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Abstract

We propose numerical simulations of viscoelastic fluidedasn a hybrid algorithm combining Lattice-
Boltzmann models (LBM) and Finite Differences (FD) schentles former used to model the macroscopic
hydrodynamic equations, and the latter used to model theyml dynamics. The kinetics of the polymers
is introduced using constitutive equations for visco@afitiids with finitely extensible non-linear elastic
dumbbells with Peterlin’s closure (FENE-P). The numeriteldel is first benchmarked by characteriz-
ing the rheological behaviour of dilute homogeneous sogtiin various configurations, including steady
shear, elongational flows, transient shear and oscilldtows. As an upgrade of complexity, we study the
model in presence of non-ideal multicomponent interfasdsgre immiscibility is introduced in the LBM
description using the “Shan-Chen” model. The problem ofrdined viscoelastic (Newtonian) droplet in a
Newtonian (viscoelastic) matrix under simple shear isstigated and numerical results are compared with
the predictions of various theoretical models. The progasemerical simulations explore problems where

the capabilities of LBM were never quantified before.
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I. INTRODUCTION

Lattice Boltzmann methods (LBM) are nowdays recognizedagepful computational tools
for the simulation of hydrodynamic phenome ﬁ1—6]. Hist@lly, the main successful appli-
cations in the context of computational fluid dynamics pertee weakly compressible Navier-
Stokes equation [EI—4] and models associated with more learfipws involving phase transi-
tion/separatio 8]. However, the spectrum of applaaiand strengths of LBM in simulating
new challenging problems keeps on expan [6,9-14]. BM Hoes not solve directly the hy-
drodynamic conservation equations, but rather modelsttharaing and collision (i.e. relaxation
towards local equilibria) of particles, thus offering aissrof advantageg[EI—G]. In this paper, we
apply the LBM to the simulation of multicomponent viscod¢iasluids. Emulsions or polymer
melts, which are present in many industrial and everydayplibducts, are good examples of such
rDlS]. We
will introduce the kinetics of the polymers using constitatequations for finitely extensible non-
linear elastic dumbbells with Peterlin’s closure (FENE[@,], in which the dumbbells can

only be stretched by a finite amount, the latter effect patapeel with a maximum extensional

fluids, having the relevant constituents a viscoelastitherathan a Newtonian- natu

length squared®. The model supports a positive first normal stress diffezear a zero second
normal stress difference in steady shear. It also suppdtimaing effect at large shear, which
disappears wheb? > 1, a limit where we recover the so-called Oldroyd-B mo@ﬂ.[math the
FENE-P and Oldroyd-B models have been investigated in mataild with other methods based
@@0], finite vqumQZl], diffuseerface model@E‘ZS], finite elements
] and spectral element metho@ [25]. There have beeadyinaarious attempts done with LBM

on finite difference

in this direction too. Qian & Deng [26] proposed a modificataf the equilibrium distribution to
account for the elastic effects, whereas in Ispolatov araih ] the elastic effects are taken into
account within the framework of a Maxwell model. In Giraetdal. ,129] and in Lallemand
et al. [@] LBM schemes for solving the Jeffreys model were proploséth the hydrodynamic
behavior of the LBM emerging with memory effects. In a receaper, Malaspinast al. ]
proposed a new approach to simulate linear and non-linesapeglastic fluids and in particular
those described by the Oldroyd-B and FENE-P constitutiveaggns. The authors studied and
benchmarked the model against various problems, incluiie@D Taylor-Green vortex decay,
the simplified 2D four-rolls mill, and the 2D Poiseuille flowA similar approach was used by
Denniston et al. EZ] and Marenduzzo et am [33] for the simtioh of flows of liquid crystals.



In other works by Onishét al. [@Eﬁlb] the Fokker-Plank counterpart for the Oldroyd-Bian
FENE-P models was introduced to carry out simulations wighttelp of the LBM. The numerical
results presented explored the problem of droplet defoomainder steady shear. A formulation
based on the Fokker-Planck equation was also recentlyestunyi Ansumali & coworkerleG]:
the approach was benchmarked by determining the bulk rgealloproperties for both steady
and time-dependent shear and extensional flows, from miederdarge Weissenberg numbers.
Finally, we also remark that due to the efficiency of LBM sabjethe latter have been used to
replace macroscopic flow solvers for describing dilute ptdysolutions@?].
As witnessed by an increasing amount of works (ELe [6] aretentes therein), LBM has been
proven to be particularly suitable to the study of multicament systems where interfacial dy-
namics and phase separation are present, since it canedyeisic essential features, even with
simplified kinetic models. Significant progress has regelbden made in this direction, as evi-
denced by many LBM that have been developed on the basisfefetit points of view, including
the Gunstensen modéﬂ& 39], the “Shan-Chen” mtﬁtﬂ[ﬁ,the free-energy modemzll].
However, investigations of viscoelastic flows within tharfrework of non-ideal multicomponent
LBM are rare. The work that better fits these requirementsabably the one by Onistat al.
,E.Jb], but the problems there presented suffer of scaque@ration of the effects of confinement
and structure of the flo 7]. Here we go a step forwardregenting a comprehensive study
related to the characterization of viscoelastic effeatsrfalticomponent LBM in confined geome-
tries. We numerically and theoretically explore the patdity of a coupled approach, based on
LBM and Finite Difference (FD) schemes, the former used taehdwo immiscible fluids with
variable viscous ratio, and the latter used to model therpelydynamics. The numerical model
is first benchmarked without phase separation, by charaicigithe rheological behaviour of di-
lute homogeneous solutions with FENE-P model in variouastestates (shear and elongational)
and transient flows. As an upgrade of complexity, we studyntioelel in presence of non-ideal
multicomponent interfaces, where immiscibility is intuaetd in the LBM description using the
“Shan-Chen” modelu7|:| 4]1@48]. The problem of a confinedegastic (Newtonian) droplet
in a Newtonian (viscoelastic) matrix under steady sheamisstigated and numerical results are

compared with the prediction of various theoretical models



II. COMPUTATIONAL MODEL

In this section we report the essential technical detaitbt@humerical scheme used. We refer

the interested reader to the reference pa;@erg 4][@4@‘]1 where all the details can be

found. We consider the Navier-Stokes (NS) and FENE-P reéerequations for a binary mixture

of two componentsA, B) in the following form:

&po+ V- (pou) = V-Dsgg; oc=AB 1)
plou+(u-V)u] = —~Vp+V o5+ LV 0p+ Y go; )
P o]
_0’p—1

A+ (u-V)E = €-(Vu)+(Vu)' - ¢ (3)

Tp

Here,po is the density of ther-th componentg = S ; po indicates the total densityy, represents
the baricentric velocity of the mixture, an: = cZpo is the internal ideal pressure of component
o, with p= 5 5 pg. The diffusion current of one component into the other amdviBcous stress

tensor of the solvent (S) fluid are
Dso =i [(Vpa——p"Vp) - (go——p“zga>] (4)
P P %

os=1s (Vu-l—(Vu)T—%l(V-u)) +Npl(V-u). (5)

