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Direct numerical simulations of Taylor–Couette flow, i.e. the flow between two coaxial
and independently rotating cylinders, were performed. Shear Reynolds numbers of
up to 3 × 105, corresponding to Taylor numbers of Ta = 4.6 × 1010, were reached.
Effective scaling laws for the torque are presented. The transition to the ultimate
regime, in which asymptotic scaling laws (with logarithmic corrections) for the
torque are expected to hold up to arbitrarily high driving, is analysed for different
radius ratios, different aspect ratios and different rotation ratios. It is shown that the
transition is approximately independent of the aspect and rotation ratios, but depends
significantly on the radius ratio. We furthermore calculate the local angular velocity
profiles and visualize different flow regimes that depend both on the shearing of the
flow, and the Coriolis force originating from the outer cylinder rotation. Two main
regimes are distinguished, based on the magnitude of the Coriolis force, namely
the co-rotating and weakly counter-rotating regime dominated by Rayleigh-unstable
regions, and the strongly counter-rotating regime where a mixture of Rayleigh-stable
and Rayleigh-unstable regions exist. Furthermore, an analogy between radius ratio and
outer-cylinder rotation is revealed, namely that smaller gaps behave like a wider gap
with co-rotating cylinders, and that wider gaps behave like smaller gaps with weakly
counter-rotating cylinders. Finally, the effect of the aspect ratio on the effective torque
versus Taylor number scaling is analysed and it is shown that different branches of
the torque-versus-Taylor relationships associated to different aspect ratios are found to
cross within 15 % of the Reynolds number associated to the transition to the ultimate
regime. The paper culminates in phase diagram in the inner versus outer Reynolds
number parameter space and in the Taylor versus inverse Rossby number parameter
space, which can be seen as the extension of the Andereck et al. (J. Fluid Mech.,
vol. 164, 1986, pp. 155–183) phase diagram towards the ultimate regime.
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2 R. Ostilla-Mónico and others

1. Introduction
Taylor–Couette (TC) flow, i.e. the flow between two independently rotating

concentric cylinders, has long been used as a model system in fluid dynamics. Couette
(1890) was the first to investigate it, and he pioneered its usage as a viscometer. But
it was Mallock (1896) who, by rotating the inner cylinder, and not the outer as
Couette had done, found the first indications of turbulence in the system. Taylor
(1923, 1936) further studied the system, finding that it was linearly unstable, unlike
pipe-flow and other systems studied previously. Wendt (1933) expanded the study of
the turbulent regime, measuring torques and velocities in the system. Since then, and
due to its simplicity, TC flow has been used as a model system for studying shear
flows. For a broader historical context, we refer the reader to Donnelly (1991).

Recently, a mathematically exact analogy between TC flow and Rayleigh–Bénard
flow (RB), i.e. the convective flow between two parallel plates heated from below and
cooled from above was found by Eckhardt, Grossmann & Lohse (2007) (here referred
to as EGL07). Within this context, TC flow can be viewed as a convective flow, driven
by the shear between both cylinders where angular velocity is transported from the
inner to the outer cylinder. As explained by Grossmann, Lohse & Sun (2014), as long
as the driving of the system is small, the transport is limited by the laminar boundary
layers. But if the driving becomes strong enough the boundary layers become turbulent
and the system enters the so-called ‘ultimate’ regime. The study of the transition
to this regime, expected to be also present in RB flow, has attracted recent interest,
as most applications of TC flow and RB flow in geophysics and astrophysics are
expected to be in this ultimate regime.

For RB flow, the transition to an ultimate regime was first qualitatively predicted
by Kraichnan (1962), and later quantitatively by Grossmann & Lohse (2000, 2001,
2011) and then experimentally found by He et al. (2012a,b), Ahlers et al. (2012),
Roche et al. (2010). It lies outside the present reach of direct numerical simulation
(DNS). The analogous boundary layer transition to an ultimate regime in TC flow
was first found in the experiments by Lathrop, Fineberg & Swinney (1992a,b) and
analysed more precisely by Lewis & Swinney (1999), even though earlier work
by Wendt (1933) already showed some transition in the torque scaling around the
same Reynolds number. The transition was not related to the transition to the ultimate
regime until later (van Gils et al. 2011; Paoletti & Lathrop 2011; Huisman et al. 2012;
Grossmann et al. 2014). In DNS, it was observed for the first time by Ostilla-Mónico
et al. (2014b).

In TC flow this transition is easier to achieve as the mechanical driving is more
efficient than the thermal one, and thus the frictional Reynolds numbers in the
boundary layer are much larger. By using the analogy between both systems, better
understanding of the transition in TC flow can thus also lead to new insight in RB
flow, where it is more elusive.

Ostilla-Mónico et al. (2014b) numerically studied the transitions in TC flow for
pure inner cylinder rotation for a radius ratio of η = ri/ro = 0.714, where ro and
ri are the outer and inner radii, respectively, and an aspect ratio Γ = L/(ro − ri) =
2π/3, where L is the axial period in the DNS. In that study, the flow transitions and
boundary-layer dynamics were revealed in the range of Taylor numbers Ta between
104 and 1010), where the Taylor number is defined as

Ta= 1
4σd2(ro + ri)

2(ωi −ωo)
2ν−2, (1.1)

with ωo and ωi the angular velocities of the outer and inner cylinder, respectively,
d = ro − ri the gap width, and ν the kinematic viscosity of the fluid. σ =
[(ro+ ri)/(2

√
riro)]4 can be considered as a geometric quasi-Prandtl number (EGL07).
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Exploring the phase diagram of fully turbulent Taylor–Couette flow 3

We now describe the series of events when increasing Ta. For small enough Ta, the
flow is in the purely azimuthal, laminar, state. When the system is driven beyond a
critical driving, one passes the onset of instability and the purely azimuthal, laminar,
flow disappears and large-scale Taylor rolls form. Further increasing of the driving
breaks up these rolls, causing the onset of time-dependence as the system transitions
from the stationary Taylor vortex regime to the modulated Taylor vortex regime and
finally the breakup of these into chaotic turbulent Taylor vortices. These changes of
the flow are reflected in transitions of the local scaling laws for the torque versus
driving, i.e. versus Taylor number Ta. All of this has been studied extensively and
summarized, for example, by Andereck, Dickman & Swinney (1983), Lathrop et al.
(1992a,b) and Lewis & Swinney (1999). The mentioned breakup of the rolls leads to
the existence of a transitional regime, where the large-scale coherent structures still
can be identified when looking at the time-averaged quantities. Looking at the details
of the flow, a mixture of turbulent and laminar boundary layers is present.

In this transitional regime, hairpin vortices, which, in the context of RB flow,
can also be viewed as plumes, are ejected from both inner and outer cylinders, and
these contribute to large-scale bulk structures. These structures in turn cause an axial
pressure gradient, which couples back to the boundary layers, causing plumes to be
ejected there. But this only happens from preferential spots in the boundary layers.
Once the driving is strong enough, the large-scale structures slowly vanish, and the
plumes no longer feel an axial pressure gradient. The boundary layers now become
fully turbulent and the flow transitions to the ‘ultimate’ regime. As the flow enters
the ultimate regime, and the boundary layer become turbulent, a logarithmic signature
in the angular velocity boundary layers is expected, which indeed has been found
experimentally (Huisman et al. 2013) and numerically (Ostilla-Mónico et al. 2014b).

In the ultimate regime, an effective scaling relation between the Nusselt number
Nuω, i.e. the non-dimensional torque Nuω = T/Tpa where T is the torque, and Tpa
the torque in the purely azimuthal state, and the Taylor number Ta is expected, with
an effective scaling exponent which exceeds that for the laminar-type boundary layer
case (Malkus 1954), for which α = 1

3 . That is, in the ultimate regime, we expect
an effective scaling law Nuω ∼ Taα with α > 1

3 . In fact, for that regime, the relation
law Nuω ∼ Ta1/2 with logarithmic corrections was suggested (Kraichnan 1962; Spiegel
1971; Grossmann & Lohse 2011). The logarithmic corrections are quite large, and lead
to an effective scaling law with α ≈ 0.38 for Ta ∼ 1011 (Grossmann & Lohse 2011;
van Gils et al. 2012). We note that this scaling law is analogue to the scaling of the
friction factor with Reynolds number in fully turbulent pipes Prandtl (1933).

