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Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes
the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript
into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-
variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large macromolecular complex, the
spliceosome, whose activity needs a fine regulation exerted by cis-acting RNA sequence elements and trans-acting RNA binding
proteins (RBP). The activity of both core spliceosomal components and accessory splicing factors is modulated by their reversible
phosphorylation. The kinases and phosphatases involved in these posttranslational modifications significantly contribute to AS
regulation and to its integration in the complex regulative network that controls gene expression in eukaryotic cells. Herein, we will
review the major canonical and noncanonical splicing factor kinases and phosphatases, focusing on those whose activity has been

implicated in the aberrant splicing events that characterize neoplastic transformation.

1. Introduction

In eukaryotic cells, the expression of each gene is finely tuned
by a complex network of regulative processes affecting all
steps of transcript maturation, from nuclear transcription
to cytosolic export and utilization of the mRNA. A crucial
step in this regulative network is represented by pre-mRNA
splicing, the molecular process that mediates the removal of
intronic sequences and the joining of exons. What makes
splicing an outstanding player in controlling gene expression
is its flexibility, which allows a remarkable increase of the
coding potential of the genome through alternative selection
of exons. Indeed, alternative splicing (AS) allows each gene
to encode for several coding and noncoding mRNA variants,
which often display different activities and/or patterns of
expression. AS is, therefore, one of the principal mechanisms
underlying the well-known discrepancy between increasing
organismal complexity and content of genes contained in
the genome [1]. In line with its central contribution to
genome complexity, it is estimated that up to 90% of human
multiexon genes undergo AS [2], and the importance of this

regulative mechanism for both developmentally regulated
and pathological cellular processes is now well recognized
(reviewed in [3]).

The splicing process is carried out by the spliceosome, a
complex macromolecular machinery composed of five small
nuclear ribonucleoprotein particles (Ul, U2, U4, U5, and
U6 snRNPs) and more than 200 auxiliary proteins. The
spliceosome mediates the recognition of the short consensus
sequences surrounding the 5'-(GU) and the 3'-(AG) splice
site and catalyzes the two transesterification reactions neces-
sary for the removal of the intron and ligation of the selected
exons (reviewed in [4]). Due to the degenerate nature of the
sequence elements recognized by the spliceosome, its recruit-
ment to the maturing pre-mRNA requires the action of both
cis-acting RNA sequence elements and trans-acting RNA
binding proteins (RBPs), such as Ser/Arg (SR) rich proteins,
heterogeneous nuclear ribonucleoproteins (hnRNPs), and
splicing factors belonging to other RBP families. In addition,
AS is also regulated by mechanisms acting both co- and
posttranscriptionally, through epigenetic modifications of the
chromatin, regulation of the RNA polymerase II (RNAPII)



transcription rate, and posttranslational modifications of
both spliceosome components and auxiliary splicing factors,
among which reversible phosphorylation acts as a major
player.

2. Impact of Phosphorylation on
the Catalysis of Splicing

A proper regulation of the phosphorylation status of the
spliceosomal proteins and of accessory splicing factors is
crucial for the correct regulation of both constitutive and AS
events. Early studies already described the importance of a
correct balance between phosphorylation and dephosphory-
lation events in the splicing process by showing that both
activation [5] and inhibition [6] of the PP1 and PP2A phos-
phatases are required for splicing catalysis. Several reports
have then further highlighted the importance of regulated
phosphorylation events for the correct assembly and catalytic
activation of spliceosomal components, such as PRP28 [7],
PRP6, or PRP31 [8]. Equally, dephosphorylation events, such
as those regarding the U5 and U2 snRNP component, U5-
156 kDa and SAP155 [9, 10], were shown to be essential for
spliceosome activity, proving the importance of subsequent
rounds of phosphorylation and dephosphorylation events in
the regulation of the splicing process.

Regulative phosphorylation and dephosphorylation
events concern not only the spliceosomal components
but also some accessory RBPs that cooperate with the
spliceosome in the selection of splice sites. For example,
phosphorylation of the splicing factors SF1 and SRSF1 (pro-
totypic SR protein previously known as ASF/SF2) modulates
their interaction with U2AF65 and UlsnRNP, respectively,
thus modulating spliceosome assembly [11, 12]. The dynamic
phosphorylation/dephosphorylation of SR proteins is
particularly relevant for the regulation of their functions, as
both hypo- and hyperphosphorylation can inhibit splicing
[13]. For instance, phosphorylation of SRSF1 promotes
spliceosome assembly, whereas its dephosphorylation is
necessary for the catalysis of the first transesterification
reaction [14].

3. Phosphorylation and Splicing Factors

SR proteins are a family of nuclear RBPs involved in the reg-
ulation of both constitutive and AS, whose activity is greatly
modulated by reversible phosphorylation. Their structure is
generally characterized by two N-terminal RNA recogni-
tion motif (RRM) a C-terminal region enriched in Arg-Ser
residues (RS domain), which are the main targets of regulative
phosphorylation. Phosphorylation of the RS domain of SR
proteins has a great impact on their functionality, as it may
affect their binding to target mRNAs, their interaction with
other proteins and their intracellular localization. As an
example, binding of SRSF5 (previously reported as SRp40)
to its high-affinity RNA-binding site is strictly dependent
on the phosphorylation of its RS domain [15]. One of the
most significant examples of how phosphorylation may affect
the splicing activity of SR proteins is represented by SRSF10
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(previously known as SRp38). This SR protein acts as a
specific splicing activator in its RS-phosphorylated form [16],
whereas dephosphorylation converts it into a potent splicing
repressor [17]. Notably, dephosphorylation of SRSF10 occurs
during the M phase of the cell cycle [17] or under stress
condition [18], when general inhibition of splicing occurs.
In particular, it was demonstrated that, under normal condi-
tions, phosphorylated SRSF10 is a sequence-specific splicing
activator, which promotes Ul and U2 snRNP assembly on
target pre-mRNAs endowed with SRSF10-dependent exonic
splicing enhancer (ESE) sequences [16]. Conversely, under
stressful cellular conditions, as during heat shock, SRSF10
is rapidly dephosphorylated by PP1, while other SR proteins
are maintained in phosphorylated state by SR protein kinases
(SRPKs) [19]. Interestingly, during the stress response all SR
proteins are similarly dephosphorylated by PPl. However,
they are rapidly rephosphorylated by SRPKs, while SRSF10,
which is a poor substrate for SRPKs, remains dephospho-
rylated. Under this condition, SRSF10 can still interact with
the Ul snRNP, but in this case the interaction impairs its
ability to recognize the 5’ splice site, thus resulting in splicing
inhibition [18].

