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Taking inspiration from lattice QCD data, we argue that a finite nonperturbative contribution to the quark
mass is generated as a consequence of the dynamical phenomenon of spontaneous chiral symmetry
breaking, in turn triggered by the explicit breaking of chiral symmetry induced by the critical Wilson term
in the action. In pure lattice QCD this mass term cannot be separated from the unavoidably associated
linearly divergent contribution. However, if QCD is enlarged to a theory where also a scalar field is present,
coupled to an SU(2) doublet of fermions via a Yukawa and a Wilson-like term, then in the phase where the
scalar field takes a nonvanishing expectation value, a dynamically generated and “naturally” light fermion
mass (numerically unrelated to the expectation value of the scalar field) is conjectured to emerge at a critical
value of the Yukawa coupling where the symmetry of the model is maximally enhanced. Masses
dynamically generated in this way display a natural hierarchy according to which the stronger is the
strongest of the interactions the fermion is subjected to, the larger will be its mass.
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I. INTRODUCTION

In this paper we argue that in lattice QCD with Wilson
fermions [1] the dynamics of spontaneous chiral symmetry
breaking (SχSB), in turn triggered by the explicit chiral
breakingWilson term in the action, is able to generate, even
in the chiral limit, a nonperturbative (NP) finite (up to logs)
mass contribution for the elementary fermions beneath the
linearly divergent mass term that unavoidably goes with it.
If one can solve, as we are going to show in a simple

renormalizable toy model including QCD, the “natural-
ness” problem [2] associated to the need of “fine-tuning”
the parameters controlling the recovery of chiral symmetry
in the critical theory, so as to be able to disentangle small
(“finite”/nonperturbative) contributions from large (“infin-
ite”/perturbative) terms, the ideas presented in this paper
may open the way to a viable NP alternative to the Higgs
mechanism for mass generation [3].
We shall argue that such nonperturbatively generated

masses are proportional to the renormalization group
invariant (RGI) scale, Λ, of the strong interactions that
the fermions are subjected to. Effects of this kind are
conjectured to stem from peculiar NP operator mixings
that, though triggered by naively irrelevant Wilson-like
terms in the action, survive the limit of infinite UV cutoff.
Quantitatively the resulting fermion mass terms of NP
origin depend on the details of the UV regularization of the
model, thereby providing an example of universality
breaking at the NP level.1 All these nontrivial expectations

should be checked (or possibly falsified) by direct numeri-
cal simulations.
Interestingly the structure of the aforementioned

enlarged toy model is such that electroweak interactions
can be naturally introduced and mass terms for the weak
gauge bosons are also generated by the same NP mecha-
nism that is at work for the fundamental fermions [3].
Furthermore, if this toy model is extended by introducing

in a gauge invariant way superstrongly interacting particles
with RGI scale ΛT ≫ ΛQCD, an interesting ordering of
fermion masses emerges. In this situation, in fact, both
quarks and superstrongly interacting fermions get a mass of
the order of ΛT (the largest of the two RGI scales) but, as
we shall see, scaled by powers of the strong (gs) and
superstrong (gT) gauge coupling, respectively. Thus the
difference in the strength of the two interactions is seen to
be at the origin of the fact that the (top) quark mass is a
fraction of the large scale ΛT . A crude phenomenological
estimate gives for the superstrong scale a value in the few-
TeV region if one has to get the NP generated top mass at
the desired experimental value.
In a forthcoming paper [3] we show that an extension

of the model including, besides strong and superstrong
forces, also electroweak interactions and an appropriate
set of fermion degrees of freedom to have gauge anomaly
cancellation, can be elevated to a full beyond-the-
standard-model model of elementary particles where all
fermions (with the remarkable exception of neutrinos), as
well as the weak bosons, acquire a mass proportional to ΛT .
Parametric mass hierarchy is a consequence of the fact that
the nonperturbatively generated masses are scaled by
powers of the coupling constants of the interactions the
particle is subjected to. In particular weak gauge bosons

1A brief account of these ideas was presented at the LAT-
TICE2013 conference [4].
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and charged leptons masses are scaled by powers of the
electroweak gauge coupling constants.
Moreover in models of this kind a host of interesting new

phenomena arise, among which the presence in the spec-
trum of superstrongly bound states2 and gauge coupling
unification at a very high Oð1017Þ GeV scale.
The outline of the paper is as follows. In Sec. II we

discuss a NP mechanism that in lattice QCD (LQCD) with
Wilson fermions [1] is capable of generating a finite (up to
logs) term in the critical mass beneath the standard linearly
divergent contribution. We provide both numerical evi-
dence and theoretical arguments in favor of its existence. If
we could single out this finite piece from beneath the
linearly divergent term that goes with it, we could renorm-
alize the theory in such a way that the NP finite term would
play the role of a dynamically generated fermion mass.
Within LQCD such a fine-tuning procedure is neither
natural nor well defined.
We show in Secs. III–IV how this naturalness problem

[2] can be circumvented in a model extension of QCD
where a strongly interacting SU(2) doublet of fermions is
coupled to a doublet of complex scalar fields via Yukawa
and Wilson-like terms. In Sec. III we describe the
symmetries of the model paying special attention to trans-
formations of the chiral type and the associated Ward-
Takahashi identities (WTIs). In Sec. IV we discuss how the
physics of the model depends on the shape of the quartic
scalar potential. If the latter has a single minimum (Wigner
phase), we argue (Sec. IVA) that nothing special happens,
in the sense that there is no trigger for the spontaneous
breaking of chiral symmetry, hence no dynamical gener-
ation of fermion mass terms. But a critical value of the
Yukawa coupling exists, at which the SUð2ÞL × SUð2ÞR
fermion chiral transformations become a symmetry of the
action, up to negligible ðUV-cutoffÞ−2 terms. In Sec. IV B
we discuss what happens in the much more interesting
situation in which the scalar potential has the typical
double-well shape (Nambu-Goldstone phase). In this case,
at the same critical value of the Yukawa coupling (that was
determined in the Wigner phase of the model), residual
chiral breaking terms in the action (of the kind responsible
for the similar phenomenon in LQCD at the critical mass;
see Sec. II) trigger the dynamical spontaneous breaking of
the recovered chiral symmetry, yielding a NP finite (up to
logs) mass to the fermions. In Sec. V we study the
interesting situation occurring for fermion mass hierarchy
if an extra family of fermions subjected to both strong and
superstrong interactions is coupled to the model discussed
in Secs. III–IV. Conclusions can be found in Sec. VI
together with a brief outlook on how ideas about the NP

mass generation mechanism we propose can be extended to
construct a complete beyond-the-Standard-Model model
where fermion and weak boson mass hierarchy would
naturally emerge.

II. INSPIRATION AND NUMERICAL EVIDENCE
FROM LATTICE QCD

As is well known, in LQCD with Wilson fermions [1]
quark mass renormalization requires the subtraction of a
linearly divergent counterterm,mcrq̄q (q being theNf-flavor
quark field), arising because the Wilson term in the lattice
Lagrangian explicitly breaks chiral symmetry. In generalmcr
will have a formal small-a expansion of the kind

mcr ¼
c0
a
þ c1ΛQCD þ OðaÞ: ð2:1Þ

Equation (2.1) suggests that, if we could set the mass
parameter, m0, in the lattice fermion action just equal to
the linearly divergent term c0=a, a term proportional to
c1ΛQCD would play the role of a quark mass in the
renormalized chiral WTIs of the theory.
To see how this can happen consider the renormalized

axial (nonsinglet) WTIs of lattice QCD. They read (in the
notations of Ref. [7])

∇μhĴf5μðxÞÔð0Þi
¼hΔfÔð0ÞiδðxÞþ2ðm0−M̄ðm0ÞÞhPfðxÞÔð0ÞiþOðaÞ;

ð2:2Þ

where Jf5μ, f ¼ 1; 2;…N2
f − 1, is the nonsinglet axial

current and M̄ is the mixing coefficient between the axial
variation of the Wilson term, Of

5 , and the pseudoscalar
quark density, Pf. The hat denotes renormalized operators.
In formulas we have

Ôf
5ðxÞ ¼ Z5

�
Of

5ðxÞ þ
2M̄
a

PfðxÞ þ ZA − 1

a
∇μJ

f
5μðxÞ

�
;

ð2:3Þ

where M̄ðm0Þ has the general expression

M̄ðm0Þ ¼
c0ð1 − d1Þ

a
þ c1ð1 − d1ÞΛQCD þ d1m0 þ OðaÞ;

ð2:4Þ

with the coefficients c0, c1, and d1 being functions of the
gauge coupling, g2s . The coefficients c0 and d1 are present
even in perturbation theory (PT) and their expansion starts
at order g2s.
We recall that the solution of the equation M̄ðm0Þ ¼ m0

is precisely mcr as given in Eq. (2.1). The key observation
about Eqs. (2.2)–(2.4) is that, if we could set

2In the following, see Sec. V, we suggestively term them
“technihadrons,” with an eye to the bound states emerging in
technicolor models [5,6], although our framework is very differ-
ent from standard technicolor.
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m0 ¼
c0
a
; ð2:5Þ

the WTI (2.2) would take the form

∇μhĴf5μðxÞÔð0Þi
¼ hΔfÔð0ÞiδðxÞ − 2c1ð1 − d1ÞΛQCDhPfðxÞÔð0Þi
þ OðaÞ; ð2:6Þ

which shows that the quantity −c1ð1 − d1ÞΛQCD plays the
role of a non-perturbatively generated quark mass. In this
situation, besides the standard perturbative quadratically
divergent c0=a2 mixing between Of

5 and Pf
5 , one would

have an extra NP contribution with a subleading linearly
divergent −2c1ð1 − d1ÞΛQCD=a coefficient.
Notice that NP effects of this kind are immaterial for

standard LQCD simulations, because mcr is always taken
to be given by Eq. (2.1), i.e., as the value of m0 at which
the PCAC mass vanishes.
If onewants to make practical use of these considerations

to construct a model where NP fermion mass generation
takes place naturally, one must be able to (positively)
answer the following questions.
(1) Are there numerical indications for the existence of a

term like the second one in the rhs of (2.1) in actual
LQCD simulation data?

(2) Do we understand its possible dynamical origin?
(3) Are we in a position to disentangle a (small) NP

fermion mass from the much larger contribution that
comes along with it when chiral symmetry is broken
at a high momentum scale?

A. Some numerics

We start by examining the first among the three questions
listed above and the one that has triggered this whole
investigation. Hints for the existence of a nonvanishing
c1ΛQCD term in Eq. (2.1) are numerically striking in Wilson
LQCD simulations.
Though the existence of this contribution may have been

noticed in several simulations, its potential role for gen-
erating a genuine mass for the fermions was never taken
into consideration because, as remarked above, a term of
this kind (even if present) is eliminated anyway together
with its linearly divergent counterpart, when the critical
mass, determined by the vanishing of the PCAC mass, is
subtracted out from the bare mass.
In Fig. 1 we report a compilation of perturbative and

simulation data showing the behavior of the value of am0 at
which amPCAC vanishes (that is to say the behavior of
amcr), as a function of the dimensionless quantity a=r0.

3

Perturbative data are taken from the two-loop calculations

of Ref. [9] and plotted as a function of a=r0 after
determining the relation between g20 and aΛQCD=r0ΛQCD

combining results from Refs. [10–14]. Simulation data are
extracted from measurements carried out in a number of
LQCD studies employing Wilson fermions. We show four
sets of data taken from Refs. [15–21].
Curves with black dashed, red full, blue dotted-dashed

and green dotted points are the two-loop perturbative
estimates of mcr as a function of a=r0 for the four types
of lattice actions for which nonperturbative values of the
critical mass are also plotted. Although perturbation theory
can be considered to be reliable in a tiny range of values
of a=r0 (approximatively up to a=r0 ≃ 0.01), we have
displayed the analytic behavior of the perturbative curves
throughout the whole span of the horizontal axis.
The three lower sets of points in Fig. 1 correspond to

nonperturbative determinations of the critical mass per-
formed at maximal twist using the Wilson twisted mass
regularization of LQCD [22,23] in the quenched (Nf ¼ 0)
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FIG. 1 (color online). The quantity amcr determined in Wilson
LQCD simulations as a function of a=r0. Black dots are the
perturbative points of Ref. [9]. Blue squares areNf ¼ 0 data from
[15]. Red diamonds are Nf ¼ 2 data from [16,17]. Black open
circles are Nf ¼ 4 data from [18,19]. Green triangles are Nf ¼ 2
clover data from [20,21]. Straight lines denote the best fit (linear
in a=r0) of amcr simulation data. In the “Nf ¼ 2 (clover)” case
only the filled triangle data points are taken for the fit. The four
curves instead refer to two-loop perturbative calculation of amcr.
Because of our trading of g20 for a=r0, the two-loop curves bear,
besides the intrinsic (main) error coming from truncation of the
perturbative series, a small uncertainty associated to the relation
between a=r0 and g20. This uncertainty can be converted into a
relative error on amcr that vanishes as a=r0 → 0 and in the region
of simulation data amounts to about 2%, 3%, and 4% for
the Nf ¼ 0, Nf ¼ 2 (clover), Nf ¼ 2, and Nf ¼ 4 curves,
respectively. For each lattice action the correspondence between
a=r0 and g20 is established using the two-loop formula
ar−10 ¼ ðΛlattr0Þ−1e−1=2b0g20ðb0g20Þ−b1=2b

2
0 , where b0;1 are the two

universal coefficients of the β-function and Λlatt is evaluated by
combining the exactly known ratio ΛM̄S=Λlatt with the determi-
nation (affected by errors at a few percent level) of ΛM̄Sr0 from
LQCD simulations and/or phenomenology.