The viscosity coefficients are the shear viscogggnd the bulk viscosityy,, while the coefficient
 is a mobility parameter regulating the intensity of thewsfbn. The tern} ; go in equation[(R)
refers to all the contributions coming from internal andeewal forces. As for the internal forces,
we will use the “Shan-Chen” model [7] for multicomponent toives. The force experienced by
the patrticles of ther-th species at, is due to the particles of the other species at the neiglipur
locations

go(x) :_gPU(CE)Z Z WaPg/ (% +Ca)ca 0,0 =AB (6)

a g'#o
where¥ is a parameter that regulates the interactions betweemthedmponents. The sum in
equation[(b) extends over a set of interaction linksoinciding with those of the LBM dynamics
(see below). When the coupling strength param@tés sufficiently large, demixing occurs and
the model can describe stable interfaces with a surfaceteriBhe effect of the internal forces can

be recast into the gradient of the pressure ted3dt) [@], thus modifying the internal pressure



of the model, i.e P = p1+ P with
P(int)( )= __gPA ZWaPB x+cq)caCq — —gPB ZWOIPA(m +ca)caca.  (7)

Upon Taylor expanding the expressibh (7), we get a pressunteiloution in the bulk pressui@ =

p+ ¢3¢ paps and other contributions which are proportional to the deives of both densities.
The latter contributions are responsible for the surfaosit at the non ideal mterfa(J;hO] A
proper tuning of the density gradients in contact with thé albows for the modelling the wetting
properties. In all the simulations described in this pafier,resulting contact angle for a droplet
placed in contact with the solid walls &y = 90° (i.e. neutral wetting).

As for the polymer details in equatioris (2) and (3),= (#iZ;) is the polymer-conformation
tensor, i.e. the ensemble average of the tensor produce efrit-to-end distance vectat, which
equals the identity tenso%{= 1) at equilibrium,np is the viscosity parameter for the FENE-P
solute andrp the polymer relaxation time. The polymer feedback into thelfls parametrized
by Sop = ’7" f(rp)cf beingop = f(rp)% the dimensionless counterpart. The FENE-P potential
is encoded |rf(rp) (L%2—3)/(L2 —r3), which ensures finite extensibility = /Tr (%) andL

are the trace and the (dimensionless) maximum possibleggte respectively, of the polymers
[l] As L decreases, the polymer dumbbell becomes less extensibldgn@amaximum level of
stress attainable is reduced. In a homogeneous steadyal®igbension, the extensional viscosity
of the polymers increases proportionally to the maximum bloetl length squared and it becomes
infinite in the limitL? > 1 [18] (see subsectioA{IIB)).

The fluid part of the model (equatiop (2)) is obtained from a\M.@aturing a multiple relaxation
time scheme (MRT). Further technical details of the algonican be found |rm@

just report the essential features of the model. The LBM egunaonsiders the probability density

1], here we

function, fé,o) (x,1), to find a particle of componentin the space-time locatia, t) with discrete
velocity ¢y. In a unitary time lapse, the evolution equation fé?)(w,t) is (double indexes are

meant summed upon)

1
féU)(w+ca,t+1) - fo(lo')(m,t) =—Ngp (flgo') _ E[ga)(pg,u)) + <IGB — é/\ B) S(u,90). (8)
The equilibrium functions are chosen to be

Ey( ©)

B ca-u uu:(cqcq —C31)
Pau>—Wap |:l+ Cg + 2C§ :|



wherecZ = 1/3 is a constant in the model and the weiglhigsfor the D3Q19] LBM used are

1
:—3 a:O
Wa = %80{21—6 (10)
1
La=7-18

The relaxation towards equilibrium is regulated by the mat, g, the same for both species. The

source terng, (u,gg) is chosen as

U
S (U, 9g) = Wa 2 + Cg Ca | 9o (11)
and the macroscopic variables are the hydrodynamical iygasie for each specie) and the com-
mon fluid velocity

Zf (z,1) pumt:cha (12)

0 a=0

We also choose the equilibrium velocity as the velocity & whole fluid plus half of the total
forcing contribution, i.e. the standard way to define therbygginamical velocity in the lattice

Boltzmann schem [540]

w(z,) :a(m,t>+zf2’g". (13)

In order to perform the relaxation process towards equulibr in the spirit of the MRT models,
we need to construct sets of linearly independent momemits fhe distribution functions in ve-
locity space. The moments are constructed from the disioibéunction through a transformation
matrix .7 comprising a linearly independent set of vectors, ﬁé’ with the transfor-
mation matrix.7 suitably constructed in terms of the velocity nn@f@m the moments
space, the collisional operatdy,g in the lattice Boltzmann equationl (8) is diagonal, thus rirfiig

the particular advantage to relax the various processtggite processes and viscous processes)
independently. The relaxation times of the momentumin) (bulk (1) and shearts) modes in|[(B)

are indeed related to the transport coefficients of hydradyaos as

1 1 2 1
H= (TM - é) Ns = pcg (Ts— é) Mo = épcg (Tb - é) . (14)

Some of the modesﬂgem) of the equilibrium distribution functionEéa)(pa,U) are explicitly
affected by the second order tensor of the distribution, kg fo(,a)caca. The polymer stress
’}—Eap = ’Z—;’f(rp)% appearing in equatiori](3) is then added to these modes withightvthat
depends on the species, i.e.

) — & PPy (15)



The recovery of the hydrodynamical limit described by eopret (1F2) is ensured by the Chapman-
Enskog analysi ﬂ 3]. Repeating the calculations repdﬂ@], a contribution coming from the
polymer stress is found to affect the viscous stress of thateens. Such contribution is measured
to be rather small in all the numerical simulations doneyueng that the balance equatioh$(1-3)
are reproduced in our simulations. In particular, the weighction ps; /p ensures that the global
momentum balance equatidn (2) has the total sl%;éﬁsrp)% in the rhs. The idea of changing the
lattice Boltzmann stress with a contribution directly tethto the polymers feedback stress echoes
the work Onishkt al. [@@] although the authors used a simple single relardime scheme.
The relaxation frequencies in_(14) are chosen in such a watyrith= 1.0 lbu (lattice Boltzmann
units) andts = 1y, corresponding to a bulk viscosity equal to the shear viggogs = np in
equation[(b). The viscous ratio of the Lattice Boltzmanndfligichanged by lettings depend on

space
1
pcs <Ts— 5) =ns=nafy (@) +nef (¢) (16)

whereg = ¢(x) = % represents the order parameter. We have indicatednyiththe

bulk viscosities in the regions with a majority of one of titcomponentsA or B). The functions

faip) = (). (17)

The smoothing parameté = 0.1 is chosen sufficiently small so as to recover a matching with

f1 (@) are chosen as

analytical predictions for droplet deformation and oraitn in shear flow.

