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Abstract We present a complete classification of complex projective surfaces X with non-
trivial self-maps (i.e. surjective morphisms f : X → X which are not isomorphisms) of any
given degree. Our starting point are results contained in Fujimoto (Publ. Res. Inst. Math. Sci.
38(1):33–92, 2005) and Nakayama (Kyushu J. Math. 56(2):433–446, 2002), they provide a
list of surfaces that admit at least one nontrivial self-map. By a case by case analysis that
blends geometrical and arithmetical arguments, we then exclude that certain prime numbers
appear as degrees of nontrivial self-maps of certain surfaces.
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1 Introduction and statement of the result

We work over the complex field C. All the varieties that we will consider will be projective
and smooth, in case of exceptions we will explicitly state it.

Definition 1 Let X be a complex projective variety and let f : X → X be a surjective
endomorphism of X, i.e. a morphism of X onto itself. f is said to be a nontrivial self-map
if it is not an isomorphism, or equivalently if the degree of f is greater than or equal to 2.

In what follows we will provide a complete classification of surfaces that admit a non-
trivial self-map of any given degree, this is the content of the following theorem.
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A. Rapagnetta, P. Sabatino

Theorem 2 A surface admits self-maps of any given degree if and only if it is one of the
following:

(i) P1 × P1

(ii) Étale quotient of P1 × C, C a smooth curve with g(C) ≥ 2, by a cyclic group G of
automorphisms of C acting freely on C and faithfully on P

1. If G is not trivial then
its order is a prime p and for every δ ∈ (Z/pZ)∗ there exists ϕ ∈ Aut(C) such that
ϕ ◦ g = g±δ ◦ ϕ for every g ∈ G.

(iii) X is P
1-bundle over an elliptic curve E, P(OE ⊕ L), where L is a k-torsion line bundle

on E and either k = 1,2,3 or
(iiia) k = 4, E is the elliptic curve relative to the lattice 〈1, 1

2 + i
√

7
2 〉, and μ∗L = 0

where μ is the endomorphism of E induced by multiplication by either 3
2 + i

√
7

2

or 3
2 − i

√
7

2 .
(iiib) k = 5, E is the elliptic curve relative to the lattice 〈1, i〉, and μ∗L = 0 where μ

is the endomorphism of E induced by multiplication by either 2 + i or 2 − i.
(iiic) k = 7, E is the elliptic curve relative to the lattice 〈1, 1

2 + i
√

3
2 〉, and μ∗L = 0

where μ is the endomorphism of E induced by multiplication by either 5
2 + i

√
3

2

or 5
2 − i

√
3

2 .

A couple of remarks about the statement of Theorem 2 are in order. Regarding items
(iiia)–(iiic), recall that there is a one-to-one correspondence between endomorphisms of a
given elliptic curve E and complex numbers α such that α · � ⊆ �, where � denotes the
lattice relative to the curve E (see Remark 28). Moreover, a priori, it is not clear whether or
not there exist examples of surfaces that satisfies Theorem 2(ii). But, it turns out that such
examples exist and we describe some of them in Example 21. Our description is based on
a classical result of Hurwitz, according to which every finite group can be realized as an
automorphism group of some compact Riemann surface (see [5] for instance).

The starting point of our analysis is the following result, it provides a list of surfaces that
do admit at least one nontrivial self-map.

Theorem 3 Let X be a complex projective surface, X admits a nontrivial self-map if and
only if one of the following conditions is satisfied

(i) X is an Abelian surface;
(ii) X is an hyperelliptic surface, X is an entry in the list of Bagnera-de Franchis (see for

example [2, pp. 83–84]);
(iii) X is a minimal surface with κ(X) = 1 and χ(OX) = 0;
(iv) X is a toric surface;
(v) X is a P1-bundle over an elliptic curve;

(vi) X is a P
1-bundle over a nonsingular projective curve B with g(B) > 1 such that X ×B

B ′ is trivial after an étale base change B ′ → B .