3As customary, with r0 we indicate the so-called Sommer
parameter [8] that is used to scale dimensionful quantities in order
to be able to meaningfully compare data obtained at different
lattice spacings and/or in different LQCD formulations.
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approximation (blue squares [15]), with Nf ¼ 2 dynamical
flavors (red diamonds [16,17]) and with Nf ¼ 4 dynamical
flavors (black open circles [18,19]), respectively. The green
triangles correspond to the results obtained in [20,21] with
Nf ¼ 2 dynamical flavors using clover-improved [24]
Wilson fermions.
In the present notations the slope of the fitted line through

the nonperturbative data points of the figure is c1ΛQCD × r0,
i.e., the quantity of interest here. We see that the data of
Refs. [15–19] all exhibit a nice linear behavior (with a mild
Nf dependence) in a wide window of a=r0 values, which
allows us to “identify” a nonvanishing c1ΛQCD.
Aword of caution is in order here.On the one hand, strictly

speaking there is not any mathematically rigorous way to
determine an a=r0 range where one can consider negligible
both the logarithmic a-dependence of amcr governing its
behavior as a → 0 (inherited from the behavior of the
renormalized gauge coupling), and the higher order lattice
artefacts that become important at large enough a values.
On the other hand, the figure clearly shows that (1) the

a=r0 behavior of the two-loop perturbative curves is very
different from that of the nonperturbative data, and (2) it
appears to be extremely difficult to provide a reasonable
description of nonperturbative points without allowing for a
linear term of the kind c1ΛQCDa=r0 in mcr.
Actually, as we said, a linear fit through the non-

perturbative points of Refs. [15], [16,17] and [18,19] is
quite good and gives for the numerical estimates of c1ΛQCD

values around 700, 900 and 1000 MeV, respectively.
The Wilson clover-improved data (green triangles) of

Refs. [20,21] are, instead, pretty flat implying that the c1
coefficient is likely to be very small. This result is in line
with our interpretation of the mcr behavior as a function of
a, according to which, as we argue in the next section, a
nonzero slope is triggered by the chiral breaking terms in
the Wilson action. The presence of the nonperturbatively
tuned clover term [24] in the lattice Lagrangian employed
in Refs. [20,21], instead, effectively suppresses the relevant
chiral breaking effects, thus leading to a much reduced
value of the coefficient c1 [OðaÞ chiral breaking effects will
be absent only in on-shell quantities].
The existence in amcr of NP OðaΛQCDÞ corrections on

top of the c0 term should not come as a surprise. Indeed,
there is overwhelming evidence for similar cutoff effects in
Wilson LQCD where they are seen to affect the correlation
functions from which physical quantities like masses,
operator matrix elements, etc., are extracted.4 On the other
hand, it is known that in the absence of SχSB effects all
(nontrivial) correlators of LQCD with massless Wilson
fermions would be automatically OðaÞ improved [23],
which is not the case.

We wish to conclude this section by observing that
we expect a nonanalytic dependence of c1 on the Wilson
r-parameter [1] as a footprint of the dynamical origin of the
NP mass term −c1ΛQCD. Since the Wilson term is odd in r,
c1 should be proportional to sign r (times an r-even
coefficient). This behavior is in analogy to what happens
in QCD to the chiral condensate, hq̄qi, which (in the
infinite volume limit) is proportional to sign mq. Our point
is that in both instances it is the dynamical breaking of
chiral symmetry, triggered by either the (critical) Wilson
term or by a nonzero mass term (or both), that is responsible
for the occurrence of such NP dynamical phenomena.

B. The dynamical origin of the c1ΛQCD term

In this section we want to argue that in Wilson LQCD
there is room for the appearance of a finite (up logs)
contribution in mcr, like the term c1ΛQCD we have intro-
duced in Eq. (2.1) to fit simulation data.
Two lines of reasoning can be followed. One is based on

considerations stemming from the Symanzik expansion
(Sec. II B 1) and their implications for the lattice fermion self
energy (Sec. II B 2). The second relies on calculations directly
performedin thebasic lattice theory(Sec. II B 3).Thoughnone
of the two can be rigorously pursued till the end (otherwise it
would mean that we are in position of performing exact NP
mass calculations in a regularized field theory), the converging
results provided by the two approaches make us confident
that the numerical indication coming from the analysis of
the data collected in Fig. 1 represents a real feature of mcr.

1. OðaΛQCDÞ corrections: Symanzik expansion
based argument

In this subsection we provide arguments showing that the
c1ΛQCD term emerges from a delicate interplay between
OðaÞ corrections to quark and gluon propagators and vertices
ensuing from the spontaneous breaking of chiral symmetry,
and the powerlike divergence of the loop integration in self-
energy diagrams where one Wilson term vertex is inserted.
Indeed, peculiar NP OðaÞ corrections, which are propor-

tional to ΛQCD and independent of m0 −mcr, can be seen
to affect lattice correlators. They can be geometrically
described in terms of formal OðaÞ contributions in the
Symanzik expansion of lattice correlators [28]. The latter,
in the limit m0 → mcr with mcr given by Eq. (2.1), can be
expressed in the general form

hOðx; x0;…ÞijL ¼ hOðx; x0;…ÞijC

− a

�
Oðx; x0;…Þ

Z
d4zL5ðzÞ

�����
C

þ Oða2Þ; ð2:7Þ
Oðx; x0;…Þ ⇔ Ab

μðxÞAc
νðx0Þ; qL=RðxÞq̄L=Rðx0Þ;

qL=RðxÞq̄L=Rðx0ÞAb
μðyÞ; ð2:8Þ

4See, e.g., [25,26] for general arguments on the issue of
nonperturbative OðaÞ artefacts and Ref. [27] for typical examples
of this kind of effect on the hadron spectrum.
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where q ¼ ðq1;…; qNf
ÞT is a Nf-flavor quark field, O is a

(multi)local, formally chiral invariant operator and L5 is the
d ¼ 5 chiral breaking Symanzik local effective Lagrangian
(SLEL) operator, which in self-explanatory notations reads

L5 ¼ bσFq̄ðiσ · FÞqþ bDDq̄ð−D ·DÞq: ð2:9Þ
The labels jC and jL are to remind the reader that the
correlators are evaluated in the massless limit of continuum
and lattice QCD, respectively.
The key remark about the expansion (2.7) is that the

OðaÞ continuum correlators in the rhs would vanish were it
not for the phenomenon of SχSB, triggered by the chiral
breaking (critical) Wilson term in the action.
Symmetries and dimensional arguments allow us to

determine the structure of the NP OðaÞ contributions to
quark and gluon propagators and qq̄-gluon vertex in the
expansion (2.7). The NP contributions we have identified
add up to standard propagators and vertices, and for the
operators listed in Eq. (2.8) have the form

ΔGbc
μνðkÞjL ¼ −αsaΛQCDδ

bc ΠμνðkÞ
k2

fAA

�
Λ2
QCD

k2

�
; ð2:10Þ

ΔSLL=RRðkÞjL

¼ −αsaΛQCD
ikμðγμÞLL=RR

k2
fqq̄

�
Λ2
QCD

k2

�
; ð2:11Þ

ΔΓb;μ
Aqq̄ðk;lÞjL

¼ αsaΛQCDigsλbγμfAqq̄

�
Λ2
QCD

k2
;
Λ2
QCD

l2
;

Λ2
QCD

ðkþ lÞ2
�
;

ð2:12Þ
where ΠμνðkÞ is the projector appropriate to the chosen
gauge fixing condition. The OðaÞ corrections displayed in
Eqs. (2.10)–(2.12) must be proportional to some non-
vanishing power of αs, since in the free theory there would
no such NP effect. One factor αs, indeed, comes from the
fact that the quark or gluon emitted from the L5 vertex has
to be absorbed somewhere in the diagram. That this power
should be precisely equal to unit is a consequence of the
structure of the Schwinger-Dyson equations for propaga-
tors and vertices (see, e.g., Fig. 4 of Ref. [29], as well as
Refs. [30,31] and chapter 10 of the book [32]—modulo the
obvious modifications entailed here by the presence of the
Wilson term in the action).
In the formulas above we have left unspecified the scale

at which the gauge coupling, αs, should be evaluated. The
choice of this scale is not irrelevant as it will turn out to be a
key feature to understand the details/numerics of the
fermion mass hierarchy problem [3] (see the discussion
in Sec. V). The occurrence of the RGI scale ΛQCD as a
multiplicative factor in Eqs. (2.10)–(2.12) signals the NP
nature of the effect and appears to the first power for simple
dimensional reasons.

The scalar form factors fAA, fqq̄ and fAqq̄ are dimen-
sionless functions depending on Λ2

QCD=ðmomentaÞ2 ratios.
From the Symanzik analysis of lattice artefacts, a-
expansions like those in Eq. (2.7) are expected to be
valid for squared momenta that are small compared to
a−2. Here we assume that the NP effects encoded in
Eqs. (2.10)–(2.12) persist up to large (i.e., comparable to
a−1) momenta, and conjecture the asymptotic behavior

fAA

�
Λ2
QCD

k2

�
!k
2→∞

hAA; ð2:13Þ

fqq̄

�
Λ2
QCD

k2

�
!k
2→∞

hqq̄; ð2:14Þ

fAqq̄

�
Λ2
QCD

k2
;
Λ2
QCD

l2

Λ2
QCD

ðkþ lÞ2
�

!k2;l2;ðkþlÞ2→∞
hqq̄; ð2:15Þ

where hAA and hqq̄ are O(1) constants and the last two limits
are related by gauge invariance.
It must be stressed that the asymptotic behavior implied

by Eqs. (2.11) and (2.14) is at variancewith, andmuch softer
than, the standard, large k2 behavior of the NP contribution
to the quark propagator derived on the basis of the operator
product expansion by Politzer [33] and Pascual and de
Rafael [34] which would be unable to produce a term like
c1ΛQCD in the critical mass. The constant large momentum
behavior entailed by Eqs. (2.11) and (2.14) will be essential
to generate a finite fermion mass contribution, as we are
going to show below in this subsection.
In the following we represent the above OðaÞ contribu-

tions to the quark and gluon propagator and to the quark-
antiquark-gluon vertex by the symbols shown in the right
panels of Fig. 2.5

5Actually there are further NP corrections besides those
displayed in Eqs. (2.10)–(2.12). These are corrections to the
Wilson term induced vertices and helicity-flipping quark propa-
gator components. Based on LQCD symmetries, to leading order
(LO) in g2s (and a) a bookkeeping of all these NP effects can be
obtained by constructing diagrams generated by the ad hoc
modified Feynman rules that can be derived by adding to the
LQCD Lagrangian the terms

ΔLjad hoc ¼ aΛQCDαs

	
hAA
4

ðF · FÞ þ hqq̄ðq̄DqÞ

þ hWil

�
−
ar
2

�
ðq̄D2qÞ þ hPau

�
−
ar
2

�
ðq̄iσ · FqÞ



:

In order to avoid anymisunderstanding or confusion it is important
to stress that the augmented Lagrangian, LLQCD þ ΔLjad hoc, can
only be used to gain insights on the structure of possible NP effects
in a sort of heuristic mixed approach where NP effects are
incorporated in an otherwise perturbative calculation (like in
Fig. 3). In other words the form of ΔLjad hoc is such so as to
reproduce (to leading order in g2s ) the OðaÞ results of the Symanzik
expansion, with the inclusion of NP corrections. Of course the full
and complete computation, from which all the NP effects we have
described above are expected to emerge, should be carried out by
using the fundamental LQCD Lagrangian.
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2. The emergence of a NP quark mass contribution

To explicitly see how the finite c1ΛQCD term can arise in
mcr let us consider the L − R component of the quark
propagator and look for possible Oða0ΛQCDÞ NP masslike
contribution in LQCD. The precise value of the renormal-
ized quark mass is unimportant here.
Finite (up to logs) dynamical mass terms get generated

from diagrams like the typical ones shown in Fig. 3
provided the lattice propagators and vertices receive the
NP OðaΛQCDÞ corrections of Eqs. (2.10)–(2.12) (that are
graphically summarized in Fig. 2).
We note that the insertion of these OðaΛQCDÞ corrections

in our ideal NP evaluation of the L − R component of the
quark propagator can be justified on the basis of the exact
Schwinger-Dyson equation for the quark propagator, the
structure of which, in the simpler case of continuum QCD,
is discussed, e.g., in Ref. [29] (see also Fig. 4 there).
Let us consider as an example the case of the diagram in

the central panel of Fig. 3. In the a → 0 limit, the loop
momentum (call it k) counting gives (for small external
momentum) factors aΛQCDαskμ=k2 and 1=k2 from the NP
contribution to the quark propagator and the standard
gluon propagator, respectively, and a factor akμ from the
derivative coupling of the Wilson vertex. If we assume
the constant asymptotic behavior (2.14), we recognize that
the multiplicative a2 power is exactly compensated by the
quadratic divergency of the loop integral. Including an αs
factor from the gluon loop, one thus gets schematically a
fermion mass term of the order

aΛQCDg2sαs

Z
1=a

d4k
kμ
k2

1

k2
akμ ∼ g2sαsΛQCD: ð2:16Þ

Other diagrams give similar NP mass contributions yield-
ing in Eq. (2.1), as well as in Eq. (2.4), to lowest order in the
gauge coupling, the result c1 ∼ Oðα2sÞ.
Summarizing, the argument shows that relative

OðaΛQCDαsÞ corrections to propagators and vertices have
the potential of generating NP Oðα2sΛQCDÞ corrections to
the quark self energy.

3. Argument based on the spectral Dirac
operator density

A second line of arguments one can give to support the
emergence of a finite quark mass term of dynamical
origin is based on the occurrence in the spectral density
of the Wilson-Dirac operator of NP contributions ∝ ΛQCD

that are related to the phenomenon of spontaneous chiral
symmetry breaking. In this approach NP chiral breaking
effects are incorporated in the quark propagator by
assuming that the (gluon averaged) eigenvalue density
of the Wilson-Dirac operator admits an expansion of the
type

ρ̂DðλÞ ¼ r1Λ3
QCD þ r2Λ2

QCDjλj þ r3ΛQCDjλj2 þ r4jλj3 þ � � � :
ð2:17Þ

The first and the last term are well known and correspond
to the Banks-Casher [35] and the perturbative contribu-
tion, respectively. Theoretical arguments in favor of the
existence of the second and third term are given in
Refs. [36–38]. Numerical indication for deviations from
the purely Casher-Banks plus perturbative behavior can
be found in Refs. [39,40].
The evaluation of the quark self energy in the funda-

mental theory is quite complicated as, in the spirit (again) of
the Schwinger-Dyson equations, it requires first computing
the relevant NP corrections to the gluon and quark
propagator and to the quark-antiquark-gluon vertex and
then inserting these building blocks in higher order self-
energy diagrams.
In Appendix Awe present a prototype calculation of the

quark self mass which indeed indicates that the NP
ΛQCDjλj2 term in the Dirac-Wilson eigenvalue density
generates the sought for c1ΛQCD finite (up to logs) con-
tribution to the quark mass term. This analysis has also the
merit of showing that the constant asymptotic behavior of
the NP correction terms displayed in Eqs. (2.13)–(2.15) is
the correct one, or in other words that the NP contributions

FIG. 3 (color online). Typical lowest order lattice diagrams giving rise to dynamically generated quark mass terms (L and R are quark-
helicity labels). The square box represents the Wilson vertex and the grey blob the nonperturbative aΛQCDαs effect stemming from the
second term in the rhs of Eq. (2.7).

FIG. 2 (color online). The NP OðaΛQCDÞ terms contributing
to the Symanzik expansion of quark and gluon propagators and
qq̄-gluon vertex [Eqs. (2.10)–(2.12)] are illustrated in the right
panels.
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to effective propagators and vertices of Eqs. (2.10)–(2.12),
which were argued to occur on the basis of a Symanzik
expansion of LQCD correlators, do persist up to momenta
of the order of the UV cutoff.