As for the polymer constitutive equation, we are followirtge ttwo ReferencesELHJSZ] to

solve the FENE-P equatiohl(3): we use an explicit secondrazentral-finite-difference scheme

in space and a second-order Adams-Bashforth method foraminpvolution. We maintain

the symmetric-positive-definite (SPD) nature of confororattensor at all times by using the
WE[SZ]. We first consider theaton forop = f(rp)%. Since

¢ and hencerp are SPD matrices, we can writes = Z.¢' , where % is a lower-triangular

Cholesky-decomposition sche

matrix with elementg;; = 0 if j > i. Thus, the equation farp yields an equation set that ensures
the SPD of#’ if ¢;; > d(ﬂg], a condition which we enforce explicitly by considegithe evolution

of In¢;; instead of?;; ]. As for the boundary condition for the conformationgens’, we use
linear extrapolation at the boundaries.

Finally, in order to study separately the effects of matrid @roplet viscoelasticity, we follow the

methodologies already developed by Yel. [Q], by allowing the feedback in equatidd (2) to



be modulated in space with the functiohq @)

plou+ (u-V)ul=-VP+V [(Nafi(9) + nef-(9)(Vu+ (Vu)")] +2—§V[f (rp) ¢ f=(9)].

(18)
We remark that other possibilities already exist for impéentng the polymer dynamics in LBM
[Q, @E&S] either by considering directly the evolutiogquation [8) [31], or considering the
the Fokker-Plank counterpa QSB]. Our algorithm iseburcuring problems related to the
polymer extension and conformation tensor, which have ware bounded and positive definite
at all times, respectively, for the calculation to remaiab$t. Nevertheless, we stress that it is
not the aim of this paper to propose a comparative study \espect to other existing LBM (or
closely related) approaches, as we are interested in asgéiss robustness of the methodology

in simulating confined problems with multicomponent phas®s viscoelastic nature.

. HOMOGENEOQOUS DILUTE SUSPENSIONS: RHEOLOGY

In order to validate the numerical scheme described in@el), we examined the bulk rhe-
ological properties in some canonical steady flow situatiae. simple shear flow (sectibn Il A)
and extensional flow (sectién Il B), and also benchmarkee tdependent situations, by verifying
the linear viscoelastic behaviour in a small-amplitudéltzory shearing (section IlIIC) and the
stress relaxation after cessation of a shear flow (seCti@) [63, [54]. To do that, we switch to
zero the coupling constast in equation[(6), thereby reducing to the case of two misgjalges
with an ideal equation of state. In addition, we will work kvlbad conditions ensuring very weak
compressibility of the system.

To properly establish a link between the evolution equatibthe conformation tensot](3) and
known results published in the Iiteratug[gl 54], we prederewrite the equation for the poly-
mer feedback stress. Starting from the dimensionless piyeedback stress

(L>-3)

op = f(rp)cf = m

¢ (19)

and taking the trace of equatidn {19), we fif¢") = %ﬁ'ﬁp) and the feedback (19) can be

rewritten as
(L2-3) _ L2-3+4Tr(op)

L2Tr(op) L2
(L= 57 (op))

¢ =Z(Tr(op))€ (20)

op =



_ L2-34Tr(op)

where we have defined(Tr(op)) = 2 . The equation of the conformation tensalr (3),

with the substitutiory’ = op/Z, becomes

1 1 1 T op B
p ZDtap—Zap(Vu)—Z(Vu) -ap—?DtZ] =—op+1 (21)
or equivalently
Z(op—1)+1p [Dtap —op-(Vu)— (VU)T -op — opDy IOgZ} =0 (22)

which directly maps into the equation considered by Biral . [@] (their equation (10) and subse-
guent developments). In the following sections we providednmark tests for various situations.
All the analytical results used can be found in other pa ] and we limit ourself to a

brief review for the sake of completeness.

A. Steady Shear Flow

We consider equatior_(22) under the effect of a homogeneuear Slow, u, = yy, uy = 0,

u; = 0, in equationd(22). The equations, written out in compts)drecome

0 0 Opn—1 0 0 0
L2—1+Opxx

We findopyy = 0pz = 1 so thatZ = . Thexx andxy components of equation (23) reduce

to the system )
(1+ %) N = 2AS
<1+ %) S=A

whereN = (Opxx— 1), A = Tpy, S= Opxy. The quantitiedN andSrepresent the firstormal stress

(24)

difference and the polymer shear Streg[ 53] developing in steadgrshespectively. The
first normal stress difference is a typical signature of e&asticity [17], while from the polymer
shear stress we can extract (by dividing for the shear ragepolymer contribution to the shear
viscosity. We immediately see from equatidns (24) that tts¢ fiormal stress difference hinges on

the knowledge of the polymer shear stress
N = 2% (25)

9



with Ssatisfying the following equation

83
25 +S-A=0. (26)

This equation can be solved exac@[, B 55]

L\NY?2 (1 A2 Y
S(/\,L):Z(g) slnh<:—%ar05|nh<T <€) )) (27)

and, from equatiori(25) we find as

32
N(A,L) = ( S ) sintf (—arcsmh( )) (28)

Going back to equatiof](2), we see that the polymer shea;ﬁ%rpxy ’7— Sproduces a constant
shear viscosity only in the Oldroyd-B limiS A = ytp asL? > 1), Whlle thinning effects are
present for finite values df?.

In figure[d we present numerical simulations to benchmarkehesults. The numerical simu-
lations have been carried out in three dimensional domaitisly x H x L, = 2 x 60 x 2 cells.
Periodic conditions are applied in the stream-flow (x) andhm transverse-flow (z) directions.
The linear shear flowy = yy, uy = u, = 0 is imposed in the LBM scheme by applying two oppo-
site velocities in the stream-flow directiony(x,y = 0,2) = —ux(X,y = H,2) = Uy) at the upper
(y=H) and lower wall ¢ = 0) with the bounce-back ruIQ[Iﬂ] We next change the shednan t
range 10° < 2U,,/H < 1072 Ibu and the polymer relaxation time in the rangé ¥01p < 10°
Ibu for two values of the finite extensibility parametef,= 107, 10%, and fixednp = 0.136 Ibu.

In figure[1 we report the first normal stress difference (leftgl) and the dimensionless polymer
shear viscosity (right panel), both rescaled with the paymscositynp, as a function of the di-
mensionless shed = 1py. The values of the conformation tensor are taken when thelation
has reached the steady state. All the numerical simulatolapse on different master curves,
dependently on the value @f. The normal stress differend¢ increases at larga to exhibit
variable levels depending drf, and consistently with the theoretical prediction of eqpra(28).
The dependence of the normal striissom L? directly reflects in the presence of thinning effects

visible in the plot of the polymer shear viscosity (see riganel of figuré1l).