Proof See [6, Theorem 3.2] for the case κ(X) ≥ 0 and [8, Theorem 3] for the case
κ(X) = −∞. �

Since the degree of morphisms of X onto itself is multiplicative with respect to the com-
position of maps, a surface admits nontrivial self-maps of any given degree if and only if it
admits nontrivial self-maps of any given prime degree. Hence trough the rest of this paper
we will restrict our analysis to prime degrees without any further comment. Theorem 2 will
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Surfaces with surjective endomorphisms

follow from Theorem 3 after a case by case analysis involving both geometric and arithmetic
arguments.

Notations 4 We will denote by ≡num, ≡lin, respectively linear equivalence and numerical
equivalence of divisors. For a locally free sheaf E on a smooth projective variety we put
P(E ) := Proj(Sym(E ∨)), note that our notation coincide with the P(E ∨) of Hartshorne’s
book.

2 Abelian surfaces and the case κ(X) ≥ 0

First of all we are going to analyse case (i) of Theorem 3, namely abelian surfaces. This case
will be a direct consequence of the lemma below.

Lemma 5 Let T be a complex torus. There exist an infinite number of primes that do not
appear as degree of a nontrivial self-map of T.

Proof Let V be a complex vector space of dimension g and � a lattice in V . Put T =
V/�. Every nontrivial self-map f : T → T is the composition of a translation and a group
endomorphism of T , then we may suppose, without loss of generality, that f is a group
endomorphism of T . Denote by End(T ) the set of group endomorphisms of T . Denote by
ρa and ρr extensions of the analytic and rational representation of End(T ) to EndQ(T ) =
End(T ) ⊗ Q (see [4, p. 10]). The extended rational representation

ρr ⊗ 1 : EndQ(T ) ⊗ C → EndC(� ⊗ C) � EndC(V × V )

is equivalent to the direct sum of the analytic representation and its conjugate [4, Proposi-
tion 1.2.3]

ρr ⊗ 1 � ρa ⊕ ρa. (1)

Observe now that deg(f ) = detρr(f ) = detρa(f )detρa(f ). Since ρr(f ) has integer entries
its eigenvalues are all algebraic integers, it follows by (1) that detρa(f ) is also an algebraic
integer. Moreover detρa(f ) for all f ∈ End(T ), are all contained in the same number field
that depends only on T . Indeed they generate an extension, say K , contained in a finitely
generated extension of Q, namely the extension generated by the entries of a period matrix
for T . It is a well known fact that K is finitely generated too [7, p. 229, Remark]. We may
moreover suppose, without loss of generality, that K is Galois over Q. Summing up we have
that if a prime p appears as the degree of an endomorphism of T then

p = αα, α ∈ K (2)

K a Galois number field and α an algebraic integer. Moreover in what follows we may and
will restrict our attention to primes that do not ramify in the extension K , since the number
of ramified primes is finite. If a prime satisfies (2) then no prime ideal in K that divides
(p), the ideal generated by p in the ring of integers of K , admits complex conjugation as
its Frobenius. It follows by Čebotarev density theorem [9, Theorem 13.4, p. 545] that the
complementary set of the set of primes that satisfy (2) has analytic density strictly greater
than zero. �
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Corollary 6 Let A be an abelian variety, then there are an infinite number of primes that
do not appear as degree of a nontrivial self-map of A.

Remark 7 Riemann-Hurwitz formula implies that if a curve C possesses a nontrivial self-
map then g(C) ≤ 1. Moreover by Corollary 6 it follows that P

1 is the only curve with
nontrivial self-maps of any given degree.

Now we come to (ii) and (iii) of Theorem 3. We start the proof of the following propo-
sition considering surfaces of Kodaira dimension one. After a preliminary argument we are
left with surfaces such that pg = 0 and q = 1. We are then able to treat them by an argument
that holds for surfaces in (ii) of Theorem 3 too.