For the largest drivings, remnants of the larger rolls, which can be seen as a
large-scale wind, are still observed at even the largest Reynolds numbers studied
numerically (Ostilla-Mónico et al. 2014b), and experimentally, even up to Re ∼ 106

(Huisman et al. 2014). In Ostilla-Mónico et al. (2014b), the remnants of the
large-scale structures played a crucial role in the transition to the ultimate regime.
However, large-scale structures are not present in the whole parameter space of TC
flow. Andereck, Liu & Swinney (1986) showed how rich a variety of different states
exists at low Reynolds number when the outer cylinder is also rotated. Brauckmann
& Eckhardt (2013b) reported that the strength of the large-scale wind was most
pronounced at the position of optimal transport. However, if the outer cylinder is
counter-rotated past the position of optimal transport, bursts arise from the outer
cylinder. The flow is very different outside and inside the neutral surface, which
separates Rayleigh-stable from Rayleigh-unstable regions of the gap, changing
completely the dynamics of the system. The Taylor vortices no longer penetrate
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4 R. Ostilla-Mónico and others

the whole gap, extending thus the unstable region effectively somewhat outside the
neutral surface of laminar-type flow (Ostilla-Mónico et al. 2013).

The geometry of the system can be expected to play an important role in
determining the strength of the large-scale wind, and how the transition takes place.
In the context of understanding the radius-ratio dependence of the transition to the
ultimate regime, Merbold, Brauckmann & Egbers (2013) reported a higher transitional
Reynolds numbers for η = 0.5 than what was seen for η = 0.714 by Ostilla-Mónico
et al. (2014b) and for η = 0.909 by Ravelet, Delfos & Westerweel (2010). Also the
aspect ratio plays a role. Although different vortical states were known to coexist at
low Reynolds number (Benjamin 1978), it was previously thought that if the driving
was sufficiently large, only one branch of the torque versus Taylor number curve
would survive (Lewis & Swinney 1999). Brauckmann & Eckhardt (2013a) found that
the difference in the global response between different vortical states becomes smaller
with increasing Reynolds number. Recently, Martinez-Arias et al. (2014) reported on
the existence of different vortical states associated to different global torques at
a given Taylor number for η = 0.909, and that there is a crossing between those
torque-versus-Ta curves around the transition to the ultimate regime. Furthermore,
Huisman et al. (2014) showed that different vortical states survive up to Reynolds
number of 106, corresponding to Taylor numbers of order 1012. Furthermore, by
combining measurements of global torque and local velocity, Huisman et al. (2014)
found that the optimal transport is connected to the existence of the large-scale
coherent structures at high Taylor numbers.

Therefore, some questions arise which we want to address in the present paper:
How does the transition in the boundary layers take place across the full parameter
space of TC flow? Is the vanishing of the large-scale wind a necessary and/or a
sufficient condition for the boundary-layer transition? Why does the transition occur
later for η= 0.5 than for larger values of η? Finally, what is the effect of the vortical
wavelength and why do different branches of the torque-versus-Taylor-number scaling
curves cross near the transition to the ultimate regime?

2. Explored parameter space
2.1. Control parameters

To answer these questions, DNS of TC flow have been performed across all
dimensions of the parameter space, not only adding outer cylinder rotation, but
also varying both geometrical parameters η and Γ . To do this, the rotating-frame
formulation of Ostilla-Mónico et al. (2013) was used. In that paper, TC flow was
formulated in a frame rotating with the outer cylinder, such that it looks like a system
in which only the inner cylinder is rotating, but with a Coriolis force term, which
represents the original presence of the outer cylinder rotation. The shear driving of
the system is non-dimensionally expressed as a Taylor number, introduced previously:

Ta= 1
4σd2(ro + ri)

2(ωi −ωo)
2ν−2, (2.1)

Ta is the analogue to the Rayleigh number in RB flow, as elaborated in (EGL07). The
outer cylinder rotation reflects in a Coriolis force, characterized by a Rossby number
Ro= |ωo − ωi|ri/(2ωod). The Rossby number or rather Ro−1 is the parameter which
appears in the equations of motion for the fluid:

∂ũ
∂ t̃
+ ũ · ∇̃ũ=−∇̃p̃+ f (η)

Ta1/2
∇̃2ũ− Ro−1ez × ũ, (2.2)
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where f (η)= 1
4σ((1+ η)/η)2, a geometrical parameter. The Rossby number is related

to the frequency ratio µ=ωo/ωi via

Ro−1 = sgn(ωo)

∣∣∣∣ µ

µ− 1

∣∣∣∣ 2(1− η)
η

. (2.3)

Thus fixed Ro−1 means fixed µ and vice versa. Here Ro−1 > 0 describes co-rotation
or ωo > 0, while Ro−1 < 0 means counter-rotation. The radius ratio η is presented by
the geometrical amplitude factor 2(1− η)/η, being small for small gap (η→ 1) and
large for large gap (η→ 0). A resting outer cylinder is described by Ro−1 = 0.

There are also other ways of choosing the control parameters. Classically, they have
been expressed as two non-dimensional Reynolds numbers corresponding to the inner
and outer cylinders: Rei,o = uθi,o · d/ν, where uθi,o are the azimuthal velocities of the
inner and outer cylinders. The classical flow control parameters (Rei, Reo) can be
transformed to the (Ta, Ro−1) parameter space by

Ta= f (η)|Rei − ηReo|2, (2.4)

and
Ro−1 = 2(1− η)Reo

|ηReo − Rei| . (2.5)

Vice versa, we have

Rei =
(

Ta
f (η)

)1/2 (
1+ ηRo−1

2(1− η)
)
, (2.6)

and

Reo = Ro−1Ta1/2

2f (η)1/2(1− η) . (2.7)

The driving can also be expressed as a shear Reynolds number Res =√Ta/σ .

2.2. Numerical scheme
A second-order finite-difference code was used with fractional time integration. The
code was parallelized using hybrid OpenMP and MPI-slab decomposition. Simulations
were run on local clusters and on the supercomputer CURIE (thin nodes) using a
maximum of 8192 cores. Details about the code can be found in Verzicco & Orlandi
(1996) and in Ostilla-Mónico et al. (2013). The explored parameter space from
previous work (Ostilla-Mónico et al. 2013, 2014b) was extended through further
simulations. Figure 1 shows the parameter space explored in this manuscript. Circles
show simulations of a ‘full’ geometry, i.e. a complete cylinder and with Γ = 2π.
Following the work of Brauckmann & Eckhardt (2013a), the simulations with the
largest Ta were performed on ‘reduced’ geometries to reduce computational costs, and
these are indicated as squares in the plots. The idea is that instead of simulating the
whole cylinder, a cylinder wedge with rotational symmetry of order nsym is considered.
The aspect ratio was also reduced to Γ = 2π/3, accommodating a single vortex pair
with the wavelength λz = 2π/3 = 2.09. The vortical wavelength remains the same,
although there is a single vortex instead of the three vortex pairs having also the
wavelength λz = 2π/3. Other vortical wavelengths were also simulated using reduced
geometries for η = 0.909. We note that the aspect ratio Γ is a geometrical control
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FIGURE 1. (Colour online) (a) Explored (Rei, Reo) parameter space for η = 0.714,
λz = 1.04. (b) Same as (a), but now in the (Ta, 1/Ro) parameter space. In both panels
the solid line indicates pure inner cylinder rotation, the dot-dashed line indicates the
Rayleigh stability criterium, while the dashed line indicates the asymptotic position of
optimum transport in experiments, i.e. Ro−1 = −0.20. The Rayleigh-stability line lies
outside the top right panel, at Ro−1= 0.83. These lines divide the parameter space into the
Rayleigh-stable zone, the co-rotating or weakly counter-rotating regime (CWCR) and the
strongly counter-rotating regime (SCR). (c) Explored (Ta, η) parameter space for Ro−1= 0,
λz= 1.04. (d) Explored (Ta, λz) parameter space for Ro−1= 0, η= 0.909. The dashed line
indicates the cross-point of branches with different λz in Martinez-Arias et al. (2014). For
(c,d), the same colour coding is maintained throughout the paper, in the online version.
(a–d) Circles indicate simulations of the ‘full’ geometry, with three vortex pairs, while
squares indicate simulations of ‘reduced’ geometries with forced rotational symmetry and
one vortex pair.

parameter, but λz is a response of the system, which depends both on Γ and on the
amount of vortex pairs which fit in the system. They are related by λz= Γ /n, where
n is the amount of vortex pairs which fit in the system. For all simulations axially
periodic boundary conditions were used. Its consequences on the vortex wavelength
are analysed in § 4. Further details on the numerical resolution can be found in
table 1 in appendix A.

