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Abstract 

In this paper we consider the final distribution of fuel oil from a storage depot to a set of petrol stations faced by an oil company, 
which has to decide the weekly replenishment plan for each station, and determine petrol station visiting sequences (vehicle 
routes) for each day of the week, assuming a fleet of homogeneous vehicles (tankers). The aim is to minimize the total distance 
travelled by tankers during the week, while loading tankers possibly near to their capacity in order to maximize the resource 
utilization. The problem is modelled as a generalization of the Periodic Vehicle Routing Problem (PVRP). Due to the large size 
of the real instances which the company has to deal with, we solve the problem heuristically. We propose a hybrid genetic 
algorithm that successfully address the problem inspired to a known hybrid genetic algorithm from the literature for the PVRP. 
However, the proposed algorithm adopts some techniques and features tailored for the particular fuel oil distribution problem, 
and it is specifically designed to deal with real instances derived from the fuel oil distribution in the European context that are 
profoundly different from the PVRP instances available from literature. The proposed algorithm is evaluated on a set of real case 
studies and on a set of randomly generated instances that hold the same characteristics of the former. 
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1. Introduction 

This paper deals with the problem of planning the final distribution of petrol products from storage depots to a set 
of petrol stations, addressed by the logistic department of a major European oil company. In such a context, many 
variables come into play: some of the most relevant are demand uncertainty and seasonality, agreements for 
exchange of products with other oil companies, contracts with carriers, etc.  

In order to reduce the complexity of the problem, the whole decision process is subdivided by the oil company 
into three phases. In the first (strategic) phase each petrol station is assigned to a given depot from which it will be 
refuelled during the next medium-large term planning horizon. The second phase, the tactical-operational one, 
consists in defining the weekly delivery plan to refurnish the set of petrol stations assigned to a given depot, by 
determining the service days when each petrol station has to be served, along with the delivery amount of petrol 
products, and the routes for each specific day of the week that tankers have to perform in order to refurnish the 
petrol stations, considering some specific operational constraints.  

As for the second phase, the real scenario faced by the oil company consists of a set of petrol stations that in 
general are not directly owned  by the company. This implies that deciding how much and when to replenish the 
petrol stations are decisions that the oil company cannot make autonomously, but in accordance with the petrol 
stations’ owners. Moreover, typically the budget available to a petrol station owner is very limited (specially for a 
very small petrol station), implying that the petrol order sent to the oil company by a petrol station often covers only 
its petrol demand for a couple of days. These operational conditions force the oil company to fulfill the estimated 
weekly petrol demand of a petrol station (typically for distinct product typologies) with a number of replenishments 
during the week (i.e., the weekly visit frequency), with the chance to select one out of a set of replenishment or 
visiting patterns established in accordance with the petrol station owner, where a visiting pattern specifies the 
visiting days along with the (possibly distinct) delivery petrol amounts for these days.         

The oil company addresses this complex petrol distribution problem in two sub-phases. In the first one, let us say 
at tactical level, the oil company defines replenishment weekly plans for each petrol station by assuming for 
simplicity a single undifferentiated product, and determines petrol stations visiting sequences (vehicle routes) for 
each day of the week, assuming a fleet of homogeneous vehicles. The main aim at this phase is to minimize the total 
route length traveled by the vehicles during the considered week. In the second (operational) sub-phase, on a daily 
basis, the company plans in detail the routes minimizing the total route length, while considering all the operational 
issues and constraints, including those related to the vehicles characteristics (whose capacity is typically subdivided 
into compartments), to the distinct products to be delivered (e.g., gasoline and diesel fuel), and fulfilling the actual 
replenishment demands of petrol stations for the specific day.  

In this paper, we address the above tactical problem faced by the oil company by modeling it as a generalization 
of the Periodic Vehicle Routing Problem (PVRP). Due to the large size of the real instances which the company has 
to deal with, we solve the problem heuristically. We propose a hybrid genetic algorithm that successfully addresses 
the problem. The proposed algorithm is evaluated on a set of problem instances derived from real case studies of a 
European oil distribution company, and on a set of randomly generated instances that hold the same characteristics 
of the former. Such a kind of optimization tool can be used not only in the optimization process of a given oil 
distribution network, but also for performing scenario analyses and economic assessments simulating variations of 
existing networks (acquisition or disposal of petrol stations).  

