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Abstract. The interest for Terahertz (THz) radiation is rapidly growing, both as it is a
powerful tool for investigating the behavior of matter at low energy, and as it allows for a number
of possible spectroscopic applications spanning from medical science to security. The linac-
driven THz source at the SPARC facility can deliver broadband THz pulses with femtosecond
shaping and can be used for electron beam diagnostics to fully reconstruct the longitudinal
charge distribution. Beyond this application, the possibility to store much more energy in a
single THz pulse than table-top sources renders the SPARC THz source very interesting for a
spectroscopic use. In addition, taking advantage from electron beam manipulation techniques,
high power, narrow-band THz radiation can be also generated. Those source characteristics
provide a unique chance to realize THz-pump/THz-probe spectroscopy, a technique practically
unexplored up to now.

1. Introduction

SPARC is an R&D photoinjector facility for the generation of high brightness electron beams,
which was originally conceived to perform electron beam dynamics studies and Free Electron
Laser (FEL) experiments, both under Self Amplified Spontaneous Emission (SASE) regime in the
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visible range at 500 nm [1], [2] and down to few tens of nm wavelengths, in the non conventional
schemes such as seeded FEL, cascade FEL, high harmonics generation in gas [3], [4]. Recently,
the SPARC facility is extending its prospects to a wider range of applications, e.g. Plasma and
Laser Wakefields Acceleration (PWFA-LWFA), Thomson scattering and high peak power THz
radiation.

The motivation for the development of a THz source at SPARC lays in the ever growing
interest in filling the so-called THz gap with a high peak power radiation, typical of a linac-
based source. Indeed, from simulations the expected peak power for the SPARC THz source is
foreseen in the order of 10 Watts (Fig.1, right plot). Such a power performance would produce
pulses delivering an energy in the order of few (up to ten) pJ (Fig.1, left plot), well above
THz radiation from synchrotrons and most standard table top sources. Applications of high

Energy (eV) Energy (eV)
0.001 0.01 0.1 1 - 0.001 0.01 0.1 1
10* T I : . 10 T Y T T T T T
i3 -10°
, FERMI d1ig
10
10' - 10°
-
gL H10° §
2 o0 el FLab (CSR) 3 o
Jiz &8 £
3 107" 10 2 P
d Laser Based Emitters diot & =
- -2 o O
g 10 5 = &
& 10° J10° 8 ¥
& 10 Py ]
L . qi0t &
w 10 a
10° 110F 3
-3
10° 1
167 —107*
=) -5
]0-3 2l Lol MR | L 10 TEE AT
0.1 1 10 100 0.1 1 10 100
Frequency (THz) Frequency (THz)

Figure 1. Energy/fluence per pulse (left) and peak power (right) figures of merit of the THz
CTR emission at SPARC are plotted in comparison to those of conventional THz sources.

peak power pulses concern mainly time domain spectroscopy with THz pump/THz probe and
frequency domain measurements on novel materials, e.g. superconductors.

From an accelerator point of view, coherent THz radiation is a valid tool for electron beam
longitudinal diagnostics, enabling to reconstruct the longitudinal charge distribution of the
bunch.

2. Theory

Radiation extending up to the THz range can be generated as coherent radiation from ultra-
short (= sub-ps) electron bunches. Any radiation process which does not change the electron
distribution during the emission, and in which no interaction between particle and radiation
happens, can be used to retrieve the longitudinal electron beam charge distribution by studying
the coherent spectrum of radiation emitted by the bunch. This is true, in particular, for
transition and diffraction radiation, where the emission is a surface phenomenon and thus
virtually instantaneous; however, if the electron distribution in the bunch can be considered
frozen during the emission, also synchrotron radiation, spontaneous undulator radiation and
Cherenkov radiation may be considered as suitable sources.
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2.1. Coherent Radiation

The total radiation intensity emitted by a bunch of electrons, I(\) = I[N + N(N — 1)F())],
can be interpreted as the sum of two terms [5]: one, proportional to the number of particles N,
represents incoherent emission, whereas the one proportional to N2 implies a coherent process,
which dominates the emission at wavelengths (\) equal and longer than the bunch length. I,
is the single particle radiation intensity, which depends on the emission mechanism considered.
The coherent intensity depends on the bunch longitudinal dimension through the longitudinal
form factor, F'(\) [6], defined as the Fourier transform of the bunch longitudinal profile. It is
then clear that, by measuring the coherent spectrum, the form factor is determined and the
longitudinal profile can be retrieved.