Phosphorylation of the RS domain can also dictate
SR protein subcellular localization, by affecting both their
intranuclear localization and their nucleocytoplasmic shut-
tling. In interphase cells, SR proteins are enriched in
interchromatin granules called nuclear speckles, which are
enriched in factors involved in pre-mRNA processing and
RNA transport (reviewed in [20]). The recruitment of SR
proteins to nascent pre-mRNAs from these sites of storage
is regulated by their phosphorylation (Figure 1); indeed, it
has been shown that phosphorylation of the RS domain is
a prerequisite for their recruitment to transcription sites in
vivo [21]. This modification plays also an important role in
the regulation of nucleocytoplasmic shuttling of SR proteins.
For instance, phosphorylation of SR proteins in the cytoplasm
is required for their nuclear import [22]. On the other hand,
dephosphorylation of the RS domain is essential for their
translocation to the cytoplasm during mRNP maturation
(Figure 1) [23]. Interestingly, dephosphorylation of SRSF1 and
SRSF7 (previously known as 9G8) enhances their interaction
with the export receptor TAP, thereby favoring also the
export of their target mRNAs [24, 25]. Furthermore, SRSF1
translational activity is increased by dephosphorylation of its
RS domain (Figure 1) [26]. Phosphorylation has therefore a
great impact also on the splicing unrelated functions in which
many SR proteins are involved (reviewed in [27]).

Ser/Thr phosphorylation represents an important regula-
tive process not only for SR proteins but also for hnRNPs and
other splicing factors. For instance, hnRNP Al is phosphory-
lated by the mitogen-activated protein kinase (MAPK) p38 in
response to stress conditions (Figure 2), thus causing its cyto-
plasmic translocation and consequent modulation of hnRNP
Al-sensitive AS events [28, 29]. Similarly, phosphorylation of
the SR-like protein TRA2-f by CLK2 induces its relocaliza-
tion into the cytoplasm, thus reducing its ability to bind its
own mRNA and regulate its splicing [30]. For other splicing
factors, instead, Ser/Thr phosphorylation affects the splicing
activity by modulating their interaction with other proteins.
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FIGURE 1: Phosphorylation-mediated regulation of SR proteins activity. Reversible phosphorylation of their RS domain profoundly affect
SR protein (SRps) activity and subcellular localization. Newly synthesized SRps need SRPK-mediated phosphorylation in order to enter
the nucleus and assemble in nuclear speckles. CLKs mediate SRps hyperphosphorylation and induce their release from nuclear speckles
and their recruitment to transcription sites. Dephosphorylation of SRps is successively required for proper splicing catalysis. Moreover,
dephosphorylated SRps facilitate export of spliced mRNA in the cytosol, where they enhance protein translation.

For instance, phosphorylation of hnRNP L reduces its inter-
action with the U2AF65 subunit of the U2 auxiliary factor [31,
32]. The function of some splicing factors can be influenced
also by Tyr phosphorylation. A well-documented example in
this sense is SAM68, a member of the signal transduction
and activation of RNA (STAR) family of RBPs (reviewed
in [33]). Tyr phosphorylation by SRC-family kinases (SFKs)
caused the accumulation of SAM68 in nuclear granules,
named SAM68 nuclear bodies (SNBs) [34, 35]. Moreover, it
was shown that this posttranslational modification negatively
affected the interaction of SAM68 with hnRNP Al and
with the BCL-X pre-mRNA, thus impairing its ability to
promote splicing of this target gene [35]. On the other hand,
Ser/Thr phosphorylation of SAM68 by the MAPKs ERK1/2
was reported to increase splicing of the variable exons in the
CD44 gene [36, 37]. Notably, SAM68 represents an interesting
example of how Ser/Thr and Tyr-phosphorylation may have
opposite impact on the splicing activity of an RBP toward

a target pre-mRNA (Figure 2). This was formally shown by
studying its effect on the CCNDI gene. Increased expression
of SAM68 promotes splicing of the cyclin D1b variant of
the CCNDI gene in prostate cancer cells. This activity is
further enhanced by activation of the RAS/ERK pathway
and counteracted by SFKs [38]. In both cases, the effect
was due to modulation of the affinity for RNA, as ERK-
dependent phosphorylation increased binding of SAM68 to
intron 4, whereas SFK-dependent phosphorylation abolished
it (Figure2) [38]. Thus, activation of signaling pathways
can indirectly modulate AS events through posttranslational
modification of selected splicing factors (see also later).

4. Splicing Factor Kinases

Phosphorylation of spliceosomal components and splicing
factors is mediated by numerous protein kinases. Some of
these kinases, such as the SRPK and CLK families, are
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FIGURE 2: Signaling-activated kinases regulate splicing factor activity. Various extracellular cues, like growth factors or stress stimuli, activate
different signal-transduction cascades impinging on protein kinases that in turn phosphorylate RBPs, thereby modulating their splicing
activity. SAM68 splicing activity is inversely regulated by ERKs and nRTKs, which, respectively, activate and inhibit its splicing activity.
The PI3 K-AKT pathway regulates the activity of several SR proteins both directly or by phosphorylating and modulating the activity and
localization of CLKs and SRPKs. Stress signal-activated kinases, like JNK or p38, can both modulate splicing factor localization, like for

hnRNPAL], or activity, like for SPF45 (see text for details).

specifically devoted to this function, whereas others also
participate to signal transduction pathways or phosphorylate
distinct primary substrates in addition to the splicing factors.
Herein, we will review the kinases whose ability to influence
splicing decisions has been better characterized. For conve-
nience, we will classify them as SR-protein specific kinases;
signaling-activated splicing kinases, and “atypical” splicing
factor kinases.

