathworks, Natick, MA). Position data were low-pass filtered at 10 Hz with a
second order, zero-phase shift Butterworth filter. The time varying position of the markers
placed on the shoulder, elbow and wrist were used in post-processing analysis to estimate
elbow and shoulder joint angles. We then used these measures to estimate the joint elbow and
shoulder flexion torques for ten subjects. In particular a kinematic and kinetic model of the

Fig 2. Psycho &Muscle metric curve computation from a typical subject. A) For each subject, the
computation of the psychometric curve was obtained by extracting the distribution of the force level explored
by the participant during the UP-DOWN staircase adaptive procedure and by fitting a logistic function to the
probability of a positive answer with respect to each external force level (x).Ψps, β1ps, β0ps indicate the
absolute threshold (PSE), the slope and the intercept, respectively, characterizing the logistic function that
best explains the probability of detecting an upward force given each stimulus force.B)Computation of the
muscle-metric curve was obtained by means of a weighted pool of all muscle activity (PoolEMG) and then
fitting a logistic function to the probability of a PoolEMG value to be higher than the criterion per each external
force level presented (x). Criterion level was set to the mean of the PoolEMG distribution (paragraph 1.4 in S1
Text for details).Ψemg, β1emg, β0emg indicate the absolute threshold (PSE), the slope and the intercept,
respectively, describing the logistic function that best explains the probability of each force level to elicit a
PoolEMG value above criterion.

doi:10.1371/journal.pone.0152552.g002
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arm that incorporated geometrical and inertial parameters of arm segments was used to esti-
mate, at each sample, the shoulder and elbow flexion angles as well as the joint total (net) tor-
ques actively generated by the subjects muscles around those joints (see [33] and paragraph 1.3
in S1 Text for details on the model and for its differences from our model). Residual torques
were also calculated by subtracting the gravitational components from the net torque, which
provide a measure of the joints moment changes exerted by the participant’s in response to the
different external upward force applied.

The EMGs traces of each trial were digitally full-wave rectified and low pass filtered with a
second order zero-phase shift Butterworth at 25 Hz. After careful visual inspections of both the
position and EMG profiles, we chose not to consider for further analysis those trials where mus-
cle waveforms showed artifacts or the cursor position exceeded tolerance target limits. On aver-
age across all subjects, the percentage of trials excluded was 2.4 ± 2.1% of all trials. Examples of
the EMG signals we considered for the analysis are depicted in EMG traces plots of Fig 2B, that
describes muscles activity of a typical subject when no external forces (i.e., 0 N) were applied on
her arm. Individual Mean Absolute Values (MAV) of muscular activity were calculated for each
EMG channel from all trials. Finally, MAV value of each muscle was normalized with respect to
the maximumMAV recorded for that muscle across all presented forces (normMAV).

Muscle-metric curve extraction. The main goal of this study was to quantify how the
activity of the recorded muscles could account for the concomitant psychophysical behavior
during the force detection task. To this end, we had to produce a quantitative description of
muscular activity (i.e.,muscle-metric) that was directly comparable to the description of psy-
chophysical decisions captured in the psychometric function. A description of the analytical
steps carried out to obtain the muscle metric curve is provided in Fig 2B by plotting the data of
one subject. For each trial, we first pooled together the normalized MAV of each EMG channel
by considering their effective pulling direction in task coordinates (i.e., upward or downward
directions) by means of the following equation:

PoolEMGi ¼
Xn

i¼1
ðnormMAVk � wkÞ ð1Þ

where i is the single trial, k is the single muscle channel, and w is the difference between the
normMAV of muscle i when the upward force was highest (30 N) and the normMAV of the
same muscle when the upward force was zero (0 N). Consequently, w is a coefficient whose
sign corresponds to the direction of the muscle pulling action, wk< 0 characterizing an
upward pulling, flexor, muscle and wk> 0 characterizing a downward pulling, extensor mus-
cle. In addition, the absolute value of w is a measure of the sensitivity of muscle k with respect
to the range of forces presented, where |w| = 0 indicates no modulation of the muscle k with
respect to each upward forces presented. Therefore, high values of PoolEMG will be associated
to a high joint extensor muscle activity (namely, high perceived value of the external upward
force on arm and assumed psychophysical answers “YES”); while low PoolEMG will be related
to a low joint extensor muscle action(namely, low upward force intensities and assumed psy-
chophysical answers “NO”). Indeed, the first trials of the ascending staircase (low external
forces, circles in PoolEMG trend plot of Fig 2B) produced low (even negative) PoolEMG, while
the first trials of the descending staircase (high external forces, black squares in PoolEMG trend
plot of Fig 2B) produced high values of PoolEMG. Therefore PoolEMG distribution (PoolEMG
distribution plot of Fig 2B) can be interpreted as a continuum of the arm muscle activity associ-
ated with the external force presented; from the flexor (upward) muscular torque to support
the arm with minimum external force level to the maximum extensor (downward) muscular
torque with maximum external force (PoolEMG UP and PoolEMG DOWN, respectively in Poo-
lEMG distribution plot of Fig 2B). Then, a muscle-metric function was computed to reflect the
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probability of observing a PoolEMG activity above a criterion level set to the mean of the Poo-
lEMG distribution (muscle-metric curve plot of Fig 2B, see also paragraph 1.4 in S1 Text for
details on criterion selection). We expected that this probability increased from zero to unity as
the upward force level increased, and the resulting “muscle-metric curve” could be quantita-
tively compared to the psychometric function obtained from the probability of positive answer
in the same task (upper, middle and lower curve plots in Figure B in S1 Text). We chose to
model both the muscle and psycho metric functions by applying a Generalized Linear Model
[34] to our data due to its advantageous feature of making no assumptions with regards to the
shape of the response distribution (both PoolEMG and the force levels explored by the sub-
jects). Our GLMmodel (Matlab Statistics Toolbox) had 1) the PooledEMG and the psycho-
physical YES/NO answer distributions as response variables, 2) the upward force intensity as
linear predictor for both psychophysical decisions and PoolEMG values, 3) the logit as the link
function relating the response variable to the linear predictor (“GLM logistic fit” in Fig 2A and
2B). Finally, we used the maximum likelihood estimation (MLE) method to extract the best fit
parameters of each curve (Psycho-metric curve andMuscle-metric curve in Fig 2A and 2B).
Slope (β1) and intercept (β0) values were used to compare the shapes of the two metric func-
tions and to calculate the muscular (C emg) and the psychophysical (C ps) absolute threshold
(i.e., PSE,C =—β0/β1). Then, to quantify the concordance of the two metrics, we subtracted
from the psychometric curve parameters and thresholds the same measures obtained from the
muscle-metric curves (i.e., Δ intercept, slope and PSE). In order to compare the most reliable
values obtained from the two data sets, we chose to compare curve parameters and PSE only
for those subjects respecting two criteria of goodness of logit fit: R2 explaining psychophysical
performance equal or higher than 0.6, and goodness of logit fit explaining perceptual and mus-
cular probabilities merged together (R² merged), higher than 0.5. Instead, for those subjects
whose curve describing perceptual performance had a fit lower than 0.6, we considered the PSE
extracted by the up-down staircase method to compare the perceptual with the muscle-metric
detection threshold.