The paper is organized as follows. In Section 2 we survey the relevant literature, in Section 3 we formally define 
the problem addressed. The proposed algorithm is detailed in Section 4. Section 5 is devoted to the experimental 
analysis, and finally Section 6 gives some conclusions. 

2. Literature review 

The problem we address belongs to the class of multi-period petrol station replenishment problems (see, e.g., 
Cornillier et al., 2008b), where the aim is to optimize the delivery of several petrol products to a set of petrol 
stations over a given planning horizon. They can be viewed as Inventory Routing Problems (IRP) with specific 
additional constraints such as the use of heterogeneous vehicle with compartments, also known as IRP in fuel 
delivery (see, e.g., Vidović et al., 2014). Malépart et al. (2003) propose four heuristics for constructing 
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replenishment plans over a horizon of several working days, where some petrol stations manage their own 
inventories sending their orders to vendor company whenever they want, and for other stations the inventory is 
managed by the vendor company who decides the replenishment plans. Ng et al. (2008) study two small petrol 
distribution networks in Hong Kong, proposing a model for simultaneously assigning trips to tankers and stations, 
assuming stations inventories being managed by the vendor. Cornillier et al. (2008b) propose a heuristic approach to 
solve the case where the number of stations on any given route is limited to two. Popović et al. (2012) propose a 
variable neighborhood search (VNS) heuristic for solving a multi-product multi-period IRP in fuel delivery with 
multi-compartment homogeneous vehicles, given a distinct deterministic petrol consumption for each fuel type and 
for each petrol station; they limit the number of stations per route to three. Vidović et al. (2014) extend this limit to 
four and propose a mixed integer formulation that can be solved at optimum by commercial solvers only for very 
small instances (10 petrol stations and 3 days); they also propose some heuristics for solving larger instances up to 
50 petrol stations and a period of 5 days. The single-period case has been also studied (in this case the problem is no 
longer an IRP but a Vehicle Routing Problem (VRP) with special vehicles): Avella et al. (2004) and Cornillier et al. 
(2008a) study this case proposing exact and heuristic algorithms; Cornillier et al. (2009) propose two heuristics for 
the more general case with time windows constraints for the petrol delivering to petrol stations; the same authors 
extend this study by considering also multiple depots (Cornillier et al., 2012). 

The PVRP is a generalization of the capacitated VRP (see, e.g.: Toth and Vigo, 2002; Hoff et al., 2010) that takes 
into account several planning days with customers that require service on multiple days during the planning period.  

After the very early works that propose constructive heuristics for the PVRP, Chao et al. (1995) are the first to 
provide a two-phase heuristic that allows escaping from poor local optima, enhancing the exploration of the solution 
space, through the use of deteriorating moves and the relaxation of vehicle capacity. Cordeau et al. (1997) propose a 
tabu search heuristic to solve the PVRP and two variants (i.e., the Multi-Depot Periodic Vehicle Routing Problem 
(MDPVRP) and the periodic travelling salesman problem). Another tabu search heuristic is proposed by Angelelli 
and Speranza (2002) to solve a generalization of PVRP where vehicles can renew their capacity at some 
intermediate facilities. Drummond et al. (2001) propose an island-based parallel evolutionary algorithm which 
evolves individuals representing visit combinations and generates routes with a saving heuristic. Alegre et al. (2007) 
propose a scatter search procedure for periodic pick up of raw materials of auto parts, using a two-phase approach 
that assigns visit combinations and design routes for each period with a neighbourhood-based procedure. Pirkwieser 
and Raidl (2010) introduce an extension of VNS metaheuristics with multilevel refinement strategy particularly 
suitable for larger PVRP instances. A two-phase GRASP and path relinking metaheuristic is proposed by Pacheco et 
al. (2012). A significant contribution is given by Vidal et al. (2012) that propose a hybrid genetic algorithm to tackle 
the MDPVRP and PVRP with heterogeneous capacitated vehicles and constrained route duration. It combines the 
breadth exploration of evolutionary algorithms, the improvement capabilities of VNS, and an advanced population-
diversity management mechanism which allows a broader access to reproduction, preserving at the same time the 
memory of the characteristics of good solutions represented by the elite individuals. More recently, Nguyen et al. 
(2014) develop a genetic algorithm for the variant of the PVRP with time windows (PVRPTW), while Rahimi-
Vahed et al. (2015) use a modular heuristic algorithm to solve a particular application of the MDPVRP and the 
PVRP with the objective of determining the optimal fleet sizing, considering budget constraints in addition to 
standard constraints on vehicle capacity and route duration. 