C. Is the mass subtraction (2.5) well
defined and natural?

At this point the key question is whether it is sensible,
i.e., well defined and natural, to adopt the mass renorm-
alization prescription specified in Eq. (2.5), or in other
words, whether it is possible to subtract out from m0 just
the c0=a counterterm and not the whole critical mass that is
obtained from the condition of “vanishing PCAC mass”
(i.e. restoration of nonsinglet axial WTIs). We must stress
that the nature of this problem is conceptually the same
as that of the naturalness problem [2] in the Standard
Model (SM).
Within LQCD with Wilson fermions the answer to the

question above is negative, i.e., no solution exists to this
naturalness problem, essentially because in this theory
there is only one operator, namely Pf, of dimension three
which Of

5 can mix with. As a consequence no symmetry-
based criterion can be found allowing us to single out a
finite term from beneath a linearly diverging one in the
mixing coefficient between Xf ¼ aOf

5 and Pf.
We show in the next section that an extension of QCD,

where a doublet of strongly interacting fermions is coupled
to a doublet of complex scalar fields via Yukawa and
Wilson-like terms, provides a framework in which the fine-
tuning problem [or better the appropriate analog of the
quark mass subtraction (2.5) in Wilson LQCD] appears to
have a natural solution if one requires that the renormalized
theory enjoys an enlarged fermionic symmetry of the chiral
type. In the phase where the scalar field acquires a vacuum
expectation value (vev), this symmetry turns out to be
dynamically broken by a NP mechanism analogous to the
one ultimately responsible for the generation of the c1ΛQCD

term in LQCD.
The key difference with LQCD is that in this extended

theory a new, genuinely NP operator of dimension three
appears in the renormalized WTIs. This purely NP operator
is seen to be multiplied by a well-defined and naturally light
effective fermion mass of dynamical origin, that interest-
ingly is proportional to ΛQCD and independent of the scalar
field vev.

III. LIGHT MASS FERMIONS WITH NATURAL
FINE-TUNING: A TOY MODEL

If we want to employ a NP mechanism of the kind
outlined in Sec. II for fermion mass generation, we have to
provide a (good) reason for choices like m0 ¼ c0=a in
Eq. (2.5), or more generally of special values for chiral-
restoring counterterm parameters, so as to avoid an unde-
sirable fine-tuning problem. From the arguments developed

in Sec. II C it should be clear that such a reason must
necessarily lie outside the LQCD theory we have consid-
ered up to now and must be based on symmetry and
renormalizability considerations.
In this and the next section we present a concrete

example of a possible theoretical scheme where a light
fermion mass term can be dynamically generated with no
“unnatural” fine-tuning [2].

A. Coupling fermions to non-Abelian gauge
fields and scalars

Let us consider a toy model described by the formal
Lagrangian

LtoyðQ;A;ΦÞ
¼ LkinðQ;A;ΦÞ þVðΦÞ þLWilðQ;A;ΦÞ þLYukðQ;ΦÞ;

ð3:1Þ

LkinðQ;A;ΦÞ

¼ 1

4
ðF · FÞ þ Q̄LDQL þ Q̄RDQR þ 1

2
tr½∂μΦ†∂μΦ�

ð3:2Þ

VðΦÞ ¼ μ20
2
tr½Φ†Φ� þ λ0

4
ðtr½Φ†Φ�Þ2 ð3:3Þ

LWilðQ;A;ΦÞ

¼ b2

2
ρðQ̄LD⃖μΦDμQR þ Q̄RD⃖μΦ†DμQLÞ ð3:4Þ

LYukðQ;ΦÞ ¼ ηðQ̄LΦQR þ Q̄RΦ†QLÞ; ð3:5Þ

where b−1 ¼ ΛUV is the UV cutoff.6 The parameter ρ in
Eq. (3.4) is of no relevance for the naturalness arguments
we are going to develop in this paper. It has been, however,
already introduced here as a preparation because the tuning
of ρ will be instrumental for solving the naturalness
problem when electroweak interactions are present [3].
Apart from the cutoff scale, the details of UV regulari-

zation are left unspecified here as they will be immaterial
for the following qualitative discussion which is mainly
based on symmetry considerations. Remarks on the impact
of the UV-regularization details (universality violations) on
the actual magnitude of the NP fermion masses that may be
dynamically generated can be found in Secs. IV C 4 and V.
The Lagrangian (3.1) describes a non-Abelian gauge

model where an SU(2) doublet of strongly interacting
fermions is coupled to a complex scalar field via
Wilson-like [Eq. (3.4)] and Yukawa [Eq. (3.5)] terms.

6To avoid confusion in this and the following sections the
UV-regularization scale will be denoted by b−1.
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For short we have used a compact SU(2)-like notation
where QL ¼ ðuLdLÞT and QR ¼ ðuRdRÞT are fermion
isodoublets and Φ is a 2 × 2 matrix with Φ ¼
ðϕ;−iτ2ϕ�Þ and ϕ an isodoublet of complex scalar fields.
We immediately notice that this structure is ready to be
gauged to accommodate electroweak interactions [3].
The term VðΦÞ in Eq. (3.3) is the standard quartic scalar

potential where the (bare) parameters λ0 and μ20 control
the self interaction and the mass of the scalar field. In
the equations above we have introduced the covariant
derivatives

Dμ ¼ ∂μ − igsλaAa
μ; D⃖μ ¼ ∂⃖μ þ igsλaAa

μ; ð3:6Þ

where Aa
μ is the gluon field (a ¼ 1; 2;…; N2

c − 1) with field
strength Fa

μν. A crucial role in the model is played by the
d ¼ 4 Yukawa term LYuk and the d ¼ 6 operator LWil.
Because of dimensional reasons the latter enters the
Lagrangian multiplied by b2. We have denoted it with
the subscript “Wil,” because, as far as symmetries of chiral
type are concerned, it will play a role similar to that of the
Wilson term in standard Wilson LQCD.7

B. Symmetries of the models in the Ltoy class

Besides the obvious Lorentz, gauge, and C, P, T
symmetries (see Appendix B), Ltoy is invariant under the
following (global) transformations:

• χL∶ ~χL ⊗ ðΦ → ΩLΦÞ ð3:7Þ

where

~χL∶
	
QL → ΩLQL

Q̄L → Q̄LΩ†
L

ΩL ∈ SUð2ÞL ð3:8Þ

• χR∶ ~χR ⊗ ðΦ → ΦΩ†
RÞ ð3:9Þ

where

~χR∶
	
QR → ΩRQR

Q̄R → Q̄RΩ
†
R

ΩR ∈ SUð2ÞR : ð3:10Þ

The conserved currents corresponding to the exact χL × χR
symmetry read (i ¼ 1; 2; 3)

JLiμ ¼ Q̄Lγμ
τi

2
QL −

1

2
tr
�
Φ† τ

i

2
∂μΦ − ð∂μΦ†Þ τ

i

2
Φ
�

−
b2

2
ρ

�
Q̄L

τi

2
ΦDμQR − Q̄RD⃖μΦ† τ

i

2
QL

�
; ð3:11Þ

JRiμ ¼ Q̄Rγμ
τi

2
QR −

1

2
tr

�
ð∂μΦ†ÞΦ τi

2
−
τi

2
Φ†ð∂μΦÞ

�

−
b2

2
ρ

�
Q̄R

τi

2
Φ†DμQL − Q̄LD⃖μΦ

τi

2
QR

�
;

ð3:12Þ

giving rise to the WTIs

∂μhJLiμ ðxÞÔð0Þi ¼ hΔi
LÔð0ÞiδðxÞ; ð3:13Þ

∂μhJRiμ ðxÞÔð0Þi ¼ hΔi
RÔð0ÞiδðxÞ; ð3:14Þ

where Ô is a renormalized (multi)local operator and Δi
LÔ

and Δi
RÔ are the variations of Ô under χL and χR,

respectively.
The model (3.1) is power-counting renormalizable (as

LQCD is) with counterterms constrained by the exact
symmetries of the Lagrangian. We note in particular that,
owing to the presence of the scalar field and the related
exact χL × χR symmetry, no power divergent fermion mass
terms can be generated in perturbation theory.
For later use we remark that the renormalized correlation

functions of the model (3.1) admit a small-b Symanzik-like
expansion where only cutoff corrections with even powers
of b appear. The absence of odd powers relies on the
invariance of the Lagrangian (3.1) under the discrete
transformation, Dd, that consists in multiplying each field
by the factor eiπd ¼ ð−1Þd, with d being its naive dimen-
sion, and simultaneously changing sign to its space-time
argument [23].8 One checks that only operators with even
(naive) dimension can occur in the formal SLEL that
generates the small-b expansion of correlators.

C. Bare WTIs of ~χ L × ~χR transformations

For generic values of the parameters, Ltoy is not invariant
under the chiral transformations ~χL [Eq. (3.8)] and ~χR
[Eq. (3.10)] that leave the scalar field untouched. Rather
these transformations give rise to the (bare) WTIs

7Actually for this purpose also other operators, like, e.g.,
Q̄LΦiðσ · FÞQR þ Q̄RΦ†iðσ · FÞQL, would do the job equally
well. Lagrangian terms with d ¼ 6 are part of the UV regulari-
zation of the model, which is not fully specified at this stage.
Anyway, in our approach at least some d ≥ 6 operator that breaks
purely fermionic chiral symmetries must be assumed to occur in
the UV-regulated model.

8Dd can also be viewed as the product of parity, time reversal,
and the discrete chiral transformations R5 × Uð1ÞFðπ=2Þ, where
R5 ≡ V1

0ðπ=2ÞV2
0ðπ=2ÞA3

0ðπ=2Þ is a product of three discrete
(nonsinglet) chiral transformations and Uð1ÞFðπ=2Þ is a discrete
transformation (the one under which Q → iQ, Q̄ → −iQ̄) of the
global symmetry group Uð1ÞF corresponding to fermion number
conservation. Although SχSB can affect the way the R5 sym-
metry is realized, this symmetry still constrains the operators
entering the SLEL to only the even-dimensional ones.
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∂μh~JLiμ ðxÞÔð0Þi ¼ h ~Δi
LÔð0ÞiδðxÞ − η

��
Q̄L

τi

2
ΦQR − Q̄RΦ† τ

i

2
QL

�
ðxÞÔð0Þ

�

−
b2

2
ρ

��
Q̄LD⃖μ

τi

2
ΦDμQR − Q̄RD⃖μΦ† τ

i

2
DμQL

�
ðxÞÔð0Þ

�
; ð3:15Þ

∂μh~JRiμ ðxÞÔð0Þi ¼ h ~Δi
RÔð0ÞiδðxÞ − η

��
Q̄R

τi

2
Φ†QL − Q̄LΦ

τi

2
QR

�
ðxÞÔð0Þ

�

−
b2

2
ρ

��
Q̄RD⃖μ

τi

2
Φ†DμQL − Q̄LD⃖μΦ

τi

2
DμQR

�
ðxÞÔð0Þ

�
; ð3:16Þ

where ~Δi
LÔ and ~Δi

RÔ are the variations of Ô under ~χL and
~χR, respectively. The nonconserved currents associated to
the transformations ~χL and ~χR are

~JLiμ ¼ Q̄Lγμ
τi

2
QL

−
b2

2
ρ

�
Q̄L

τi

2
ΦDμQR − Q̄RD⃖μΦ† τ

i

2
QL

�
; ð3:17Þ

~JRiμ ¼ Q̄Rγμ
τi

2
QR

−
b2

2
ρ

�
Q̄R

τi

2
Φ†DμQL − Q̄LD⃖μΦ

τi

2
QR

�
; ð3:18Þ

and differ from the conserved ones, JLiμ and JRiμ , only
because in the latter a contribution bilinear in the scalar
field coming from the Φ kinetic term appears.
At this stage, owing to the freedom in choosing the

parameter η (and ρ), we have a family of models endowed
with exact χL × χR invariance, but where in general the
transformations ~χL and ~χR are not symmetries of Ltoy.
In the following we show that there exists a “critical” value
of the Yukawa coupling, ηcrðg2s ; ρ; λ0Þ, at which, up to
negligibly small Oðb2Þ cutoff effects, the chiral ~χL × ~χR
transformations are elevated to symmetries of the theory.
This property can be regarded as an extension of the
Golterman-Petcher symmetry [41] valid for the Higgs-
Yukawa model to the present case where fermions interact
also with gauge fields.
Symmetry restoration does not depend on the fine details

of the UV regularization of the model (3.1), which in fact
has not been fully specified, except for the crucial inclusion
of a ~χL × ~χR-breaking Wilson-like d ¼ 6 term and the
Yukawa terms that unavoidably go with it. Upon changing
the UV-regularization details while preserving the exact
symmetries of Ltoy, no new Lagrangian terms with d ≤ 4

can be generated via loop corrections, implying that just
the numerical value of ηcr and of other bare parameters will
be affected.

To give a precise meaning to the criterion of ~χL × ~χR-
symmetry enhancement we need to study the mixing
pattern of the operators appearing in the rhs of the WTIs
(3.15)–(3.16) and proceed to renormalization.

D. Renormalizing ~χ L × ~χR WTIs

As we just mentioned, in order to renormalize the WTIs
(3.15)–(3.16) we have to work out the mixing pattern of the
d ¼ 6 operators

OLi
6 ¼ 1

2
ρ

�
Q̄LD⃖μ

τi

2
ΦDμQR − H:c:

�
; ð3:19Þ

ORi
6 ¼ 1

2
ρ

�
Q̄RD⃖μ

τi

2
Φ†DμQL − H:c:

�
: ð3:20Þ

Following the standard analysis of Refs. [7,42] and given
the symmetries of Ltoy (see Sec. III B), one concludes that
the operators (3.19)–(3.20) mix with two d ¼ 4 operators,
plus a set of six-dimensional ones that we globally denote
by ½OLi

6 �sub and ½ORi
6 �sub, respectively,9 according to the

formulas

OLi
6 ¼ ½OLi

6 �sub þ
Z ~J − 1

b2
∂μ

~JLiμ −
η̄

b2

�
Q̄L

τi

2
ΦQR − H:c:

�

þ � � � ð3:21Þ

ORi
6 ¼ ½ORi

6 �sub þ
Z ~J − 1

b2
∂μ

~JRiμ −
η̄

b2

�
Q̄R

τi

2
Φ†QL − H:c:

�

þ � � � ; ð3:22Þ

where Z ~J and η̄ are functions of the bare parameters
entering (3.1). Details on the symmetry arguments
leading to Eqs. (3.21)–(3.22) are given in Appendix B.
Here we just note that in deriving these equations the

9We do not need to resolve the mixing among the different
d ¼ 6 operators, as they yield negligible O(b2) effects.
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conservation laws ∂μJLiμ ¼ 0 and ∂μJRiμ ¼ 0 have been
used to eliminate from the mixing pattern the purely
Φ-dependent operators ∂μtr½Φ† τi

2
∂μΦ − ð∂μΦ†Þ τi

2
Φ� and

∂μtr½ð∂μΦ†ÞΦ τi

2
− τi

2
Φ†ð∂μΦÞ�. Ellipses on the rhs of

Eqs. (3.21)–(3.22) denote possible NP contributions to
operator mixing. They are the main focus of this paper and
the circumstances of their possible occurrence will be
discussed in the next section.