Proposition 8 Let X be either a minimal surface with κ(X) = 1 and χ(OX) = 0 or an
hyperelliptic surface. X fails to admit a nontrivial self-map of degree a given prime for an
infinite number of primes.

Proof First of all suppose that X is minimal, κ(X) = 1 and χ(OB) = 0. Note that K2
X = 0

and then the topological Euler-Poincaré characteristic e(X) is zero too. Moreover X admits
an elliptic fibration π : X → B , B a smooth curve, and since e(X) = 0 singular fibres are
multiples of a smooth elliptic curve [1, Proposition (11.4) and Remark (11.5), p. 118].

Arguing as in [3, Chap. VI] it follows that X � (F × ˜B)/G, where F and ˜B are smooth
curves g(F ) = 1, g(˜B) ≥ 2 and G is a group of automorphisms of F and ˜B such that G acts
freely on F × ˜B . Moreover ˜B/G � B and

π : X � (F × ˜B)/G → B � ˜B/G

is the map induced by the projection of F × ˜B onto ˜B , in particular every smooth fiber of π

is an elliptic curve isomorphic to F .
Observe now that a suitable pluricanonical map factorizes through π and an embedding

of B in some projective space [2, Proposition IX.3, p. 108]. Let

f : X → X

be a nontrivial self-map. Pulling back multiples of canonical divisors by f induces a map
fB : B → B such that the following diagram commutes

X
f

π

X

π

B
fB

B

It follows that degf = deg(fB)deg(f|F ), where deg(f|F ) denotes the degree of the restric-
tion of f to a smooth fiber.

If g(B) > 1 then deg(fB) = 1 and X fails to admit a nontrivial self-map of degree a
given prime for an infinite number of primes, indeed the same holds for F (Remark 7). If B

is an elliptic curve, then any prime appearing as the degree of an endomorphism of X is also
the degree of an endomorphism of the abelian surface B × F , the missing primes are then
infinite by Corollary 6.
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If B is rational then

H1,0(S) ∼= H1,0(F × ˜B)G ∼= H1,0(F )G ⊕ H1,0(˜B)G ∼= H1,0(F/G) ⊕ H1,0(B).

Since χ(OX) = 0 we have q = 1 and F/G is elliptic. The fibres of the natural map
α : (F × ˜B) → F/G are connected and isomorphic to ˜B , it follows that α is the Albanese
map of X. By the universal property of the Albanese map there exists a ϕ : F/G → F/G

such that α ◦ f = ϕ ◦ α. Again deg(f ) = deg(ϕ)deg(fB) and we can conclude as above.
Analogous considerations hold for a hyperelliptic surface, in this case the Albanese vari-

ety is an elliptic curve and the fibres of the Albanese map are isomorphic elliptic curves. �

3 The case κ(X) = −∞: toric surfaces

In this section we are going to show that for a toric surface the presence of curves of negative
self-intersection implies that, up to a finite set, degrees of nontrivial self-maps are not square
free. Before dealing with the toric case, we briefly recall in general how a nontrivial self-map
acts on curves.

Remark 9 Let X be a surface with a nontrivial self-map, f : X → X. Let C and D be
irreducible curves on X such that f (C) = D. Since f∗ ◦f ∗ = deg(f )Id on NS(X), there are
positive integers a, b such that f∗(C)≡num aD and f ∗(D)≡num bC where degf = ab. As
a consequence, C2 = 0 if and only if D2 = 0, hence the image under a nontrivial self-map
of an irreducible curve with zero self-intersection is always a curve with the same property.
Analogously C2 < 0 if and only if D2 < 0 and in this case we also have f −1(D) = C: in
fact any two distinct components of f −1(D) should be curves with negative self-intersection
whose classes in NS(X) are linearly dependent (by injectivity of f∗, see [8, §2] for instance).
Hence, if we denote

SX = {C irreducible curve| C2 < 0}
then the map of sets f̂ : SX → SX , C �→ f (C), is bijective.

The proof of Proposition 11 below will make use of the following elementary statement.
Since we will need it in subsequent sections we state it in the form of a lemma.