Multiple regression of muscular activity. A further goal of the present study was to iden-
tify which arm muscles, among the eight considered, mostly contributed during the force
detection task. To this end, the PooledEmg overall activity was submitted to a multiple regres-
sion analysis according to the model:

PooledEmgi ¼ b0 þ b1BrRadi þ b2Bici þ b3Trici þ b4TrapMi þ b5TrapUi þ b6LatDi

þb7DeltAi þ b8DeltPi

ð2Þ

where PooledEmg at each trial i is predicted by the linear combination of the normMAV asso-
ciated to each muscle. βk is the regression coefficient for each regression term (with 1< k< 8)
and β0 is the regression constant term. Thus, for each subject we extracted eight βk standard-
ized regression coefficients by standardizing all variable across trials before the regression,
namely subtracting the mean and dividing by the standard deviation of each muscle. Positive
βk represent direct relation between the increase of the upward external forces and the activity
of the muscles with downward pulling direction (i.e., extensors). Conversely, negative coeffi-
cients indicate inverse relations between external forces and the activity of those muscles with
upward pulling direction (i.e., flexors). Only βk that presented a statistically significant
(p< 0.05) dependence on the stimulus force were considered.

Simulations
Simulations on the empirical data were performed to investigate the reliability of the concor-
dance between the two metric curves extracted as a function of the upward forces presented,

ArmMuscles Activity and Unloading Force Perception

PLOS ONE | DOI:10.1371/journal.pone.0152552 March 31, 2016 8 / 27



and to explore whether different pooling of muscles might influence the level of explanation of
the perceptual performance.

The hierarchy of the simulation was defined by two sequential steps: the first aimed to
define each one of the 8 muscular nested models (i.e., muscles pooling, Step-Wise Backward
Elimination procedure), the second aimed to quantify the reliability of its associated muscle-
metric parameters (i.e., bootstrap). As shown in Fig 3, each iteration j of the simulation was
characterized by a parametric bootstrap resampling of the experimental force presentation
order from which new (i.e., 1000) psychometric curve parameters and threshold were extracted
(Fig 3A). The same simulated force presentation order was used to compute the muscle-metric
curve associated to the PoolEMG distribution obtained from the pattern of eight muscles (i.e.,
General Mdl0, Fig 3B). After 1000 simulated experiments, each of them producing both a psy-
cho- metric and muscle-metric curve associated with the eight muscles general model, a simpli-
fied nested regression model, was obtained by eliminating the least relevant -and/or not
statistically significant- muscle term (lower βn, backward elimination,Muscles Pooling in Fig
3C). Then, new 1000 experiments were simulated and muscle-metric curves were extracted by
using the PoolEMG distribution obtained by those muscles composing the simplified nested
model. Thus, at each loop of such a two steps simulation procedure (bootstrap and backward
elimination) a new simplified muscular pattern model M, with iminus 1 number of terms was
provided—i being between 2 and 8 the number of terms of the preceding model-. Simulations
stopped after 1000 muscle-metric curve of the nested model with only one regression term
were extracted. In order to compare the reliability of the psycho vs muscle metrics concordance
among muscular regression models the same sequence (i.e., seed) of random force presentation
resampling was used for all models and it was changed per each subject (i.e., rng function,
twister generator, Mathworks, Natick, MA).

This procedure allowed to obtain seven nested muscular models (i.e., muscle pooling, each
one with the highest regression coefficients) extracted from the initial general model that con-
sidered all eight armmuscles recorded from the subject. We then compared, for each subject,
the resulting seven nested models by taking into account their goodness of fit in explaining the
individual PoolEMG total variance measured during the experiment and their value of the

Fig 3. Bootstrap and Stepwise Elimination Procedures. A) For each of the 1000 simulated experiment
(resampled stimulus force order) psychometric curve was obtained by fitting a logistic function to the
probability of a positive answer with respect to each external force level (x).Ψps, β1ps, β0ps indicate the
absolute threshold (PSE), the slope and the intercept, respectively, characterizing the logistic function that
best explains the probability of detecting an upward force given each stimulus force.B)Computation of 1000
muscle-metric curves (one per each new force presentation order) obtained by means of a weighted pool of
all 8 muscles activity (PoolEMG). C)Computation of 1000 muscle-metric curves (one per each new force
presentation order) obtained from each nested model of the muscles activity pooled as above (PoolEMG),
whose number of terms was iteratively reduced from 7 to 1. Once 1000 simulated experiments were
performed per each nested model, muscle-metric and psycho-metric curves output were compared (bottom
left).

doi:10.1371/journal.pone.0152552.g003
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Bayesian Information Criterion (BIC [35], hereafter BaIC to differentiate it from bicep nomen-
clature, Bic). BaIC is a measure of both howmuch each model is less complex than the general
one, and its likelihood to provide the observed empirical data (see paragraph 1.5 in S1 Text for
details). To make the comparison among model BaIC values easier, the difference between the
best BaIC obtained (i.e., BaIC� 0) and each model BaIC (i.e., Delta BaIC) was normalized with
respect to the highest Delta BaIC obtained among all models (Normalized Delta BaIC). There-
fore, the best nested model was selected as that one that presented the normalized Delta BaIC
values closest to zero, and an explanation of the empirical PoolEMG variance higher than 95%.
Finally, we quantified the reliability of the concordance between each nested model muscle-met-
ric curve and the psychometric curve by simulating 1000 experiments (i.e., boostrap parametric
resampling of force presentation order) and extracting every time the explained variance (R2) of
the muscle-metric curve in accounting for the probability of upward force detection.

Results

Perceptual performance
Individual psychophysical decisions with respect to upward force levels were described by fit-
ting a logit function to the probability of positive answers (Psycho-metric curve plot in Fig 2A).
The curve explained relatively well the individual probabilities of reporting a detection of
upward force (answer “YES”) for each force presented. Specifically, we observed an average,
across subjects, goodness of fit (R2) value and standard deviation of 0.77 ± 0.16. In the first
three rows of Table 1 we reported the maximum likelihood (ML) estimated absolute thresholds
(i.e., PSE), intercepts and slopes (± SE) calculated for each subject and characterizing the psy-
chometric curves. As shown in the fourth row of the table (R2 psy), 3 subjects out of 14 showed
a goodness of fit lower than 0.6 (mean R2 psy and SD of 0.55 ± 0.05). For these subjects, we did
not consider their psychometric curve parameters but only their PSE extracted by the up-down
staircase method (i.e., PSE stair in Table 1). In accordance with previous works that showed no
statistically significant differences between perceptual thresholds obtained by the up-down
staircase method and by ML estimation [36], we found that our PSEs extracted by logit fitting
(subjects with R2 psy� 0.6) and from averaging reversals did not differ in a statistically signifi-
cant manner (Wilcoxon Signed non parametric Test, n = 11, signedrank = 37.5 with p = 0.72).
Such an outcome allowed us to use, in further analysis, the PSE stair obtained from staircase
method when R2 psy was not reliable (R2 < 0.6). Individual parameter values that we consid-
ered for further analysis are reported in bold in Table 1.

Table 1. Psycho-Metric Curve Parameters. Individual maximum likelihood (ML) estimated threshold (PSE fit), intercept and slope ± SE obtained by Logit
glm fit describing the percentage of positive answers as function of upward force level. R2 psy values describe the explained variance of the Logit function
used to describe psychophysical decisions per each subject. PSE stair values were obtained by averaging the force levels associated with the last 10 rever-
sals of the up-down staircase method. Bold values are those considered for further analysis. Either PSE fit or PSE stairs were used whether individual R2 psy
were higher (as well as equal) or lower than 0.60, respectively.