3. Problem definition 

The PVRP addressed in this paper extends the Capacitated VRP (CVRP) which is defined as follows. Let G = (N, 
A) be a complete direct graph with |N| = n + 1 nodes, with node 0  N representing the depot where the product to 
be distributed to customers is stored, and the other nodes i = 1, …, n representing the customers. Each customer i is 
characterized by product demand qi and serving time i. Let arc aij  A represents the direct-travel from customer 
(depot) i to customer (depot) j with travel cost (length) cij, and travel time tij. The product distribution to customers is 
done by a set of identical vehicles, each one of limited capacity Qmax. Each vehicle performs a route, i.e., a cycle 
over G starting and ending at the depot node, and visiting a subset of the customer nodes; therefore, the total demand 
of the visited customers by a vehicle route cannot exceed the capacity Qmax of the vehicle. Moreover, the duration of 
a route, being the sum of the total route travel time and the total service time of the visited customers, cannot be 
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greater than Tmax. The goal is to find a set of vehicle routes serving all the customers exactly once, such that vehicle-
capacity and route-duration constraints are fulfilled, and the total travel cost (length) is minimized. 

The PVRP extends the CVRP adding a time dimension and considering route planning to be performed over a 
planning horizon of p periods. Each customer i is characterized by a frequency fi, representing the number of 
required visits during the planning horizon, and a list of possible visit-period combinations called (visiting) patterns. 
For each customer i, the demand in each visit-period is assumed to be fixed and equal to qi with a total demand over 
the planning horizon equal to qi

tot = fi qi. The PVRP aims at selecting a pattern for each customer and finding the 
feasible routes for each period to fulfil the selected visiting patterns, minimizing the total route travel cost (length) l.  

We consider a generalization of the PVRP where the total demand qi
tot of customer i can be also non-equally 

subdivided among the visit-periods: in this more general case, a pattern i of customer i is formed by a list of 
possible visit-period combinations and a related list of specific demand combinations; let i be the set of possible 
patterns of customer i. We also extend the objective function in order to evaluate solutions not only on the basis of 
the total travelled distance but also with respect to the unused capacity of the vehicles. In particular, we assume that 
vehicles should be loaded with at least Qmin  Qmax amount of goods (petrol product), otherwise we incur in a sort of 
penalty proportional to the waste capacity index 

Rr ri i RQqQc ||,0max max
2

)(min N
, where N(r) is the 

set of customers visited by route r  R, with R being the set of routes performed by the vehicles. Consequently, the 
objective is to minimize the objective function z = w1l + w2c, where w1 and w2 are weight parameters. 

4. The proposed hybrid genetic algorithm 

The solution approach, called Periodic Capacitated Vehicle Routing Problem Genetic Search (PCVRPGS), we 
propose to solve the considered generalization of the PVRP, is similar to the Hybrid Genetic Search with Adaptive 
Diversity Control (HGSADC) algorithm provided by Vidal et al. (2012), which achieves excellent results on PVRP 
instances known in the literature. However, PCVRPGS adopts some techniques and features tailored for the 
particular tactical problem of periodical petrol distribution to petrol stations. The general scheme of the hybrid 
genetic algorithm we propose is reported next. 

 
Algorithm PCVRPGS 
Initialize subpopulations 
while number of iterations without improvement < Itni and time < MaxTime do 
  Select parent solutions P1 and P2 through binary tournament 
  Generate offspring C from P1 and P2 through crossover 
  Improve C through education procedure with probability ped 
  if C is infeasible then 
    Insert C into infeasible subpopulation 
    Repair C and insert C into feasible subpopulation with probability prep  
  if C is feasible then 
    Insert C into feasible subpopulation 
  if maximum subpopulation size is reached then 
    Select survivors  
  Adjust penalty parameters for violating feasibility conditions 
  if best solution not improved for Itdiv iterations then 
    Diversify populations 
end while 
return best feasible solution  