2.2. Transition Radiation

Let us consider as emission phenomenon the radiation produced when a relativistic charged
particle crosses the boundary between two media with different dielectric constants, e.g a
vacuum-metal screen interface. The transition radiation (TR) originates from the time varying
currents induced, on the target surface, by the field of the traveling charge, due to optical
inhomogeneities in the space. Assuming a perfectly conducting, infinitely thin target, which
extends indefinitely transversally, the spectral and angular energy distribution from a single
electron is well described by the Ginzburg-Frank formula in far field approximation [7]

e? 32 sin? () .
4m3ege (1 — 2 cos?(6))? (1)

Ip =

with 5 = v/c and 6 the emission angle. In such picture, the TR spectral distribution of radiation
frequencies well below the target plasma frequency, w,, does not depend on frequency itself;
moreover the intensity is concentrated within a cone whose axis is coincident with the particle
velocity and displays an angular aperture proportional to 1/ (v being the Lorentz factor). In a
real experimental setup, the assumptions of infinite target size and far-field approximation are
not usually fulfilled, causing the TR spectrum to become a complicate function of beam energy,
target extension, frequency and angle of emission [8]. Since the natural extent of the particle
transverse field Fourier components is of the order of v\, when the electron energy is relatively
high long wavelength components may exceed the dimension of the target, resulting in a strong
suppression of low-frequencies. Indeed, as it is shown in Fig.2, for a 90 MeV particle energy
and a screen radius of 20 mm, even at 1 THz the real spectral angular distribution is not well
reproduced by the Ginzburg-Frank formula.

2.8. Beam Manipulation Techniques

Short electron bunches are mandatory for the generation of high peak power, broad band,
extending up to high frequencies, THz radiation. In order to longitudinally compress the beam
down to few hundreds of femtosecond, the velocity bunching (VB) [10] is used at SPARC [11].
The VB technique relies on the fact that the beam is injected in the first accelerating structure
at the phase of zero crossing RF field. Since the beam is slightly slower than the phase velocity
of the RF wave, it slips back to phases where the field is accelerating, and it is simultaneously
chirped and compressed. Due to non-linearities in the beam longitudinal phase space, the
longitudinal profile of the compressed beam has a sharp rising edge, which is responsible of
emission at higher THz frequencies.

As an alternative to broadband THz radiation, coherent narrow-band, high peak power THz
radiation can be produced by means of longitudinally modulated electron beams generated by
tailoring the shape of the drive laser pulse. Several techniques can be considered, e.g the one
presented in [12]; here we will describe the one in use at SPARC [13], [14].
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Figure 2. Modified Ginzburg-Frank formula [9] to take into account the effect of a finite size
target (with radius =20 mm) with respect to the natural size of the particle field (y\, y=176).
The spectral angular distribution for different wavelengths is compared to the ideal Ginzburg-
Frank formula.

If a train of n laser pulses, named as laser comb, with picosecond distance, illuminates the
photocathode, assuming an instantaneous emission, each pulse will produce a disk of electrons
with the same spacing as the laser pulses. Due to longitudinal space charge forces, the bunch
lengthens and the longitudinal modulation is mixed up at the end of the drift downstream of
the gun. Nevertheless, memory of the original structure is kept in the longitudinal phase space,
manifesting in a saw-tooth like energy profile. Thus, in the VB process, due to a correlated
time-velocity chirp in the electron bunch, causing electrons on the tail to be faster than those
on the head, a rotation in the longitudinal phase space occurs in the first accelerating section
and the longitudinal modulation is restored at the end of the linac.