2.3. Explored parameter space
Figure 1(a,b) show the parameter space explored for η = 0.714 in both (Rei, Reo)
and (Ta, 1/Ro) to study the effects of outer cylinder rotation. For η= 0.714, reduced
geometries simulate one sixth of the cylinder, i.e. nsym = 6 as used in Ostilla-Mónico

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2014.618
Downloaded from https:/www.cambridge.org/core. Open University Library, on 04 Feb 2017 at 15:31:22, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.618
https:/www.cambridge.org/core


Exploring the phase diagram of fully turbulent Taylor–Couette flow 7

et al. (2014b). The chosen values of Ro−1 include a co-rotating outer cylinder (Ro−1=
0.20), a weakly counter-rotating outer cylinder (Ro−1 =−0.13), counter-rotation near
the asymptotic position of optimal transport, Ro−1

opt (Ro−1 = −0.22), and two values
of Ro−1 in the strongly counter-rotating regime (Ro−1 = −0.30 and Ro−1 = −0.40).
No simulations were run in the Rayleigh-stable regime (i.e. when r2

oωo > r2
i ωi) as no

evidence of turbulence was found in that regime up to Ta ∼ 1010 in Ostilla-Mónico
et al. (2014c).

In addition, to study the effects of geometry, i.e. both the radius ratio η and the
vortical wavelength λz (controlled through the aspect ratio Γ ), additional simulations
were performed. Figure 1(c) shows that two additional radius ratios were simulated
up to Ta = 4 × 1010, one with a larger gap (η = 0.5) and one with a smaller gap
(η = 0.909). For η = 0.5, one third of the cylinder (nsym = 3) was simulated for Ta
larger than 108. This value of nsym for η = 0.5 was shown not to affect the values
of the torque obtained in the simulations in Brauckmann & Eckhardt (2013b). For
η= 0.909, one twentieth of the geometry (nsym = 20) was used.

Figure 1(d) shows the simulations with varying vortical wavelength λz done for
η = 0.909 and pure inner cylinder rotation. We chose η = 0.909 as we expect the
effects of the coherent structures, and thus of λz, to be stronger for larger η (see later
§§ 4 and 5 for an explanation). The values of Ta simulated are around the range where
Martinez-Arias et al. (2014) have experimentally observed the crossing of different
branches in Nuω(Ta) and also coincides with the onset of the ‘ultimate’ regime.

2.4. Non-dimensionalization
The following non-dimensionalizations will be used: as the flow is simulated in
a rotating frame, the outer cylinder is stationary, and the system has an unique
velocity scale, equal to U ≡ ri(ω

`
i − ω`o) in the laboratory frame. All velocities are

non-dimensionalized using U, i.e. ũ = u/U. The gap width d is the characteristic
length scale, and thus used for normalizing distances.

We define the normalized (non-dimensional) distance from the inner cylinder r̃ =
(r − ri)/d and the normalized height z̃ = z/d. We furthermore define the time- and
azimuthally averaged velocity fields as

¯̃u(r, z)= 〈ũ(θ, r, z, t)〉θ,t, (2.8)

where 〈φ(x1, x2, . . . , xn)〉xi indicates averaging of the field φ with respect to xi.
As mentioned previously, the torque is non-dimensionalized as an angular velocity
‘Nusselt’ number (EGL07), defined as Nuω = T/Tpa, where Tpa is the torque in the
purely azimuthal flow. The torque is calculated from the radial derivative of 〈 ¯̃ω〉z at
the inner and outer cylinders. The simulations are run in time until the respective
values are equal within 1 %. The torque is then taken as the average value of the
inner and outer cylinder torques. Therefore, the error due to finite time statistics is
smaller than 1 %.

From here on, for convenience we will drop the overhead tilde on all non-
dimensionalized variables.

2.5. Structure of paper
The organization of the paper is as follows. In § 3, we analyse the effect of rotating
the outer cylinder. This is followed by § 4, where we study the influence of η, and
note an analogy between the effects of smaller η and larger Ro−1. In § 5, we consider
the effects of the last parameter, the vortical wavelength λz. We finish in § 6 with a
summary of the results and an outlook for future work.
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8 R. Ostilla-Mónico and others

3. The effect of outer cylinder rotation or the inverse Rossby number dependence

In this section we will study the effect of the Coriolis force (Ro−1), originating
from the rotation of the outer cylinder, on the scaling of Nuω(Ta) with Ta and, more
specifically, the effect of Ro−1 on the transition to the ultimate regime. Depending
on the value of Ro−1, two distinct regimes will be identified: first a co- and weakly
counter-rotating Ro−1 range, denoted from here on as the CWCR regime, and second
the strongly counter-rotating Ro−1 range, denoted from here on as SCR regime.
The CWCR regime is found when the outer cylinder either is at rest, co-rotates
with the inner cylinder, or slowly counter-rotates. The counter-rotation must be slow
enough such that no Rayleigh-stable zones are generated in the bulk of the flow. In
this CWCR regime the Coriolis force is balanced through the bulk gradient of ω.
This can be derived from a large-scale balance in the θ -component of the velocity
in (2.2). In summary, the nonlinear term ur(∂ruθ + uruθ/r) and the Coriolis force
term −urRo−1 balance each other out on average (cf. Ostilla-Mónico et al. 2013 for
the full derivation). This results in a linear relationship between Ro−1 and ∂r〈ω̄〉z
(Ostilla-Mónico et al. 2014a).

TC flow can be considered as being in the SCR regime, if the outer cylinder
strongly counter-rotates and generates a Coriolis force which exceeds what the
ω-gradient can balance. The threshold value of Ro−1 corresponds to the flattest ω
profile. This also is the value of Ro−1, for which Nuω(Ro−1) is found to be largest
(van Gils et al. 2012; Ostilla-Mónico et al. 2013), denoted henceforth as Ro−1

opt. In this
regime the turbulent plumes originating from the inner cylinder are not strong enough
to overcome the stabilizing effect of the outer cylinder, and the flow is divided into
two regions, a Rayleigh-stable region in the outer gap region, which plumes do not
reach, and a Rayleigh-unstable region in the inner parts of the gap. For given Coriolis
force, the relative sizes of these spatial regions depend on Ta, as for a stronger driving
(i.e. larger Ta), the turbulence originating from the inner cylinder ‘pushes’ these
zones more towards the outer cylinder. This may lead to switching between vortical
states and jumps in global quantities as seen in Ostilla-Mónico et al. (2013). The
boundary between both regimes is at Ro−1

opt. Of course, Ro−1
opt depends on Ta too, due to

effect of viscosity in the Coriolis force balance (Ostilla-Mónico et al. 2013), and only
saturates to Ro−1

opt(Ta→∞)=−0.20 for sufficiently high drivings of Ta∼ 5× 108 and
more (cf. figure 2(a,b) and Brauckmann & Eckhardt 2013a).

Figure 2 shows both Nuω− 1 and the compensated Nusselt number (Nuω− 1)/Ta1/3

versus Ta for η = 0.714 and the six values of Ro−1 studied. For the largest drivings
(i.e. Ta > 109) all values of Ro−1 reach the effective scaling law Nuω ∼ Ta0.38 (with
a different amplitude), similar to what was reported in the experiments by van Gils
et al. (2011). However, very different behaviour can be seen for Ta< 109, i.e. before
the onset of the ultimate regime.

In the CWCR regime (Ro−1 > Ro−1
opt = −0.20), the Coriolis force is reflected in

the flow structure through the bulk gradient of ω, making it either flatter as in the
case of weak counter-rotation, or steeper, as in the case of co-rotation (if the driving
is sufficiently large). A consequence of the angular velocity gradient in the bulk
is that large-scale structures can be weakened or even completely disappear in the
CWCR regime. These changes in ω-gradient strongly affect the capability of plumes
to ‘coordinate’ and form a large-scale wind, which in turn leads to an earlier (or later)
onset of the sharp decrease in the local exponent α in the scaling law (Nuω− 1)∼Taα

associated with the breakdown of coherence, and the onset of time dependence in
Nuω (Ostilla-Mónico et al. 2014b).
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FIGURE 2. (Colour online) (a) The non-dimensional torque Nuω − 1 versus the driving,
i.e. the Taylor number Ta, for η = 0.714 and six values of Ro−1. (b) The compensated
Nusselt (Nuω − 1)/Ta1/3 versus the driving Ta for the same six values of Ro−1. The
effective scaling law of Nuω ∼ Ta0.38 is reached for all Ro−1 at the highest drivings Ta
beyond about 109. However, the behaviour in the classical regime Ta less than 109 depends
heavily on Ro−1. Before the onset of the ultimate regime, we observe a transitional
Ta regime ranging from about 106 to about 108 associated to the breakup of coherent
structures for co-rotating and weakly counter-rotating cylinders (−0.136 Ro−1 6 0.2). For
more positive values of Ro−1 this regime can be seen earlier, and is persistent for a larger
Ta range. For the strongly counter-rotating cases (Ro−1 6−0.22), an effective local scaling
exponent with α > 1

3 is seen in the classical regime. This can be related to the interplay
between Rayleigh-stable and Rayleigh-unstable regions.