5. SR-Protein Specific Kinases

5.1. SR-Protein Kinases (SRPKs). The first SR protein kinase
identified was SRPK1, which was isolated from mitotic cells,
and it was described to phosphorylate SR proteins and to
promote their release from nuclear speckles during the G2/M
phase of the cell cycle [39]. However, SRPKI is present and
active also in interphase cells. SRPKI1 is the prototype of
the SRPK family, which also includes the two homologous
SRPK2 and SRPK3 proteins. SRPKs are characterized by
a bipartite catalytic domain separated by a unique spacer
sequence (reviewed in [40]) and are mainly localized in the
cytoplasm of mammalian cells. This is due to the presence of
a strong cytoplasmic retention signal localized in the spacer

domain [41] and of their interaction with the molecular
chaperones HSP70 and HSP90, which in complex seem
to favor the folding of SRPKs into an active state [42].
However, SRPKs can translocate into the nucleus of cells
under several conditions, such as during the G2/M phase
of the cell cycle [39], or after osmotic stress [42], or as a
consequence of activation of the epidermal growth factor
(EGF) signal transduction pathway [43]. Due to this dual
localization, SRPKs can phosphorylate SR proteins both in
the nucleus and in the cytoplasm, thus affecting several
aspects of their function. SRPK-mediated phosphorylation
of SR proteins in the cytoplasm is necessary to ensure
SR proteins nuclear import (Figure 1) [44], as it enhances
their interaction with the specific transportin SR2 [22, 45].
SRPK nuclear activity promotes release of SR proteins in the
nucleoplasm from the nuclear speckles [46]. For instance,
several reports suggest that SRPK-mediated phosphorylation
of SRSFI is essential for its nuclear localization and the
resulting splicing activity triggered by stimulation of specific
signaling pathways (i.e., IGF-1 and EGF treatments) [43, 47].
However, under conditions that strongly increase nuclear
localization of SRPKs, such as under cellular stress, they can
also induce nuclear speckles enlargement [42, 48]. Indeed,
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Zhong and colleagues showed that osmotic stress induced by
sorbitol treatment can lead to a massive nuclear translocation
of SRPK1, which causes hyperphosphorylation of SR proteins
and inhibits their splicing activity toward the reporter EIA
minigene [42]. These studies indicated that SRPK-mediated
phosphorylation of SR proteins can finely tune their splicing
activity in response to external and internal cues.

5.2. Cyclin-Dependent Like Kinases (CLKs). The cyclin-
dependent like kinases (CLKI1-4) represent the other proto-
typical family of SR protein kinases. They are characterized
by a C-terminal kinase domain, with dual specificity, and
an N-terminal RS domain, which allows their interaction
with the SR proteins. CLKs colocalize with SR proteins in
nuclear speckles, and their overexpression leads to hyper-
phosphorylation of SR proteins and induces speckles dis-
assembly [49]. Several studies reported the ability of CLKs
to influence splicing events by regulating the subnuclear
localization of SR proteins (Figure 1). In particular, the release
of SR proteins from nuclear speckles induced by CLKs
overexpression has been reported to modulate splicing of the
EIA reporter minigene [50] and of the exon 10 of the TAU
gene [51], whose aberrant regulation has been implicated
in several neurodegenerative diseases. Recently it has been
shown that CLKs also modulate the activity of splicing
factors not related to the SR-protein family, such as SPF45.
CLK-mediated phosphorylation of SPF45 interferes with its
proteasomal degradation and enhances exon 6 inclusion of
FAS by promoting binding of this splicing factor to the
FAS pre-mRNA [52]. The nuclear localization of CLKs is
one of the major differences between them and SRPKs,
which are instead mainly cytosolic. Because of their different
localization, CLKs and SRPKs can cooperate in regulating SR
proteins subcellular localization. Indeed, it has been shown
that SRPK1 interacts with SRSF1 and phosphorylates the N-
terminal part (RS1) of its RS domain, a posttranslational mod-
ification that is essential for its assembly into nuclear speckles,
whereas CLKs phosphorylate the C-terminal part (RS2) of
its RS domain, thereby causing release of SRSF1 from the
speckles [53]. Moreover, SRPKs and CLKs have also distinct
substrate specificity, as SRPKs preferentially phosphorylate
Ser-Arg sites, while CLKs have a broader specificity and can
phosphorylate also Ser-Lys or Ser-Pro sites [54]. Therefore,
even if apparently redundant, the coordinated activity of
SRPKs and CLKs is crucial for correct splicing regulation.
This was well illustrated by Nowak and colleagues, whose
work highlighted how SR-proteins phosphorylation induced
by these two families of kinases may differently control a
single splicing event [55]. The vascular endothelial growth
factor A (VEGFA) gene, a key regulator of angiogenesis,
produces several isoforms by alternative splice-site selection
in the terminal exon 8: proximal splice-site selection results
in proangiogenic VEGFxxx isoforms, whereas distal splice-
site selection results in antiangiogenic isoforms VEGFxxxb.
Different growth factors inversely influence these splicing
events by inducing in both cases phosphorylation of SR
proteins. However, IGF-1 and TNF-« induced production
of VEGFxxx through activation of SRPKs, whereas TGEF-f1
enhanced VEGFxxxb production by activating CLKs [55].

6. Signaling-Activated Splicing Factor Kinases

AS represents a crucial step in the regulation of gene expres-
sion in eukaryotic cells. Therefore, its regulation needs to
be finely integrated in the complex network of regulative
mechanisms that allows the cell to modulate gene expression
in response to the different physiological and pathological
stimuli that are received from both the internal and external
environment. In support of this notion, activation of signal
transduction pathways has been shown to modulate AS in
a large number of situations. However, while in some cases
the mechanism(s) has been described, in other cases the
transacting factors mediating the response are unknown.
Here we will review signaling-activated kinases that can
modulate AS by directly phosphorylating splicing factors or
their regulators, such as the SRPKs or CLKs.

6.1. AKT. The Ser/Thr kinase AKT, also known as PKB, is
the hinge molecule of the phosphoinositide-3-kinase-protein
kinase (PI3 K) signaling pathway, which transduces the signal
of several growth factors and cytokines. Through the phos-
phorylation of its many nuclear and cytosolic targets, AKT
can regulate a multitude of cellular processes, such as cell
metabolism, proliferation, and survival (reviewed in [56]).
To exert its multiple functions, AKT regulates different steps
of the gene expression network, from transcription, to AS
and translation. Indeed, several reports have highlighted the
ability of AKT to directly and indirectly modulate the func-
tion of many RBPs. AKT phosphorylates both hnRNPs and
SR proteins, which contain within their RS domain multiple
AKT phosphorylation consensus sequences: RXRXX(S/T)
[57]. By modulating their phosphorylation status, AKT
regulates both splicing and splicing independent functions
of hnRNPs and SR proteins. For example, AS of a four-
exon cassette in the CASPASE-9 gene allows expression of a
proapoptotic splice variant (exon inclusion, CASPASE-9a) or
an antiapoptotic splice variant, (exon skipped, CASPASE-9b).
AKT-dependent phosphorylation of hnRNP L increases its
affinity for exon 3 and induces expression of the antiapoptotic
variant. Indeed, AKT-phosphorylated hnRNP L competes
with hnRNP U for the binding to the mRNA and impairs
its ability to promote the pro-apoptotic CASPASE-9a [58]
(Figure 2). This is a clear example of how AKT may promote
cell survival by regulating a key AS event. On the other hand,
phosphorylation of hnRNP Al by AKT has no effects on
splicing, but it modulates the translational activity of this
RBP. Following phosphorylation, hnRNP Alloses its ability to
promote IRES dependent translation of the CCNDI and the c-
MYC mRNAs [59]. In the case of SR proteins, AKT was shown
to modulate both splicing and translational activity through
phosphorylation. Growth factor-induced phosphorylation of
SRSF1 and SRSF7 by AKT enhanced their ability to promote
the inclusion of the EDA exon in the fibronectin mRNA
and translation of the spliced mRNA [60]. One of the most
characterized AS events regulated by AKT is affecting PKCp3
pre-mRNA after insulin stimulation. This hormone induces
splicing of the PKCf II isoform, which enhances insulin-
stimulated glucose transport better than the PKCf I variant,
even if they differ only for two residues in their C-terminus