If a comb train with THz repetition rate is transported to the TR target, narrow band
emission occurs at the frequency corresponding to the pulse inter-distance. The longitudinal
form factor of a comb-like electron beam distribution, as that shown in Fig.3, is a single peak
at the comb repetition rate, whose intensity is the same as if all the electrons were confined in
the single sub-pulse. In case of shorter electron pulses, higher and more intense harmonics show
up in the comb form factor, as pointed out in Fig.4.

The emission frequency can be tuned by changing the distance between pulses in the train.
Therefore combining the VB technique and a comb-like electron beam distribution, a tunable
narrow band THz source can be produced.

3. Experimental Layout
Coherent Transition Radiation (CTR) is generated at the interface of an Aluminum coated
Silicon screen. The screen is placed at the end of the by-pass line (Fig.5) in the vacuum pipe
at 45° with respect to the electron beam direction. CTR is then extracted at 90° through a
z-cut quartz window. Radiation is then collected by a 90° off-axis parabolic mirror. Parallel
radiation is then reflected down to a flat mirror at 45° which reflects radiation horizontally. Two
schemes are foreseen (Fig.6): one for interferometer measurements and one for integrated CTR
measurements with the possibility of selecting custom band pass filters in the THz range [15].
A Martin-Puplett interferometer [16] is used for frequency domain measurements. The main
advantages of this device derive from the beam splitter properties: it splits polarizations and,
being made of wires, reflectivity coefficients depend on wires diameter and spacing. Furthermore,
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measuring the intensity of both polarizations, the difference interferogram can be normalized to
the sum, thus canceling correlated fluctuations due to electron beam instabilities.

4. Results
High peak power (= MW), broad band THz radiation up to 5 THz has been measured at SPARC
with a 500 pC, 500 fs electron beam. Details can be found in [17].

Narrow band THz radiation has been produced and characterized by studying the rotation
of the longitudinal phase space of a four-pulses train under VB regime. At the maximum
compression phase, the four pulses completely overlap in time (Fig.7); moving the compression
phase toward the over compression regime, the bunches get better separated and modulated
(Fig.8).

The relevant regime for THz applications, i.e. where the sub-bunches are well separated and
their distance, thus the THz emission frequency, can be tuned with the RF compressor injection
phase, is the the so-called “deep” over-compression regime (Fig.9).

Interferometer measurements have been performed mainly in this regime. The comb current

parabolic mirror
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Figure 9. Measured longitudinal phase space for a four-pulses comb beam in the “deep” over-
compression regime; the title reports the average energy and the compression phase (200 pC
total charge).

profile, shown in Fig.10, has been measured at the beginning of the dogleg, i.e. after the first
bending magnet in Fig.5. The four-pulses comb train has been then transported along the
dogleg line down to the TR screen. The measured autocorrelation function of the modulated
current profile shows clearly five (Fig.11, blue curve) out of the seven peaks expected from a
four-pulses comb train (Fig.11, red curve) [18]. A reason for the absence of the outer peaks in the
measured interferogram might be the effect due to the transport of the comb beam. Indeed, the
longitudinal distribution emerging from the dogleg is affected by both the beam overall energy
chirp (e.g. the chirp between sub-pulses) and the sub-pulses chirp (e.g. the chirp within a single
sub-pulse). If the dogleg R5¢ parameter is not zero, two sub-pulses might happen to merge into
a single one so that the emission will then be driven by a three-pulses comb beam.

In Fig.12 the form factor retrieved from the measured interferogram (blue curve) is compared
to the one (red curve) retrieved from the current profile shown in Fig.10. The discrepancy in
the emission peaks of the two curves can also be explained by considering the effect of the beam
transport through the dogleg: under some conditions, it may act as a decompressing section,
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The measured CTR energy per pulse has then been retrieved (Fig.13, blue curve) taking into
account the single particle TR spectrum and the transfer function of the experimental system.
A well defined narrow band peak centered around 0.8 THz is visible, as expected from the

interferogram peaks distance.
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5. Conclusions

A linac-driven high peak power THz radiation has been realized and characterized at SPARC,
taking advantage of the high brightness electron beams produced there. In particular, the
possibility to generate and control high charge (200 pC), tailored comb trains makes SPARC
unique in the survey of high peak power, narrow band, tunable THz radiation.
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