10
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FIG. 1. We plot the first normal stress difference and the mely shear viscosity (both scaled with the
polymer viscositynp) as a function of the dimensionless shéar 1py. Symbols are the results of the
LBM-FD simulations with different imposed shears, differer and different_? (see text for details). All
the numerical simulations collapse on different mastevesirdependently on the value lof: L? = 107

(circles) and_? = 10* (squares). The lines are the theoretical predictions basedjuationd (27) and(28).

B. Steady Elongational Flow

We consider equation (2) under the effect of a steady et flow, u, = £z, uy = —€x/2,

uy = —&y/2, with € the elongation rate. Again, writing out all the componengsget

0 0 Opz— 1 0 0 _ZGRZZ

implying Opxx = Opyy. By denoting withT = Tr(op) — 3 andD = 0pz — Opxx. After defining the

dimensionless elongation rate = 1p€, we find two independent equations forandD

L2+TT 2AD =0

(30)

which can be rearranged to give us a cubic equatiofas a function of\e. Such equation is

most conveniently written as a quadratic equationdn

2D3
2L2DAZ+ [~4D?+ (L~ D —3)(D+3)| Ae + i (L2-D-3)D=0 (31)
with associated solutions
—P,+ (/P —4P\P;
(/\e)+,— = (32)

2P,

11



where
P, =2DL?

P, =-4D?+ (L2-D-3)(D+3) (33)

P=2 —(L2-D-3)D.

Theelongational viscosity
_neD

N Tp £ (34)

Ne
can be computed by numerically inverting equatidns[(32#8) paying attention to a proper
selection of the sign in equation (32). For smalthe solution is given byAe)+, as(Ae)— is
negative and divergent. The asymptotic expansion for sthalindeed given by

—P+/P?2—4PP; p

(Ne)t = ) T 0 (D?) (35)

showing that the elongational viscosity approaches a aahsélue at low elongation rates, which
is three times the corresponding zero-shear-rate viscdsitwever the radicand of equatidn {32)
is zero wherD = L? — 3. In such a point, in order to preserve the continuity of thewahtive of

Ne, We need to considér\e)_ as a solution. Consistently, for lar@e we find

—P,— /P2—4P
(o) = Ty D+ﬁ<1). (36)

~ ——&

2P 2L2

We therefore find the following asymptotic expansion forg¢h@ngational viscosity

1D 3 &gx1
e _ -2 (37)

e Teé | g2 551

witnessing a divergence of the elongational viscosity & @idroyd-B limit (L2 > 1). In figure
we present numerical simulations to benchmark thesetsestihe numerical simulations have
been carried out in a three dimensional cubic domain witleétigonsisting oH x H x H = 20 x
20x 20 cells. Periodic conditions are applied in all directiofse elongational rate is changed in
the range 10°% < £ < 102 Ibu and the polymer relaxation time in the rangé 40rp < 10° Ibu, for
three values of the finite extensibility parameter= 10,107, 10%, and fixednp = 0.0 Ibu. Again,
the values of the conformation tensor are taken when thelafron has reached a steady state.
When reporting the quantity /A, i.e. the elongational viscosity scaled by the polymerassty,

as a function of the dimensionless elongational vateall the numerical simulations collapse

12
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FIG. 2: We plot the dimensionless elongational viscosityadanction of the dimensionless elongation
rate \e = TpE. Symbols are the results of the LBM-FD numerical simulatianith different imposed
elongational rates, differemp and different_? (see text for details). All the numerical simulations cpfia
on different master curves, dependently on the valué®ofL? = 10 (squares).? = 10? (circles) and

L2 = 10* (triangles). The Lines are the theoretical prediction Haseequationd (32) and (33).

on different master curves, dependently on the valuk?of This behaviour is consistent with
the theoretical predictions obtained from equatidn$ (3@) @3). For small\c the elongational
viscosity is just three times the polymer viscosity, whilésage/\e we approach another constant

value dependent on the finite extensibility paramefesee equatiori (37)).

C. Small amplitude Oscillatory Shearing

By promoting the shear variable considered in section (JIté\a time-dependent variable,
ux = y(t)y, uy =0, u, = 0, we can analyze the behaviour of the polymer field under-tiefgendent
loads. We will then analyze the limit of small amplitudes, L > 1. In this limitZ = 1 and we

are left with the following time-dependent equation

Opxx—1  Opyy 0 Opxx Opyxy O 20pyx Opyy O
Opyx  Opy—1 0 +Tp at Opyx Opyy O —y(t) opyy O O =0.
0 0 Opz—1 0 0 Opz 0 0O O
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For larget, the equations for the first normal stress differeNand polymer shear streSslefined

in section [(II[A) are therefore

N+ 1pN = 21py(1)S
S+ 1mpdS= pr(t).

(39)

Assumingy(t) = ‘9 cogwt) = O(y%e ™), we find that the stresses needed to maintain the

motion will also be oscillatory in nature
=0(8% ) = 0(yn"e ) = ¥9n’cogt) - ¥n" sin(wt)
wheren* = n’ —in"” is the complex viscosity whose components can be computedkiryg S

andN as complex variables and considering the real and imagjrentyof equation(39)

wt3
1+ w?T3’

Ip

L " _
1+ w?T3 n(®)

n'(w) =

The dimensionless storagé’(w)) and loss G”(w)) moduli ] are given by

(wD)p
1+ w?Ts

TpW

1+ w?T3 (40)

G'(w) = wn'(w) = G'(w) = wn"(w) =

In figurel3 we present numerical simulations to benchmarkahesults. The set-up for the numer-
ical simulations is similar to the one presented in seciid\], with three dimensional domains
consisting of 2< H x 2 cells, with variable wall-to-wall gapl. We then apply an oscillatory shear
flow uy = y(t)y = 2= cog wt)y, uy = u, = 0, y(t) = y\9 cogwt) at the walls of the LBM simula-
tions and set zero feedbaaik(= 0 Ibu) of the polymers into the fluid. The frequenwys changed

in the range 10% < w < 102 Ibu and the polymer relaxation time in the rangé 20rp < 1° Ibu,

for a given value of the finite extensibility parametet,= 10°, fixed np = 0.0 Ibu and maximum
wall velocity Uy, = 102 Ibu. A word of caution is in order, as the assumed flow conditice-
quire that the lattice Boltzmann time to establish a stehepsflow,r, ~ "j—: (with vsthe solvent
kinematic viscosity), is much shorter than the period ofdkeillations, i.e.Ty;w < 1, otherwise
the shear flow will be found in a transient regime. This cdodiis achieved by a proper tuning
of the solvent kinematic viscosity and the wall gdpn all the numerical simulations. As we can
see from figur€l3, the dimensionless storage mod@(s«)) and the dimensionless loss modulus

(G"(w)) are in very good agreement with the theoretical prediatibequation[(4D).
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FIG. 3: We plot the dimensionless storage modul@§ @), circles) and the dimensionless loss modulus
(G"(w), squares) versus the dimensionless frequanty. Results are obtained from the LBM-FD nu-
merical simulations with.? = 10° (Oldroyd-B limit); black lines show the theoretical preiitm for the

Oldroyd-B model (see equatioin_(40)).