[61]. Insulin stimulation induces PI3K-dependent activation
of AKT, which phosphorylates SRSF5 [62, 63], thus pro-
moting PKCP II splicing. Furthermore, AKT phosphorylates
CLK1 and enhances its activity (Figure 2). In turn, CLK1
phosphorylates SRSF4 (previously named SRp75) and SRSF6
(previously named SRp55), thus contributing to the PKCf3
I splicing regulation [64]. Recently, it has been suggested
that AKT and CLK may also regulate SRSF5 splicing activity
by affecting its nuclear localization, which was impaired
when a CLK mutant that cannot be phosphorylated by AKT
is expressed [65]. Importantly, this concerted regulation of
SRSF5-dependent PKCp II splicing by AKT and CLK was
essential for adypogenetic differentiation, thus providing
physiological relevance for this signaling route.

AKT was also shown to regulate the activity of SRPKs.
A recent work documented that EGF signaling induces a
massive reprogramming of AS that depends on AKT-induced
nuclear translocation of SRPKs [43]. In fact, AKT binding to
SRPKs induces their autophosphorylation and dissociation
from the HSP70 chaperone, which normally holds SRPKs
into the cytoplasm, thus favoring their nuclear translocation
guided by HSP90 (Figure 2). Once in the nucleus, SRPKs
can phosphorylate SR proteins and modulate the splicing
pattern of several genes. Thus, given its ability to modulate the
activity of both regulators (SRPKs and CLKs) and effectors
(SR proteins and hnRNPs) of AS, AKT stands up as a crucial
player in the modulation of splicing in response to external
cues, and this activity might represent a primary function of
AKT in the regulation of multiple cellular processes.

6.2. Mitogen-Activated Protein Kinases (MAPKs). MAPKsare
a family of Ser/Thr kinases that transduce external signals
into the cell and regulate many different cellular processes,
such as metabolism, proliferation, survival, differentiation,
and motility (reviewed in [66]). The MAPK family includes
the extracellular regulated kinases (ERK 1/2), the c-Jun amino
terminal kinases (JNK 1-3), p38 («, f3, y, and §), and ERK5
family. The role of MAPKs in these cellular processes is
mediated by regulation of protein activity and stability and
by modulation of gene expression, which also occurs through
AS. The first evidence of MAPK-modulated splicing came
from studies on the regulation of AS of the CD44 gene,
which encodes for the extracellular receptor for hyaluronic
acid, a key component of the extracellular matrix. The CD44
gene is characterized by a block of variable exons (v2-v10)
embedded between ten constant exons; the inclusion of the
variable exons into the mature transcript modulates CD44
protein interaction with its substrate, thus significantly affect-
ing cell adhesion, migration, and proliferation (reviewed in
[67]). The inclusion of the variable exon v5 in the mature
mRNA of CD44 upon T-cell activation is dependent by the
RAS-RAF-MEK-ERK signaling cascade [68]. The target of
this pathway is SAM68, whose ability to promote exon v5
inclusion is increased by ERKs-mediated phosphorylation
[36]. SAM68 interacts with the splicing factor U2AF65,
and this interaction seems to enhance the recognition of
the 3’ splice-site. Phosphorylation by ERKs reduces the
affinity of the SAM68/U2AF65 complex to the CD44 pre-
mRNA, probably favoring the subsequent recruitment of
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other spliceosomal components [69]. SAM68 is not the only
RBP regulated by ERK1/2. Furthermore, other MAPKs, like
p38 or JNKs, are known to phosphorylate and modulate the
activity of splicing factors. For example, it has been recently
demonstrated that phosphorylation of the splicing factor
SPF45 can be mediated by all the three families of MAPKs
in response to different stimuli (e.g., oxidative stress activates
ERK1/2 and JNK mediated phosphorylation, whereas UV-
light induces p38 and JNK activity) [70] (Figure 2). These
kinases phosphorylate SPF45 on two residues, Thr 71 and
Ser 222; these posttranslational modifications inhibit SPF45-
dependent exon 6 inclusion in the FAS gene, thus leading to
the production of a dominant negative isoform of this death
receptor [70].

Modulation of hnRNP Al activity by p38 is another well
characterized regulative phosphorylation event operated by
a MAPK. Environmental stresses, such as osmotic stress or
UV irradiation, induce p38 activation and phosphorylation
of hnRNP Al, leading to the relocalization of this nuclear RBP
into the cytoplasm, where it concentrates into discrete phase-
dense particles, called stress granules (SGs) [29] (Figure 2).
The nuclear exclusion of hnRNP Al is the result of its reduced
interaction with the transportin Trnl, which under normal
conditions mediates its nuclear translocation [71], and leads
to consequent modulation of hnRNP Al-dependent splicing
events, which were tested using the EIA minigene reporter
[28]. HnRNP Al phosphorylation is mediated by the p38
effectors MAP kinase signal-integrating kinases (MNK1/2)
[28], which can also regulate the translational activity of this
splicing factor. It was observed that the increase in TNF-
« protein production following T-cell activation relies on
MNK-mediated phosphorylation of hnRNP Al. However, in
this cellular context, phosphorylation of hnRNP Al does not
affect its localization, but it rather lowers its affinity for the
AU-rich element (ARE) in the 3'UTR of the TNF-a mRNA,
thus probably relieving a translation repressive control and
allowing enhanced TNF-« production [72].

Thus, MAPKSs can regulate different steps of mRNA pro-
cessing through phosphorylation of several splicing factors,
integrating in this way this complex regulative step of gene
expression with the response of the cell to external cues.