 
Differently from HGSADC, the algorithm proposed in this paper is designed to deal with real instances of the 

considered petrol distribution problem that are profoundly different from the PVRP instances available from the 
literature. First of all, in petrol distribution instances the ratio between the vehicle capacity and the average customer 
demand is very small (between 3 and 4). This means that feasible solutions are characterized by a large number of 
routes each one visiting few petrol stations: consequently, some solving techniques for the VRP are not effective for 
the problem under consideration. Moreover, algorithm HGSADC is designed to work with constant demand for each 
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customer during the planning horizon, but this assumption appears to be inappropriate for the practical application 
we are considering in this paper, because there may be a strong variability in the amount demand of a customer 
between the different periods of the planning horizon. Working with different customer demands over the planning 
horizon, algorithm PCVRPGS is able to tackle with this more general case of the PVRP, that adds a further degree 
of complexity to the original problem and provides greater flexibility to the final decision maker. 

Algorithm HGSADC considers a population of feasible and infeasible solutions (individuals) which are kept in 
two separate subpopulations. The algorithm selects two parent individuals from the entire population and combines 
them through crossover, creating a new solution (offspring) which is enhanced through local search procedures 
(education and repair). The individual yielded is then included into the correct subpopulation and evaluated on the 
basis of its fitness function. The reproductive cycle iterates from one generation to the next one, each time selecting 
the survivors, until a stopping criteria is met. 

After having presented its general outline, we describe the proposed algorithm in detail, starting from the 
representation and evaluation of solutions (Section 4.1), and proceeding with the illustration of the basic algorithm 
components such as parent selection and crossover (Section 4.2), education and repair (Section 4.3), and population 
management (Section 4.4). 

4.1. Solution representation and evaluation 

The literature on meta-heuristics algorithms shows that a controlled exploration of unfeasible solutions can 
improve the search performance, facilitating the transition between two structurally different eligible solutions 
(Glover and Hao, 2011). 

Let G be the set of the periods of the planning horizon, Let S be the solution space that includes both feasible and 
unfeasible individuals, the latter obtained by relaxing the constraints on vehicle capacity and on maximum route 
duration. Let s  S be a solution and R(s) the set of the planned routes of s for the planning horizon. Each route r  
R(s) is characterized by the (vehicle) load 
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where N(r) is the set of customers visited by route r starting at depot node 0 with succ(i, r) being the successive 
node visited in route r after node i  N(r), g(r) is the planning period of route r, and qi

g is the demand of customer i 
in period g  G. Let q and t be the penalties for violating the load capacity constraint and the route duration 
constraint, respectively. The penalized cost of route r is the sum of the distance travelled and the cost for violating 
load capacity and/or route duration constraints in case of unfeasibility, and it is defined by the following expression: 

})(,0max{})(,0max{)( maxmax}0{)( ),(, TrtQrqcr tqri risucciN
. 

The penalized cost of solution s consists of the sum of penalized cost of each route of the solution, and is 
therefore equal to 

)(
)()(
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Each solutions s  S is characterized by the assignment of exactly one demand pattern i i for each customer 
i, among its feasible demand patterns represented by set i, and by the collection of generated routes. A (demand) 
pattern i corresponds to a particular set of periods of visits for customer i during the planning horizon, indicating 
also the quantity to be delivered in each period. Individual s are represented by 2 distinct chromosomes: i) the 
pattern chromosome that indicates the pattern i selected for each customer i; ii) the giant tour chromosome that 
contains a tour (route) for each period of the planning horizon, i.e. p sequences (i.e., sequence g(s) for each period 
g = 1, …, p) of customers to be served, without trip delimiters and depot node. As an example, Figure 1 shows a 
solution s and the related pattern chromosome and giant tour chromosome representations. 

Let g(s) be the giant tour cost of planning period g of solution s, calculated as the total route distance travelled 
by a truck having infinite capacity. The “giant tour” cost of a solution s is then equal to the sum of all giant tour 
costs for all the period of the planning horizon, i.e., 

Gg g ss )()( . 

Representing routes as giant tours allows to perform crossover operation in a simple and efficient way, working 
on permutations of customers, but requires the use of an efficient algorithm to find the optimal segmentation of a 
giant tour into routes to get the solution and its cost: PCVRPGS use the Split Algorithm of Prins (2004), which 
reduces the problem of extracting routes from a giant tour to a shortest path problem on an auxiliary acyclic graph. 
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Figure 1. A solution (individual) of the PVRP and its chromosome representations. 