For the case of co-rotating cylinders (Ro−1 = 0.20), this happens when the system
enters the so-called ‘wavelet’ regime, characterized by moving waves in the boundary
regions between a pair of Taylor vortices (Andereck et al. 1983, 1986). These waves
move with different speeds, and as a consequence this regime is not stationary in any
reference frame. This regime only persists for a small range of Ta, and eventually all
remnants of Taylor vortices vanish. Axial dependence of the flow structure is almost
completely lost, even at Ta as low as Ta≈5×107. Unlike the case of Ro−1=0 studied
by Ostilla-Mónico et al. (2014b), however, in this transitional regime, the large-scale
rolls already completely vanished, but for Ro−1= 0.20 this does not immediately lead
to the transition to the ultimate regime. After its sharp decrease, α does not exceed 1

3 .
Instead, at a driving strength around Ta≈ 107 (coinciding with the disappearance of
the structures), the local effective scaling exponent α has increased to α ≈ 1

3 , and
then stops growing. Only if Ta increases further and the shear in the boundary layers
grows past a threshold, a shear-instability takes place, and the system transitions to
the ultimate regime.

For the case of counter-rotating cylinders (i.e. Ro−1< 0), α can locally grow beyond
α = 1

3 in the classical regime. This is unexpected, as values of α larger than one
third have been associated to the transition to turbulence of the boundary layers in
the context of both RB convection (He et al. 2012b), and TC flow with a stationary
outer cylinder (Ostilla-Mónico et al. 2014b). However, in this case, the shear in the
boundary layers is too low so the boundary layers still stay laminar.

For counter-rotating cylinders, a wide range of flow configurations is available in
the low-Ta regime (Andereck et al. 1986). We can relate local steps in α to the
switching between such flow configurations. The interplay between Rayleigh-stable
and Rayleigh-unstable regions can also play a role. Larger drivings cause the
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FIGURE 3. Contour plots of the azimuthally and time-averaged angular velocity field ω̄

for Ta= 1010, η= 0.714 and three values of Ro−1. (a) Corresponds to Ro−1= 0.2 (CWCR
regime) and shows no traces of axial dependence. Plumes detach rapidly into the bulk,
mix there strongly, and thus cannot form large-scale structures. (b) Corresponds to Ro−1=
−0.22 (≈Ro−1

opt). The reduced plume mixing enables the formation of large-scale structures,
and a strong signature of them can be seen in the averaged angular velocity field.
(c) Corresponds to Ro−1 = −0.40 (SCR regime) and also shows some signatures of
large-scale structures. However, these do not fully penetrate the gap but stop at the border
to the Rayleigh-stable zones near the outer cylinder.

Rayleigh-unstable region to grow, and thus to increase the transport. These two
effects lead to larger increases in the non-dimensional torque than what is expected
for pure inner cylinder rotation, and explain the large values of α seen.

To further illustrate the effect of the Coriolis force on the large-scale structures,
figure 3 presents a contour plot of ω̄ in the CWCR regime Ro−1 = 0.20, around
the optimum Ro−1 = −0.22 ≈ Ro−1

opt and in the SCR regime Ro−1 = −0.40. Figure 4
shows the axially-averaged angular velocity profiles 〈ω̄〉z for η = 0.714 and the six
values of Ro−1 simulated here. The large-scale structures cannot be seen in figure 3(a),
which corresponds to Ro−1 = 0.20 (co-rotating cylinders), but they are pronounced
for the other two panels (Ro−1 = −0.22 and Ro−1 = −0.40). As shown in figure 4,
in the CWCR regime, the bulk sustains a large ω̄z gradient, and to accommodate
for this, there is smaller ω̄z jump across the boundary layers. Plumes ejected from
both cylinders can now mix easier when entering the bulk. As a consequence, the
large-scale structures, which essentially consist of unmixed plumes, break up easier
and thus do that for lower values of Ta. For this reason they have completely vanished
in figure 3(a).

If we now decrease Ro−1, the profile becomes flatter. The effect of this is visible in
figure 3(b) showing ω̄ for Ro−1=−0.22. It can be seen from figure 4 that this value
of Ro−1 corresponds to the flattest ω-profile available, and it is also the closest to the
experimental optimum transport Ro−1

opt(Ta→∞) = −0.20. A very marked signature
of the large-scale structure on ω̄ can be seen. This is because a very flat ω̄ profile
will sustain a large ω̄ jump across the boundary layer, and thus plumes detach less
violently into the bulk, thus stabilizing the large-scale structures. Therefore, we can
relate the flatness of the ω̄-profile to the strength of the large-scale circulation, and
this in turn can be related to the optimum in Nuω(Ro−1). As mentioned in Brauckmann
& Eckhardt (2013b), optimum transport coincides with the strongest mean circulation.
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FIGURE 4. (a) Azimuthally, axially and time-averaged and non-dimensionalized angular
velocity profiles 〈ω̄〉z for η= 0.714, Ta= 1010, and six values of Ro−1. For co- and weakly
counter-rotating cylinders, we see that the bulk ω̄ profiles become flatter as Ro−1 becomes
more negative. Thus, the angular velocity difference, which the plumes encounter when
detaching from the boundary layer and entering the bulk, is larger for more negative Ro−1.
(b) Enlarged view of the bulk region of (a). LDA data from experiments from (van Gils
et al. 2012), for which Rei−Reo= 106 have been superimposed. Note the good agreement
between both datasets for values of Ro−1 in the CWCR regime, while discrepancies exist
for values of Ro−1 around the optimum and in the SCR regime. This is attributed to
the axial dependence of the profiles, which exists in this regime, see figure 3, and as
experimental data is measured at fixed height, while numerical data are axially averaged.

Plumes travel faster from one cylinder to the other when the large-scale circulation
is strongest, and thus more angular momentum is transferred. We also highlight that
the signature of the large-scale structures on the mean azimuthal flow remains even
in the ultimate regime, and is also seen in experiment at Ta ∼ 1012 (Huisman et al.
2014). Thus, in general the vanishing of the rolls appears to be independent from
the transition to the ultimate regime. Only in the special case of pure inner cylinder
rotation these two effects coincidentally occur at the same Ta.

In figure 3(b), we can see that once the Coriolis force is sufficiently large, the
vortices cannot fully penetrate the domain. Near the outer cylinder, the flow is
predominantly Rayleigh stable. Rayleigh-stable zones are well mixed, as transport
here happens through intermittent turbulent bursts, instead of convective transport
by plumes and vortices (Brauckmann & Eckhardt 2013b). Thus, in Rayleigh-stable
regions, no rolls can be seen in the averaged fields. The effect of the neutral surface
can also be observed in the averaged ω profiles (cf. figure 4). The two simulated
cases in the SCR regime (Ro−1 =−0.30 and Ro−1 =−0.40) show an outer cylinder
boundary layer which with more and more negative Ro−1 extends deeper into the
flow, and the distinction from the bulk is blurred away.