IV. ~χL × ~χR SYMMETRY ENHANCEMENT
AND NATURALLY LIGHT FERMION MASS

The physics of the model (3.1) with enhanced ~χL × ~χR
symmetry [see Eq. (4.3)] is drastically different depending
on whether the parameter μ20 is such that VðΦÞ has a unique
minimum (Wigner phase of the χL × χR symmetry) or
whether VðΦÞ develops the typical “Mexican hat” shape
(Nambu-Goldstone phase). In the next subsections we
discuss in detail the physical consequences of these
two possible scenarios, and we argue that in the second
case indeed a NP contribution arises in the rhs of
Eqs. (3.21)–(3.22).

A. The Wigner phase of χ L × χR symmetry
and the ηcr definition

If μ20 is such that VðΦÞ has a single minimum, one gets
hΦi ¼ 0. In this situation we expect the Φ-field to effec-
tively provide no seed for dynamical ~χL × ~χR-symmetry
breaking (D~χSB). As a consequence no NP terms (i.e.,
ellipses) of the type discussed in Sec. IV B are expected to
occur in the mixing pattern of Eqs. (3.21)–(3.22), which is
thus assumed to be just the one visible in perturbation
theory. Indeed, we see below that NP effects associated
with D~χSB necessarily involve a nonanalytic function of
the Φ-field that is not well defined if hΦi ¼ 0.
The critical value of η at which [up to irrelevant Oðb2Þ

terms] the transformations ~χL × ~χR become a symmetry of
the theory can be consistently determined by imposing the
validity of the renormalized WTIs

∂μhZ ~J
~JLiμ ðxÞÔð0Þijcr ¼ h ~Δi

LÔð0ÞijcrδðxÞ þ Oðb2Þ; ð4:1Þ

∂μhZ ~J
~JRiμ ðxÞÔð0Þijcr ¼ h ~Δi

RÔð0ÞijcrδðxÞ þ Oðb2Þ: ð4:2Þ

Inserting Eqs. (3.21)–(3.22)—with ellipses now set to
zero—in the WTIs (3.15)–(3.16), we see that taking η
equal to the solution of the equation

η ¼ η̄ðg2s ; ρ; λ0; ηÞ ⇒ η ¼ ηcrðg2s ; ρ; λ0Þ ð4:3Þ
makes the ~χL=R-variation of the d ¼ 4 Yukawa term to

cancel the d ¼ 4 operator that mixes with −b2OL=Ri
6 (the

latter we recall is the ~χL=R-variation of the Wilson-like term
in the action). As a consequence, on the rhs of the WTIs
(3.15)–(3.16) only genuinely d ≥ 6 subtracted operators
are left, which contribute irrelevant Oðb2Þ cutoff artefacts.
In Fig. 4 we schematically illustrate the Yukawa term
cancellation mechanism that determines the value of ηcr in
the Wigner phase.
One can check that ηcr is odd under a change of sign

of ρ, as it follows from the invariance of Ltoy under
~R5 × ðρ → −ρÞ × ðη → −ηÞ, where ~R5 (see footnote
eight) is a Z2-subgroup of ~χL × ~χR, corresponding to the
nonanomalous discrete transformation

Q → Q0 ¼ γ5Q Q̄ → Q̄0 ¼ −Q̄γ5: ð4:4Þ
The fact that the same value of ηcr makes both Eq. (4.1)
and (4.2) hold is a consequence of the invariance of
Ltoy under parity, P. Furthermore we note that ηcr ¼
ηcrðg2s ; ρ; λ0Þ does not depend on the scalar field (squared)
mass.10

In conclusion, if one sets η ¼ ηcr in (3.1), the trans-
formations ~χL × ~χR are promoted to symmetries of the
action up to irrelevant Oðb2Þ cutoff effects. Recalling the
form of the exact symmetries χL [Eq. (3.8)] and χR
[Eq. (3.10)], this implies that also the transformations

χΦL∶ Φ → ΩLΦ; ΩL ∈ SUð2ÞL ð4:5Þ

and
χΦR∶Φ → ΦΩ†

R; ΩR ∈ SUð2ÞR ð4:6Þ

FIG. 4. The Yukawa term cancellation mechanism determining ηcr in the Wigner phase.

10The squared mass of Φ undergoes both additive and
multiplicative renormalization. The parameter μ20 is related to
its renormalized counterpart, μ̂2Φ, by μ̂2Φ ¼ Z−1

Φ†Φ½μ20 − τb−2�, with
τ a dimensionless function of g2s , λ0, η, and ρ. Since ηcr can only
be a function of dimensionless bare parameters, it can depend on
the scalar squared mass only via the quantity b2ZΦ†Φμ̂

2
Φ ¼

b2μ20 − τ, i.e., a negligible Oðb2Þ effect.
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become symmetries [up to Oðb2Þ effects]. To this order the
corresponding currents JLiμ − ~JLiμ and JRiμ − ~JRiμ that involve
only scalar fields [see Eqs. (3.11)–(3.12) and (3.17)–(3.18)]
are conserved. As a result, when the condition (4.3) is
fulfilled, the scalar field gets actually decoupled [up to
Oðb2Þ artefacts] from fermion and gauge boson degrees of
freedom. More precisely, at the critical value of η, the newly
enforced ~χL × ~χR invariance implies [up to Oðb2Þ] the same
set of relations among correlators involving only fermions
and gluons as the exact χL × χR symmetry.
The local part of the 1PI effective Lagrangian of the

theory in the Wigner phase (μ̂2Φ > 0) takes the form

LWig
4 ¼ 1

4
ðF · FÞ þ Q̄LDQL þ Q̄RDQR

þ 1

2
tr½∂μΦ†∂μΦ� þ

μ̂2ϕ
2
tr½Φ†Φ� þ λ̂

4
ðtr½Φ†Φ�Þ2:

ð4:7Þ

The expression of LWig
4 is completely determined by

symmetry requirements and for this reason is sometimes
called the “target theory,” i.e., the theory one is aiming at. In
the case at hand, besides the obvious gauge, Lorentz and C,
P, T symmetries, its form is constrained by requiring
invariance under χL × χR transformations as well as
~χL × ~χR. The expression (4.7) clearly shows that scalars
are completely decoupled from fermions and gluons. From
a different vantage we can also say that, once the details
of the UV regularization have been fully specified, the
correlators of the UV-regulated model, computed with the
Lagrangian Ltoy admit a small-b Symanzik expansion in
terms of correlators of the formal model defined by the
d ¼ 4 Lagrangian (4.7).

B. The Nambu-Goldstone phase of the χL × χR
symmetry and the effects of D ~χSB

We now want to investigate the physical properties of the
model that is obtained if the parameter μ20 in Ltoy is brought
to a value such that VðΦÞ develops a double-well shape,
while the dimensionless Yukawa coupling is kept at the
critical value, ηcr, that was determined (at a value of μ20 at
which the model is) in the Wigner phase. Since, as we
remarked above, ηcr is independent from the renormalized
scalar mass μ̂2Φ, its value is not affected by a change of sign
of μ̂2Φ (i.e., if one now takes μ20 − τb−2 < 0).
With the χL × χR symmetry realized à la Nambu-

Goldstone the physics of the model is much more interest-
ing than the situation we have discussed in the previous
section. To see what happens we expand, as usual, the
scalar field around its vev by writing

ΦðxÞ ¼ ðvþ σðxÞÞ12×2 þ i~πðxÞ~τ; ð4:8Þ

where ~π is a triplet of massless pseudoscalar Nambu-
Goldstone bosons and σ is a scalar of massmσ ¼ OðvÞ. It is
worth recalling that in the Nambu-Goldstone vacuum
defined by the expansion (4.8) the χL × χR-symmetry of
Ltoy is reduced to its diagonal subgroup, χV .
In the following we argue that a natural choice is to take

v to be much larger than the RGI scale of the theory,
v ≫ Λs, but still ≪ b−1. The compelling reason for the
inequality v ≫ Λs will be spelled out in point (5) of
Sec. IV C 4.
We immediately note that, ignoring the fluctuations of Φ

around its vev, the d ¼ 6 term LWil with b2v → ar looks
very much like the d ¼ 5 Wilson term in LQCD. We may
then expect that the residual ~χL × ~χR-breaking terms left
over at ηcr, where LWil is (partially) compensated by LYuk,
will trigger the phenomenon of D~χSB, just as it happens in
LQCD with Wilson fermions, where chiral symmetry plays
the same role as the ~χL × ~χR-symmetry in the present
model. Indeed in the familiar case of LQCD, owing to the
residual explicit OðaÞ breaking of chirality, we know that
the phenomenon of spontaneous chiral symmetry breaking
occurs even when m0 is set at mcr [see Eq. (2.1)] and the
Wilson term gets (partially) compensated by the mass
term.11

In order to determine the structure and the properties of
the critical theory in the double-well situation, we need to
analyze how NP terms coming from D~χSB effects can
affect correlators and in particular the building blocks that
enter the quark self-energy diagrams. Thus among others,
we focus on the small-b expansion of the gluon-gluon-
scalar, QL=R-Q̄L=R-scalar, QL=R-Q̄L=R-gluon-scalar correla-
tors that take the form (as we have observed before, terms
odd in b in the SLEL of the model are excluded by the Ltoy

symmetries)

hOðx; x0;…ÞijR ¼ hOðx; x0;…ÞijF

− b2hOðx; x0;…Þ
Z

d4z½L~χ
6 þ L~χ

6�ðzÞijF þ Oðb4Þ;

ð4:9Þ

Oðx; x0;…Þ ⇔ Ab
μðxÞAc

νðx0ÞσðyÞ;
QL=RðxÞQ̄L=Rðx0ÞσðyÞ;
QL=RðxÞQ̄L=Rðx0ÞσðyÞAb

μðy0Þ;…; ð4:10Þ

11The well-known fact that the (critical) Wilson term can
trigger the phenomenon of spontaneous chiral symmetry break-
ing in LQCD is incorporated in the formalism of Wilson chiral
perturbation theory [43–45] and gives rise to the peculiar lattice
scenarios of SχSB [43,46–48], differing from continuum QCD by
Oða2Þ effects that are actually observed in numerical simulations
(see, e.g., Refs. [49,50]).
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where L~χ
6 is the d ¼ 6 ~χ-breaking SLEL operator and L~χ

6 the
d ¼ 6 ~χ-conserving one. The label jR in Eq. (4.9) means
that expectation values are taken in the UV-regulated Ltoy

theory, while the label jF means that expectation values are
taken in the “formal” theory. The latter should be identified
with the target theory of the critical model in the Nambu-
Goldstone phase. Its Lagrangian (which also coincides with
the d ¼ 4 piece of the SLEL) can be represented by the
formula

LNG
4 ¼ LWig

4 jμ̂2Φ<0 þ ϵðQ̄LΦQR þ Q̄RΦ†QLÞjϵ→0þ; ð4:11Þ

where the last term is introduced to have the phenomenon
of D~χSB formally implemented in the Nambu-Goldstone
phase of the theory.
One checks that gauge symmetry and Lorentz invariance

together with dimensional arguments make the expectation
values of the operators (4.10) [first term on the rhs of
Eq. (4.9)] vanish in the formal theory.

1. Symanzik expansion

The analysis of the Symanzik expansion that follows is
analogous to the one presented in Sec. II B 1. Indeed, like in
LQCD, the Oðb2Þ terms with the insertion of L~χ

6 would
vanish were it not for the NP phenomenon of D~χSB.
The resulting NP contributions to the gluon-gluon-scalar,
QL=R-Q̄L=R-scalar, QL=R-Q̄L=R-gluon-scalar vertices will
have the form

ΔΓbcμν
AAΦðk;lÞjR ¼ b2Λsαs

δbc

2
TμνFAAΦ

�
Λ2
s

mom2

�
; ð4:12Þ

ΔΓQQ̄Φðk;lÞjR ¼ b2Λsαs
i
2
γμð2kþ lÞμFQQ̄Φ

�
Λ2
s

mom2

�
;

ð4:13Þ

ΔΓb;μ
QQ̄AΦðk;l;l0ÞjR ¼ b2ΛsαsigsλbγμFQQ̄AΦ

�
Λ2
s

mom2

�
;

ð4:14Þ

respectively, where we have set

Tμν ¼ ½kðkþ lÞδμν − kμðkþ lÞν� þ ½μ → ν�; ð4:15Þ

and “mom” stands for any one of the kinematically
appropriate momenta in the set fk;l;l0;…;
l0 þ l; kþ lg. As in LQCD, the factor αs comes from
the fact that the quark or gluon line emitted from the L~χ

6

vertex has to be absorbed somewhere in the diagram. We
also note that an analysis of the structure of the Schwinger-
Dyson equations shows that the NP corrections to the
vertices under consideration start to appear precisely at first
order in the gauge coupling αs. As before, at this stage we

leave unspecified the scale at which the gauge running
coupling should be evaluated.
The scalar form factors FAAΦ, FQQ̄Φ, and FQQ̄AΦ are

dimensionless functions with a nontrivial dependence on
the Λ2

s=mom2 ratios. In the following we represent the
above Oðb2Þ NP contributions to gluon-gluon-scalar,
QL=R − Q̄L=R-scalar, QL=R − Q̄L=R-gluon-scalar vertices
with the symbols depicted in the right panels of Fig. 5.
Standard arguments à la Symanzik imply that small-b

expansions like those in (4.9) are expected to be valid for
squared momenta much smaller than the UV cutoff, b−2.
Like in LQCD, we assume that the NP effects encoded in
Eqs. (4.9)–(4.14) persist up to mom2 ¼ Oðb−2Þ, and con-
jecture the asymptotic behavior

FAAΦ

�
Λ2
s

mom2

�
⟶

mom2→∞
HAA; ð4:16Þ

FQQ̄Φ

�
Λ2
s

mom2

�
⟶

mom2→∞
HQQ̄; ð4:17Þ

FQQ̄AΦ

�
Λ2
s

mom2

�
⟶

mom2→∞
HQQ̄; ð4:18Þ

where HAA and HQQ̄ are O(1) constants and the last two
limits are related by gauge invariance.