6.3. Tyrosine Kinases. Protein tyrosine kinases (PTKs) cat-
alyze the transfer of a phosphate group from ATP to a
tyrosine residue of their target proteins. PTKs may be clas-
sified in two different classes: the transmembrane receptors
tyrosine kinases (RTKs) and the nonreceptor tyrosine kinases
(nRTKs). PTKs mediate the phosphorylation of several pro-
teins in response to both internal and external cues, leading to
the modification of their activity or affecting their interaction
with other proteins. Transduction pathways triggered by PTK
activation affect gene expression, also at the level of AS, even
though only a small number of splicing factors have been
shown to be regulated by Tyr-phosphorylation. Among these
few RBPs, the members of the STAR proteins family, and in
particular SAM68, stand out (Figure 2). In many STAR family
members, the RNA binding domain is flanked by regulatory
regions, like proline-rich or tyrosine-rich sequences, which
mediate their interaction with the Src Homology 3 (SH3)
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and SH2 domains of other proteins, including PTKs. For
instance, the breast tumor kinase (BRK) is a nRTKs that
interacts in the nucleus with a proline rich region of SAM68
through its SH3 domain. BRK-dependent phosphorylation of
SAMG68 reduces its RNA binding affinity [73]. Analogously,
BRK phosphorylates also the SAM68 homologous proteins
SLM-1 and SLM-2, reducing their affinity to the RNA also
in this case [74]. SAM68 is also substrate of FYN, another
soluble nRTKs. In this case, it was also shown that Tyr-
phosphorylation interfered with SAM68-dependent splicing
of the BCL-X and CCNDI genes [35, 38]. FYN-dependent
phosphorylation reduced the affinity of SAM68 for these tar-
get RNAs and affected its interaction with different proteins,
such ashnRNP Al, thereby affecting the outcome of AS events
[35, 38]. Tyr-phosphorylation also influences the splicing
activity of the nuclear RBP YT521-B, which can also be elicited
by several nRTKs such as FYN, SRC, or c-ABL [75, 76].
This posttranslational modification induces translocation of
YT521-B from the nuclear YT bodies, where it normally
resides, to the nucleoplasm. Phosphorylated YT521-B shows
reduced ability to modulate splice-site selection of different
targets, in association with a reduced binding to their mRNA,
possibly because the nucleoplasmic translocation distances
YT521-B from the effective sites of pre-mRNA processing
[76].

6.4. cAMP-Dependent Protein Kinase (PKA). Increased
intracellular levels of the second messenger cyclic adenosine
3',5'-monophosphate (cAMP) lead to the activation
of the cAMP-dependent protein kinase (PKA), which
transduces the signals of many hormones, growth factors,
and neurotransmitters [77]. PKA is a tetrameric protein,
composed of two regulatory subunits (R) and two catalytic
subunits (C): binding of cAMP to the R subunits leads to
their dissociation from the C subunit and activation of the
kinase [77]. Activated PKA phosphorylates several effectors,
including transcription factors, ion channels, and metabolic
enzymes, thus influencing multiple cellular functions. PKA
activity is also regulated by interaction of the R subunits with
the PKA-anchoring proteins (AKAPs); AKAPs maintain
PKA in specific subcellular compartments and in proximity
of its substrates, thus retaining PKA activity where it is
needed. The first evidence of a possible involvement of PKA
in the regulation of AS came from the observation that
a fraction of the C subunit translocates into the nucleus,
colocalizes with SRSF2 (previously reported as SC35) in
splicing speckles, and phosphorylates several SR proteins, at
least in vitro [78]. Localization of the C subunit in nuclear
speckles seems to be related to its interaction with the
C-subunit binding protein HA95 [78] and to the SR protein
SRSF17A, which was shown to be a novel AKAP required to
anchor PKA C subunit in splicing speckles [79]. Importantly,
modulation of EIA reporter minigene splicing by SRSF17A
is dependent on its interaction with PKA [79]. Moreover,
nuclear PKA itself is able to modulate AS of the EIA reporter
minigene, even in the absence of the cAMP stimulation [78].

Several stimuli that increase the cAMP intracellular levels
were shown to affect AS events through phosphorylation of
both SR proteins and hnRNPs by PKA. For example, it was

demonstrated that forskolin, which stimulates the synthesis
of cAMP, modulates AS of exon 10 of the TAU gene [80,
81]. Notably, activated PKA affects the activity of two SR
proteins, SRSF1 and SRSF7, which inversely modulate exon 10
splicing: SRSF1 promotes exon 10 inclusion, whereas SRSF7
prevents it. However, PKA-dependent phosphorylation of
SRSF1 enhances its activity [80] whereas it inhibits SRSF7 [81],
thus globally favoring exon 10 inclusion.

PKA is also able to modulate AS of genes that are crucial
for neuronal differentiation, through the phosphorylation of
hnRNP K. After phosphorylation by PKA, hnRNP K shows
higher binding activity to its target mRNAs with respect to its
competitor U2AF65; this mechanism impairs the recognition
of the 3' splice site and leads to the skipping of its target exons
[82]. On a broader view, hnRNP K target motifs are found
in many genes involved in neuronal differentiation and in
neurological diseases [82]. These pieces of evidence suggest
that PKA mediated regulation of hnRNPs and SR proteins
activity may be an important player in the complex network
of regulative mechanisms that finely control AS events during
neuronal development (reviewed in [83]). Although cAMP
and PKA are usually involved in cell differentiation, their
contribution to cancer has also been demonstrated. It will
be interesting to investigate whether PKA-dependent mod-
ulation of AS also occurs in genes with relevance to human
cancer.

7. Other Kinases

In this section, we will describe the regulative activity of
some proteins that showed an unexpected kinase activity
towards splicing factors, so that they cannot be included in
any of the classes described previously. Some of these kinases
were known to have other specific substrates different from
splicing factors, for others, instead, the kinase activity was
totally unpredicted.