To further disentangle the effect of axial dependence and the transition to the
ultimate regime we show the loss of axial dependence characterized by a special
spread measure ∆U as a function of the driving Ta in figure 5. Here ∆U is defined
as ∆U = (maxz(ūθ(ra, z))−minz(ūθ(ra, z)))/〈ūθ(ra, z)〉z, with ra, the mid-gap, defined
as ra = ri + d/2, the arithmetic mean of the inner and outer cylinder radii. When
measuring the axial spread, the velocity is averaged in time, and azimuthally, as the
flow is homogeneous in the azimuthal direction. As stated previously, for co-rotating
cylinders, the axial dependence disappears for low drivings corresponding to those

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2014.618
Downloaded from https:/www.cambridge.org/core. Open University Library, on 04 Feb 2017 at 15:31:22, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.618
https:/www.cambridge.org/core


12 R. Ostilla-Mónico and others

107 108 109 1010
0

0.5

1.0

1.5

Ta

0
–0.14
–0.20

FIGURE 5. (Colour online) The axial velocity spread measure ∆U versus Ta for the four
values of Ro−1 in the CWCR regime. The dashed line indicates the approximate value
of Ta where the flow transitions to the ultimate regime for all values of Ro−1, which
was previously associated with the vanishing of the large-scale structures. For co-rotating
cylinders (Ro−1 = 0.20), at Ta as low as Ta ≈ 107 no axial dependence is seen, well
before the transition. For counter-rotating cylinders a sharp increase of the axial velocity
spreading measure ∆U can be seen, which then slowly decreases with increasing Ta. The
sharp increase in ∆U can be associated to the growth of the Rayleigh-unstable zones. For
low Ta, the mid-gap is in a Rayleigh-stable zone mixed by bursts, while for large Ta,
the mid-gap is in a Rayleigh-unstable zone, dominated by rolls leading to a strong height
dependence. The large axial spreads explain the discrepancies when comparing (axially
averaged) DNS data to experimental data measured at a fixed height.

in the transitional regime, and associated to the appearance of the ‘wavelet’ states.
For counter-rotating cylinders, a sharp jump in ∆U can be noticed. This is due to
∆U being measured at the mid-cylinder r̃ = r̃a. For low drivings, r̃a is located in
the Rayleigh-stable zones, and the flow is mixed better. As the driving increases,
turbulence from the inner cylinder pushes the neutral surface, which divides the
stable and unstable zones further towards the outer cylinder. As a consequence
of this pushing, r̃a is no longer in the Rayleigh-stable zone, but instead in the
Rayleigh-unstable zone. This zone is dominated by large-scale structures. This makes
the axial dependence increase and provides more evidence that the vanishing of the
Taylor rolls is only coincidental with the transition to the ultimate regime for pure
inner cylinder rotation.

As mentioned previously, the value of Ro−1
opt, and thus of the border between the

CWCR and the SCR regimes depends on Ta. This is summarized in figure 6, which
shows the approximate division between the different flow regimes explored in this
paper in both the (Ta, Ro−1) and the (Rei, Reo) parameter spaces, both for η= 0.714.
Note that Ro−1

opt, and thus the division between the regimes, can be seen to saturate
for Ta∼ 5× 108, when driving is large enough, and the mean ω̄(r) profile at Ro−1

opt is
completely flat.

Finally, to further justify the division of the flow into the CWCR and the SCR
regimes with decreasing inverse Rossby number Ro−1, we can quantify the distribution
of Rayleigh-stable and Rayleigh-unstable zones as a function of Ro−1. This is done
by looking at the PDF of r̃N , i.e. the collection of points outlining the neutral
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FIGURE 6. Transition between different regimes in the (Ta, Ro−1) (a) and (Rei, Reo)
(b,c) parameter spaces for η= 0.714. The hollow circles indicate the location of optimal
transport, and serve as an indication of the movement of the division between CWCR
(blueish and reddish) and SCR (greenish) regimes with Ta. In both DNS and experiments,
Ro−1

opt reaches an asymptotic value for Ta > 5 × 108. For larger η (smaller gap), this
separation line moves towards smaller Ro−1. For Ta . 107, we have the rich variety of
different states of Andereck et al. (1986), not detailed in this diagram. This region appears
explicitly in (a) as ‘lam TRs’ and ‘lam TRs at IC’, but is not shown in the other two due
to the axes used. Abbreviations: boundary layer (BL), Taylor rolls (TR), ultimate regime
(UR) and inner cylinder (IC).

surface r̃N = r̃N(t, θ, z). This is, the border between Rayleigh-stable outer gap
range and the Rayleigh-unstable inner gap parts, and given as the points for which
ω(t, θ, z, r̃N)= 0 in the laboratory (non-rotating) frame. For counter-rotating cylinders,
the neutral surface defines the instantaneous border between Rayleigh-stable and
Rayleigh-unstable zones. For co-rotating cylinders, the neutral line does not exist, and
the whole flow is either Rayleigh stable or Rayleigh unstable. In principle, the neutral
surface might be fragmented, and thus the position of r̃n multivalued. However, this
is usually not the case. When taking the ensemble, all values are considered, as this
does not change the PDFs significantly.

Figure 7 shows the PDFs of r̃N calculated for the four negative values of Ro−1

at the largest driving simulated here. The difference between the two regimes can
clearly be noticed. In the CWCR regime and near the optimum, the border between
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FIGURE 7. DNS results for the PDFs of the radial position r̃N of the neutral surface, at
the border between Rayleigh-stable and Rayleigh-unstable regions, for the four simulated
negative values of Ro−1 (i.e. for counter-rotating cylinders) for Ta = 1010. For Ro−1 =
−0.14 (CWCR) and Ro−1 = −0.22 (close to the optimum), the PDFs show that the
destabilizing action of the inner cylinder causes the Rayleigh-stable regions to be confined
only very closely to the outer cylinder. For Ro−1 =−0.22 we can begin to see a limited
amount of Rayleigh-stable zones in the whole domain, as −0.22 is slightly more negative
than Ro−1

opt. For Ro−1 =−0.30 (SCR), the stabilization due to the Coriolis force increases,
and the border between the regions can be anywhere in the gap, indicating a mixture of
stable and unstable zones everywhere in the gap. Finally, for Ro−1 =−0.40 (also SCR),
the border between both zones never gets close to the outer cylinder. For this case, the
portion of the gap width with r̃> 0.84 is always Rayleigh stable.

the zones is located very closely to the outer cylinder, which means that almost
all the domain is Rayleigh unstable and dominated by plumes or rolls. In the SCR
regime, the border between the zones is pushed closer towards the inner cylinder,
and Rayleigh-stable zones appear all over the gap. For the most negative simulated
value of Ro−1, i.e. Ro−1 = −0.40, the areas near the outer cylinder are permanently
Rayleigh stable, and transport occurs in intermittent bursts which mix this zone well.
This causes the partial disappearance of axial dependence seen in figure 3(b).

4. The effect of radius ratio or the η-dependence
In the previous section we showed that for η= 0.714 the transition to the ultimate

regime and the vanishing of the rolls only (incidentally) co-occur at the same Ta
for pure inner cylinder rotation. Flatter bulk ω-profiles result in stronger large-scale
structures, and steeper bulk ω-profiles result in weaker large-scale structures which
vanish at Ta∼ 106. Now we will show that we can modify the ω̄(r) profile in the bulk
not only by varying the Coriolis force, but also by changing the radius ratio η (or
the gap width). In this section, we will thus analyse the influence of η, to understand
whether the co-occurrence of the vanishing large scales and the boundary-layer
transition observed for pure inner cylinder rotation is just a coincidence seen in the
case η= 0.714.

Figure 8 shows both the Nusselt number and the compensated Nusselt number
plotted as a function of Ta for the three values of η simulated. As seen in
Ostilla-Mónico et al. (2014a) for η = 0.714 (and now also for η = 0.909), the flow
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FIGURE 8. (Colour online) (a) The non-dimensional torque Nuω − 1 versus driving Ta
for pure inner cylinder rotation Ro−1 = 0 and three values of η. (b) The compensated
Nusselt (Nuω − 1)/Ta1/3 versus driving strength Ta for the same three values of η. The
asymptotic effective scaling laws of the ultimate regime are reached for all values of η
at large enough drivings. For η = 0.909 jumps in Nuω(Ta) can be seen for the highest
drivings (around Ta∼ 1010). These jumps cause the exponent of the local scaling laws to
be around 0.44, and are caused by changes in the large-scale structures.

undergoes a structural transition at around Ta≈ 3× 106, where the local exponent α
of the effective scaling law Nu ∼ Taα rapidly decreases. This is associated with the
breakdown of coherence in the flow and the onset of time-dependence in the Nusselt
number. For η = 0.714 and η = 0.909, the effective exponent α begins to increase
again after this breakdown. We can say that the flow transitions to the ultimate regime
once α > 1

3 , and this happens at about Ta≈ 3× 108. This Ta value coincides with the
experimentally observed value for the transition to the ultimate regime for η= 0.909
(cf. Ravelet et al. 2010).