C. Dynamical quark mass generation and ~χL × ~χR WTIs

With the building blocks provided by the NP Oðb2Þ
corrections to the gluon-gluon-scalar, QL=R-Q̄L=R-scalar
and QL=R-Q̄L=R-scalar-gluon vertices given in
Eqs. (4.12)–(4.14), we are in position to compute the
leading fermion self-energy diagrams and the structure of

FIG. 5 (color online). The NP terms of order b2Λsαs contrib-
uting to the left, central, and right panel of Fig. 6, respectively.
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the NP mixing pattern of OLi
6 and ORi

6 [see Eqs. (3.21)–
(3.22)].12 This way of estimating NP effects in certain
vertices of the model (3.1) can be justified looking at the
structure of the relevant Schwinger-Dyson equations.

1. Dynamical NP mass generation

For illustration in Fig. 6 we report a few self-energy
diagrams that give rise to finite O(g2sαsΛs) NP contributions
to the fermion mass.
The finiteness of these contributions is apparent from a

straightforward counting of loop momenta in the graphs.
For instance, with reference to the central panel of Fig. 6
and neglecting external (compared to loop) momenta, one
finds a double integral with factors 1=k2 and 1=ðl2 þm2

σÞ
from the standard gluon and σ propagators, the factors
γμkμ=k2 and γνðkþ lÞν=ðkþ lÞ2 for the quark propaga-
tors, a factor b2ðkþ lÞλ from the LWil derivative coupling
and a factor b2αsΛsð2kþ lÞργρ from the NP vertex
ΔΓQQ̄Φðk;lÞjR. Putting everything together, one gets in
the b → 0 limit [similarly to Eq. (2.16)] a finite fermion
mass term of the order

b4g2sαsΛs

Z
1=b

d4k
Z

1=b
d4l

1

k2
γλ
γμkμ
k2

ð2kþ lÞργρ
l2 þm2

σ

×
γνðkþ lÞν
ðkþ lÞ2 ðkþ lÞλ ∼ g2sαsΛs; ð4:19Þ

as the overall b4 multiplicative factor is compensated by the
quartic divergency of the two-loop integrals. The diagrams
in Fig. 6 represent a subset of all the lowest order terms
contributing to the fermion self energy, namely those where
only one σ propagator appears. To the same lowest order in
g2s there are infinitely many other contributions coming
from diagrams that take into account the self interaction of
the Φ field and include in general scalar (σ and/or π) loops.
Unlike the case of LQCD, we are not going to present the

alternative argument for NP fermion self-mass generation
that relies on the use of the spectral density of the average
fermion Dirac operator [in the vacuum (4.8) of the Nambu–
Goldstone phase]. In fact, in the UV-regulated Ltoy model
we should deal with an at least three-loop calculation (see
Figs 5–6) and such an effort appears to be beyond the scope
of this speculative paper.
Nevertheless to be able to interpret the finite term we

have just identified as a bona fide quark mass we ought to
prove the following statements.
(1) No extra OðvÞ quark mass is left over as a conse-

quence of the Higgs mechanism because a term of
that kind would completely obscure the NP con-
tribution (4.19) in case v ≫ Λs, or make it of little
interest for predicting the value of the quark mass, in
case v ∼ Λs.

(2) A χL × χR-invariant NP mass term of the magnitude
(4.19) must exist that is endowed with the correct
symmetry properties to appear in the effective
Lagrangian of the model in its Nambu-Goldstone
phase.

(3) The NP fermion mass term is renormalization scale
independent and its chiral variation can be accom-
modated in the rhs of the restored ~χL × ~χR WTIs.

We discuss the first of these three issues in this
subsection and leave the other two for the next two
subsections. The first statement is proved by observing
that in the Nambu-Goldstone phase the equation determin-
ing ηcr becomes just a condition for the cancellation of
the vðQ̄RQL þ Q̄LQRÞ quark mass term (compare Fig. 7
with Fig. 4).

FIG. 6 (color online). Typical lowest order diagrams giving rise to dynamically generated quark mass terms (L and R are fermion
helicity labels). The grey blob represents the NP b2Λsαs effect embodied in Eqs. (4.12)–(4.14), respectively. The grey box represents the
insertion of the Wilson-like vertex stemming from LWil. The dotted line represents the propagation of a σ particle.

12Actually, like in LQCD, NP corrections appear also in other
n-point correlators. The ΔLjad hoc that would describe all these
effects is much more complicated than the formula we gave for
LQCD. Here we only report for illustration the part of ΔLjadhoc
that is relevant for the calculation of the diagrams displayed in
Fig. 6.
Based on the (nonspontaneously broken) symmetries of the

model (3.1), to leading order in g2s (and b2) the terms necessary to
describe the NP Oðb2Þ terms in the Symanzik expansion of the
correlators (4.10) can be compactly encoded in the expression

ΔLjad hoc ¼
b2

2
Λsαstr½Φþ Φ†�

�
HAA

4
ðF · FÞ þHQQ̄ðQ̄DQÞ

�

þ � � � :

We note again that the augmented Lagrangian Ltoy þ ΔLjad hoc
should be only seen as a useful tool to get insights about the
structure of NP contributions in correlators, as it reproduces the
NP Oðb2Þ vertex contributions we inferred from the Symanzik
expansion and provides a way of embedding them in sort of
“nonperturbatively augmented Feynman rules.” Naturally, com-
plete and reliable computations can only be performed by means
of numerical simulations of the fundamental theory represented
by the Lagrangian (3.1).
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2. The mass term

Proving the other two statements looks much more
challenging and interesting because a naive mass term of
the kind ∝ ΛsðQ̄RQL þ Q̄LQRÞ in the effective Lagrangian
is forbidden by the exact χL × χR-invariance of Ltoy.
The solution of this seemingly insoluble problem is of a

NP nature and requires introducing the field

U ¼ Φffiffiffiffiffiffiffiffiffi
Φ†Φ

p : ð4:20Þ

U is a dimensionless nonanalytic function of Φ that has the
same transformation properties as the latter under χL × χR
and is well defined only if hΦi ¼ v ≠ 0.13 In terms ofU one
can construct the desired NP χL × χR-invariant quark mass-
like term that reads.14

C1Λs½Q̄LUQR þ Q̄RU†QL�; ð4:21Þ
where, in view of the result (4.19), to LO in g2s one has

C1jLO ¼ kLOg2sαs; kLO ¼ Oð1Þ: ð4:22Þ
The conjectured NP contributions to the quark self
energy imply the occurrence of the additional term
C1Λs½Q̄LUQR þ Q̄RU†QL� in the effective action density
of the model in its Nambu-Goldstone phase. The local
piece should thus take the form [for LWig

4 see Eq. (4.7)
except that now μ̂2Φ < 0]

ΓNG
loc ¼ LWig

4 jμ̂2Φ<0 þ C2Λ2
s tr½∂μU†∂μU�

þ C1Λs½Q̄LUQR þ Q̄RU†QL�; ð4:23Þ

where, besides the mass term proportional to the RGI scale,
we have also introduced a kinetic term for the nonlinear
field U that cannot be excluded on the basis of symmetry
considerations. Actually “mixed kinetic terms” of the kind

Λs½∂μΦ∂μU† þ H:c:� are a priori possible in (4.23). For
generic values of ρ and v ≫ Λs all the kinetic terms
containing U are negligibly small corrections to the bona
fide kinetic term of the scalar fields already present in LWig

4 .
In fact, in the limit Λs=v → 0 all such kinetic term
contributions of NP origin as well as the ~χL × ~χR-breaking
terms in Eq. (4.23) that stem from the expansion of U in
terms of ~π and σ fields (with the exception of the ∼ΛsQ̄Q
mass term) do disappear.
As we see in Ref. [3], however, the situation turns out to

be very different if electroweak interactions are present. In
this case implementing the ~χR × ~χL symmetry requires the
tuning of also the parameter ρ. The critical value of ρ is one
where the standard, ∂μΦ†∂μΦ, kinetic term and the mixed
one, Λs½∂μΦ∂μU† þ H:c:�, are absent in ΓNG

loc . In these
circumstances the kinetic term of the nonlinear field U
cannot be neglected anymore and, indeed consistently, the
v-dependence of the last two terms in Eq. (4.23) disappears.
The reason is that, at the critical value of ρ and η, in order to
have the kinetic term of the π fields canonically normalized,
one is forced to rewrite everything in terms of the rescaled
fields π0 ∼ ðΛs=vÞπ.
Ending this section, it is important to remark that the

appearance in the game of the nonanalytic field U should
not come too much as a surprise if one recalls that in QCD
NP effects like the ones that make the chiral condensate
nonvanishing are proportional to the sign of mq, i.e., the
sign of the coefficient of the chiral breaking term in the
action. In LQCD atm0 ¼ mcr, the seed for NP SχSB effects
is instead provided by the (critical) Wilson term. As a result
such NP effects will be proportional to the sign of the
Wilson coefficient, r. From this point of view it is
illuminating to regard the Lagrangian (3.1) as a consistent
model where the Wilson coefficient is elevated to a
dynamical field, Φ. Indeed, as we have shown above,
the dynamically generated NP quark mass (4.21) turns out
to be proportional to U ¼ exp½iArgðΦÞ� [times a factor
Oðρ2ÞsignðρÞ].

3. ~χL × ~χR WTIs, NP operator mixing
and mass renormalization

The emergence of a NP mass term in the ~χL × ~χR WTIs
can be seen to be a consequence of the quadratically
divergent mixing of the d ¼ 6 operators OLi

6 and ORi
6 with

the nonperturbatively generated operators

FIG. 7 (color online). The mechanism for the OðvÞ quark mass cancellation in the Nambu-Goldstone phase.

13It may be worth noting that U is the phase of Φ and can
always be written in the form U ¼ signðvþ σÞ exp ði~τ ~ζ =vÞ;
~ζ ¼ ~π½1þ Oðσ=v; ~τ ~π =vÞ�.

14Actually one cannot exclude that Eq. (4.21) has the more
general form C1Λs½Q̄LUQR þ Q̄RU†QL�P, where the factor P ¼
Pðv−2Φ†ΦÞ is a χL × χR-invariant function of v−2Φ†Φ such that
PjΦ†Φ¼v21 ¼ 1. Like U, P is well defined only if v > 0 (i.e., for
μ̂2Φ < 0). We stress that the appearance ofU and possibly P in our
formulas is necessary for describing the many other NP con-
tributions, besides the ones shown in Fig. 6, that arise because of
the scalar field self interaction.

R. FREZZOTTI AND G. C. ROSSI PHYSICAL REVIEW D 92, 054505 (2015)

054505-14



C1Λs

�
Q̄L

τi

2
UQR − H:c:

�
;

C1Λs

�
Q̄R

τi

2
U†QL − H:c:

�
: ð4:24Þ

This is precisely the possible NP mixing that was alluded to
by the ellipses in Eqs. (3.21)–(3.22). Indeed, owing to χL ×
χR and other obvious symmetries, at η ¼ ηcr [see Eq. (4.3)],
the renormalized WTIs associated to the ~χL × ~χR trans-
formations are conjectured to take the form15

∂μhZ ~J
~JLiμ ðxÞÔð0Þijcr

¼ h ~Δi
LÔð0ÞijcrδðxÞ

þ C1Λs

��
Q̄L

τi

2
UQR − H:c:

�
Ôð0Þ

�����
cr
þ Oðb2Þ;

ð4:25Þ

∂μhZ ~J
~JRiμ ðxÞÔð0Þijcr

¼ h ~Δi
RÔð0ÞijcrδðxÞ

þ C1Λs

��
Q̄R

τi

2
U†QL − H:c:

�
Ôð0Þi

����
cr
þ Oðb2Þ:

ð4:26Þ

Equations (4.25)–(4.26) show that in the critical theory,
consistently with the form of the effective Lagrangian, ΓNG

loc
[Eq. (4.23)], in the rhs of these WTIs besides other NP
contributions a quark mass term occurs that is proportional
to Λs, and not to the scalar field vev, v ¼ hΦi. To leading
order in the gauge coupling we get [see Eq. (4.22)]

mdyn
Q jLO ¼ C1jLOΛs ¼ kLOg2sαsΛs: ð4:27Þ

Since the ~χ-currents Z ~J
~JLiμ and Z ~J

~JRiμ are UV finite (as it
follows, e.g., from the fact that they are conserved up to
Oðb2Þ in the Wigner phase of the model), to be really
entitled to interpret the coefficient C1Λs in front of the last
correlator in the rhs of the WTIs (4.25)–(4.26) as a mass,
we need to assume that this quantity is renormalized by the
inverse of the renormalization constant of the operators
(4.24). In Appendix C we spell out necessary and sufficient
conditions for this to happen.
We note immediately that the assumed log b-scaling

properties of the coefficient C1 are not in contradiction with
the conclusions of Ref. [42] where it is proved that the
power-divergent mixing coefficients are independent of the
subtraction point. The reason is that in the case at hand NP
effects provide a new scale Λs (besides the subtraction

point) that can give rise to the dependence on log bΛs of the
coefficient C1 that is indeed necessary to match the running
with the UV cutoff of the matrix elements of the operators
(4.24). An interesting application of these considerations
concerning the RG scaling properties of nonperturbatively
generated fermion masses is discussed in Sec. V.

4. Theoretical remarks

A number of observations are in order here.
(1) The Goldstone boson issue: The physics of the toy

model (3.1) in its Nambu-Goldstone phase is quite
rich. In particular, we must notice that there are two
sets of Goldstone bosons, related to the two kinds of
SχSB occurring in the model. The first set is
associated to the spontaneous breaking of the exact
χL × χR-symmetry that is induced by a nonvanishing
scalar vev. In a more realistic model, where χL is
gauged to introduce electroweak interactions, these
Goldstone bosons will become the longitudinal
electroweak boson degrees of freedom. The second
set of Goldstone bosons is associated to the dynami-
cal breaking of the ~χ-symmetry that is restored by
the choice η ¼ ηcr. It must be stressed that at
variance with QCD the dynamically generated
fermion mass itself is here OðΛsÞ, resulting in the
squared mass of the pseudoscalar meson bound
states to be OðΛ2

sÞ and hence comparable to that
of other hadrons.

(2) ~χ-charge algebra closure: A subtle question related
to the unusual form of the mass terms that break the
~χL × ~χR WTIs (4.25)–(4.26) is whether [neglecting
Oðb2Þ terms] the algebra of ~χ charges closes.
Although a rigorous analysis of this problem is
beyond the scope of this paper, we can say that by
suitably generalizing standard chiral WTI arguments
(see, e.g., Ref. [51]), one can positively answer the
question. In fact, symmetry considerations imply
that in products like ~JLi0 ðxÞ × ðQ̄L

τj

2
UQR − H:c:Þð0Þ

no contact terms arise.
(3) Naturalness: The NP mass generation mechanism

we have described in this work fulfils the ’t Hooft
naturalness requirement [2], in the sense that the
tuning of η to its critical value has the effect of
enlarging, even in the Nambu-Goldstone phase, the
symmetries of the theory to include invariance under
the chiral ~χL × ~χR transformations that only act on
fermions.