D. Stress relaxation after cessation of steady shear flow

We finally consider a situation withy = y(t)y, uy = 0, u, = 0 with y(t) being constant for

t <to, andy(t) = 0 fort > tp. The equations far >ty are therefore

Z O'p7yx GRW -1 0 + TPE GRYX O'p7yy 0 —Tp O'p7yx GRW 0 Dt |ng =0.
(41)
We next write down the equations for the variatfies opyy andT = Tr(op) — 3
L2 +T
T+ TPatT - TP<3+ T) (L2+T) =0 (42)
2
L +T S+ TPatS TPSW O
The first of equation$ (42) can be solved to get a differeetjalation forT
&T  (L2+T)2
ar _ (L°4+T)° (43)

T  L2(3-L?

wheretf =t/1p. The Oldroyd-B [? > 1) limit simply implies an exponential decay(t) =
Toe (t-%)/™ where with the subscript 0 we indicate variables at timetg/Tp. For the gen-

eral case with finite extensibility parameterin equation[(4B)T (t) cannot be written in terms of
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elementary functions. However, by a proper manipulatidregoiations[(4R), is always possible

to get an equation relating the shear stress to the trace stithss during relaxation [17]

(L2—3)/L2 1-(L2-3)/L2
S _ (@) <L2+T<t) , (44)

S To L2+ T
For completeness, we note that further manipulatigs Bob equations[(42) allow to show

that the area under the stress-relaxation curve is closklted to the first normal stress-difference

before the cessation of the shear flow

No(t <tp) =2y | Sdt=2y1p . (45)
to

to/Tp

In the left panel of figurgl4 we plot the time evolution for b&lh) andT (t) versus the dimension-
less time{/1p) in the process of an inception of shear flow with the apprivarto the steady state
and subsequent cessation. The set-up for the numericalagions is similar to the one presented
in section [(TITA), with three dimensional domains consigtiof Ly x H x L, = 2 x 60x 2 cells.
The shear is set td®,/H = 1023 Ibu at timet /1p = O, with the polymer relaxation timg = 10*
Ibu and finite extensibility parametef = 4.1. The value of 2 is chosen to create a net distinction
between the time evolution &t) andT (t), that otherwise would be identical in the Oldroyd-B
limit (L2 > 1, see also equation (44)). The feedback of the polymerfaditid is set to zero. For
t/1p = 10 (that meant = 101p in the above equations) the system is surely under the effect
steady shear flow. At that time, the shear is suddenly swdtoiffeand the system starts decaying.
The decay process is illustrated in the right panel of figlinelere we compare the results of the

numerical simulations with the analytical predictionsaibéd from equation§ (43) arid (44).

IV. BINARY MIXTURES WITH VISCOELASTIC PHASES

In this section we describe problems where both phase s#gyagand viscoelasticity are
present. First of all we switch on phase segregation: w#ien ¢ in equation[(B), with%; a
critical value of the coupling constant, the resulting pbgsdomain is partitioned into two differ-
ent subdomains, each with a majority of one of the two comptmaeavith the interface between
the two components described as a thin layer of thickdessere the fluid properties change
smoothly. The values of the interface thickness and the libphi (see equatiori{4)) need to be
larger than those suggested by physical considerationsl@r tb make the simulations affordable.
They are empirically tuned in order to match the analyticalctions of sharp-interface hydro-

dynamics (see later).
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FIG. 4. We plot the time evolution for the polymer shear €tr8&) (squares) and the excess trace
T(t) = Tr(op) — 3 (circles) versus the dimensionless timgérg) during the inception of a shear flow and
subsequent cessation (see text for details). The shets atdimet = 0 and fort/7p = 10 the system is
under the effect of a steady shear flow. At tityies = 10 the shear is suddenly switched off and the system
starts decaying. The decay process is better illustratégeimight panel where we compare the results of

the numerical simulations with the analytical predicti@sained from equationg (43) aid 144).

We will then apply our numerical approach to the characéion of deformation of droplets in
confined geometries, where the involved phases may possessoalastic nature. This is a rele-
vant problem, for example, when determining the propediesnulsions microstructurgéa 57].
Emulsions play an important role in a huge variety of appites, including foods, cosmetics,
chemical and material processir@[lS]. Deformation, brngjaland coalescence of droplets occur
during flow, and the control over these processes is imper&ti synthesize the desired macro-
scopic behaviour of the emulsion. Most of the times, thelsysis of the emulsion takes place
in presence of confinement, and relevant constituents hawvenonly a viscoelastic -rather than
Newtonian- nature. The “single” drop problem has been am®red to be the simplest model: in
the case of dilute emulsions with negligible droplets iattions, the dynamics of a single drop
indeed provides complete information about the emulsidtrabeur. Single drop deformation has

been extensively studied and reviewed in the literaturéfercase of Newtonia 61] and also

non-Newtonian quidslﬂﬂ@&].

17



A. Effects of confinement on droplet deformation

In the classical problem studied by Taylm[58], a droplethwadiusR, interfacial tensioro,
and viscositynp is suspended in another immiscible fluid matrix with vistps)y under the
effect of a shear flow with intensity (see left panel of figurie 5). The various physical quantities
are grouped in two dimensionless numbers, the Capillarybaum

ca— YR (46)
o

giving a dimensionless measure of the balance betweenusgsaod interfacial forces, and the
viscous ratioA = np/nwm, going from zero for vanishing values of the droplet visgp$i.e. a
bubble) to infinity in the case of a solid particle. In ordergwantify the deformation of the
droplet, we study the deformation paramedet (a—b)/(a+ b), wherea andb are the droplet
semi-axes in the shear plane, and the orientation afidletween the major semi-axis and the
flow direction (see also the left panel of figlide 5). Taylogsult, based on a small deformation
perturbation analysis to first-order, relates the defoiongtarameter to the Capillary numliea,

- ige
whereas the orientation angle is constant and equél+orr/4 to first order. Taylor's analysis
was later extended by working out the perturbation analgssgecond order i€a, which leaves
unchanged the e ressmn of the deformation paranieteatdirgives the’(Ca) correction to the
orientation angl The effects of confinement haaenttheoretically addressed@tCa)

by Shapira and HabM%]. They found that the deformaiarameter in a confined geometry
can be obtained by the Taylor’s result through a correctiotiné power of the ratio between the
droplet radius at res® and gap between the walts

251 +1 /R\?3
e (ﬁ)

(19 +16)

~ (16X +16) ca (48)

whereCg, is a tabulated numerical factor depending on the relatistadce between the droplet
center and the wall (the value Gf, for droplets placed halfway between the plate€ds =
5.6996).