71. DNA Topoisomerase I. The first of these atypical kinases
to be described was the DNA topoisomerase I, whose best
known function is to relieve both positive and negative
DNA supercoils ensuring correct DNA topology during
transcription, DNA replication and repair (reviewed in [84]).
Despite the absence of a canonical ATP binding site, DNA
topoisomerase I was shown to phosphorylate SR proteins,
in particular the prototypic SRSF1, within their RS domain
[85]. This phosphorylation event can significantly affect SR
proteins modulatory activity on AS events. Indeed, it has
been demonstrated that cells deficient for this enzyme show
a general status of hypophosphorylation for the SR proteins,
which correlates with an impaired regulation of several AS
events, whereas constitutive splicing results unaffected [86].
Moreover, treatment with a selective inhibitor of the kinase
activity of DNA topoisomerase results in reduced phospho-
rylation levels for SR proteins, which in turn leads to a
defective spliceosome assembly and alterations in the splicing
pattern of several genes [87]. As it is now well established that
pre-mRNA splicing occurs cotranscriptionally, it has been
suggested that this double activity of DNA topoisomerase I



could be one of the mechanisms ensuring the correct coordi-
nation between DNA transcription and splicing [88]. Indeed,
DNA topoisomerase I activity is fundamental to solve DNA
supercoils generated by RNA pol II progression along the
DNA template and might simultaneously ensure a regulated
splicing factor activity through their phosphorylation.

7.2. Dual-Specificity Tyrosine-(Y)-Phosphorylation Regulated
Kinase 1A (DIRKIA). Another protein kinase able to mod-
ulate the splicing activity of SR proteins is DIRKIA (dual-
specificity tyrosine-(Y)-phosphorylation regulated kinase
1A). This dual-specificity protein kinase autophosphorylates
on Tyr, Ser, and Thr residues but phosphorylates substrates
only on Ser or Thr residues (reviewed in [89]). The human
DYRKIA gene maps to chromosome 21, and it is ubiquitously
expressed in adult and fetal tissues, with high levels of expres-
sion in the brain. DYRKIA is supposed to play a major role
during neuronal development, through its interaction with
several cytoskeletal, synaptic, and nuclear proteins (reviewed
in [89]). Several SR proteins were shown to interact with
DYRKIA. Indeed, DYRKIA has been reported to colocal-
ize with SRSF2 in nuclear speckles, and its overexpression
induces the disassembly of this subnuclear structures [90].
Alteration of subcellular localization of the SR proteins phos-
phorylated by DYRKIA seems to be the main mechanism by
which this kinase regulates the splicing activity of its target
factors. For instance, phosphorylation of SRSF1 and SRSF7
by DYRKIA induces their cytoplasmic translocation [91, 92],
whereas phosphorylation of SRSF2 and SRSF6 causes their
dissociation from nuclear speckles [93, 94]. For each of these
splicing factors the mislocalization induced by DYRKIA
impaired their ability to modulate the inclusion of exon 10 of
the TAU gene, thus shifting the splicing balance toward the
exclusion of this exon.

7.3. Fas-Activated Serine/Threonine Kinase (FAST). Fas-acti-
vated serine/threonine kinase (FAST) is a constitutively phos-
phorylated Ser/Thr kinase, which undergoes rapid dephos-
phorylation after the binding of Fas ligand to its receptor
Fas, an interaction that triggers T-cell apoptosis. It was
known that dephosphorylated FAST was able to interact with
and phosphorylate the RBP TIAl [95], but the functional
relevance of this interaction in the regulation of the splicing
process remained unknown for a long time. It was later
discovered that phosphorylation of TIAl by FAST regulates
its ability to promote the inclusion of exon 6 of the FAS gene
[96]. Phosphorylated TIA1 enhances Ul snRNP recruitment
to FAS pre-mRNA, thus favoring the recognition of this
variable exon. Inclusion of exon 6 into the FAS mRNA
favors the production of a proapoptotic isoform of this
gene, suggesting that FAST and TIALI take part to a positive
regulative circuitry that enhances Fas-dependent apoptosis
once activated. Furthermore FAST is also endowed with an
intrinsic splicing activity, independent from TIAI [97]. It was
observed that FAST can modulate the splicing of the FGFR2
reporter gene in the same direction of TIAl, favoring the
inclusion of exon III b but independently from this RBP. Thus,
FAST can directly and indirectly affect splicing, and it would
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be interesting to determine how many targets are influenced
by this kinase in T cells.

74. Aurora Kinase A (AURKA). AURKA was identified in
a high-throughput siRNA screening for factors involved in
the regulation of AS of two apoptotic genes: BCL-X and
MCLI [98]. Among several regulators identified by the screen,
authors noticed a peculiar enrichment for proteins involved
in the regulation of the cell cycle. They focused their study on
AURKA, a kinase involved in the regulation of centrosomal
splitting that is frequently upregulated in cancers, where
it is supposed to promote aneuploidy [99]. AURKA was
demonstrated to positively regulate splicing of the antiapop-
totic variant BCL-X; through stabilization of SRSF1. Cells
depleted of AURKA showed reduced levels of SRSF1, which
then resulted in increased levels of the BCL-X s pro-apoptotic
variant. Moreover, since AURKA is activated at the G2/M
phase of the cell cycle, the authors suggested that this kinase
links BCL-X splicing regulation to cell cycle progression.
These observations suggest that, in addition to the effects on
centrosome duplication, upregulation of AURKA can favor
neoplastic transformation also by promoting antiapoptotic
splice variants.

8. Splicing Factor Kinases in Cancer and
Other Human Diseases

Due to the important role played by the AS process in the
control of gene expression, any alterations of its regulation
can profoundly modify important cellular processes, thus
resulting in a potential cause of disease (reviewed in [100]).
Altered expression, activity, or subcellular localization of
splicing factor kinases can be among the causes of the aber-
rant splicing events associated to several diseases, particularly
neurodegenerative pathologies and cancer.