(4) NP mass counterterm subtraction: An interesting
question to ask is whether there is any field theo-
retically sound and natural way to subtract out the
nonperturbatively generated mass term we have
identified. The answer is negative. In fact, in
order to eliminate all the NP ~χL × ~χR-breaking
effects from correlators, a counterterm, nonpolyno-
mial in the scalar fields and proportional to

15To simplify formulas also in this section we systematically
ignore the possible presence of the Pðv−2Φ†ΦÞ factor in the NP
~χL × ~χR-breaking term.
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Λs½Q̄LUQR þ Q̄RU†QL�, must be added to the
fundamental Lagrangian (3.1). But the inclusion
of such a counterterm nonpolynomial in Φ would
jeopardize the power-counting renormalizability of
the basic model and also introduce in its UV-
regulated action a hardly acceptable dependence
on the phase (the counterterm makes sense only
for μ̂2Φ < 0, i.e., v ≠ 0) as well as on the RGI
scale Λs.

(5) The magnitude of v: If ideas of the kind developed in
this paper are to be exploited to generate masses for
fermions as an alternative to the Higgs mechanism,
one needs to assume that the vev of Φ satisfies the
inequalities Λs ≪ v ≪ b−1. The main reason is that,
if instead v ∼ Λs, one would be back to the situation
where fermion masses are of the order of hΦi, like in
the Standard Model. Notice also that interestingly in
the kinematical regime Λs ≪ v ≪ b−1 the physics
of the whole critical model at energies below v turns
out to be v independent, because the σ particle that
has a square mass m2

σ ∼ λ̂v2 decouples. The con-
dition v ≪ b−1 is needed to guarantee the independ-
ence of ηcr on the value of μ̂2Φ (and its sign), thereby
making unambiguous the step of ~χL × ~χR-symmetry
restoration, which is in turn essential to solve the
naturalness problem.

(6) The triviality issue of the scalar sector: A question
that deserves some discussion is the issue of the
triviality of the scalar sector of the model (3.1).16

Triviality implies that the UV cutoff can be made
very large (compared to the renormalized scalar
mass, μ̂Φ, and any other physical scale of the model),
but may not be completely removed because the
renormalized scalar quartic coupling, λ̂, would
approach zero as b−1 → ∞ (at fixed values of the
other renormalized parameters). This is most prob-
ably the case in the Wigner phase but, in view of the
very peculiar NP effects we are advocating and the
resulting effective interactions of NP origin between
fermion and scalars, it is not at all clear whether
this conclusion also holds in the Nambu-Goldstone
phase, because an effective scalar quartic coupling
OðΛ2

s=v2Þ may survive as b−1 → ∞. Moreover, it is
not obvious at this stage whether the UV cutoff
should be finally removed or whether it might
actually play a physical role as a very high energy
scale where something else (say gravity) comes into
play.
As for the more practical question of the feasibil-

ity of lattice simulations of the model (3.1), the issue
of triviality does not seem to pose any problem in

numerical NP studies in view of the analyses of the
Higgs model with standard lattice regularizations
carried out, e.g., in Refs. [52–56]. These investiga-
tions show that, in spite of triviality, for, say,
bμ̂Φ ∼ 0.01, one still has λ̂ ∼ Oð1Þ, implying that
there exists a wide scaling region where cutoff
effects are comfortably small with λ̂ still signifi-
cantly larger than zero.

(7) Masses, mixing, and NP violation of universality:
The magnitude of the NP fermion masses generated
by the mechanism we discuss in this paper is
intrinsically dependent on the choice of the ~χ-
breaking terms in the basic Lagrangian Ltoy, includ-
ing the (for the moment not fully specified) details of
the UV regularization. In the toy model Lagrangian
(3.1) we took, as an example, the ~χ-breaking terms to
be represented by LWil.
In the framework of perturbation theory all d > 4

terms would represent irrelevant details of the UV
completion of the (critical) model. But in the
Nambu-Goldstone phase at the NP level, owing to
the phenomenon of D~χSB, all such irrelevant ~χ-
breaking operators are expected to produce physi-
cally relevant, i.e., Oðb0ΛsÞ, effects stemming from
NP mixings among operators of unequal dimension-
ality (see Sec. IV C 3).
If this phenomenon occurred, it would provide the

first (to our knowledge) example of NP universality
breaking in a renormalizable gauge model. A far
from trivial expectation like the one we have
described needs of course to be checked (possibly
falsified) by means of numerical Monte Carlo sim-
ulations of the Ltoy model in its Nambu-Goldstone
phase.17

From a more phenomenological point of view a
NP breaking of universality means that precise
predictions about fermion masses become possible
only when the details of the model at very high
energy scales (∼b−1 ≫ v) are specified. Actually
constraints on the structure of the UV completion of
the theory already appear when restoration of the
~χL × ~χR-symmetry in the presence of weak inter-
actions is enforced [3]. Anyway we expect that in a
realistic extension of the toy model (3.1) ratios of
masses can be predicted with significantly smaller
uncertainties than individual particle masses [3].

16We thank one of the anonymous referees for drawing our
attention to this point.

17For this purpose a specific lattice UV regularization of the
model must be adopted. If a lattice regularization based on naive
lattice fermions is chosen, in the interesting Nambu-Goldstone
phase at ηcr one has to face the presence of doubler modes with
mass OðvÞ already at the perturbative level [55,56]. Still, by
taking v ≫ Λs, it should be possible to check whether or not the
fermion mode that in perturbation theory is massless receives a
NP mass of order Λs.
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An example of how elementary fermion mass ratios can
be understood and the interesting implications for the mass
hierarchy problem are illustrated in next section where we
consider an extension of Ltoy in which a new family of
superstrongly interacting fermions is included.

V. STRONG MEET SUPERSTRONG
INTERACTIONS

In this section we want to examine a very interesting
scenario for model builders that occurs if besides ordinary
quarks an extra family of fermions exists subjected to
ordinary YM forces (whose gauge coupling we keep
denoting by gs) as well as to superstrong vector gauge
interactions (with gauge coupling gT). The superstrong
force may be suggestively called technicolor, and the
fermions subjected to it technifermions, with an eye to
Refs. [5,6,57–60], though our framework is very different
from standard technicolor.
In this system of coupled (asymptotically free) vector

gauge interactions one can arrange things in such a way
that the modulus of the first coefficient of the superstrong
β-function, β0T , is (appreciably) larger than that of the
analogous coefficient of the YM interaction β-function,
β0s . For instance, if one takesNg ¼ 3 generations of ordinary
(Dirac) quarks and one generation of (Dirac) techniquarks,
assumingNc ¼ NT ¼ 3 for the color and technicolor gauge
group and including weak isospin multiplicity, one gets
β0T=β

0
s ¼ ð11NT − 4NcÞ=ð11Nc − 4Ng − 4NTÞ ¼ 7=3.

Just like in the case of the model (3.1), we ought to
include in the basic Lagrangian Wilson-like terms both for
technifermions (with covariant derivatives depending on
strong and superstrong gauge fields) and quarks, as well as
the appropriate Yukawa terms. The Φ kinetic term and the
scalar potential are like in (3.1).
While under the exact χL × χR symmetries scalars,

quarks, and technifermions are simultaneously transformed,
it is possible now to separately define transformations
~χqL × ~χqR acting only on quarks and transformations
~χTL × ~χTR acting only on technifermions. The critical model
is hence defined by the requirement that the Yukawa terms
for quarks and technifermions with coefficients ηqcr and ηTcr,
respectively, be such that in the Wigner phase of the model
theWTIs of ~χqL × ~χqR and ~χTL × ~χTR are unbroken up to Oðb2Þ.
In the Nambu-Goldstone phase, where hΦi ¼ v > 0, in
analogy with the situation we discussed in Secs. III–IV, we

expect dynamical spontaneous breaking of both ~χqL × ~χqR
(driven by strong forces) and ~χTL × ~χTR (owing to superstrong
interactions) symmetries.
Similarly to what we have conjectured happens to

Q-fields in the case of the model Ltoy, here technifermions
will acquire a nonperturbatively generated mass of the
order g2TαTΛT from diagrams similar to the ones in Fig. 6,
which we display in Fig. 8. In these figures double straight
and curly lines represent technifermions and technigluons,
respectively. As before, a dotted line represents a propa-
gating σ field. The grey blobs on the technigluon and
techniquark propagator stand for the nonperturbative con-
tribution analogous to the one we have identified in Sec. IV,
but here proportional to b2ΛTαT . The black dot and grey
square box represent standard and techni-Wilson vertices,
respectively.
Something quite interesting happens for ordinary quarks,

because the mass contributions coming from the diagrams
of Fig. 6 should now be replaced by those coming from
diagrams like the one in Fig. 9 where technifermions
contribute to the NP correction of the gluon-gluon-scalar
vertex. Terms of this kind are of order g2sαsΛT. Notice that
to this order in g2s the quark-quark-scalar vertex receives no
analogous correction. As ΛT ≫ ΛQCD, these self-energy
contributions are much larger than the ones we have
discussed in the previous sections, and are expected to
completely dominate the effective value of the quark mass.
We see that the leading contributions to quark and

technifermion masses are thus both proportional to ΛT ,
i.e., to the largest of the dynamically generated RGI
scales,18 but multiplied by the fourth power of the coupling
constant of the strongest among the vector gauge inter-
actions the particle is subjected to. According to the
considerations we have developed in the previous sections
(see in particular the discussion in Sec. IV C for the case of
the critical Ltoy model) we get for fermion masses at the
UV-cutoff scale to leading order in the gauge couplings the
estimates

FIG. 8 (color online). Typical nonperturbative technifermion self-energy diagrams, analogous to those in Fig. 6, with the insertion of
the techni-Wilson vertex, b2V6T . The grey blobs stand for the NP superstrong correction to the technigluon-technigluon-scalar,
technifermion-technifermion-scalar, and technifermion-technigluon-scalar vertex, respectively. The black dot (grey square box)
represents the standard (techni-Wilson) vertex.

18Strictly speaking the notion of a hierarchy of RGI scales
(ΛT ≫ ΛQCD) is only valid to one-loop order in RG-improved
perturbation theory. As soon as one goes to higher orders, the RG
evolution equations of the various gauge couplings get coupled
and only the RGI scale of the full theory has a meaning. In the
situation of interest here this scale is to be identified with ΛT .
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mdyn
q ¼ kðqÞLOg

2
sαsΛT; kðqÞLO ¼ Oð1Þ; ð5:1Þ

mdyn
T ¼ kðTÞLOg

2
TαTΛT; kðTÞLO ¼ Oð1Þ: ð5:2Þ

The interest of these formulas lies in the fact that they
show that, in the coupled color-technicolor theory
we have outlined, the quarks acquire an effective mass
substantially smaller than the one of technifermions,
because the mass of the former is scaled down by the
fourth power of the ratio, gs=gT , of the two gauge
couplings. For phenomenological considerations it is
important to go beyond the leading order formulas above
by using at least leading-log improved perturbative expres-
sions (written in terms of the appropriate renormalized
couplings) and decide at what scale the effective fermion
masses should be evaluated.
The scope of possible phenomenological applications

within the model scenario considered in this section is
clearly limited not only by our ignorance of the radiative
corrections to the diagrams in Figs. 8–9, but also by the as
yet unrealistic matter content and the omission of electro-
weak interactions. However, by making use of the concept
of running effective fermion mass mdyn

Q ðμÞ we introduced
in Appendix C [see Eq. (C10)], we can roughly estimate
the ratio mdyn

T =mdyn
q of techniquark to quark masses at a

convenient scale, denoted by μT, where (in the scheme of
choice) αTðμTÞ ∼ 1=2.
The choice of the scale μT rather than ΛT itself

[with αTðΛTÞ ¼ Oð1Þ] is due to the need of not completely
losing control of higher order corrections with respect to
the RG-improved perturbative formulas we are going to
use. On the other hand, by simple analogy between the
assumed superstrong interactions and QCD, in the M̄S
scheme we can expect the scale μT defined above to be only
two to three times larger than ΛT . Since technihadrons
(gauge invariant bound states made out of valence techni-
quarks) are expected to have a mass of the same order
of magnitude as μT , while the running of mdyn

q ðμÞ from
μ ¼ μT down to μ ¼ mdyn

q is mild and well under control
(at least for the top or bottom quark), the estimate of
mdyn

T ðμTÞ=mdyn
q ðμTÞ appears to be phenomenologically

interesting.

Based on Eq. (C10) and noting ~ZðqÞ
m ðΛT=μTÞ ¼

1þ OðαsðμTÞÞ as well as ~ZðTÞ
m ðΛT=μTÞ¼1þOðαTðμTÞÞ þ

OðαsðμTÞÞ, beyond leading order in the gauge coupling(s)
we can write19

mdyn
q ðμTÞ ¼ kðqÞLOg

2
sðμTÞαsðμTÞΛT ½1þ OðαsðμTÞÞ�; ð5:3Þ

mdyn
T ðμTÞ ¼ kðTÞLOg

2
TðμTÞαTðμTÞΛT ½1þ OðαTðμTÞÞ

þ OðαsðμTÞÞ�: ð5:4Þ

As αTðμTÞ ≫ αsðμTÞ we get for the mass ratio

mdyn
T ðμTÞ

mdyn
q ðμTÞ

≃ kðTÞLO

kðqÞLO

α2TðμTÞ
α2sðμTÞ

½1þ OðαTðμTÞÞ�; ð5:5Þ

from which, assuming a similar pattern of ~χ breaking at the
UV-cutoff scale for technifermions and (the third gener-

ation of) quarks, which implies kðTÞLO=k
ðqÞ
LO ≃ 1, and inserting

the values of αsðμTÞ and αTðμTÞ, we get

mdyn
T ðμTÞ

mdyn
q ðμTÞ

≃ 25 × ð1� 0.5Þ: ð5:6Þ

Identifying the quark flavor qwith the top (for reasons to be
discussed in Ref. [3]) and using the experimental value of
its mass, we conclude that mdyn

T ðμTÞ≃ 4 × ð1� 0.5Þ TeV.
In view of the discussion above and in particular Eq. (5.4) it
also follows that the superstrong RGI scale ΛT is of the
order of a few TeVs. To get a tighter prediction of the ratio
(5.5), as well as of the mass of the expected technihadrons
and ΛT , one needs to perform ab initio NP computations
via Monte Carlo lattice simulations of the basic model.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have discussed the implications of the
possible existence in Wilson LQCD of a finite (up to logs)
fermion mass contribution, dynamically generated as a
result of the interplay between OðaÞ chiral breaking effects
left over in the critical theory and the power divergency of
loop integrals where a Wilson vertex is inserted. Effects of
this kind turn out to contribute to the critical mass a term
of order α2sΛQCD. Unfortunately, one cannot consider it as a
bona fide quark mass because of the difficult fine-tuning
problem posed by the need of separating out the latter from
the linearly diverging 1=a contribution that unavoidably
goes with it.
We argue that this naturalness problem can be solved

in an extension of QCD where a scalar field, coupled to a
SU(2) doublet of fermions via a Yukawa interaction and a

FIG. 9 (color online). A typical nonperturbative quark self-
energy diagram with the insertion of the standard Wilson vertex
b2V6. The grey blobs stand for the nonperturbative superstrong
correction to the gluon-gluon-scalar vertex.