LBM have already been used to model the droplet deformatimblems [@3.9] Three-
dimensional numerical simulations of the classical Tdglproblem [58] have been performed

by Xi & Duncan @] using the “Shan-Chen” approa , 8]. Hirggle droplet problem was also
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investigated by Van Der Sman & Van Der Grg [67] using a “leeergy” LBM. LBM modelling

of two phase flows is intrinsically a diffuse interface mettemd involves a finite thickness of the
interface between the two liquids and related free-energgieghparameters. These model param-
eters are characterized by two dimensionless numbers: &tletRPe) and Cahn number<h),
the Cahn number is the interface thickness normalized Wéltdtoplet radius, whereas the Péclet
numberPeis the ratio between the convective time scale and the aderdiffusion. A recent com-
prehensive study by Komrakoehal. has investigated the influenceled, Ch and mesh resolution
on the accuracy and stability of the numerical simulatiddsops of moderate resolution (radius
less than 30 lattice units) require smaller interface théds, while a thicker interface should be
used for highly resolved drops. Those parameters have tathewertain ranges to reproduce
the physical behaviomiELm] of sharp-interface hydraayics ]. Since our aim is to quantify
and explore the importance of viscoelasticity in our sirtiales, we choose the aforementioned
parameters in such a way that the Newtonian (sharp-in@rfaredictions for droplet orientation
and deformation are well reproduced.

All the simulations described in the following sectionserefo cases with polymer relaxation
times ranging in the interval & 1p < 4000 lbu and finite extensibility 16 L? < 10*. The
numerical simulations have been carried out in three dimeasdomains withLy x H x H =
288x 128x 128 lattice cells. The droplet radiighas been changed in the range3® < 40
lattice cells with fixedH to achieve different confinement ratioR/H. Periodic conditions are
applied in the stream-flow (x) and in the transverse-flow {@alions. The droplet is subjected to
a linear shear flowy = yy, uy, = u, = 0, with the shear introduced with two opposite velocities in
the stream-flow directiorug(x,y = 0,z) = —ux(x,y = H,z) = U,) at the uppery = H) and lower
wall (y = 0). For the numerical simulations presented we have #sedL.5 Ibu in (8)(the critical
point is at¥; = 1.0 for the parameters chosen), corresponding to a surfasetesm = 0.09 Ibu
and associated bulk densities = 2.0 Ibu andpg = 0.1 Ibu in theA-rich region.

In the right panel of figurel5 we report the steady state dedition parameteb for a Newtonian
droplet under steady shear as a function of the associateitla®a numberCa for two different
confinement ratios: R/H = 0.46 and R/H = 0.7. The viscous ratio between the droplet phase
and the matrix phase is fixed 0= np/nv = nNa/nNes = 1, with the dynamic viscosities equal to
na = nNs = 1.74 Ibu. The linearity of the deformation is captured by thenetcal simulations up
to the largesCa considered, but the numerical results overestimate Taypoediction (referred

to as “Newtonian Unconfined”), being well approximated bg theoretical prediction of Shapira
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& Haber for a confined drople|1__LJﬁl4] (refereed to as “Newtorsanfined”). For completeness, we
also report a comparison with the steady state deformatiedigtion of a model proposed recently
by Minale ], describing the dynamics (and steady staika)droplet under the assumption that
it deforms into an ellipsoid. This model belongs to the fanoil “ellipsoidal” models ], which
were originally introduced to describe the dynamics of glgirNewtonian drop immersed in a
matrix subjected to a generic flow field. The steady stateipiieds of such models for smalla
are constructed in such a way to recover the exact pertudaa&tsult, i.e. Taylor’s result for an un-
bounded dropleBZ] or the Shapira & Haber result for a catfidroplet|[45]. The prediction of
these ellipsoidal models is hardly distinguishable froeplerturbative resultE]M] in these New-
tonian cases, at least for the range of parameters that veeus&d in the numerical simulations.
Nevertheless, these models will be quite useful when dssegshe influence of viscoelasticity on

droplet deformation and orientation, as will be done in tfofving sections.

B. Effects of Viscoelasticity on droplet deformation and orentation

In this section we look at the effects of viscoelasticity noplet deformation. We will sepa-
rately address the importance of matrix viscoelasticity droplet viscoelasticity, using the pro-
posed methodology described in secfidn Il, and compare soithe of the theoretical predictions
available in the Iiteratur@lﬂﬁla%]. Again, we work withitary viscous ratio, defined in terms
of the total (fluid+polymer) shear viscosith: = (na+ np)/nNe = 1, in case of droplet viscoelas-
ticity; A = na/(ns+ne) =1, in case of matrix viscoelasticity. Viscoelastic effesteow up in
the droplet deformation and orientation in terms of two disienless parameters: the Deborah

number,

_NR 1
- 20 Ca?
whereN; is the first normal stress difference generated in simplarssiew ], and the ratio

De (49)

N2/N; between the second and first normal stress differe [©B}irtg the constitutive equation
for steady shear (see sectidn (Ill A)), the first normal streéiference for the FENE-P model
[H,B] can be computed (see subsectlon {IIl A) and equd@al), while No/N; = 0. In the
Oldroyd-B limit (L? > 1) we can use the asymptotic expansion of the hyperbolictifoms and

we getN; = 2npy?1p So that
e e
Tem M

De= (50)
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FIG. 5: Left Panel: shear plane £ H/2) view of the numerical set-up for the study of deformation
of confined droplets. A Newtonian droplet (Pha®ewith radiusR and shear viscositya is placed in
between two parallel plates at distaridein a Newtonian matrix (PhadB) with shear viscosityyg. We
then add a polymer phase with shear viscogityin the droplet or matrix phase. We work with unitary
viscous ratio, defined in terms of the total (fluid+polymergar viscosityA = (na+ne)/ne =1, in case

of droplet viscoelasticityA = na/(ns+ ne) = 1, in case of matrix viscoelasticity. A shear is applied
by moving the two plates in opposite directions with velesittU,,. Right panel: We report the steady
state deformation parametBrfor a Newtonian droplet in a Newtonian matrigg{ = 0.0 Ibu) under steady
shear as a function of the associated Capillary nur@ae~or smallCa the linearity of the deformation is
captured by the numerical simulations, but the numericallte overestimate Taylor’'s prediction (referred
to as “Newtonian Unconfined”), being well approximated by theoretical prediction of Shapira & Haber
for a confined droplem4] (referred to as “Newtonian cordife Two confinement ratios are considered:
2R/H =0.46 and R/H =0.7. We also report the theoretical predictions of the “etligal” models I-l
(referred to as “Newtonian confined (E)”). For the “confindu@oretical prediction, larger deformations are

related to larger confinement ratio.