Aberrant inclusion of exon 10 of the TAU gene is a
well-known example of pathogenetic splicing event, caused
by the deregulated activity or expression of splicing factor
kinases. TAU protein is a microtubule associated protein,
which controls assembly and stability of microtubules. Exon
10 of the TAU gene encodes for one of the four microtubule
binding domain repeats (R) of the TAU protein and regulates
its affinity for microtubules and, consequently, its ability to
induce their polymerization. Alternative inclusion of exon
10 leads to the production of either 4R-tau (inclusion) or
3R-tau (exclusion), and equal levels of these two isoforms
seem to be essential for normal function of the human
brain. Alteration of the normal ratio 1:1 between the 4R
and the 3R isoform, in both directions, has been observed
in several cases of Alzheimers disease (AD); moreover,
nearly half of the mutations in the TAU gene associated
with FTDP-17 (frontotemporal dementia with parkinsonism
linked to chromosome 17) affects exon 10 splicing, both
inhibiting or promoting its inclusion, strongly suggesting
that a proper regulation of this splicing event is essential for
the maintenance of the healthy balance between 4R and 3R
isoforms (reviewed in [101]). Several reports have highlighted
or suggested a strong correlation between aberrant splicing of
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the exon 10 of the TAU gene in tauopathies and deregulated
activity of the kinases regulating this splicing event. Stamm’s
group, for example, observed an increased production of
an inactive isoform of the CLK2 kinase in the brain of
AD patients, which correlated with increased inclusion of
TAU exon 10. This observation suggested that the CLK2-
dependent phosphorylation of SR proteins and the SR-like
protein TRA2-f is required for the correct regulation of this
splicing event [102]. Another kinase supposed to be involved
in the altered regulation of TAU splicing is PKA, which also
promotes the inclusion of the exon 10 of this gene through
the phosphorylation of different SR proteins [80]. As reduced
levels of PKA-Ca have been observed in AD brains [103], it
hasbeen speculated that the lack of its activity may participate
in the alteration of the normal balance between the 3R and 4R
splice variants of TAU [81]. As described in previous section,
the kinase DYRKIA exerts an important regulation on the AS
of the TAU gene, thus strongly suggesting that its increased
dosage due to the trisomy of chromosome 21 could be the
main cause of the early onset of tauopathies in patients with
Down syndrome [103]. Modulation of TAU gene splicing is
a very attractive potential therapeutic target for treatment
of tauopathies (reviewed in [104]); since protein kinases
regulate this splicing event and are involved in tauopathy
pathogenesis, targeting the activity of these kinases should be
certainly considered in the development of future approaches
for the treatment of these pathologies.

Upregulation and/or misregulated activity of splicing kin-
ases are often associated to cancer development. This has
been widely reported for SRPKI1, which is overexpressed in
several cancer types, such as pancreatic carcinomas [105],
breast and colon carcinomas [106], and lung cancer [107].
Moreover, increased SRPKI1 levels positively correlate with
tumor grade [106] and are associated with higher resis-
tance to chemotherapeutic treatments [105, 108]. Through
modulation of selective splicing events, SRPK1 may allow
cancer cells to enhance their proliferative, invasive, and
angiogenetic potential. For example, in pancreatic, breast,
and colon cancer cells SRPK1 promotes the generation of
specific splice variants of the MAP2K2 gene, which sustained
higher activity of the MAPK pathway [106]. Recently, SRSF1
mediated splicing of the MNK2b isoform of the MKNK2 gene
has been correlated with resistance to gemcitabine treatment
in pancreatic cancer cells [109]; since SRPK1 is upregulated
in this cancer type and promotes cell survival, it would be
interesting to evaluate whether this kinase contributes to the
SRSFl-induced prosurvival pathway. A similar regulation has
been described in Wilms Tumor, wherein SRPK1 promotes
the production of the proangiogenic isoform VEGFI65 of
the VEGFA gene through the phosphorylation and nuclear
translocation of SRSF1 [48]. In these nephroblastomas tumors
SRPKI1 transcriptional upregulation is driven by the mutated
transcription factor WTI, and its splicing activity is fun-
damental for the high levels of vascularization required by
these tumors [48]. Importantly, the physiological relevance of
SRPKI for angiogenesis has been demonstrated, as injection
of an SRPK1/2 inhibitor reduced it in a mouse model of retinal
neovascularization, suggesting that targeting AS through

their upstream regulator could be a potential tool to target
pathological angiogenesis in cancer [48].

Several signal transduction kinases, whose activity is
often deregulated by neoplastic transformation, exert their
oncogenic activity in part through the aberrant regulation
of splicing events. For instance the MAPK pathway, which
is frequently hyperactivated in tumors, can promote the
acquisition of an invasive and migratory phenotype by
modulating the AS pattern of the cell adhesion molecule
CD44. In fact, it has been shown that hepatocyte growth
factor (HGF) can induce cell migration of cancer cells by
promoting this splicing event, as a consequence of induced
ERKI1/2-mediated phosphorylation of SAM68, induced by
the MET receptor signaling pathway [110]. Also epithelial-
to-mesenchymal transition (EMT), which is crucial for the
invasiveness of cancer cells, is regulated by AS events that
are sensitive to activation of the MAPK pathway. Indeed,
production of the constitutively active ARON splice variant of
the RON oncogene, the extracellular receptor for HGF, leads
to EMT in colorectal cancer cells [111]. This splicing event is
promoted by the upregulation of SRSF1. Remarkably, under
conditions that favor EMT, epithelial cells release soluble
factors that activate the ERK1/2 pathway. This in turn causes
phosphorylation and activation of SAM68, which causes
retention of a cryptic intron in the 3'UTR of the SRSFI
mRNA, reducing the amount of the nonsense-mediated-
decay (NMD) targeted splice variant and enhancing expres-
sion of SRSF1 [112]. Thus, activation of the ERK1/2 pathway
triggers a cascade of splicing events that culminate in a
cellular response favoring cancer cell invasion.

Activation of the AKT pathway has also been suggested
to promote cancer cell survival through the regulation of
specific splicing events. For example, it has been observed
that hyperactivation of AKT through the RAS signaling
pathway is implicated in the production of pro-survival splice
variants of the KLF-6 and CASPASE-9 genes in nonsmall-
cell lung cancer and hepatocellular carcinoma, respectively,
[113,114]. In both cases, AKT induces SRSF1 phosphorylation,
enhancing its ability to promote KLF-6SVI and CASPASE-9b
isoforms. These observations strongly suggest a primary role
for this splicing regulatory activity in the oncogenic potential
of AKT.

9. Protein Phosphatase Regulating
Splicing Factors

In the previous paragraphs, we have broadly described the
importance of a proper balance between phosphorylation
and dephosphorylation events in the regulation of the pre-
mRNA splicing process. Therefore, even if this review focuses
primarily on the activity of the numerous kinases involved in
this regulation, a brief description of the protein phosphatases
counteracting their activity is also required for a comprehen-
sive overview of the phosphorylative regulation of splicing.
PP1 and PP2A were the first Ser/Thr phosphatases
whose activity was demonstrated to be necessary for splic-
ing catalysis [5, 6]. PP1 and PP2A are required for the
later steps of the splicing reaction, in particular for the
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second transesterification reaction, whose accomplishment
is favored by dephosphorylation of U5 (U5-156kDa) and
U2 (SAP155) snRNP components [9]. In particular, PP1-
mediated dephosphorylation of SAP155 is favored by the
nuclear inhibitor of PP1 (NIPPI). NIPP1 is a nuclear regula-
tory subunit of PP1, enriched in nuclear speckles [115], known
to interact with several splicing regulators, like CDC5L or
the same SAP155 [116, 117]. In particular, NIPP1 stimulates
PPl-mediated dephosphorylation of SAP155 by facilitating
the interaction between the phosphatase and its substrate
[10]. In subsequent studies, PP2Cy was also demonstrated to
be important for the splicing process, as it was shown to be
physically associated with the spliceosome, and its enzymatic
activity was necessary for the early steps of spliceosome
assembly [118].