19To simplify formulas we use here the relation(s)
αT;sðΛTÞ ¼ αT;sðμTÞ½1þ OðαT;sðμTÞÞ�.
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Wilson-like term, is introduced. We conjecture that, once
in the Wigner phase of the model the Yukawa coupling
has been tuned to a critical value where [up to negligible
OðUV-cutoff−2Þ effects] the scalar field decouples, the
theory exhibits in its Nambu-Goldstone phase dynamically
generated small fermion masses of the order α2sΛs.
The “smallness” of the dynamically generated fermion

mass (as compared to the vev of the scalar field) is the
consequence of the fact that at the critical Yukawa coupling
(η ¼ ηcr) the fermion chiral ~χL × ~χR transformations
become [up to OðUV-cutoff−2Þ corrections] a symmetry
of the theory. In particular the cancellation of the large OðvÞ
quark mass term is guaranteed by the tuning of η (see
Fig. 7). The ~χL × ~χR-charge algebra closes, even if in the
Nambu-Goldstone phase the corresponding WTIs are
broken by Oðα2sΛsÞ mass terms of NP origin.
The generation of such mass terms is triggered by the

dynamical breaking of the recovered ~χL × ~χR-symmetry.
The precise magnitude of the NP mass depends on the
details of Wilson-like terms present in the UV-regulated
basic action for which at the moment we have no clue. It is
conceivable, however, that fermion mass ratios are less
sensitive to the UV details of the ~χL × ~χR-breaking terms
than individual fermion masses.
We thus see that, although the model is formally power-

counting renormalizable, the nonperturbatively generated
fermion masses appear to violate perturbative universality.
This highly nontrivial conjecture is a natural conclusion of
the arguments presented in this paper. It appears as a key
point of the approach we propose. As such, it deserves in
our opinion a dedicated numerical study via Monte Carlo
simulations in order to confirm or falsify it.
If one accepts the kind of natural solution we have

described in this paper for the fine-tuning problem asso-
ciated with the need of separating a large (perturbative)
mass term from a small (NP) contribution, the peculiar
gauge coupling dependence of the dynamically generated
fermion mass could open the way to an interesting new
approach to the mass hierarchy problem, according to
which, schematically, the stronger is the strongest of the
interactions a fermion is subjected to, the larger is its mass.
In our opinion the NP mechanism for elementary particle
mass generation we have presented in this work is much
more natural than the situation one has if the SM is taken as
a fundamental theory. In fact, in the case of the SM even
the order of magnitude of elementary fermion, weak gauge
boson, and Higgs masses is not understood, but rather
merely fit to the experimental data.
In our scenario, instead, although with the unavoidable

limitations entailed by our ignorance of the UV model
completion, at the price of introducing a new non-Abelian
gauge interaction with a RGI scale of a few TeVs as well as
new fermions coupled to both new and SM interactions
with NP masses also in the TeV range, the origin of
elementary particle masses is explained in terms of a

common NP physical mechanism and their order of
magnitude is parametrically understood.
Naturally, we cannot close this paper without comment-

ing on the scalar resonance with mass of about 125 GeV
recently discovered at the LHC. In the scheme we are
advocating here we propose interpreting it as a two
electroweak bosons bound state, where the binding occurs
through (yet to be discovered) superstrongly interacting
fermions to which weak bosons are coupled due to weak
interactions. Indeed a rough calculation of the WW=ZZ-
binding energy [3] gives for it an estimate that is of the
order of magnitude of the weak boson mass itself.
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APPENDIX A: NP CONTRIBUTIONS TO THE
FERMION SELF ENERGY

1. Introduction

In their seminal paper Banks and Casher [35] conjec-
tured that as a consequence of the phenomenon of SχSB,
the eigenvalue density of the (Euclidean) Dirac operator in
QCD does not vanish at λ ¼ 0; rather it behaves like

ρ̂Dð0Þ ¼ r1Λ3
QCD; ðA1Þ

where by the symbol :̂ we mean averaging over gluons and
sea quarks. The argument we develop in this appendix is
based on the idea of enriching/extending this assumption,
by postulating a behavior, at nonvanishing λ, of the kind

ρ̂DðλÞ ¼ r1Λ3
QCD þ r2Λ2

QCDjλj þ r3ΛQCDjλj2 þ r4jλj3 þ � � � ;
ðA2Þ

where, as we see, the term responsible for the emergence of
a NP finite fermion mass is the third one, linear inΛQCD and
quadratic in λ, while the last term represents the kind of
behavior expected in PT. Terms odd in ΛQCD are related to
the phenomenon of SχSB [36–38].
In this appendix we sketch the calculation of the fermion

self-energy diagrams, one of which is drawn in Fig. 10. The
calculation is (morally) based on the idea of expanding in
PT the Schwinger-Dyson integral equations for propagators
and vertices (described, e.g., in [29]) where we employ for
the internal full fermion propagator a NP expression based
on the form (A2) of the eigenvalue density.
Naturally this calculation cannot be carried out in full

rigor/generality up to the end, otherwise we would have
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achieved the impossible goal of “analytically” computing
the NP mass of an elementary particle. Our strategy will
then be to work at lowest order in the counting of gauge
couplings that in the diagram turn out to be evaluated at
high momenta, while ideally summing over all soft gluon
corrections giving rise to the NP modification of the
internal fermion propagator. In order to avoid as much
as possible uncontrolled approximations, we try to reduce
the necessary mathematical manipulations to general prop-
erties of spectral theory.

2. Lattice Dirac-Wilson operator.
Spectral representation

To simplify calculations we take for the lattice Dirac-
Wilson operator the expression

DDW ¼ D −
ar
2
DD: ðA3Þ

Without loss of generality as far as the chiral properties
of DDW are concerned and only for the purpose of the
argument/calculation presented here, we have chosen the
particular Wilson term of Eq. (A3) so as to make DDW a
normal operator. Owing to this property DDW can be
diagonalized in an orthonormal basis. Furthermore, if we
can solve the eigenvalue problem for D, then obviously the
one for DDW is also solved. Indeed, from

DαβFs
βðx; λÞ ¼ iλϵsFs

αðx; λÞ; ðA4Þ

one gets

DDW
αβ Fs

βðx; λÞ ¼ iτðλÞFs
αðx; λÞ; ðA5Þ

iτðλÞ ¼ iλϵs þ
ar
2
λ2; ðA6Þ

where λ is a non-negative real number and ϵs ¼ þ1 for
s ¼ 1; 2 and ϵs ¼ −1 for s ¼ 3; 4.
Naturally eigenvalues and eigenfunctions depend on

the gauge field appearing in D and spectral formulas hold
for generic gauge field configurations. Averaging over the
gauge configurations (with some gauge fixing), we gain
translation and rotation invariance, and we write the
“averaged spectral formulas” in the form

δ4ðx − yÞδαβ
¼

X
s

Z
dλ

Z
dΩn

2π2
ρ̂DðλÞF̂s

αðx; λnÞF̂s�
β ðy; λnÞ; ðA7Þ

ŜDWαβ ðx; yÞ

¼
X
s

Z
dλ

Z
dΩn

2π2
ρ̂DðλÞ

iλϵs þ arλ2=2
F̂s
αðx; λnÞF̂s�

β ðy; λnÞ:

ðA8Þ

Rotation invariance of the gauge-averaged quark propaga-
tor, ŜDW, is at the origin of the Ωn-integration in the two
above equations.

3. Computing the fermion propagator

For the reasons explained in the previous section we
work with the fermionic action

SF ¼
Z

d4xψ̄ðDþ ar
2
D⃖DÞψ : ðA9Þ

With an eye to the form of the Schwinger-Dyson equations,
we see that to leading order in the gauge coupling the whole
set of terms contributing to the NP correction to the fermion
propagator (the block encircled by the rectangle in Fig. 10)
can be compactly represented by the formula (Dirac indices
are understood)

Sðx; yÞj1loop
¼

Z
d4x0

Z
d4y0Gμνðx0; y0Þ

	
Sðx; x0Þigs

×

�
γμ þ

ar
2
ðD⃖x0γμ − γμ ~Dx0 Þ

�

· ŜDWðx0; y0Þigs
�
γν þ

ar
2
ðD⃖y0γν − γν ~Dy0 Þ

�
Sðy0; yÞ



:

ðA10Þ

In Eq. (A10) Sðx; x0Þ is the free fermion propagator,
ŜDWðx0; y0Þ is given by Eq. (A8), and in the gauge we
are using the free gluon propagator, Gμνðx0; y0Þ, reads

Gμνðx0; y0Þ ¼ δμν

Z
d4k
ð2πÞ4

eikðx0−y0Þ

k2
: ðA11Þ

FIG. 10 (color online). A typical contribution to the fermion
self energy corresponding to the central term in Fig. 4 of the
paper. The square is a Wilson vertex. The continuumlike vertex is
represented by a black dot. The pair of grey circles stands for any
combination of the standard continuumlike and Wilson vertices.
The double line means that the NP expression ρ̂DðλÞ in Eq. (A2)
is being taken in the spectral representation of the internal
fermion propagator. The box encircles what in the text is
called Sðx; yÞj1loop.
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In Fig. 10 the square is the Wilson vertex corresponding to
the fermion action (A9). The continuumlike quark-gluon
vertex is represented by a black dot. The double line means
that the NP expression ρ̂DðλÞ given by Eq. (A2) is being
taken in the spectral representation of the internal fermion
propagator. The pair of grey circles stands for any combi-
nation of the standard continuumlike and Wilson-like
vertex over which we have to sum to get all the terms

contributing to this order in g2s . Introducing the Fourier
transform of the external free fermion propagator

Sðx; x0Þ ¼
Z

d4p
ð2πÞ4

eipðx−x0Þ

p
; ðA12Þ

and recalling Eqs. (A8) and (A4), we get from (A10)

Sðx; yÞj1loop ¼ −g2s
Z

d4x0
Z

d4y0
Z

d4p
ð2πÞ4

Z
d4p0

ð2πÞ4
Z

d4k
ð2πÞ4

eikðx0−y0Þ

k2
X
s

Z
dλ

Z
dΩn

2π2

×
eipðx−x0Þ

p

�
1þ ar

2
ð−ip − iλϵsÞ

�
ρ̂DðλÞ

iλϵs þ arλ2=2
γμF̂

sðx0; λnÞF̂s�ðy0; λnÞγμ

·

�
1þ ar

2
ð−iλϵs − ip0Þ

�
eip

0ðy0−yÞ

p0 : ðA13Þ

To proceed it is convenient to separate the chiral-
breaking (LR=RL) and the chiral-preserving (LL=RR) part
of the fermion propagator. The first corresponds to terms
with an overall even number of gamma matrices and the
second to terms with an odd number of gamma matrices.
In this counting, in view of Eqs. (A4) and (A7)–(A8),
each factor ϵs should be considered as one gamma
matrix.
For the calculation of the fermion propagator to be

consistent with the assumptions embodied in Eqs. (2.11)
and (2.14) of the paper we need first of all to check that to
order g2s no OðΛQCDÞmass terms get generated in its chiral-
breaking part.

a. The chiral-breaking part of Sðx;yÞj1loop
We limit ourselves to considering in (A13) only terms

that do not contain (in the numerator) explicit p and/or p0
factors.20 After rewriting

1

iλϵs þ arλ2=2
¼ −iλϵs þ arλ2=2

λ2 þ ðarλ2=2Þ2 ; ðA14Þ

one just discovers that summing all the terms that have an
even number of gamma matrices (counting, as we said,
each ϵs factor as one gamma matrix) yields a λ-independent
integrand [except for the ρ̂DðλÞ factor coming from the
integration measure and the eigenfunctions].

Consequently one simply gets

Sðx; yÞjLR;RL1loop ¼ −g2s
ar
2

Z
d4x0

Z
d4y0

Z
d4p
ð2πÞ4

Z
d4p0

ð2πÞ4
Z

d4k
ð2πÞ4

eikðx0−y0Þ

k2

×
eipðx−x0Þ

p

X
s

Z
dλ

Z
dΩn

2π2
ρ̂DðλÞγμF̂sðx0; λnÞF̂s�ðy0; λnÞγμ

eip
0ðy0−yÞ

p0 : ðA15Þ

We see that in (A15) the completeness relation (A7) gets exactly reconstructed, so we obtain

Sðx; yÞjLR;RL1loop ¼ −g2s
ar
2

Z
d4x0

Z
d4p
ð2πÞ4

Z
d4p0

ð2πÞ4
eipðx−x0Þ

p

Z
d4k
ð2πÞ4

1

k2
eip

0ðx0−yÞ

p0

¼ −g2s
ar
2

Z
d4p
ð2πÞ4

eipðx−yÞ

p2

Z
d4k
ð2πÞ4

1

k2
∝ g2s

r
a

Z
d4p
ð2πÞ4

eipðx−yÞ

p2
; ðA16Þ

20The neglected terms in fact give NP chiral-breaking contributions to SðpÞjLR;RL1loop of order g2sa2p2ΛQCD, the occurrence of which
yields to two-loop level a fermion mass term contribution of order g4sΛQCD, i.e., of the same kind as the one we find in Sec. A.4 from the
terms we retain.
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i.e., the standard 1=amass divergency. This calculation shows that to this order in g2s no NP (finite) quark mass contribution
gets generated.

b. The chiral-preserving part of Sðx;yÞj1loop
Ignoring in (A13) the terms containing (in the numerator) an explicit a2pp0 factor,21 the calculation of the chiral-

preserving part leads to the expression

Sðx; yÞjLL;RR1loop ¼ g2s

Z
d4x0

Z
d4y0

Z
d4p
ð2πÞ4

Z
d4p0

ð2πÞ4
Z

d4k
ð2πÞ4

eikðx0−y0Þ

k2

×
eipðx−x0Þ

p

X
s

Z
dλ

Z
dΩn

2π2
ρ̂D
iλϵs

γμF̂
sðx0; λnÞF̂s�ðy0; λnÞγμ

eip
0ðy0−yÞ

p0 : ðA17Þ

Spectral properties allow us to rewrite Eq. (A17) in the
compact form

Sðx; yÞjLL;RR1loop ¼ g2s

Z
d4x0

Z
d4y0

Z
d4p
ð2πÞ4

Z
d4p0

ð2πÞ4
Z

d4k
ð2πÞ4

×
eikðx0−y0Þ

k2
eipðx−x0Þ

p
ðD̂Þ−1ðx0; y0Þe

ip0ðy0−yÞ

p0 :