 

 

 

 

 
Pattern chromosome        
Customer                  i 1 2 3 4 5 6 7 8 
Periods {2} {1, 2} {1, 3} {2} {1, 2} {1, 3} {2} {1, 2, 3} 
Delivery quantities {5} {6, 3} {4, 3} {6} {3, 1} {4, 4} {3} {2, 1, 2} 
         
Giant tour chromosome         
Period                       g 1 2 3   
Customer sequences {5, 6, 8, 2, 3} {5, 4, 2, 7, 8, 1} {8, 6, 3}   
Delivery quantities {3, 4, 2, 6, 4} {1, 6, 3, 3, 1, 5} {2, 4, 3}   

4.2. Parent selection and crossover 

The offspring generation scheme starts with the selection of two parents P1 and P2 from which individual C is 
yielded through crossover using a binary tournament that randomly (with uniform probability) extracts 2 individuals 
from the entire population and keeps the solution with lower penalized cost with probability 0.8, whereas it selects 
the worst one with probability 0.2. The binary tournament is performed twice in order to select P1 and P2. The 
chance of combining feasible and unfeasible solutions allows extending the search to the limits of eligibility where 
we expect to find the best solutions, while the chance of selecting individuals with lower quality is an attempt to get 
diversification in the solution generation by exploiting the genetic information of the entire population. 

The crossover procedure is composed by four basic steps. The first one defines the rules for the inheritance of the 
genetic material, through the extraction of two random integers between 0 and the number p of periods: being n1 the 
lower extracted integer and n2 the higher one, the inheritance rule states that n1 periods will be entirely inherited at 
random from P1 and form the set 1 of periods, n2 – n1 periods from P2 to form the set 2, while the remaining 
periods will be inherited partly from P1 and partly from P2 to form the set mix periods. 

In the second step the genetic material is transmitted from parent P1 to offspring C. For each period g  1, the 
customer visit sequence (giant tour) g(P1) is entirely copied from P1 to C without modification. For each g  mix, 
two random cuts g and g are done on g(P1): if g < g, the subsequence of g(P1) from position g to position g 
is transmitted to C; if g > g, C will inherit from P1 the subsequences of g(P1) from g to the last position and 
from the first position to g; finally, if g = g, with probability 0.5 the whole customer sequence g(P1) is 
transmitted starting from the cut point (i.e., from g to the last position and from the first position to g). 

The third step involves the transmission of genetic material from P2 to offspring C. For each g  2  mix, we 
consider each customer i  g(P2) not yet inserted in the current sequence g(C) and copy it at the end of g(C) if i 
has at least one eligible pattern containing period g. If there are eligible patterns that also contain demand qi

g(P2), 
then one of these pattern will be inherited into the chromosome pattern of C, otherwise an eligible pattern with 
another demand q′ig is transmitted in accordance with the eligible pattern. 

Finally, the forth step completes the crossover through transmission to C of customers with service frequencies 
not yet satisfied. This is done by calculating the best eligible pattern (with related specific demand) and the best 
position in the tour through cheapest insertion technique for each customer i not completely served: this may require 
to modify the amount of demand qi

g(P2) inherited from P2 in order to guarantee the existence of at least one eligible 
pattern i for customer i. Note that, as a result of crossover, it is possible to generate customer’s sequences that 
neither comes from genetic material of P1 nor from that of P2. 

Period 1 Period 3 Period 2 
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4.3. Education and repair 

The education phase consists in a set of local search procedures used to improve the quality of a given solution. If 
the educated solution is unfeasible a repair procedure is possibly used to get a feasible solution. Two types of local 
search are used in the education phase: Route_Improvement (RI) and Pattern_Improvement (PI). 

The education phase is applied with a probability ped to an individual s in the sequence RI-PI-RI. It is worth to 
notice that the education stage returns an educated solution s′ not worse than s, i.e., (s′)   (s). 

The RI procedure works on a solution s, trying to improve its routes by moving customers within the routes of 
each period (i.e., within each giant tour) with a set of moves. Specifically, given a giant tour  of a solution and 
denoting with N( ) the related set of visited customers, the following two moves M1 and M2 are applied over a 
customer u  N( ) and one of his neighbour v  N(u): 
 M1: remove u and place it after v; 
 M2: swap u and v. 