showing thaDe s clearly dependent on the ratio between the polymer rétaxéme 1p and the
emulsion timetem = R’]TM, the latter depending on the interface properties (i.efasartension).
For finite L2, however, we need to use the definitionl based on the first normal stress differ-
ence (see sectiof (IlMA)). Benchmark tests for the visci@affects will be proposed for both
shear-induced droplet deformation and orientation at Is@al although the effects on droplet
orientation will be more pronounced. This is because nowtblieian effects on the drop steady

state deformation show up at the second ord€anwhile the orientation angle has a correction
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at first order inCa [BB] In particular, to test both confinement and visaegt effects, we will
also refer to the model proposed by Minale, Caserta & G figr ellipsoidal droplets. Indeed,
the aforementioned ellipsoidal models for Newtonian fllidse been recently proposed also for
non-Newtonian fluids. In particular, Minalg43] proposaddlipsoidal model which recovers,
in the smallCa-limit, the steady state theory developed by Gr [42]. dBnCaserta & Guido

] proposed a phenomenological model to study the effgict®nfinement in non-Newtonian
systems, which generalizes the work by Min@ [43] oridindkeveloped for Newtonian systems.
We start with the effect of droplet viscoelasticity. For &egi confinement ratio,/H = 0.46, in
figurel6 we report the steady state droplet deformation aiedi@tion angle. We use the Oldroyd-
B model, by choosing a large valuelof = 10%, and consider two relaxation times in the polymer
equation [(B),rp = 2000 Ibu andrp = 4000 Ibu, corresponding to Deborah numbers (based on
equation [[(ED))De = 1.42 andDe = 2.84, respectively. The polymer viscosity is kept fixed to
np = 0.6933 Ibu, corresponding to a polymer concentratiom@f(na+ np) = 0.4. The defor-
mation computed from the numerical simulations revealsallsffect of viscoelasticity, which is
consistent with the theoretical prediction of the model bynale, Caserta & Guido [46] (referred
to as "non-Newtonian confined (E)”). In particular, with pest to the Newtonian case, deforma-
tion is slightly inhibited by viscoelasticity and overestites Greco’s prediction for an unconfined
non-Newtonian dropledZ] (referred to as “non-Newtoniarconfined”). As for the orientation,
we hardly see any effect, which is in line with the predictadnhe theoretical models reported for
the two different Deborah numbers. These observationseitiao experimental and numerical re-
sults present in the literature on the effect of dropletatdasticity on deformation and orientation

9}

We next look at the effect of matrix viscoelasticity, figuiand8. In figurél7 we report the
steady state droplet deformation for two different confieatratios: R/H = 0.46 (left panel) and
2R/H = 0.7 (right panel). Again, we choose a large value.6f= 10*, and consider a relaxation
time tp = 2000 Ibu in the polymer equationl (3), corresponding to d#ife Deborah numbers, de-
pending on the droplet radius (see equation (5DP= 1.42 for 2R/H = 0.46 andDe = 1.42 for
2R/H = 0.7. The polymer viscosity is kept fixed tgp = 0.6933 Ibu, corresponding to a polymer
concentration ofjp/(np+ nNg) = 0.4. In both cases, matrix viscoelasticity inhibits droplefai-
mation with respect to the corresponding Newtonian casks, &he unconfined theory by Greco

] underestimates the deformation, and the mismatchigetavith the larger confinement ratio,

as one would have expected since the theory of Greco doesk®atito account confinement. The
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FIG. 6: We report the steady state deformation parani2t@geft panel, see text for details) and the orien-
tation angle (right panel) for a viscoelastic droplet in aMd@ian matrix under steady shear as a function
of the associated Capillary numbl@a. The viscous ratio between the droplet phase and the mdiagepis
kept fixed toA = np/nw = 1, the confinement ratio isKYH = 0.46. We consider two relaxation times in
the polymer equatiori {3, = 2000 lbu andrp = 4000 Ibu, corresponding to Deborah numbers (based on
equation[(BD)De = 1.04 andDe = 2.08 respectively. The polymer viscosity is kept fixedo= 0.6933
lbu, corresponding to a polymer concentratiomgf (np + ne) = 0.4. With respect to the Newtonian case,
deformation is inhibited by viscoelasticity and the nuroariresults overestimate Greco’s prediction for an
unconfined non-Newtonian dropl42] (referred to as “MNewtonian unconfined”). As for the orienta-
tion, we hardly see any effect. We also report the theorgtiealictions of the “ellipsoidal” modelEJrlELlG]
for both NewtonianﬂS] and non-Newtonien [46] cases (refeéto as “Newtonian confined (E)” and “non-
Newtonian confined (E)”). For the non-Newtonian theoréticadiction, smaller angles are related to larger

Deborah number.

model by Minale, Caserta & Guidm%] follows the numericatalwith a mismatch emerging at
largeCa for the larger confinement ratio: most probably this is duéghtofact that confinement
starts to act in promoting deformation with shapes depgftom an eIIipsoid@S]. A non trivial
interplay between confinement and viscoelasticity is alsile from figurd 9, where we report
the steady state snapshots for the polymer feedback stregsiation [[2) for the cases studied in
figures[ T and8. In figurel 8 we report the orientation angle ierdame cases studied in figure
[7. The effect of viscoelasticity is now much more visiblecifimpared with the case of droplet
viscoelasticity reported in figufd 6. We also analyze theafbf increasing the relaxation time

Tp in equation[(B) for both the confinement ratios studied, Whianslates in a larger Deborah
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FIG. 7: We report the steady state deformation parani{see text for details) for a Newtonian droplet in a
Viscoelastic matrix under steady shear as a function of #ggll@ry numbelCa. The viscous ratio between
the droplet phase and the matrix phase is kept fixetl tonp/nuw = 1. Two different confinement ratios
are considered:R/H = 0.46 (left panel) and R/H = 0.7 (right panel). Again, as already done for the data
of figure[®, we choose a large value of the finite extensibfidyametet 2 = 10*, and consider a relaxation
time in the polymer equatiofil(3p = 2000 Ibu. The corresponding Deborah numbers depend ondpéetr
radius, based on equatidn [5@e = 1.42 for 2R/H = 0.46 andDe = 1.42 for 2R/H = 0.7. The polymer
viscosity is kept fixed tajp = 0.6933 Ibu, corresponding to a polymer concentratiomgf(ne + ng) =
0.4. The numerical results overestimate Greco’s predictimrah unconfined non-Newtonian dro I[42]
(referred to as “non-Newtonian unconfined”). We also regi@tprediction of “ellipsoidal” modeld 6]
for both NewtonianﬂS] and non—Newtonial;)]46] cases (refeto as “Newtonian confined (E)” and “non-

Newtonian confined (E)").