Subj.1 Subj.2 Subj.3 Subj.4 Subj.5 Subj.6 Subj.7 Subj.8 Subj.9 Subj.10 Subj.11 Subj.12 Subj.13 Subj.14

PSE fit (N) 16.0
±0.5

11.4±1 9.6±0.2 2.3
±0.5

0.8
±0.9

8.3
±0.5

1.0
±0.5

0.1
±0.2

6.0
±0.3

8.9±0.2 11.0
±0.4

11.4
±0.9

18.8
±0.5

3.9±0.1

Intercept -6.7
±2.2

-2.2
±0,7

-10.5
±3.7

-1.1
±0.6

0.0
±0.3

-2.9
±1.3

-0.4
±0.3

-0.2
±0.3

-4.5
±1.5

-12.1
±3.7

-6.6
±2.4

-2.3±0.8 -6.2±2.1 -7.5
±2.3

Slope 0.4
±0.1

0.2
±0.1

1.1±0.4 0.4
±0.2

0.19
±0.1

0.3
±0.1

0.44
±0.3

1.3
±0.5

0.7
±0.2

1.3±0.4 0.6±0.2 0.2±0.1 0.3±0.1 1.9±0.6

R² psy 0.88 0.59 0.93 0.66 0.49 0.78 0.56 0.77 0.95 0.98 0.85 0.66 0.82 0.96

PSE Stair
(N)

15.3
±0.6

8.9
±1.0

10±0.3 2.2
±0.4

1.9
±0.4

8.4
±0.3

0.9
±0.4

0.1
±0.3

5.6
±0.3

8.9±0.2 11.6
±0.6

10.9
±0.7

19±0.6 4.0±0.3

doi:10.1371/journal.pone.0152552.t001
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Muscular performance
The method that we used to quantify the pooled armmuscular activity with respect to each
upward force level allowed us to compare the trend of psychophysical decisions with the trend
of arm muscular pulls across trials (compare Force Presentation plot with PoolEMG trend plot
of one subject in Fig 2A and 2B). Indeed, we observed a statistically significant correlation for 12
subjects (p< 0.05) out of 14 between the changes of the forces explored by the subjects under
the up-down procedure and the changes of the PoolEMG at each trial (mean Pearson rho 0.73
with SD 0.18). Similarly the muscle-metric curve computed by fitting a logistic function to the
probability of PoolEmg above the criterion level provided an overall good fit across subjects. In
fact, with the exception of participants 9 and 6 for whom logit function had no explanations of
the PoolEMGmodulation (R2 emg� 0 in Table 2), we obtained an average goodness of logit fit
(R2 emg, fourth row in Table 2) of 0.72 with a SD of 0.16. This observation ensured us that the
choice of logistic as link function provided a satisfactory description of the global muscular
activity with respect to force level. Bold values in the first three rows of Table 2 are the individual
ML estimated muscle-metric curve parameters and absolute thresholds considered for further
analysis. Participants 6, 9 and 7 were excluded from successive comparisons because of their less
reliable fitting (seeMuscle-Metric Curve Extraction in Material and Methods).

Psycho-metric versus muscle-metric performance
A Two Sample Kolmogorov-Smirnov test was submitted to each subject’s distribution of the
probability of PoolEMG above the criterion and the probability of positive answers. We found
that, for 11 participants out of 14, both sets of probabilities could be described by the same dis-
tribution (Kolmogorov-Smirnov, p> 0.05, for 11 subjects and p = 0.00, p = 0.01, p = 0.02 for
subjects 9, 6 and 5, respectively). Furthermore, we assessed the similarity of the psychometric
and muscle-metric curves by fitting a logit function to the two probabilities data set pooled
together and by looking at its level of explained variance (R2 merged, last row of Table 2). As
shown by R2 merged values reported in the Table, the explained variance of a single function
accounting for the two (psychophysical and muscle-metrical) data sets did not decrease signifi-
cantly with respect to the R2 psy values (compare individual R2 merged values reported in
Table 2 with R2 psy reported in Table 1). No statistical differences were found by performing a
Wilcoxon Signed non parametric test on the two groups of goodness of fits of those subjects

Table 2. Muscular-Metric Parameters. Individual ML threshold, intercept and slope parameters ± SE obtained by Logit glm fit describing the percentage of
muscular activation (namely, PoolEmg > criterion) as function of upward force level presentation. R2 emg values describe, per each subject, the explained
variance of the Logit function used to account for the probability of PoolEmg > criterion at each force presented. An index of similarity (R2 merged) between
the two metrics was defined as the goodness of fit of a Logit function explaining both perceptual and muscular probabilities merged together. Thus, R2 merged
represents the level of concordance between muscular and perceptual performances in describing the subjects’ decision about upward forces. Participants 6
and 9 were excluded from further analysis since Logit function could not reliably explained their probability of pooled muscular activation over criterion (R2 �
0). Similarly, subject 7 was excluded since his index of concordance between muscular activity and perceptual decisions was lower than 0.5.

Subj.1 Subj.2 Subj.3 Subj.4 Subj.5 Subj.6 Subj.7 Subj.8 Subj.9 Subj.10 Subj.11 Subj.12 Subj.13 Subj.14

PSE (N) 14.5
±0.2

8.6
±0.2

8.9
±0.2

6.6
±1.0

4.2
±0.2

48±10 0.1
±1.2

1.2
±0.2

-14±15 8.5±0.5 11.9
±0.3

11.3
±0.5

17.1
±0.3

3.3±0.6

Intercept -14.4
±3.8

-7.7
±1.7

-12
±3.9

-1.4
±0.4

-3.3
±0.7

-1±0.5 -0.0
±0.3

-1.1
±0.4

-0.2
±0.4

-3.8±2 -9.2
±2.6

-3.9±1.4 -11.7
±3.7

-1.4
±1.0

Slope 1±0.2 0.9
±1.9

1.3
±0.4

0.2
±0.1

0.8
±0.2

0.0
±0.0

0.2
±0.1

0.9
±0.3

0.0
±0,0

0.4±0.2 0.7±0.2 0.3±0.1 0.7±0.2 0.4±0.2

R² emg 0.77 0.81 0.92 0.64 0.87 -0.04 0.45 0.75 0.02 0.7 0.8 0.4 0.89 0.7

R²
merged

0.75 0.63 0.92 0.6 0.65 0.15 0.49 0.69 0.27 0.83 0.83 0.56 0.83 0.79

doi:10.1371/journal.pone.0152552.t002
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with R2 merged higher than 0.5 (n = 11, signedrank = 50.5 with p = 0.13). Such a statistical
result suggests that, for 78% of our whole sample, the trial-by-trial muscular performance is
statistically indistinguishable from the psychophysical performance. A quantification of the
predictive power of the muscle-metric curve about the psychophysical decisions is depicted in
Fig 4. Bars represent the average difference values (psychometric minus muscle-metric esti-
mates) of the intercepts, slopes and thresholds across subjects with their 95% confidence inter-
vals (CI). Interestingly, the CIs of the differences of both curve parameters and thresholds
included the zero value, indicating a very good match between the two curves. Specifically, the
differences in the curve parameters were -0.60 (lower CI: -4.6; upper CI: 3.4) and 0.18 (-0.34;
0.70) for intercept and slope, respectively. The differences between perceptual and muscular
detection thresholds were measured by considering PSE stair values, instead of PSE fit, for
those participants having a R2 psy lower than 0.6. As shown in Fig 4, averaged PSE difference
was 0.31 (-1.48; 0.88). The higher distance from zero of the lower confidence interval indicates
that muscles tended to be less sensitive than perceptual judgments, the former being character-
ized by a higher PSE. The observed concordance between muscular and perceptual behavior
shows that perceptual detection of unloading forces are strongly related to the accompanying
patterns of muscle activation. This observation in turn suggests that unloading force detection
is driven by an efferent copy of the descending motor commands generating the change in
muscular activity associated with each stimulus force.