The neighbourhood N(u) is defined as the set of h  |N( )| customers closest to u in terms of distance among those 
belonging to the same giant tour  of u. Parameter h is the granularity index (Toth and Vigo, 2003), and is a 
percentage of the number of customers visited by a tour. 

Starting from a given solution s, RI applies moves M1 and M2 in random order for each period of the planning 
horizon. For each randomly chosen customer u of the giant tour of a given period and for each randomly chosen 
neighbour v  N(u) of u, RI evaluates the obtained neighbour solution s′ of s, breaking the search and restarting it 
from solution s′ if the latter is better than s. Solution improvement is evaluated by computing the change in cost of 
the (one or two) modified routes after the move execution. This process is repeated until all possible moves have 
been successively evaluated without improvement. Note that at the end of the local search improvement we get 
possibly a new giant tour for each period; therefore, we apply the Split Algorithm in order to compute the actual cost 
of the new local optimal solution obtained. 

After the second execution of RI procedure, a 2-opt local search on the giant tour of each planning period is 
applied; finally, an exhaustive search is applied at the single route level if the number of visited customers is very 
small (e.g., no more than 5): we evaluate all possible sequences of the customers of each single route (all 
permutations) and select the shortest. To obtain all the possible permutations we use the “plain changes algorithm” 
(see, e.g., Sedgewick, 1977). The basic idea of this algorithm is that all permutations of a given number k of 
elements can be obtained from the sequence of permutations for k − 1 elements by placing the element k into each 
possible position in each of the permutations of k − 1 elements. 

The PI procedure is executed with probability pPI. It iterates in random order on each customer i and for each 
pattern i i, looking for the best visit combinations along with the related customer demands. For each customer 
i, let us consider feasible patterns different from that (let us say i) contained in the current solution s. Let ′i i be 
the new pattern considered, the following moves are performed until first improvement is achieved: 
 if both i and ′i contain period g and qi

g = q′ig, do nothing; 
 if both i and ′i contain period g but qi

g  q′ig, consider q′ig in place of qi
g in the new solution; 

 if only i contains period g, remove i from the giant tour of period g;  
 if only ′i contains period g, insert i with quantity q′ig into the giant tour of g through cheapest insertion. 

This process is repeated until all possible moves have been successively evaluated without improvement. 
The educated solution might be unfeasible: in that case the repair procedure is applied with probability prep to 

make the solution feasible. This procedure consists in temporarily multiplying the penalty parameters by 10 and 
reapplying the RI-PI-RI sequence. If the individual is still unfeasible, penalty parameters are multiplied by 10 again 
and the sequence is restarted until a feasible solution is obtained. Finally, the resulted individual is inserted into the 
feasible subpopulation without deleting the unfeasible one from the unfeasible subpopulation. 

4.4. Population management 

In order to initialize subpopulations, 4μ individuals are generated randomly assigning one pattern to each 
customer and creating customer visit sequences for each period in random order. Every solution is subjected to 
education, followed by repair in case of infeasibility (with probability prep = 0.5), and inserted into correct 
subpopulation. At the end of initialization, one of the subpopulations may contain less than μ individuals. 



742   Pasquale Carotenuto et al.  /  Transportation Research Procedia   10  ( 2015 )  735 – 744 

The two (feasible and unfeasible) subpopulations are managed independently. Both subpopulations are 
programmed to hold a number of individuals between μ and μ + , which represent the minimum and the maximum 
size of each subpopulation, respectively. Whenever an individual is yielded, it is added directly to the appropriate 
subpopulation based on its feasibility. When the maximum size μ +  is reached in a subpopulation, the survivor 
selection mechanism is activated, that brings the population size back to μ discarding the worst  individuals. 

Penalty parameters are initially set to qcq /  and vt , where c  is the average (cost) distance between two 
customers, q  is average amount of demanded product to be delivered, and v  is the average vehicle speed. These 
parameters are dynamically adjusted in order to make the generation of naturally feasible solutions easier. Let ref be 
the reference percentage of naturally feasible solutions and  the same percentage evaluated over the last 100 
iterations. Then, similarly to Vidal et al. (2012), the parameters are updated as follows: 
 if    ref – 0.05, then q = q  1.2, and t = t  1.2; 
 if    ref + 0.05, then q = q  0.85, and t = t  0.85. 