For η = 0.5 a different behaviour can be seen. After the breakdown of coherence,
the transitional regime with α ≈ 1

3 goes on for three decades in Ta, up to Ta≈ 1010

(last three data points of the panel). An increase in α only happens for the last three
data points, with Ta > 1010. This might be the beginning of the transition to the
ultimate regime, observed at about that value of Ta in the experiments by Merbold
et al. (2013). We emphasize that the behaviour of the Nuω(Ta) curve for η = 0.5 is
very similar to the one seen for η = 0.714 and Ro−1 = 0.20 (cf. figure 2), while the
Nuω(Ta) curve for η= 0.909 is similar to that for Ro−1 =−0.14 and η= 0.714.

We thus can draw an analogy between the effects of varying η and those of
changing Ro−1. The larger the gap or the smaller η is, the more the flow feels
the curvature. This is reflected in an asymmetry between inner and outer cylinder,
since the inner cylinder curvature becomes increasingly stronger relative to the outer
cylinder curvature. Also the exact relationship η−3∂r〈ω〉|o = ∂r〈ω〉|i (cf. van Gils
et al. 2012) must hold in both boundary layers due to the r-independence of the
angular velocity current Jω = r3(〈urω〉z,θ,t − ν∂r〈ω〉z,θ,t) (EGL07). For η= 0.5 we have
η−3 = 8 and the ω-slope at the inner cylinder is eight-fold steeper than the outer
cylinder ω-slope. Thus, the inner–outer asymmetry is expected to become much more
dominant for η= 0.5 in comparison with η= 0.714 (η−3= 2.75) as well as η= 0.909
(η−3 = 1.331), for which it is hardly visible anymore.

While the inner and outer cylinder boundary layers extend into the bulk equally
for pure inner cylinder rotation (cf. Ostilla-Mónico et al. 2014a), the jump of ω in
the boundary layers is much larger in the inner cylinder as compared with the outer
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FIGURE 9. Contour plots of the azimuthally and time-averaged angular velocity field
ω̄ for Ta = 1010 and Ro−1 = 0 and three values of η: (a) η = 0.5, (b) η = 0.714 and
(c) η= 0.909. The colour scale has been shifted in order to account for the different bulk
angular velocities at different η. Almost no axial dependence can be noticed for η= 0.5,
while it is still very marked for η= 0.909

cylinder due to the different slopes and equal extents. Therefore, the plumes are highly
asymmetric, and smaller drivings Ta break up the ‘plume conveyor belts’, which form
the large-scale structures seen in the time-averaged azimuthal velocity. On top of this
plume asymmetry, originating from the boundary layers, a larger curvature has an
effect on the bulk. The underlying ω̄(r) profile is less flat, and thus the drop in angular
velocity inside the bulk is the larger the smaller the value of η is.

Both effects can be appreciated in figure 9, which shows contour plots of the
azimuthally and time-averaged angular velocity ω̄ at Ta= 1010 for the three simulated
values of η. This also explains figure 10(a), where the now also axially averaged
angular velocity 〈ω̄〉z is shown for the same three values of η. For comparison,
figure 10(b) shows three profiles of 〈ω̄〉z in the CWCR regime for η= 0.714.

The analogy between the effect of η and the effect of Ro−1 on ω(r̃) is also
demonstrated in figure 10. The rolls are weak for η = 0.5, as they are weak for
co-rotating cylinders, and the rolls are strongest for η = 0.909 and for Ro−1 ≈ Ro−1

opt.
This also explains why, for large enough Ta, Nuω is highest at a given Ta for the
largest η. However, the analogy is not perfect. For pure inner cylinder rotation, i.e. for
Ro−1= 0 the wide variety of flow states seen in Andereck et al. (1983) and Andereck
et al. (1986) is greatly reduced. The system essentially goes from Taylor vortex flow
to modulated Taylor vortex flow to finally turbulent Taylor vortex flow. It does not
undergo transitions to different states (such as e.g. the ‘wavelet’ state), and thus
the rolls do not vanish for the lower drivings at which this happens in co-rotating
cylinders. This can be seen in figure 11, which shows the measure ∆U for the axial
velocity spread as function of Ta. With increased driving, the rolls progressively lose
importance until Ta reaches a value of Ta ≈ 3 × 108. However, the effect of η, and
thus of the cylinder wall curvature on the ω profiles can be clearly noticed in the
residual axial dependence and behaves as expected from the analogy. The behaviour
of the transition to the ultimate regime and associated subregimes is summarized in
figure 12, which is analogous to figure 6, but now for the (Ta, η) parameter space
explored.

Finally, one may ask the question of why the onset of the ultimate regime
happens at a much higher Ta for η = 0.5 than for the two other values of η
studied. For η = 0.714, the transition seems to set in for the same value of Ta

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2014.618
Downloaded from https:/www.cambridge.org/core. Open University Library, on 04 Feb 2017 at 15:31:22, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.618
https:/www.cambridge.org/core


Exploring the phase diagram of fully turbulent Taylor–Couette flow 17

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0(a) (b)

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

FIGURE 10. (Colour online) (a) Axially averaged angular velocity profiles 〈ω̄〉z for η=0.5,
η = 0.714 and η = 0.909 at moderate driving Ta = 1010 and Ro−1 = 0. Solid lines are
DNS data, while squares and triangles correspond to LDA data from experiments (Ta=
1.51 × 1012 for η = 0.714 and Ta = 1.1 × 1011 for η = 0.909, from Ostilla-Mónico et al.
2014a). A larger decrease of ω across the bulk can be seen for η = 0.5. The angular
velocity in the bulk also deviates more from ω = 0.5, the expected value in the limit
case of η→ 1 (plane Couette flow). (b) Axially-averaged angular velocity profiles 〈ω̄〉z
for η= 0.714, and three values of Ro−1 in the CWCR regime. The analogy between the
effects of η and Ro−1 on ω̄(r̃) can be clearly seen.
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FIGURE 11. (Colour online) The measure ∆U for the axial velocity spread versus Ta for
the three values of η simulated. A decrease in axial dependence can be seen for all values
of η around Ta≈ 108, unlike what was seen for varying Ro−1, where the Ta at which the
decrease of axial dependence took place is Ro−1 dependent. However, the residual axial
spread at the largest drivings increases with increasing η, as we would expect from the
analogy between decreasing Ro−1 and increasing η.

independently of Ro−1. A factor of 10 increase in shear in the boundary layers is
required for the boundary layer instability to occur and the ultimate regime to set
in. Convex curvature is known to produce a stabilizing effect on boundary layers
(Görtler 1940a; Muck, Hoffmann & Bradshaw 1985), and this will have a more
significant effect on the inner cylinder for η = 0.5 than for the larger η. On the
other hand we might expect that the destabilizing effect of concave curvature (Görtler
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FIGURE 12. Transition between different regimes in the (Ta, η) parameter space for pure
inner cylinder rotation Ro−1 = 0. The transition to the ultimate regime occurs at a higher
Ta for smaller η (wider gap), while the vanishing of the large scale structures occurs at
around the same Ta for 0.5<η< 0.714. Remains of the Taylor rolls can only be seen for
large η, i.e. smaller gap. Abbreviations: boundary layer (BL), Taylor rolls (TR), ultimate
regime (UR).

1940b; Hoffmann, Muck & Bradshaw 1985) would also play a role in accelerating
the transition. Due to the boundary-layer asymmetry, however, the outer boundary
layer is much more ‘quiet’, and has fewer fluctuations. This also delays the transition,
and can be seen in figure 13, which shows the root mean square (r.m.s.) fluctuations
of the angular velocity ω′ = 〈〈ω2〉t,θ − ω̄2〉1/2z , for Ta= 109 and the three values of η
simulated. The levels of fluctuations at the outer cylinder are significantly reduced
for η= 0.5 when compared with the other values of η. Finally, the large gradient of
angular velocity sustained in the bulk will also reduce the shear in the outer cylinder,
as the bulk angular velocity is smaller for η = 0.5. Thus, a combination of reduced
fluctuations, stabilizing effect due to curvature at the inner cylinder, and reduced
shear due to bulk angular velocity gradients is causing the delayed transition.