ðA18Þ

Introducing the Fourier transform

ðD̂Þ−1ðx0; y0Þ ¼
Z

d4q
ð2πÞ4 ðD̂Þ−1ðqÞeiqðx0−y0Þ; ðA19Þ

Eq. (A18) becomes

Sðx; yÞjLL;RR1loop ¼ g2s

Z
d4p
ð2πÞ4

Z
d4q
ð2πÞ4

1

p
eipðx−yÞ

ðp− qÞ2 ðD̂Þ−1ðqÞ 1
p
:

ðA20Þ

Since no analytic NP expression of ðD̂Þ−1ðqÞ is obviously
available, we have to make recourse to some kind of
approximation. The latter are better introduced in the
expression (A17) by stipulating that the eigenfunctions
of the averaged Dirac operator are the free ones and that ρ̂D
is given by Eq. (A2). Thus under the replacement

X
s

F̂s
αðx0; λnÞϵsF̂s�

β ðy0; λnÞ →
eiλnðx0−y0Þ

ð2πÞ4 ðnÞαβ; ðA21Þ

we obtain (up to irrelevant multiplicative constant factors)

Sðx; yÞjLL;RR1loop

∝ g2s

Z
d4p
ð2πÞ4

eipðx−yÞ

p

Z
dλ

Z
dΩn

2π2
ρ̂D
λ

n
ðp − λnÞ2

1

p
:

ðA22Þ

We evaluate below the NP contribution to the chiral-
preserving part of the fermion propagator coming from
the one-loop integral in the rhs of Eq. (A22) in order to
check that it takes just the form we conjectured in Sec. II B
relying on Symanzik expansion arguments; see Eqs. (2.11)
and (2.14). Setting qμ ¼ λnμ, q ¼ ffiffiffiffiffiffiffiffiffiffiqμqμ

p and focusing
(symbol ⇒) on the contribution of the piece r3ΛQCDλ

2 in
ρ̂DðλÞ [see Eq. (A2)] we obtain

g2s

Z
dλ

Z
dΩn

2π2
ρ̂D
λ

n
ðp − λnÞ2 þ ϵ2IR

⇒ g2s

Z
dq

Z
dΩq

2π2
r3ΛQCDq

ðq − pÞ2 þ ϵ2IR
: ðA23Þ

With respect to the rhs of Eq. (A22) here an IR cutoff
ϵIR ∝ ΛQCD has been inserted in the gluon propagator
factor 1=½ðq − pÞ2 þ ϵ2IR�. An IR cutoff term of this type
is actually expected to be generated by higher order
radiative corrections to the fixed gauge gluon propagator
and will be useful in the small-p2 expansion below. In order
to make contact with Eq. (2.11), we in fact perform in
Eq. (A23) a Taylor expansion around p ¼ 0 and find

g2s

Z
dλ

Z
dΩn

2π2
ρ̂D
λ

n
ðp − λnÞ2 þ ϵ2IR

⇒ g2sr3p
ΛQCD

ϵIR

π

4
½1þ Oða2p2; a2ϵ2IRÞ�

− g2sr3pΛQCD
a
2
½1þ Oða2p2; a2ϵ2IRÞ�; ðA24Þ

where the first term in the rhs is a (UV-finite) part of the
standard fermion propagator renormalization and the sec-
ond one is the NP contribution.

21The neglected terms actually give NP chiral-preserving
contributions to Sðx; yÞjLL;RR1loop at order g2s, the occurrence of
which however yields to two-loop level NP contributions to
the fermion mass of order g4sΛQCD, i.e., of the same kind as the
one we find in Sec. A.4 from the terms we retain.
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4. Fermion self energy

The quantity Sðx; yÞjLL;RR1loop we have computed above is
the internal loop in the rectangular box within the self-
energy diagram of Fig. 10. For the computation of the
contribution to the fermion mass we can set the external
quark momentum to zero. Up to irrelevant (for these
considerations) constant factors, introducing the chiral-
preserving piece of the propagator we have just evaluated
in the diagram of Fig. 10, we see that, focusing on the
contribution coming from the term proportional to ΛQCD in
ρ̂D, we get the two-loop integral expression

mdyn
q ∝ar3g4sΛQCD

Z
d4p
ð2πÞ4

Z
d4q
ð2πÞ4

1

p2

pμ

p
q
q
1

q2
1

ðp−qÞ2
γμ
p
;

ðA25Þ

where we called p the momentum of the outer loop (recall
also q ¼ λn). The double integral in Eq. (A25) is IR finite
and diverges linearly in the UV. This 1=a divergence
compensates the explicit multiplicative a factor, leaving
behind a finite contribution that is parametrically of the
announced form

mdyn
q ¼ Oðg4sΛQCDÞ: ðA26Þ

APPENDIX B: THE MIXING PATTERN
OF OPERATORS (3.19)–(3.20)

In this appendix we want to prove that the operator OLi
6

andORi
6 defined in Eqs. (3.19)–(3.20) can only mix with the

d < 6 operators appearing in the rhs of Eqs. (3.21)–(3.22),
respectively. Given the exact parity symmetry of the toy
model Lagrangian (3.1), we can limit the discussion to, say,
the operator OLi

6 .
The operators ∂μ

~JLiμ and ½Q̄L
τi

2
ΦQR − H:c:� are easily

seen to be the only (gauge invariant) d < 6 quark bilinears
enjoying the same properties as OLi

6 under χL × χR and
discrete C, P, T and flavor symmetries. Thus, we are only
left with the task of excluding the d < 6 operators con-
structed in terms of Φ-fields in the following list:

OLi
2 ¼ tr

�
Φ† τ

i

2
Φ
�

ðB1Þ

OLi
4;1 ¼ tr½Φ†Φ�tr

�
Φ† τ

i

2
Φ

�
ðB2Þ

OLi
4;2 ¼ tr

�
∂μΦ† τ

i

2
∂μΦ

�
ðB3Þ

OLi
4;3 ¼ tr

�
Φ† τ

i

2
½∂⃖2 þ ∂2�Φ

�
: ðB4Þ

This can be done on the basis of the C, P, and F2 discrete
transformations that are exact symmetries of Ltoy. For
completeness we recall here their definition

P∶

8<
:

ΦðxÞ → Φ†ðxPÞ; xP ≡ ð−~x; x0Þ
QðxÞ → γ0QðxPÞ; Q̄ðxÞ → Q̄ðxPÞγ0
AkðxÞ → −AkðxPÞ; A0ðxÞ → A0ðxPÞ

ðB5Þ

C∶

8<
:

ΦðxÞ → ΦTðxÞ
QðxÞ → iγ0γ2Q̄TðxÞ;
AμðxÞ → −A⋆

μðxÞ
Q̄ðxÞ → −QTðxÞiγ0γ2

ðB6Þ

F2∶
	
ΦðxÞ → τ2ΦðxÞτ2
QðxÞ → iτ2QðxÞ; Q̄ðxÞ → −iQ̄ðxÞτ2: ðB7Þ

Looking at the way the various operators we are consid-
ering [i.e., OL;i

6 and those listed in Eqs. (B1)–(B4)] trans-
form under CP and CPF2, we can construct Table I. We see
from Table I that the operators in (B1)–(B4) have CPF2

transformation properties opposite to that of OL;i
6 , so they

cannot appear in the rhs of Eq. (3.21).22

We conclude this appendix by recalling that, unlike the
operator (B4), the combination

∂μtr

�
Φ† τ

i

2
ð∂μΦÞ − ð∂μΦ†Þ τ

i

2
Φ

�

¼ tr

�
Φ† τ

i

2
ð∂2ΦÞ − ðΦ†∂⃖2Þ τ

i

2
Φ

�
; ðB8Þ

because of the minus sign between the two bits of the
operator, is even under CPF2, just like OL;i

6 . As noted in
Sec. III D, the latter can be eliminated in the mixing in favor
of ∂μ

~JLiμ owing to the conservation of the χL current,
∂μJLiμ ¼ 0 (see the expressions of JLiμ and ~JLiμ in Eqs. (3.11)
and (3.17), respectively).

APPENDIX C: THE RUNNING OF NP MASSES

A crucial issue for the interpretation of C1Λs as a quark
mass is the behavior of the coefficient C1 as a function of

TABLE I. The parities of the operators OL;i
6 and of those in

Eqs. (B1)–(B4) under the discrete transformations CP and CPF2.

Operator CP; i ¼ 1; 3 CP; i ¼ 2 CPF2

OLi
2 Even Odd Odd

OLi
4;1 Even Odd Odd

OLi
4;2 Even Odd Odd

OLi
4;3 Even Odd Odd

OLi
6 Odd Even Even

22As it is usually done for isospin with G-parity, the trans-
formation F2 is introduced here to compensate for the different
CP properties of different weak isospin components.
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log bΛs. Recalling the lowest order expression of C1 given
in Eq. (4.22), the WTIs (4.25)–(4.26) to the same order in
g2s can be cast in the form

∂μhZ ~J
~JLiμ ðxÞÔð0ÞijLOcr

¼ h ~Δi
LÔð0ÞijLOcr δðxÞ

þ kLOg2sαsΛshΣi
LðxÞÔð0ÞijLOcr þ Oðb2Þ; ðC1Þ

∂μhZ ~J
~JRiμ ðxÞÔð0ÞijLOcr

¼ h ~Δi
RÔð0ÞijLOcr δðxÞ

þ kLOg2sαsΛshΣi
RðxÞÔð0ÞijLOcr þ Oðb2Þ; ðC2Þ

where for short we have defined the local operators (also
here for simplicity we ignore the possible appearance of the
factor P we mentioned in Sec. IV C 2)

Σi
LðxÞ ¼

�
Q̄L

τi

2
UQR − H:c:

�
ðxÞ; ðC3Þ

Σi
RðxÞ ¼

�
Q̄R

τi

2
U†QL − H:c:

�
ðxÞ: ðC4Þ

Consistently with the renormalizability of our toy model
and the general arguments of Ref. [42], we expect higher
order radiative corrections to provide the correct RG
evolution of all the quantities above. In particular the
RGI of the lhs of the WTIs (4.25)–(4.26) entails, as
discussed in Sec. IV C 3, the same property for both the
rhs contributions. In the full theory the NP terms in the
WTIs (4.25)–(4.26) must hence take the form

∂μhZ ~J
~JLiμ ðxÞÔð0Þijcr

¼ h ~Δi
LÔð0ÞijcrδðxÞ þ kLOg2sðb−1Þ ~ZmðbΛsÞαsðΛsÞΛs

× hΣi
LðxÞÔð0Þijcr þ Oðb2Þ; ðC5Þ

∂μhZ ~J
~JRiμ ðxÞÔð0Þijcr

¼ h ~Δi
RÔð0ÞijcrδðxÞ þ kLOg2sðb−1Þ ~ZmðbΛsÞαsðΛsÞΛs

× hΣi
RðxÞÔð0Þijcr þ Oðb2Þ; ðC6Þ

where the dimensionless quantity ~ZmðbΛsÞ incorporates all
the radiative correction effects in the NP fermion mass
terms and admits the perturbative expansion

~ZmðbΛsÞ ¼ 1þ g2sðb−1Þð~γm log bΛs þ ~cmÞ þ � � � : ðC7Þ

Note in Eqs. (C5)–(C6) the specification of the scale in
the gauge coupling factors g2sðb−1Þ and αsðΛsÞ. On the
one hand this somewhat arbitrary choice of scales entails
no loss of generality as it is actually part of our definition
of ~ZmðbΛsÞ. On the other hand our rationale for this

choice is simply that in the mass generation mechanism
of Secs. IV B–IV C we conjectured the occurrence of
Oðb2ΛsαsÞ NP vertex corrections [for which higher order
radiative effects are likely to yield αs → αsðΛsÞ] that
become nonirrelevant when combined with the UV
power-divergent loop effect of relative order g2s [for
which we assume g2s → g2sðb−1Þ].
By comparing Eqs. (C5)–(C6) with Eqs. (4.25)–(4.26)

we see that

C1Λs ¼ kLOg2sðb−1Þ ~ZmðbΛsÞαsðΛsÞΛs ≡mdyn
Q ðb−1Þ

ðC8Þ

represents indeed the fermion mass at the UV-cutoff scale
b−1, because it enters the ~χL × ~χR WTIs as the coefficient of
the density Σi

L=R at the UV-cutoff scale.
This interpretation of the NP fermion mass terms in

Eqs. (C5)–(C6) and their (necessary) RG invariance implies

mdyn
Q ðb−1ÞΣi

L=R ¼ mdyn
Q ðμÞΣ̂i

L=RðμÞ; ðC9Þ

where we have introduced the running NP fermion mass

mdyn
Q ðμÞ ¼ kLOg2sðμÞ ~ZmðΛs=μÞαsðΛsÞΛs ðC10Þ

as well as the renormalized densities

Σ̂i
L=RðμÞ ¼ ZΣðbμÞΣi

L=Rðb−1Þ: ðC11Þ

Equation (C9) shows that the dynamically generated
fermion mass mdyn

Q can indeed be interpreted as a running
mass and provides the desired RG equation for it.
If we choose for the renormalization scale μ the value Λs,

which is of phenomenological interest as it represents the
natural NP mass scale of the model, we get

mdyn
Q ðΛsÞ ¼ kLOg2sðΛsÞ ~Zmð1ÞαsðΛsÞΛs: ðC12Þ

We end by noting that the RGI of NP mass terms in the
WTIs (C5)–(C6) entails the relations

ZΣðbμÞ ¼
g2sðb−1Þ ~ZmðbΛsÞ
g2sðμÞ ~ZmðΛs=μÞ

ðC13Þ

and

ZΣðbΛsÞ ¼
g2sðb−1Þ ~ZmðbΛsÞ
g2sðΛsÞ ~Zmð1Þ

; ðC14Þ

where gsðμÞ is the renormalized gauge coupling at the
μ-scale. To first order in g2s from the relations above [or
equivalently to Oðg6sÞ in Eq. (C9)], we have
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−2β0 þ ~γm − γΣ ¼ 0; ðC15Þ
where we assumed the perturbative expansions

ZΣðbμÞ ¼ 1þ g2sðb−1ÞðγΣ logbμþ cΣÞ þ � � � ; ðC16Þ

g2sðμÞ ¼ g2sðb−1Þ½1þ g2sðb−1Þð2β0 log bμþ cβÞ þ � � ��: ðC17Þ
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