The diversification method is executed if the best solution is not improved for Itdiv iterations. It eliminates the 
2μ/3 worst individuals of both the subpopulations. The aim of this step is to reintroduce a significant quantity of new 
genetic material when the population has lost most of its diversity. 

When the stopping criteria is met, before returning the “best solution”, a post optimization method is applied: we 
apply the same exhaustive search method used in the education operator to all routes of all individuals of the 
feasible population, when the number of visited customers of a route is very small. Then the best solution is updated. 

5. Experimentation 

Any evolutionary algorithm needs a calibration phase to set the right parameters, enabling the algorithm to 
perform at its best. There is not an optimal set of parameters right for any metaheuristic algorithm. In our study the 
calibration phase has been conducted with a meta-calibration approach: we evaluated the goodness of the outcome 
of the algorithm when changing the parameters of interest. The main parameters to be set are the population 
dimension  and the granularity index h. Their values were fixed on the basis of the results obtained on a real 
instance with 194 customers (petrol stations) over a planning horizon of 6 periods (days), and with tanker (vehicle) 
capacity Qmax equal to 39 Kiloliters. The maximum runtime (MaxTime) has been set at 2, 5, 10, 15 and 20 minutes, 
and the maximum number of iterations without improvement Itni = 2500. For each maximum runtime we run 10 
tests. Table 1 lists the results of the average solution values. Accordingly to the results we fix h = 40% and  = 25.  

Table 1. h and  calibration (results are total route length, l in Km). 

 h = 0.2 h = 0.3 h = 0.4 h = 0.5  = 15  = 20  = 25  = 30  = 35 
MaxTime = 2 25745.17 26011.52 25214.93 26123.29 25940.78 25874.34 25214.93 25335.94 25516.76 

5 25377.64 25476.42 25196.64 25665.93 25451.80 25390.66 25196.64 25244.77 25267.58 
10 25078.78 25103.28 24787.95 25446.48 25140.76 25080.81 24787.95 24993.08 25007.32 
15 24916.53 24887.52 24702.31 25255.73 24919.09 24955.41 24702.31 24838.91 24854.45 
20 24846.27 24807.19 24621.46 25136.22 24951.44 24860.98 24621.46 24738.06 24786.58 

Table 2. Algorithm parameters. 

Parameter Description Value 
 population dimension 25 
 max dimension of a generation 40 

ped education probability 1.0 
prep repair probability 0.5 
pPI pattern improvement probability 0.2 
h granularity index 40% 
Itni number of iterations without improvement  2500 
Itdiv number of iterations before diversification  40% Itni 

ref reference proportion for the penalty adjustment   20% 
 

Other parameters are fixed according to Vidal et al. (2012). Table 2 lists the set of values used in our algorithm. 
The second phase of experimentation is aimed to evaluate the tradeoff between the two terms of the objective 

function z (i.e., the total route length l and the waste capacity index c) with Qmin equal to 35 Kiloliters (i.e., approx. 
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90% of Qmax), and we run tests to evaluate the goodness of the solutions when changing the value of the weights w1 
and w2. In particular, we consider w1 = (1 – w)/Dtot and w2 = w, with Dtot being the total customer demand in order to 
make the magnitude of l similar to c, and test with 0  w  1. The performance evaluation of algorithm PCVRPGS 
were done on three different real case studies with 49, 194 and 200 petrol stations, respectively, over a planning 
horizon of 6 periods. We experimented our algorithm with MaxTime = 2, 5, 10, 15, 20 minutes and weight w = 0, 
0.25, 0.5, 0.75, 1. For each (MaxTime, w) combination we executed 10 runs: Tables 3–5 list the average results. 

Table 3. Real case study 1: 49 petrol stations, 6 periods. 

 total route length, l (Km) waste capacity index, c 
MaxTime w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1 w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1 

2 3179.03 3211.03 3246.99 3280.74 3260.90 0.4786 0.2143 0.1957 0.2128 0.2068 
5 3159.46 3222.93 3225.22 3243.76 3256.97 0.2413 0.2443 0.1540 0.1411 0.2027 

10 3188.94 3214.30 3241.22 3276.38 3320.00 0.3531 0.2005 0.2161 0.1813 0.2605 
15 3176.03 3188.77 3260.16 3262.66 3301.20 0.3431 0.1854 0.2263 0.1834 0.2650 
20 3178.96 3238.74 3243.90 3207.52 3284.10 0.3716 0.2190 0.2005 0.1401 0.1783 