Extensors and flexorsW coefficients
With the aim of analyzing the sensitivity of each muscle to be modulated with respect to the
range of forces presented, we looked at the associated w coefficients calculated as reported in
‘Muscle Metric Curve Extraction’ (Data Analysis section). Mean ± SD coefficients values calcu-
lated across subjects, reported in Fig 5, show clearly that flexor muscles (negative coefficients)
presented a higher sensitivity to the upward force modulation than the extensor muscles (posi-
tive coefficients). In particular Bic and TrapU provided the highest mean ± SD w coefficient
values, -0.5 ± 0.18 and -0.45 ± 0.26, respectively. The fact that the most relevant flexor muscles

Fig 4. Psycho-metric vs Muscle-metric Parameters Similarity.Concordance between the shape of the
psycho and muscle metric curves as well as between thresholds. Each bar shows the across subjects
averaged difference values (perceptual—muscular) between the psychometric and muscle-metric datasets
with 95% confidence intervals (CI). Zero difference values (horizontal dashed line) indicates a perfect match
between psychometric and muscle-metric curves as well as relative thresholds. PSE difference below zero
indicates that muscles tended to have higher thresholds than perceptual ones. Curve parameters difference
mean value and CIs were averaged across 9 subjects (those with R2 merged > 0.5 and R2 psy� 0.6, Tables
1 and 2). PSE differences were averaged across 11 subjects (R2 merged > 0.5, values in bold Table 2) whose
thresholds and CIs were calculated by considering PSE values from reversals when R2 psywas lower than
0.6.

doi:10.1371/journal.pone.0152552.g004
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were associated with both shoulder and elbow joints suggests a similar contribution of muscle
torques at both joints in the unloading force detection task. On the other hand, elbow and
shoulder extensor muscles appeared to be less relevant (0.31 ± 0.22 and 0.42 ± 0.18 for Tric,
long head, and LatD, respectively), but once again with a contribution at both shoulder and
elbow joints. DeltP was the unique muscle showing an ambiguous modulation, across subjects,
with both joint flexor and extensor activity (SD centered in zero). For some participants the
external force changes had no effect on BrRad and DeltA activity. Overall, participants
appeared to modulate to a similar extent both elbow and shoulder muscle torque in response
to the external upward force, with a greater extent of modulation of flexor muscles than exten-
sor muscles.

Inter-individual differences
As it can be noticed from Table 1, the psychophysical PSE values we considered (values
reported in bold in the first and last rows of the table) cover a wide range of values across sub-
jects, from 0.1 N to 18.8 N. In practice, subjects perceived the lowest detectable upward force
on their arm (i.e., PSE) at widely different stimulus intensities. This finding suggests that par-
ticipants may have used different strategies to judge the external forces and make a perceptual
decision. The three plots depicted in Fig 6 describe the outcome of our analysis aimed to inves-
tigate the variables that mainly correlated with the inter-individual differences in psychophysi-
cal sensitivity. In general, we found a highly significant correlation between the inter-subjects
variability in the PSEs and the variability of the total (net) and residual elbow flexion torques, r:
-0.77 (n = 7, p = 0.04) and r: -0.99 (n = 7, p = 0.00), respectively. Correlation values measured
between individual PSEs and participants’ shoulder flexion residual torques (not illustrated)
were similar to those observed with elbow torques (n = 7, r: -0.98, p = 0.00), however the differ-
ences among subjects’ PSEs poorly correlated with their net shoulder torques (n = 7, r: -0.43,
p = 0.37) and resulted not statistically significant.

Flexion joint torques vs psycho-metric PSEs. As shown in Fig 6A, the reduction of elbow
joint residual torque (median ± SE), as well as for the not illustrated shoulder torque, highly
correlates with the decrease of the individual PSE. In particular, among the participants for
whom joint torques were computed, those who showed the lowest PSE values were also those

Fig 5. W coefficients per eachmuscle.Meanw coefficients for each muscle ± SD across subjects.
Coefficient values represent an estimate of the sensitivity of each muscle to be modulated by the changes in
the external forces. Positive values correspond to joint extensor modulations in response to changes in the
upward external force. Negative coefficients quantified the correspondence between joint flexor muscles and
external force changes.

doi:10.1371/journal.pone.0152552.g005
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who presented the flexion residual torques closest to zero (gray circles, subjects 8, 5 and 4, Fig
6A). In other words, it seems that these subjects judged the intensity of the external forces with-
out taking into account the muscular gravitational torque necessary to sustain the arm against
gravity but interpreting the lowest upward external force as that one implying the lowest, null,
residual elbow flexion torque. Interestingly, other participants reported the upward external
forces to be at minimum level (i.e., PSE) although the actual upward force applied on the arm
did not imply a null contribution of the residual torque to the total elbow exerted moment
(gray circles subjects 1 and 3, Fig 6A). Indeed Fig 6A shows that the subjects with high PSE val-
ues presented the net total torques closest to zero (black circles, subjects 1and 3). Therefore
these subjects appear to take into account also the gravitational torque acting on their arm to
detect the minimum intensity of the external upward force. Indeed these measures lead to
hypothesize that the strategy of this latter group of participants was to judge the upward exter-
nal force in terms of its facilitation to compensate the effects of gravity acting on arm (i.e., low-
est upward force� lowest net torque). Interestingly, Fig 6A also shows that apart from these
two distinct perceptual behaviors, some other subjects reported the upward external forces to
be at lowest level even if neither total nor residual torques were approaching zero (e.g., subject
10). For these subjects, an intermediate strategy, where both gravitational and total torques are
taken into account, seems to have been used. We will further address this observation in the
Discussion section.