Ser/Thr phosphatases are important regulators of both
constitutive and AS events, as it was suggested by pioneering
studies showing alternative 5’ splice selection after addition
of PP1 in splicing assay in vitro [119]. Furthermore, PP2Cy
was shown to interact with the RBP YB-1 and to modulate
AS of the CD44 gene [120], while PP1 was demonstrated
to interact with a short motif RVXF motif within the RRM
of several splicing factors, like SRSF1, SRSF9 (previously
known as SRp30C), and the SR-like protein TRA2-f [121].
Dephosphorylation of TRA2- by PP1 positively modulates
its dimerization and its interaction with partner proteins, like
SRSF1. Moreover, PP1 regulates alternative splice selection in
TRA2-f5 target mRNAs like the SMN2 gene [121]. Exclusion
of the exon 7 of SMN2 gene, combined with the primary
deletion of SMNI gene, is the cause of the spinal muscular
atrophy (SMA) [122]. TRA2-f3 promotes the inclusion of the
exon 7 of SMN2 favoring the production of a functional
full length protein. TRA2- splicing activity is enhanced by
inhibition of PP1 activity [121] and, surprisingly, by activation
of PP2A [123]. Indeed, the Stamm’s group found that a
class of compounds derivative from cantharidin (a well-
known phosphatase inhibitors) activates PP2A, which in turn
dephosphorylates TRA2-3 on Thr33, favoring inclusion of
exon 7 [123]. These observations suggest the possibility to
develop new protein phosphatase inhibitors that could be
used for the therapeutic correction of the splicing defects
occurring in neurodegenerative diseases like SMA.

Modulating protein phosphatases’ activity in order to
manipulate pathogenetic splicing events has been suggested
as a potential therapeutic tool also for cancer treatment.
Indeed, it has been shown that genotoxic agents inducing
apoptosis in cancer cells act through the generation of
ceramide and activation of PPI, which in turn promotes
the formation of the proapoptotic BCL-Xg and CASPASE-9b
splice variants [124]. On the other hand, it has been shown
that the proapoptotic activity of synthetic ceramides, like C6
pyridinium ceramide, is instead associated with activation
of PPl and the consequent reduced phosphorylation of
several splicing factors and modulation of several splicing
events [125]. These observations underline the importance
of the regulated activity of protein phosphatases for proper
regulation of the splicing process and strongly suggest the
possibility to develop new molecules targeting their activity,
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which could be used for the therapeutic correction of the
splicing defects occurring in several human diseases.

10. Concluding Remarks

Increasing evidence points out to a key role of misregula-
tion of AS in the cellular transformation process. Cancer-
specific splice variants can potentially be used as accu-
rate diagnostic and prognostic markers, as it was recently
highlighted by genome-wide studies [126, 127]. Targeting
the splicing process represents, therefore, an attractive ther-
apeutic target for cancer treatment, and it is currently
under intense investigation. Therapeutic modulation of AS is
mainly realized through RNA-based technologies (reviewed
in [128]) or through chemical reagents inhibiting spliceosome
activity (reviewed in [129]). The RNA-based technologies
exploit antisense oligonucleotide masking specific sequence
elements to splicing factors and/or the spliceosome [130],
whereas chemical approaches make use of drugs that directly
target the activity of spliceosomal components, as for exam-
ples spliceostatin A, which inhibits the SF3b subunit of the U2
snRNP, thereby modulating the AS of genes important for cell
cycle control [131].

Considering the important control exerted by protein
kinases on AS, modulation of their activity represents a
potential approach for the development of new drugs target-
ing RNA splicing in cancer therapy. These suggestions are
supported by recent reports highlighting the high efficacy
of SRPK1/2 inhibitors in reducing angiogenesis through the
negative modulation of the AS of the proangiogenic splice
variant VEGFxxx gene [48]. Considering the great impact
that SRPKs have on the splicing activity of SR proteins and the
large number of AS events that they regulate, modulation of
SRPK activity could be a powerful tool in the emerging field of
splicing-modulating therapies. It is also important to mention
that SRSF1, a well-known target of SRPKs, is upregulated in
human cancers and functions as an oncogene [132]. For the
same reasons, CLKs are a fascinating chemotherapeutic target
too, and important efforts are being made for the realization
of selective and efficient CLKSs inhibitors [133].

Signal-transduction pathways able to modulate the phos-
phorylation status of SR proteins or the activity of other RBPs
represent another potential druggable target for RNA splicing
modulation. For example, it has been recently shown that
amiloride, a well-known diuretic, can reduce proliferative
and invasive properties of both hepatocellular carcinoma and
leukemia cancer cells by inducing hypophosphorylation of
SR-proteins [134, 135]. Genome-wide exon array analysis has
demonstrated that amiloride treatment induces the modula-
tion of a large number of AS events, and, in particular, it neg-
atively regulates protumoral splice variants of several genes,
such as the antiapoptotic BCL-X; or proinvasive ARON.
Reduced phosphorylation levels of AKT and ERKs were
observed after amiloride treatment, suggesting that this drug
reduces SR protein phosphorylation through inactivation of
these kinases [135].

Deregulation of signal-transduction pathways in cancer
cells is a general feature, and much effort has been made
in order to develop chemotherapeutic agents that efficiently
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inhibit the activity of the kinases mediating the intracellular
transduction of these signals, such as AKT or kinases of the
MAPK and SRC families (reviewed in [136-138]). As many
of these inhibitors are already in clinical practice, and many
of them are undergoing promising clinical trials, it would be
very interesting to understand whether their antiproliferative
and cytotoxic effects could be partly due to their ability to
interfere with AS events regulated by these kinases. Even
more attractive is the possibility to exploit protein kinase
inhibitors to selectively affect splicing decisions in order to
restore in cancer cells a normal, nonpathological AS pattern.

Sheddinglight on the expression, structure, and functions
of the kinases regulating the activity of splicing factors is
therefore an important step for a comprehensive under-
standing of the molecular mechanisms regulating pre-mRNA
processing, which is essential for the rational design of future
therapies targeting the aberrant AS process in cancer and
other human diseases.
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