5. Dependence on number and size of rolls
Finally, we will quantify how the torque depends on the number and the size of

the rolls, i.e. the vortical wavelength. The wavelength of a roll λz is restricted to the
values λ=Γ /n, where n is a strictly positive integer. For all simulations in this paper,
n= 1, and thus λ=Γ . This is not necessarily always the case, n is a response of the
system, and if Γ is large enough, i.e. the system can accommodate more than one
vortex pair, n can take several values depending on how the final state of the system
is reached. Brauckmann & Eckhardt (2013a) showed that for η= 0.714, the ‘optimal’
vortex wavelength, i.e. the vortex wavelength λz which corresponds to a maximum
Nuω, increased when comparing Nuω(λz) for two Taylor numbers, one in the Taylor
vortex regime and another in the turbulent Taylor vortex regime. For the higher Ta,
the dependence of Nuω on λz was quite weak. Martinez-Arias et al. (2014) showed
that for η = 0.909, different branches in the Nuω(Ta) relationship, associated to
distinct vortical states cross around Rei = 1.3× 104. This corresponds to a driving of
Ta = 1.8 × 108, around the value at which the transition to the ultimate regime
occurs for η = 0.909. The large-scale circulation could still be seen to play a
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FIGURE 13. (Colour online) Root mean square (r.m.s.) profiles of the angular velocity
fluctuations, ω′(r̃), at Ta= 109 and Ro−1 = 0 for the three η values simulated here. The
boundary layer asymmetry causes the fluctuations to be strongly reduced at the outer
cylinder for η= 0.5, as compared with those at the inner cylinder.

role in determining the system response after the transition to the ultimate regime.
Furthermore, large-scale patterns were observed in Ostilla-Mónico et al. (2014b)
when looking at the 〈ω̄ūr〉 correlation at Ta∼ 1010, even though they are absent when
looking only at ω̄.

Figure 14 shows the compensated torque Nuω as a function of Ta for the four values
of the vortical wavelength studied. Experimental data by Martinez-Arias et al. (2014)
and DNS data by Ostilla-Mónico et al. (2014a) is also plotted. It is worth noting that
experimental data will have some end-plate effects, even if the aspect ratio Γ of the
experiments is larger than 30, while the DNSs have periodic axial boundary conditions.
Even so, very similar behaviour can be seen. The transition to the asymptotic scaling
laws of the ultimate regime seem to occur around the same value of Ta, but are less
pronounced the smaller the vortical wavelength is.

The change in behaviour of the Nuω(Ta) curves can be associated to the change
of behaviour of the wind-sheared regions in the ultimate regime. As seen in Ostilla-
Mónico et al. (2014b), plume ejection is suppressed outside the ultimate regime in
regions of the flow, the so-called ‘wind-sheared’ regions due to the sweeping by the
large scale rolls. This reduction in plume ejection results in a reduced transport of
angular velocity (torque). A similar reduction in the torque caused by a mean flow was
also seen when forcing the flow with an axial pressure gradient by Manna & Vacca
(2009). Vortices with a smaller wavelength have smaller wind-sheared regions and thus
result in a larger Nuω, if this suppression is taking place. After the transition to the
ultimate regime, the suppression ceases, and these regions become active ejectors of
plumes, leading to increased transport.

The difference between λz = 2.09, λz = 3.0 and λz = 4.0 is very small for
Ta = 109, of the order of 5 %, but for the λz = 1.5 branch the difference is almost
15 %. Only at Ta = 1010, when the distinction between wind-sheared and ejection
regions is completely blurred away, and the whole inner cylinder can emit plumes
(or hairpin vortices), Nuω(Ta) loses its Γ dependence, within the error bars of the
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FIGURE 14. (Colour online) Compensated torque Nuω versus driving strength Ta for
η = 0.909 and the three different vortical wavelengths. Experimental data from the T3C
apparatus (Γ =46.35, number of rolls not determined, cf. Ostilla-Mónico et al. 2014a) and
from (Martinez-Arias et al. 2014) (denoted MPCM14, λz = 2 corresponds to 30 rolls and
λz = 3 corresponds to 18 rolls) are also plotted. Axial boundary conditions are different
in experiments and DNSs. Experiments have end-plates, while DNSs are axially periodic
and thus end effects are absent. Both in experiment and in numerics, different branches
associated to different states cross at Ta≈ 2× 108, shown as a vertical dashed line in the
graph. This value of Ta corresponds to the transition to the ultimate regime for radius
ratio η= 0.909.

numerics. This sudden transition of wind-sheared regions to ejection regions causes
the jump we see in the Nuω(Ta) curve at around Ta= 5× 109 for η= 0.909.

Note that for the largest drivings axially periodic boundary conditions have been
used, with only one vortex pair. This does not prevent the creation of two pairs of
vortices with wavelength λz = 1.5 by a breakup of one pair of vortices of λz = 3.0
in a domain, which has Γ = 3.0. And indeed this is seen to happen for the lower
drivings both in DNS and experiment. On the other hand, this axial periodicity
affects the stability of one pair of vortices of wavelength λz = 1.5 in a domain of
Γ = 1.5. Therefore, vortices with λz = 1.5 might be an artifact due to the numerical
constraintment, and not be stable if a system with large Γ at large Ta is considered.
States with λz < 2 are not reported in Martinez-Arias et al. (2014).

Even if we do not expect a quantitative agreement of the present DNS results with
those of Brauckmann & Eckhardt (2013a) and experimental data by Huisman et al.
(2014), as we simulate a different η, the results reported in this section even do
not agree qualitatively. Brauckmann & Eckhardt (2013a) see a maximum in torque
for λz = 1.93 in the turbulent Taylor vortex regime (Ta ∼ 107), while in the present
simulations for η = 0.909 at the same Ta, this maximum is clearly at λz = 1.5, and
not near λz = 2.09. In the experiments of Martinez-Arias et al. (2014), states with λz
smaller than one are not reported, and a direct comparison cannot be made.

We also note that the relationship between larger vortices and larger torque in the
ultimate regime is the inverse of what was recently reported by Huisman et al. (2014).
Huisman et al. (2014) found multiple states, with different λz in highly turbulent TC
flow. For different states they found that the torque differs less than 5 %, although
they note that this might be due to the fact the torque is only measured on part of
the inner cylinder, not on the entire inner cylinder. Furthermore their results are for
Ro−1 6= 0, for higher Ta, and for different η, as compared with the current research.
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6. Summary and conclusions

Numerical simulations of turbulent TC flow in the range 104<Ta< 4.6× 1010 were
performed to explore the transition of TC flow to the (fully turbulent) ultimate regime.
The four dimensions of the parameter space were explored, including the dependence
of the transition on the radius ratio η, the vortex wavelength λz and Coriolis force
Ro−1 or rotation ratio µ.

First, the effect of the outer cylinder rotation, in the equations of motion in the
frame co-rotating with the outer cylinder, present as a Coriolis force, was analysed for
η=0.714. Depending on the value of Ro−1 two regimes were identified, (i) the CWCR
and (ii) the SCR, both with their respective subregime. Our findings of that chapter
culminate in the phase diagram figure 6, in the (Ta, Ro−1) regime (figure 6a) and
in the (Rei, Reo) regime (figure 6b,c). The transition to the ultimate regime could be
observed for all values of Ro−1 around Ta∼ 3× 108. However, for these two regimes a
rather different behaviour in the scaling laws Nuω(Ta) was found before the transition.
We also found very different flow structures in the respective ultimate regimes in
accordance with the description by Brauckmann & Eckhardt (2013b). An explanation
why the Coriolis force, proportional to Ro−1 stabilizes the large-scale structures was
illustrated; the large-scale structures were found to not vanish at the transition to the
ultimate regime for Ro−1 = −0.22 ≈ Ro−1

opt, unlike what was seen in Ostilla-Mónico
et al. (2014b) for a resting outer cylinder.

After this, the transition was analysed for various gap widths, namely for η = 0.5,
0.714, and 0.909 without Coriolis forces, i.e. for Ro−1 = 0. The transition was found
to occur at about the same Ta for η = 0.714 and 0.909. However, the transition
was considerably delayed to Ta ≈ 1010 for η = 0.5, due to the combined effects
of stabilizing curvature of the inner cylinder, and the reduced shear as well as
smaller fluctuations in the vicinity of the outer cylinder. An analogy between the
effect of Ro−1 in the CWCR regime and the effect of η on the large-scale rolls
was described: decreasing η was found to have the same effect as adding a positive
Ro−1, corresponding to co-rotating cylinders, while increasing η behaved like (weakly)
counter-rotating the outer cylinder.