Overall muscular activity vs psycho-metric PSEs. The direct relation observed in most of
the subjects (having R2 merged> 0.5) between the individual overall muscular activity and the
psychophysical PSEs gives further supports to the hypothesis of different participants’ strate-
gies. The individual median ± S.E. of the overall muscular activity shown in Fig 6B was
extracted by summing all muscles normMAV together per each trial, where the sign of each
channel normMAV was defined by the sign of the coefficient ‘w’ used in Eq 1. Since it does not
consider the absolute values of w, this measure describes the global arm muscular activity
regardless of the different amount of relation between each muscle and the external forces.
Thus, as above negative and positive values represent upward (flexor) and downward (exten-
sor) muscles activity, respectively. In Fig 6B it can be noticed that the PSE values of 9 out of 11

Fig 6. Individual psychometric thresholds as function of individual elbow joint torques, overall
muscular activity andmuscle-metric PSE. A) Individual median (± S.E.) of net (black) and residual (gray)
elbow flexion torques as function of individual psychophysical PSE (± S.E.) of those subjects that respected
goodness of fit criteria and joint torques were extracted. Residual torque values were obtained by removing
the gravitational component from the total net torque. Negative torques indicate downward resultant joint
torque. Positive values represent resultant upward joint torques. Continuous lines and r values are the best
fitting regression line and the resultant Pearson correlation through the data points, respectively.B) PSE
values as function of individual overall muscular activity calculated by extracting the median of the sum of the
normalized MAV value among muscles at each trial for all subjects showing R² merged > 0.5. Negative values
indicate main flexor overall muscular activity, while positive represent overall extensor activity. Pearson
correlation and best fitting regression line were extracted excluding subject 12 and 13.C) Correlation among
individual psychophysical PSE (± S.E.) and PSE (± S.E.) extracted frommuscle-metric curve (same data as
in Fig 4). In all plots, r values represent statistically significant Pearson correlation (p< 0.05).

doi:10.1371/journal.pone.0152552.g006
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subjects increase as the overall muscular activity approaches zero (n = 9, r: 0.72, p = 0.03). In
fact, those subjects showing the highest PSEs are those presenting the overall activity closest to
zero, while those showing the lowest PSEs values have highest negative -flexor—activity. More-
over the across subjects overall decrease of muscles flexion activity—i.e., overall muscular activ-
ity approaching zero- is in agreement with the correlation depicted in Fig 6A between the
flexion torques and psychophysical PSEs. In fact, the more participants exploited the external
upward force to facilitate their muscular gravitational torques (i.e., higher PSE), the less the
overall muscular activity was characterized by flexors muscles (i.e., less negative values, low net
torque). Conversely, the amount of muscular flexion torque increased as much as subjects did
not consider the modulation of the gravitational component as a variable to judge the external
upward force (i.e., lower PSE, higher negative overall muscular values and low residual torque).
Nevertheless, it ought to be noted that 2 participants’ overall muscular activity—i.e., subject 12
and 13- did not follow the same trend observed in all other subjects. A possible explanation of
this finding might be that those subjects mostly relied on other extensor muscles different from
those recorded in this study (e.g., Pectoralis). In fact, in these cases the overall muscular activity
remained high despite of the high PSE probably because the summed amount of extensor activ-
ity (positive values) would poorly influence the global muscular activation that was mainly
described by the flexors (negative). As a whole, the relation between the measures of the global
muscular activity and the PSE variability lead to hypothesize that the different strategies used
by participants mostly relied on the different interpretation of the combination between the
external upward force and the muscular gravitational torque needed to complete the task.

Muscle-metric PSEs vs psycho-metric PSEs. Fig 6C depicts individual psychometric
thresholds as function of the thresholds extracted by the muscle-metric curves. The figure
clearly shows that the inter-subjects differences (± S.E.) in psychophysical sensitivity are fairly
well predicted by muscle sensitivity (± S.E.). Indeed, the direct relation between the two data
sets (same subjects as in Fig 6B) produced a statistically significant Pearson correlation (n = 11,
r: 0.97, p = 0.00). Interestingly the concordance between psycho and muscle metric PSEs was
also found for those subjects whose overall muscular activity did not follow other subjects’
trend (subject 12 and 13 in Fig 6B). This latter observation leads to claim that the steps taken to
compute the muscle-metric curve, such as by taking into account the relation of each muscle
with the external forces (i.e., |w| coefficient) and by considering the whole distribution of the
poolEMG activity (i.e., p(PoolEMG> criterion)), might compensate for the consideration of
those muscles that were no relevant to the perceptual task. As a whole the consistent ordinal
relationship between muscular and psychophysical thresholds for 78% of our sample supports
the hypothesis that force detection required in our task were mostly driven by the corticospinal
motor commands sent to produce specific joint-muscular torques to both compensate gravity
and counteract the external force.

Simulations
Best model of muscular pattern. The statistics performed on each muscular nested model

(data across subjects) aimed to identify the muscular pattern that best accounted for the Poo-
lEMG variance (R2 PoolEMG) and presented a BaIC value closest to zero (see Figure C in S1
Text). As expected, the average across subjects normalized delta BaIC values showed a reduc-
tion as a function of the increased simplicity of each nested model. Indeed the normalized delta
BaIC closest to zero involved three, two and one muscles as predictors (norm delta BaIC val-
ues = 0.08, 0.04, 0.0 respectively). In particular, only the model composed by three muscles (see
paragraph 1.7 in S1 Text for the muscles with highest probabilities to compose this model) pro-
vided an explanation of the total variance of the PoolEMG higher than 95% (median across
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subjects R2 PoolEMG = 0.97 ± 0.03, Lower graph Figure C in S1 Text), whereas the nested mod-
els with two and one predictor presented a R2 PoolEMG of 0.92 ± 0.04 and 0.85 ± 0.09, respec-
tively. Therefore, we selected the three term nested model (i.e., BEST) as the one providing a
lower level of complexity than the general model with eight predictors and, at the same time,
accounting for more than the 95% of the global arm muscular activity variance.

Nested muscular models accounting for psychophysical performance. The main plot
and the inset graph of Fig 7 depict the whole distributions and the median ± SE of the R2 values
quantifying the explained variance of the muscle-metric curve in accounting for the probability
of upward force detection (same subjects as in Fig 4 merged together). Although the R2 associ-
ated to our best three terms muscular model was not statistically different from all other values
(no parametric Kruskal–Wallis Anova Test, χ2 = 2, dof = 64, p = 0.96), it presented the higher
coefficient of determination (3 n. of predictors in Fig 7). Conversely, the lowest and more vari-
able R2 value was obtained with the output of the simplest, least, nested model (1 n. of predic-
tors in Fig 7). Specifically, the explained variance of the perceptual performance accounted by
all models ranged from 0.51 ± 0.20 to 0.62 ± 0.07, having the 1 term and 3 terms nested model
the lowest and the highest predictive power, respectively. From the curves presented in Fig 7
we also extracted the likelihood of each model to provide a specific coefficient of determination
(triangles, squares and circles in Fig 7). Likelihood values provide a clear idea of which model
will more likely account for psychophysical performance with a coefficient of determination of
0.6, 0.7, 0.8. To test any differences among the likelihood of providing a specific R2, a Kruskal-
Wallis non-parametric test with Tukey’s post-hoc comparisons was submitted on all models
likelihoods, grouped for the three R2 target. No statistical differences between the likelihood of
providing an R2 of 0.6 and 0.7 (p> 0.5) was found. Conversely the models likelihood of a R2

Fig 7. Probability density function ofR2 values per each nested model. Each curve illustrates the
distribution of R2 measures given each nested model’s number of predictors. R2 values quantify to what
extent the muscle-metric curve, obtained from each nested model output, is able to account for
psychophysical decisions. Triangles, squares and circles as well as dashed, continuous and dotted lines
indicate the probability (i.e., Likelihood) of each model to provide predictions about the psychophysical
decision with a coefficient of determination of 0.6, 0.7 and 0.8, respectively. R² distributions were obtained by
merging together the simulation outcomes of the same 9 subjects considered in Fig 4. Inset graph depicts
across subjects median and SE of R2 values from bootstrap resampling, obtained by calculating the
explained variance of the muscle-metric curve in accounting for the probability of upward force detection. The
model with 8 predictors (i.e., EXP) represents the empirical data.

doi:10.1371/journal.pone.0152552.g007
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equal to 0.8 was significantly lower than that of providing the two previous coefficient of deter-
minations (see also Figure D and paragraph 1.6 in S1 Text).