number. The change in the orientation angle for the Newtoo&ses is linear i€a up to the
largestCa considered, which is consistent with the linearity of théodmation discussed in figure
. This generates a mismatch with the corresponding Ellilasonodel predictionslﬂS]: just to
give some quantitative numbers, for a Capillary nuni@ee 0.35, there is a mismatch of-23°

in the smaller confinement ratio, which becomes roughly texlifi.e. 5 6°) for the larger con-
finement ratio. The orientation angle in the non-Newtoniases, instead, is better captured by
the ellipsoidal model by Minale, Caserta & Gui@[%]. Ovkria both the Newtonian and non-
Newtonian cases, the mismatch between the numerical sesudtthe prediction of the ellipsoidal
models is more pronounced at large confinement ratios (gghel of figurd B), an observation

that echoes the discussion done for the data of figure 7.
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FIG. 8: We report the steady state orientation angle for athieian droplet in a Viscoelastic matrix un-
der steady shear as a function of the Capillary nun@sr The viscous ratio between the droplet phase
and the matrix phase is kept fixed 2o= np/nu = 1. Two different confinement ratios are considered:
2R/H = 0.46 (left panel) and R/H = 0.7 (right panel). Data are the same as those of figlre 7, plug som
other data obtained by increasing the relaxation tigmén equation [(B). For a give@a, the numerical
results overestimate Greco’s prediction for an unconfiredMewtonian dropletile] (referred to as “non-
Newtonian unconfined”). We also report the theoretical jotaghs of the “ellipsoidal” model@@%] for
both Newtonian and non-Newtonian cases (referred to as tdiean confined (E)” and “non-Newtonian

confined (E)”). For the non-Newtonian theoretical predictismaller angles are related to larger Deborah

number.

Finally, we want to address and test the importance of theefextensibility parameter in the
polymer equatior (3). For a given confinement ratRyR® = 0.46 andtp = 2000 Ibu in equation
@), we have repeated the numerical simulations describétkileft panel of figurgl7 for a finite
extensibility parametek? = 10. AsL decreases, the polymer dumbell becomes less extensibile
and the maximum level of stress attainable is reduced. Térereome consequences. First, we
cannot rely on equation (b0) to define the Deborah numbecwatrictly holds only in the large-
L2 limit. Second, at large shears, the model exhibits thinrifigcts, as predicted and verified
in subsection{IITA), and the definition of the Capillary nber (46) given in terms of the matrix
viscosity has to be changed to include such effects. Indsedsing the definition of the Deborah
number given in equation (50) and a shear independent masgpsity in equation[(46) in the
theoretical models, the agreement between the numermaltseand the theory deteriorates (see

left panel of figur€ 10, whereas the larg@éease was well in agreement. In the right panel of figure
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(a) 2R/H=0.46,Ca=0.17, De=0.71 (b) 2R/H=0.7, Ca=0.23, De=0.53

(c) 2R/H=0.46,Ca=0.17, De=1.42 (d) 2R/H=0.7, Ca=0.23, De=1.06

(e) 2R/H=0.46, Ca=0.17 , De=2.84 (f) 2R/H=0.7, Ca= 0.23, De=2.13

FIG. 9: We report the steady state snapshots of the polymeelbfek stress in equatidn (2) for the cases
studied in figureEl7 arid 8 in the plame- H /2. Results are obtained for the same wall velotity~ +0.02

lbu, the same finite extensibility parameter = 10*, and considering three different relaxation times in
the polymer equatiori13), = 1000 20004000 Ibu. The corresponding Deborah numbers depend on the
droplet radius, based on equatién](5Dg = 0.71,1.42,2.84 for 2R/H = 0.46 andDe= 0.53,1.06,2.13 for
2R/H =0.7.

10 we report the same data, by changing: (i) the definitionadiltary in equation[(46), based
on the thinning effects analyzed in subsection (11l A); {he definition of the Deborah number,
which is now computed according to equatibnl (49), with thet filormal stress difference given
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FIG. 10: Left Panel: we report the steady state orientatimgieafor a Newtonian droplet in a Viscoelastic
matrix under steady shear as a function of the Capillary ren@b. For a given confinement ratidRZH =

0.46 andtp = 2000 lbu in equation{3), we have repeated the numericallations described in the left
panel of figur€l for a finite extensibility paramet&r= 10. We have used the definition of Deborah number
based on equatiofi (60) and a shear independent matrix is@o®quation [46) to comput€a. These
choices are appropriate only in the Oldroyd-B limif (> 1), hence referred to as “Oldroyd-B definition”.
Right Panel: we report the same data of the left panel by dhgritpe definition of Capillary number

in equation [(4b), based on the thinning effects analyzedeatian [IIl), and changing the definition of
the Deborah number which is now computed according to esju49). This is referred to as “FENE-P
definition”. Steady state snapshots of the polymer feedktess in equatiori}2) for some of these cases

are reported in figurle11.

in (28). As one can see the agreement gets better, espeaialiyallCa. For completeness, in
figure[11, we report the steady state snapshots for the poligadback stress of equatidn (2) for
the cases studied in figurel10.

V. CONCLUSIONS

We have proposed numerical simulations of viscoelastidglltased on a hybrid algorithm
combining lattice-Boltzmann models (LBM) and Finite Diffmces (FD) schemes, the former
used to model the macroscopic hydrodynamic equations,entatter used to model the kinet-
ics of polymers using the constitutive equations for fiyitextensible non-linear elastic dumbells

with Peterlin’s closure (FENE-P). We have first benchmaitkecumerical scheme with the char-
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(@) 2R/H=0.46]2=10% 1p =2000 (b) 2R/H=0.46]2 =10, 1p = 2000

FIG. 11: We report the steady state snapshots of the polyeegibfick stress in equatidd (2) for the cases
studied in figuré 10 in the plare= H/2. Results are obtained for the same wall velodity,= +0.02

Ibu, the same relaxation timg = 2000 lbu in the polymer equatiohl(3), and different finiteegsibility
parameters? = 10 andL? = 10*. The corresponding Deborah numbers depend on the droglesréased

on equation[(49). In both cases, the polymer viscosity it k&ped to np = 0.6933 Ibu, corresponding to

a polymer concentration afp/(np + ng) = 0.4, but the case with? = 10 has thinning effects in regions

with large shears (see also sectibnl (111)).

acterization of the rheological properties of a dilute hger@eous solution under steady shear,
steady elongational flows, oscillatory flows and transidras. We then continued to study the
model in presence of non-ideal multicomponent interfaeg®ere immiscibility is introduced in
the LBM description using the “Shan-Chen” moc@ M 40F Wave characterized the effect of
viscoelasticity in droplet deformation under steady shiegrcomparing the results of numerical
simulations with available theoretical models in the htenre ' 8]. Overall, the numerical
simulations well capture both the effects of confinement\dadoelasticity, thus exploring prob-
lems where the capabilities of LBM were never quantified tefds an ade of complexity,
it would be extremely interesting to study time- dependemaSons ]j;THS] other flows in
le] and problems where droplekbugas involved|[7 l] Complement-

ing these kind of experimental results with the help of nuoasimulations would be of extreme

confined geometrie

interest. Simulations provide easy access to quantitigsasidrop deformation and orientation as
well as the velocity flow field, pressure field, and polymeedifgack stresses, inside and outside
the droplet. They can be therefore useful to perform ircgitomparative studies, at changing

the model parameters, to shed lights on the complex pregeonfi viscoelastic flows in confined
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geometries.
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