Finally, as the large-scale structures were found to be strongest for η = 0.909, the
effect of varying the vortical wavelength was analysed for this value of η. As in
Martinez-Arias et al. (2014), different branches of the Nuω(Ta) curve were found to
cross around the transition to the ultimate regime. Before this transition, the influence
of the vortical wavelength (and, thus, of the aspect ratio) on Nuω was quite noticeable.
After the ultimate range transition, this effect decreased drastically. The results of
our DNS agree qualitatively with those in the experiments by Martinez-Arias et al.
(2014) for η=0.909 even though the axial boundary conditions are different. However,
they are qualitatively different from those reported for η = 0.714 by Brauckmann &
Eckhardt (2013a) and by Huisman et al. (2014)

In this work, the vortical wavelength by using periodic boundary conditions was
fixed. Some of these states might not be accessible in experiment or might be a
product of the periodic boundary conditions. Studying the coexistence of different
states for large Γ , as is done in Martinez-Arias et al. (2014) or Huisman et al. (2014),
with DNS requires a large amount of computational resources for high Ta. Switches
between two and three vortex pairs were seen at lower Ta for η = 0.909 (Ostilla-
Mónico et al. 2014a). Switching between states might also occur at high Ta, although
they are not captured in the DNS presented in this work. In the future, additional DNS
for η= 0.909 with large Γ at high Ta should be run to improve the understanding of
the switching between different states.
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Our ambition also is to further understand why the transition is delayed at η= 0.5,
but also the curvature effects on the ω-profiles in the boundary layers along the ideas
of Grossmann et al. (2014). Curvature effects at η=0.714 and η=0.909 are too small
to be appreciated, and the flow for η = 0.5 is still in the transition to the ‘ultimate’
regime. Thus, higher Ta simulations for η= 0.5 will provide further understanding on
how curvature makes the boundary layers of TC flow different from those of channel
and pipe flow.
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Appendix. Numerical details

Ta Ro−1 µ Nuω Nθ ×Nr ×Nz

2.15× 108 0.20 0.2 11.48 256× 640× 512
2.15× 108 −0.13 −0.2 13.43 256× 640× 512
2.15× 108 −0.22 −0.4 12.85 256× 640× 512
2.15× 108 −0.30 −0.6 11.13 256× 640× 512
2.15× 108 −0.40 −1.0 8.565 256× 640× 512
4.64× 108 0.20 0.2 14.21 256× 640× 512
4.64× 108 −0.13 −0.2 17.20 256× 640× 512
4.64× 108 −0.22 −0.4 17.77 256× 640× 512
4.64× 108 −0.30 −0.6 15.81 256× 640× 512
4.64× 108 −0.40 −1.0 11.36 256× 640× 512
1.00× 109 0.20 0.2 18.57 256× 640× 512
1.00× 109 −0.13 −0.2 23.10 256× 640× 512
1.00× 109 −0.22 −0.4 23.18 256× 640× 512
1.00× 109 −0.30 −0.6 19.85 256× 640× 512
1.00× 109 −0.40 −1.0 14.73 256× 640× 512
2.15× 109 0.20 0.2 24.96 256× 640× 512
2.15× 109 −0.13 −0.2 31.26 256× 640× 512
2.15× 109 −0.22 −0.4 31.41 256× 640× 512
2.15× 109 −0.30 −0.6 27.46 256× 640× 512
2.15× 109 −0.40 −1.0 20.15 256× 640× 512
4.64× 109 0.20 0.2 32.51 384× 640× 768
4.64× 109 −0.13 −0.2 41.44 384× 640× 768
4.64× 109 −0.22 −0.4 41.13 384× 640× 768
4.64× 109 −0.30 −0.6 36.39 384× 640× 768
4.64× 109 −0.40 −1.0 26.01 384× 640× 768
1.00× 1010 0.20 0.2 41.01 512× 800× 1024
1.00× 1010 −0.13 −0.2 57.50 512× 800× 1024
1.00× 1010 −0.22 −0.4 58.61 512× 800× 1024

TABLE 1. Continued on next page.
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1.00× 1010 −0.30 −0.6 49.98 512× 800× 1024
1.00× 1010 −0.40 −1.0 34.42 512× 800× 1024
2.15× 1010 0 0 66.57 768× 1024× 1536
4.64× 1010 0 0 94.77 768× 1200× 2048

TABLE 1 (cntd). A summary of the numerical results for η= 0.714 which are new to this
manuscript. For the other data points see Ostilla-Mónico et al. (2014b). The first column
shows the driving, Ta. The second and third column show the outer cylinder rotation as
either a Coriolis force Ro−1 or a rotation frequency ratio µ= ωo/ωi. The fourth column
shows the non-dimensionalized torque, Nuω. The fifth column shows the number of grid
points used in azimuthal (Nθ ), radial (Nr) and axial direction (Nz). All of these simulations
use a rotational symmetry order six in the azimuthal direction, and are for Γ = 2.09.

Ta η Γ λz Nuω Nθ ×Nr ×Nz

2.15× 108 0.5 2.09 2.09 9.33 384× 512× 768
4.64× 108 0.5 2.09 2.09 11.9 384× 701× 768
1.00× 109 0.5 2.09 2.09 14.9 512× 768× 768
2.15× 109 0.5 2.09 2.09 18.8 768× 768× 1024
4.64× 109 0.5 2.09 2.09 24.1 768× 768× 1024
1.00× 1010 0.5 2.09 2.09 31.3 1024× 1024× 1536
2.15× 1010 0.5 2.09 2.09 40.9 1024× 1024× 1536
4.64× 1010 0.5 2.09 2.09 53.9 1024× 1024× 2048
2.76× 107 0.909 2.09 2.09 12.8 256× 512× 480
5.26× 107 0.909 2.09 2.09 16.8 256× 512× 480
1.00× 109 0.909 2.09 2.09 22.6 512× 768× 768
2.15× 109 0.909 2.09 2.09 31.3 512× 768× 768
4.64× 109 0.909 2.09 2.09 43.6 1024× 768× 768
1.00× 1010 0.909 2.09 2.09 67.2 1024× 1024× 1024
2.15× 1010 0.909 2.09 2.09 99.3 1536× 1536× 1024
4.64× 1010 0.909 2.09 2.09 138 2048× 1536× 1024
1.00× 106 0.909 1.50 1.50 4.31 256× 512× 480
1.00× 107 0.909 1.50 1.50 7.46 256× 512× 480
2.76× 107 0.909 1.50 1.50 9.15 256× 512× 480
5.26× 107 0.909 1.50 1.50 9.91 256× 512× 480
1.00× 108 0.909 1.50 1.50 10.9 256× 512× 480
2.15× 108 0.909 1.50 1.50 12.6 256× 512× 480
4.64× 108 0.909 1.50 1.50 15.6 256× 512× 480
1.00× 109 0.909 1.50 1.50 20.8 512× 512× 480
1.00× 106 0.909 3.00 3.00 3.60 256× 512× 480
1.00× 107 0.909 3.00 3.00 6.10 256× 512× 480
2.76× 107 0.909 3.00 3.00 7.50 256× 512× 480
5.26× 107 0.909 3.00 3.00 8.58 256× 512× 480
1.00× 108 0.909 3.00 3.00 10.3 256× 512× 480
2.15× 108 0.909 3.00 3.00 12.8 256× 512× 480
4.64× 108 0.909 3.00 3.00 17.4 256× 512× 480
1.00× 109 0.909 3.00 3.00 23.1 512× 512× 720
1.11× 1010 0.909 3.00 3.00 68.9 1024× 1024× 3072

TABLE 2. Continued on next page.
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2.76× 107 0.909 4.00 4.00 7.12 256× 512× 480
5.26× 107 0.909 4.00 4.00 8.40 256× 512× 480
1.00× 108 0.909 4.00 4.00 10.3 256× 512× 480
2.15× 108 0.909 4.00 4.00 13.5 256× 512× 480
4.64× 108 0.909 4.00 4.00 18.1 256× 512× 480
1.00× 109 0.909 4.00 4.00 24.0 512× 512× 720
1.11× 1010 0.909 4.00 4.00 69.8 2048× 1024× 4096

TABLE 2 (cntd). A summary of the numerical results for the various geometries at
Ro−1 = 0, i.e. for resting outer cylinder, which are new to this manuscript. For the other
data points see Ostilla-Mónico et al. (2013) and Ostilla-Mónico et al. (2014a). The first
column shows the driving, Ta. The second and third column show the radius ratio η
and the aspect ratio Γ . The fourth column shows the vortical wavelength λz. The fifth
column shows the non-dimensionalized torque, Nuω. The sixth column shows the amount
of grid points used in azimuthal (Nθ ), radial (Nr) and axial direction (Nz). We note that
the Ta= 1.11× 1010, Γ = 4, η= 0.909 simulation was done using nsym = 10.
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