Reliability of muscle vs psycho–metric curves concordance. In agreement with the
neuro-metric literature, we quantified the similarity between the muscle-metric and the psycho-
metric functions by calculating a ratio for both the absolute thresholds and the shape of the
curves (i.e., slope) obtained by the two metrics, where the greater is the concordance between
the two curves, the closer the ratio will be to unity. Fig 8 depicts PSE and slope ratios obtained
by merging the thresholds and the slopes of 11 and 9 subjects (same subjects as in Fig 4), respec-
tively. In both graphs, the three boxplots represent the absolute thresholds and the shape of the
curves obtained by bootstrapping the psychometric and muscle-metric data from the real exper-
iment (EXP, eight terms muscular model), the best nested muscular model (BEST, three terms
nested model) and the least muscular model composed by only one muscle (LEAST). As it can
be noticed in the upper graph, the PSEs extracted from both the experimental and the best

Fig 8. Threshold and slope ratios (muscle/behavior) of experimental data and two simulated models.
Upper graph shows the ratio between the psychophysical threshold and the muscle-metric PSE from the
empirical muscular model with 8 predictors (EXP), the simplest and reliable model selected with 3 predictors
(BEST) and the model with just one predictors (LEAST). Data samples were obtained by merging 11 subjects
(same as in Fig 4) PSEs frommuscle and psycho -metric measures calculated across bootstrap procedure.
Lower graph depicts the ratio between the slopes of the two metrics curves for the three muscular models
mentioned above. Data samples were obtained by merging 9 subjects (same as in Fig 4) slopes muscle and
psycho -metric measures calculated across bootstrap procedure. In each graphs gray lines indicate the
medians of the ratio sample (50° percentile). Boxes represent data between the 25°, Q1, and 75°, Q3,
percentile of the whole sample. Upper and lower whiskers size were calculated considering the values
extracted from Q3 + 1.5 * (Q3-Q1) and Q3–1.5 * (Q3-Q1), respectively.

doi:10.1371/journal.pone.0152552.g008
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nested muscular model show a similar good concordance with the psychophysical thresholds in
terms of PSE ratio median (0.972 and 0.975 for EXP and BEST, respectively), inter-quantiles dif-
ference (0.39 and 0.38) as well as upper (1.89 and 1.86) and lower (0.31 and 0.35) bounds.
Instead the LEAST muscular model provided a slight reduction in the PSE ratio median (0.92)
and a relevant increase in both the inter-quantiles difference (0.67) and the upper lower bounds
(2.48 and -0.2, respectively). Overall, the PSE ratios suggest that the muscle metric curves
obtained from the experimental and the best nested model provided a reliable concordance with
the psychometric curve. Moreover in the boxplots of all PSE ratios the higher distance of the
median from the third quartile indicates a tendency of the muscles to provide an absolute
thresholds higher than the psychophysical ones (i.e., positive ratio). Likewise the PSE ratio, EXP
and BEST models yielded a very similar slope ratio distribution. Again, in this case the median
of the ratio approximated unity (0.97 and 1 for EXP and BEST, respectively), but it presented an
increase of the inter-quantile difference (1.41 and 1.43) and the upper (3.93 and 4.00) and lower
bounds (-0.04 and 0.01). On the contrary, LEAST nested model presented lower dispersion in
the distribution of its slope ratios but with a relevant reduction in the median (0.59). In sum, the
differences found in the slope ratio distributions indicate again a better muscle-perception con-
cordance between the muscle metric curves obtained with either all eight or the three, most rele-
vant, muscles. However the high dispersion of the data indicates a relevant difference between
the variability of the muscles versus the psycho-metric curves. In particular the consistent pres-
ence of above unity slope ratios suggests higher variability (i.e., lower precision) in the percep-
tual decisions rather than in muscular estimates.

Discussion
Participants were asked to detect the presence of an upward force applied on their arm while
the EMG activity of 8 upper limb muscles was simultaneously recorded. By modeling the EMG
changes with respect to the forces applied on their arm, we were able, for first time, to provide
a quantitative description of the muscular activity (“muscle-metric curve”) that was directly
comparable to the description of the psychophysical judgments described by the psychometric
function. At least to the best of our knowledge, a representation of the mean EMG activity that
captures their trial-by-trial modulation associated with the trial-by-trial psychophysical judg-
ments has not been published yet. In their pioneering study, Sanes and Shadmher [11,12]
examined the relationship between the changes in the activity of wrist flexor/extensor muscles
and the associated psychophysical decisions during a uni-manual postural maintenance task.
These authors showed the predictive capability of the muscles by identifying the proportions of
trials in which a perceived increase of the stimulus force was accompanied by a change in EMG
activity that exceeded a given threshold (i.e., half of the average difference of the activity pro-
duced during two consecutive constant flexor loads). The authors argued in favor of the idea of
alternate, efferent/afferent signals dependent mechanisms for the sense of muscular effort by
reporting both similarity and differences in the concordance/discordance index measured on
de-afferented patients and controls. However, they did not provide any metrics to compare
muscular with psychophysical performances in terms of precision and accuracy.

Here we showed that the changes of the pattern of muscular activity described by the mus-
cle-metric curves could predict relatively well both the shape (precision) and the absolute posi-
tion (accuracy) of the psychometric functions (Figs 4 and 8). Indeed, for 78% of our whole
sample of subjects, a single function fitting both muscular and psychophysical performance
was not statistically different from the function describing the psychophysical behavior alone.
Our findings indicate, on the one hand, a strong correspondence between muscular activity
and the final perceptual decision about force. Indeed the fact that muscle-metric curves were
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able to explain the wide differences observed in the individual perceptual thresholds suggests
that the motor output drives the perception of force, perhaps to a greater extent than does the
sensory input. On the other hand, by showing that a measure of motor output, such as electro-
myography, is able to describe fairly well psychophysical performances provides insights into
the neural processes underpinning force perception. In the following paragraphs we separately
address these two issues.

Central contribution to force detection or biomechanical
epiphenomenon?
In the present study the required psychophysical task entailed a direct relation between the
forces applied and subject’s arm biomechanical behavior. In fact, subjects, to maintain arm
posture, were constrained to modulate their muscular activity in accordance to the different
upward forces applied. Since the aim of the study was to investigate the muscle-perception
comparisons, in accordance with neuro-metric approach, it was crucial that the performance
of the muscles was considered under the same constraints as the perceptual behavior [25].
Here we gave evidence that the processes of perceptual decisions about a force applied on arm
might be partially explained by the CNS interpretation of the descending motor command
involved in interacting with that force.

However, our findings might be also reasonably interpreted as an epiphenomenon emerging
from the strong relation between the forces applied on arm and the biomechanical behavior
they elicited to maintain the posture. If this pure biomechanical explanation hypothesis of our
findings were correct, our results would show: 1) that participants interacting with similar PSE
forces were constrained by the protocol to modulate their muscular activity in a similar fashion
and 2) that since p(PoolEMG> criterion) is assumed to be driven by the distribution of the
applied forces, that is modulated with respect to subject’s answers (adaptive staircase method),
the resultant muscle-metric curve has to be highly predictive about the probabilities of the per-
ceptual decision p(‘YES’).