Table 4. Real case study 2: 194 petrol stations, 6 periods. 

 total route length l (Km) waste capacity index, c 
MaxTime w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1 w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1 

2 25195.82 25194.11 25312.29 25681.21 25798.95 0.6655 0.4936 0.3966 0.4536 0.4461 
5 25151.03 25082.46 25276.66 25377.42 25771.64 0.5890 0.4463 0.4208 0.4000 0.3865 

10 24711.10 24943.21 25196.22 25325.41 25545.98 0.5029 0.3869 0.3633 0.3796 0.3453 
15 24811.48 25172.62 25529.98 25405.36 25633.83 0.5421 0.4540 0.4272 0.3717 0.3749 
20 24849.46 24925.99 25202.24 25699.01 25550.19 0.5623 0.3841 0.3672 0.4424 0.3966 

Table 5. Real case study 3: 200 petrol stations, 6 periods. 

 total route length l (Km) waste capacity index, c 
MaxTime w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1 w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1 

2 24563.52 24654.79 24601.23 24636.43 24823.12 0.5707 0.3956 0.3843 0.4006 0.3607 
5 24311.48 24323.93 24540.95 24647.66 24691.48 0.4238 0.3523 0.3660 0.3580 0.3629 

10 24273.35 24389.88 24500.73 24549.11 24661.46 0.4362 0.3729 0.3383 0.3302 0.3575 
15 24278.60 24391.29 24379.83 24452.74 24908.42 0.4341 0.3485 0.3495 0.3330 0.3596 
20 24199.03 24292.77 24442.3 24522.94 24570.39 0.3574 0.2971 0.3238 0.3516 0.3301 

 
The tables show how setting values for w higher than 0.25 leads to “unbalanced” solutions where the increase in 

distance is not compensated by a significant waste capacity index decrease. 
Moreover, we conducted a comparison among the experimented results and the solution adopted by the logistic 

team of the oil company that calculates delivery/routing plans by using a strongly customized commercial decision 
support system and team’s expertise. For the real case study with 49 petrol stations, the delivery/routing plan 
adopted presents a total length equal to 3443.85 Km, while our algorithm always returned better solutions with an 
average improvement of 7.76%, considering only the total route length as objective function (i.e., w = 0).  

Table 6. Results on random instances with n = 100, 150, 200 petrol stations and 6 periods; MaxTime = 10 min. 

 total route length l (Km) waste capacity index, c 
n w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1 w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1 

100 12357.55 12448.74 12463.93 12500.27 12555.79 0.3692 0.3469 0.3318 0.3033 0.2990 
150 17888.49 18216.26 18059.67 18244.95 18173.64 0.4750 0.4686 0.3700 0.3797 0.4201 
200 25241.05 25341.88 26038.86 25737.50 26203.90 0.5312 0.4265 0.4958 0.4603 0,5090 

 
Finally, we experimented the proposed algorithm also on random realistic instances. In particular, we consider 

random instances with n = 100, 150, 200 petrol stations, obtained from the third real case study with 200 petrol 
stations: the first two instances are obtained by deleting at random 100 and 50 stations, respectively, and the third 
one with 200 petrol stations is obtained by rearranging at random the demand patterns. As for Qmax and Qmin we 
assume the same data of the real instances. For each weight w we performed 10 runs. Table 6 lists the results of the 
average solution values. Performance results on random instances show a similar trend of those for the real cases, 
with total route length that tends to increase while waste capacity index tends to decrease by increasing w. 
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6. Conclusions 

In this work, we consider the planning of the final distribution of fuel oil from a storage depot to a set of petrol 
stations faced by a European oil company, which has to decide the weekly replenishment plan for each station, and 
determine petrol station visiting sequences (vehicle routes) for each day of the week. At tactical level, it is 
reasonable to assume a fleet of homogeneous vehicles (tankers) of given capacity and the problem is modeled as a 
particular periodic vehicle routing problem. We propose a hybrid genetic algorithm to solve this problem. 
Computational results both on real instances and random realistic instances show the effectiveness of the proposed 
approach. Further researches may be devoted to extend the model and the algorithm to the case with multiple depots. 
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