Apropos of point 1, if we assume that subjects’ biomechanical behavior was exclusively
bound up with the upward force applied, we might expect similar muscular behavior (e.g.,
flexor and extensor w coefficients) for subjects interacting with similar external forces (e.g.,
PSE), arm posture being negligible different among subjects. On the contrary, inspections of
the w coefficients distribution and Flex/Ext ratio of those three pairs of subjects with the most
similar PSE values (Subj. 10, 2; Subj. 11, 12; Subj. 4, 5) show that it was not the case (Fig 9). In
fact, both relative coefficients distribution and absolute Flex/Ext ratios were observed to be
largely different despite of the very similar applied force (PSE), confuting the hypothesis that
participants' muscular activity were just a direct consequence of the applied force. Moreover,
the Flex/Ext ratios coefficients of all subjects do not show a significant correlation with respect
to PSE individual values (r = -0.31, p = 0.27), indicating a not stable relationship between force
applied (PSE) modulation and the pattern of muscular activity. Furthermore if the correlation
we observed between perceptual decisions and muscular activity modulations was just protocol
dependent, such a correlation should appear very high (or at least statistically significant) for
each participants. On the contrary, as reported earlier, this was not the case for three subjects
(subj.6, 7 and 9). Similarly, if arm muscular activity per se were constrained by the protocol to
correlate with force modulation (perceptual decision), the correlation values in Fig 6B (i.e.,
individual PSE as function of Overall Muscular Activity) should be higher and more similar to
that one describing the relation between psycho-metric and muscle-metric individual absolute
thresholds (Fig 6C). Taken together these inspections support the hypothesis that despite of
the relationship implied in our task between the variables considered, there is not an univocal
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correlation between the applied force and the modulation of the muscular activity supporting a
pure biomechanical hypothesis. Instead we suggest that due to the high level of redundancy of
the muscle-skeletal system, participants were able to complete the task with different (across
subjects and trials) level of muscles co-activation that contributed partially to take the percep-
tual decision and consequently to drive the overall applied force distribution.

With regards to the second point, the biomechanical explanation hypothesis entails a high
correspondences between p(‘YES’) and p(‘PoolEMG> criterion). Therefore, the attempt to
predict p(‘YES’) by means of the muscle-metric curve would result in a very high goodness of
fit for each subject. On the contrary our results do not fulfill completely these expectations. In
fact we have shown through bootstrap simulations that subjects’muscle-metric curves could
not completely account for the perceptual decision variance but it explained at most around
60% (Fig 7). Likewise, we observed a larger and more asymmetric variance (above unity ratio)
for slope ratio than the PSEs (Fig 8). This means that while comparing the two curves describ-
ing the muscles and perceptual decisions, they coincide fairly well in the absolute threshold
whereas the psychophysical behavior is more variable than the muscular ones. Thus, if the
muscle metric curve built on p(PoolEMG> criterion) would be just the description of a pure
consequence of the force applied modulation, that in turn depends on the perceptual decision,
the variance of the slope ratio between the two curves should be similar to the PSE ratio vari-
ance and symmetric around the slope ratio median. The lack of such an observation gives a
clear indication that the muscle-metric curve could describe only partially the perceptual deci-
sion of our subjects, better in terms of its absolute threshold than in terms of its overall variabil-
ity (i.e., precision).

As a whole we deem all our findings to be consistent proofs of the contribution of central
signals in the sensation of force rather than an emerging, protocol dependent, effect.

Fig 9. Individual distribution of muscularw coefficients and flexor/extensor ratio for pair of subjects
with similar PSE. Each bar represents the w coefficient associated for each muscle. Coefficient value
represent an estimate of the sensitivity of each muscle to be modulated by the changes in the external forces.
Positive values correspond to joint extensor modulations in response to changes in the upward external
force. Negative coefficients quantified the correspondence between joint flexor muscles and external force
changes. Flex/Ext w coefficients ratio is a measure of the absolute relation between flexor and extensor joint
muscles.

doi:10.1371/journal.pone.0152552.g009
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Muscular vs perceptual individual variability
We observed a wide variability among subjects sensitivity in detecting an upward force on the
arm. Importantly, we showed that the inter-subject difference in psychophysical sensitivity was
accurately predicted by the muscle-metric curves (Fig 6C). Moreover, we found that the indi-
vidual PSEs variability correlated, for most of our subjects, with the variability of both individ-
ual joints torques and overall muscular activity (Fig 6A and 6B). This observation led us to
hypothesize that the observed differences in the inter-subject perceptual performances is
mainly linked with those processes of the perceptual decision involving the motor components
of our perceptual task, rather than with ascending signals (e.g., cutaneous pressure on arm pro-
duced by the upward force). In fact, our subjects while judging the external force had to actively
compensate gravity and counteract the upward force at the same time. Such a motor activity
might have diminished (or “gated”) the perception of cutaneous stimuli by suppressing the
transmission of afferent input (a process also called “re-afference”, [37]), as previously sug-
gested by [38] for passive and active touch. Based on this assumption, in this study the force
actively exerted by the arm was interpreted as a direct predictor of the final perception. We
argue that because the muscular torque variables upon which the perceptual decision may
hinge must counter two opposite forces acting on the arm (i.e., gravity and upward forces),
their decoding by the CNS could be ambiguous and it could determine differences in detecting
the lowest upward net force. Our findings support this interpretation by showing that in two
cases PSE intensity were associated by either the residual or the net joint torque close to zero
(Fig 6A), whereas in all the other cases this relation was not held. However it ought to be said
that our conclusions drawn from the correlation observed between the elbow joint torques and
subjective PSE have to be considered with caution. Since these variables are linked by a bio-
mechanical constrain (i.e., the upward force applied have both a perceptual -PSE- and a
dynamic -joint moment- correlate) the evidence of their correlation does not have an unique
interpretation. Indeed the same correlation may be plausibly due to alternative decision-related
explanations such as, for instance, subjective tendency to be more or less conservative to pro-
vide a positive answer, resulting in either a high or low PSE value respectively.

With regards to the muscular activity, during the perceptual task, the across subjects flexor
muscles appeared to be more relevant than the extensors (Fig 5), the former being more
strongly related with joint gravitational torque [39]. In fact, our participants tended to interact
with the upward, anti-gravitational, forces more modulating the activity of the agonist flexor
muscles rather than the antagonists involved to counteract the external force (i.e., extensors).
Furthermore the muscles with the higher probability to compose the most predictive nested
model (3 terms) were elbow and shoulder flexors (i.e., Bic and TrapU, see paragraph 1.7 in S1
Text), indicating that the muscles more related with the perceptual performance predictions
were those ones likely involved in the compensation of the effects of gravity on the arm. It has
been previously shown that gravity-related muscular effort is a good candidate to account for
biases in haptic perception [40]. Similarly, a bulk of studies reported that judgments about
force (i.e., weight and mass) are affected by changes in the gravitational torques acting on arm,
as shown by microgravity experiments [1,2,41,42,43]. Also in everyday life, it is commonly
experienced that, unless fatigued, moving and supporting our body in relation to gravity seem
effortless and the muscular contraction involved to compensate gravity it is not constantly per-
ceived [44]. Thus, we hypothesize that the participants’modulation of gravity compensation
entailed in our task might have influenced their judgments about the applied upward forces. In
this respect, Sakajiri et al. [45] reported a perceptual bias while measuring the sensitivity to
steering force exerted against or with gravity. As evidence of the biased interpretation of the
gravity-related muscular effort, the authors observed a constant overestimation of the force
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exerted only for movements against gravity, since these entailed a supplemental muscle activity
necessary to support the arm. Also, Lipshits et al. [46] cited in [47] asked participants to match
a perceived downward force applied on the hand with an active upward hand torque. Although
subjects performed the task remarkably well on Earth, when the same task was performed in
microgravity conditions, they showed a consistent overestimation of the upward directed force,
relative to an equivalent downward force. The authors interpreted higher upward forces as the
result of CNS erroneous consideration of the gravitational torque acting on the arm also in 0g
where, instead, it was absent. We suggest that similar effects as those reported above might
explain the inter-individual differences observed here, where participants had to combine
external with self-generated upward, anti-gravitational forces to maintain posture and judge
the net force applied on their arm. Indeed we propose that the effects of gravity compensation
observed in the present study can be associated with the concept of “voluntary negative motor
command” used to explain involuntary contraction after-effects such as Kohnstamm’s
manoeuvre (e.g., perception of arm lightness after deltoid long-lasting contraction) [48].
Within this neurophysiological framework the involuntary contraction—i.e., in our case self-
generated gravity compensation—is inhibited by switching off the agonist muscles—i.e., flex-
ors—that generate the involuntary action rather than by modulating the opposing antagonists.
Interestingly, it has been speculated that both voluntary inhibition of involuntary actions (‘neg-
ative motor command’) and the drive of the involuntary action may converge in the motor cor-
tex (as basal ganglia output, [49]), where the former does contribute an efference copy
(providing conscious awareness) while the latter does not [48]. Therefore, similarly to the
Kohnstamm’s phenomenon, we hypothesize that for some of our subjects, the sensory conse-
quences of the constant counter gravity muscular activation could not be always accessible and
so not perceived as self-generated but incorrectly attributed to the external upward force. Such
an ambiguity between external and self-induced anti-gravitational force might be the source of
variability we observed while perceiving the lowest level of upward force for some subjects
whose PSE intensity did not coincided with a quasi-zero elbow torque.

Nevertheless, we cannot exclude the contribution of additional factors different from motor
signals, that might have produced the spread of individual sensitivities, such as fatigue, fluctua-
tions of attention and differences in decision criterion. Although only a carefully trial-by-trial
analysis of the psychophysical behavior would permit to address this issue, the correlation
found between individual psychophysical variability and individual motor activity lead to
assign a lower contribution to other factors for the definition of the final perceptual perfor-
mance. Further experiments are necessary to deeply investigate the weighting process of
descending and ascending signals—as well as the influence of higher order cognitive processes-
that central nervous system may carry out during force perception.

Mapping muscle activity to force detection
The concordance between muscular and perceptual performance we observed is in agreement
with the large body of works supporting the hypothesis that force perception is mediated by
internal recognition of the descending motor command generating the muscular activity (i.e.,
sense of muscular effort). These studies involved force detection and discrimination protocols
where motor output [2,7,8,13,14,17], afferent signals [11,12,15,16] and environmental condi-
tions were manipulated [1,4,43,44,45,46,47]. In most of these investigations, authors used the
muscular contraction of the contralateral limb where the stimulus force was applied as a mea-
sure of the perceived force (i.e., contralateral limb matching methods [16]). In the present
study we showed that the analysis of the muscular activity associated to active force perception
is an efficient and reliable predictor of the final perceptual decision.
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Previous studies where arm EMG changes were recorded during motor task in both isomet-
ric and unconstrained conditions, have interpreted the increases or decreases in the magnitude
of EMG traces as evidence of the changes in neural output [20,24,50,51,52]. On the other hand
a bulk of works have been carried out to investigate the possible relation between perceptual
decisions and sensory-driven changes in neural activity ([53] for a review). In accordance with
these trends of investigations and with the aim of providing insights into the brain mechanisms
underpinning force perception, in the present work we described the perceptual decision about
force by modelling the changes in muscular activity interpreted as changes in α-motoneuron
output. Indeed, the changes observed in the PoolEmg and the trend of the upward forces corre-
lated significantly for 85% of our subjects. For this group of participants we showed that their
global arm muscular activity is able to explain around 60% of the total variation of their psy-
chophysical performance, being this a measure of the contribution of the central processes
involved in our detection task. Interestingly such a muscular predictive power appeared to be
relatively stable across different muscle pooling (nested models) where the number of predic-
tive muscles were reduced (Figs 7 and 8). The outcomes of our simulations suggest that, in our
task, muscles were efficiently co-activated to maximize relevant information about the external
force. Further investigations are needed to explore what pattern of muscles synergies, among
subjects, provide highest predictive power about force perception.

We showed that 2 out of 14 subjects presented a very low muscle-psychophysics concor-
dance. A possible explanation can be that those participants, while detecting upward forces,
mostly modulated other muscles with vertical pulling directions—such as Pectoralis Major and
Lateral Deltoid—that were not recorded and that probably described their global muscular
activity at best.

To a neuro-metric framework, the level of similarity that we observed between muscles
(interpreted as neural output) and subjects performance is in accordance with previous works
linking the sensitivity of cortical neurons with animals visual perception in discrimination and
detection task [54,55,56,57]. These authors summarized the relationship between neural and
behavioral sensitivity by computing the ratio of neural/psychophysical thresholds. The
reported geometrical means of the threshold ratios they observed, ranged from 0.87 to 1.51
[56]. On the other hand the similarity in precision was expressed as slope ratio whose geomet-
rical means ranged from 0.99 to 1.16. Comparable slope and threshold ratio were found in the
present study between the muscles and behavior. In fact the median across subjects of the
threshold ratios geometric mean, ranged from 0.94 to 0.97 for all nested models while the
range of median values of slope ratios was 0.73 to 1.3. Specifically the consistent presence of
above unity slope ratios (Fig 8) values indicates a relevant difference between the variability of
the muscles versus the psychophysical performance, with higher variation for the latter. The
resultant reduced precision observed for perceptual decisions is not surprising given its higher
level of elaboration with respect to muscles activation.

Finally from a neurophysiological point of view, previous studies using TMS were carried
out to assess the modulations of corticospinal excitability in observer’s motor system during
the observation of lifting objects with different weights. In particular, some of these studies
demonstrated that neurons in M1 are able to simulate observed weight-lifting actions in terms
of detailed motor process [58,59]. More interestingly, Alaerts et al. [19] who used TMS pertur-
bation while subjects observed two different lifting actions, was able to show that M1 can
encode the muscle requirements for the lifting action not only in terms of muscle involved but
even in the terms of force that is produced by the particular muscles. Moreover, these authors,
that did not observed statistical differences in corticospinal excitability when the observed
actions involved small change in the force exerted, suggested that M1 force encoding is
expected to be more accurate during the actual execution and when relatively larger forces
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(> 2kg) were applied [19]. Since these suggested conditions characterized our task, we believe
that our quantification of the predictive power of the EMGmodulations about the psychophys-
ical performances might be linked with the corticospinal signals characterizing quasi-isometric
force perception.
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