Lemma 10 Let X be a surface that contains one and only one curve C such that C2 < 0. If
f : X → X is a nontrivial self-map then deg(f ) is a square.

Proof In view of the above Remark 9 we have f (C) = C, f ∗C ≡num a1C and f∗C ≡num a2C

for suitable integers a1, a2 such that degf = a1a2. By the Projection Formula

a1C
2 = f ∗C · C = C · f∗C = a2C · C = a2C

2

hence a1 = a2 and degf is a square. �

Proposition 11 The only toric surface admitting self-maps of any given degree is P
1 × P

1.
If S �� P

1 × P
1 is a toric surface, then S fails to have a self-map of prime degree for all but

at most a finite number of primes.
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Proof Let X be a toric surface, by the classification of toric surfaces, see [10, Theorem 1.28,
p. 42] for example, X is obtained by a finite number of equivariant blow-ups from the pro-
jective plane or a Hizerbruch surface Fn, n ≥ 0. The only cases in which SX is empty are
either X � P

2 or X � P
1 × P

1. All the nontrivial self-maps of the former have degree a
square, the latter instead has nontrivial self-maps of any given degree.

Suppose now that SX is nonempty. Since X is a toric surface, any irreducible curve on
X with negative self-intersection is included in the complement of the torus, hence SX is
finite. If SX consists of only one element, then our claim follows by Lemma 10. If SX

contains more than one element then X is not minimal as follows by the classification of
rational surfaces. Let D ∈ SX be a −1-curve on X and C ∈ SX such that f (C) = D, recall
Remark 9. We have

b2C2 = f ∗D · f ∗D = f ∗(D · D) = −deg(f ) (3)

and since SX is finite C2 in (3) can only take a finite number of values. It follows that apart
from a finite number of values deg(f ) is not square free. �

4 The case κ(X) = −∞: P
1-bundles over a non rational curve

First of all we are going to introduce notations that will be used in this and the next section.

Notations 12 We denote by E a locally free sheaf of rank two over a curve B of genus g(B)

greater than or equal to one, and set X = P(E ). Moreover we denote by π : X → B the
projection associated to the projective bundle structure. Since g(B) ≥ 1, given a nontrivial
self-map f : X → X, it induces a nontrivial self-map of B that we denote by fB .

Note that deg(f ) = deg(fB) · deg(fP1), where deg(fP1) denotes the degree of f when
restricted to a fiber, this degree does not depend on the particular chosen fiber. Moreover if
deg(fB) > 1 i.e. fB is a nontrivial surjective endomorphism, then B is an elliptic curve.

We are going to analyze case (vi) of Theorem 3. The main result of this section is the
following:

Theorem 13 Let E be a rank two vector bundle over a projective curve B of genus g > 1.
The projective bundle X = P(E ) admits a nontrivial self-map of degree n for every positive
integer n if and only if

(i) E � O ⊕ L where L is either a trivial or a torsion line bundle of order p a prime and
in the latter case,

(ii) for every m ∈ (Z/pZ)∗ there exists an automorphism ϕ ∈ Aut(B) such that
ϕ∗(L) � L±m.

Before proving the above theorem we will recall some well known facts on P
1-bundles

over a smooth projective curve, and in the meantime we will establish some notations.

Remark 14 Suppose that X = P(E ), where E is a locally free sheaf of rank two of degree
e on the smooth curve B . We have NS(X) = ZH + ZF , where H is a divisor such that
OX(H) � O(1) and F is a fiber of the projection π . If D is a divisor on X such that D2 = 0
then its class in NS(X) is either a multiple of F or a multiple of H + e

2F .
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If f : X → X is a nontrivial self-map that induces an automorphism on the base B ,
then the ramification divisor R of f satisfies R ≡lin KX/B − f ∗KX/B and moreover we
have KX/B ≡num −2H − eF . It follows that K2

X/B = 0 and (f ∗KX/B)2 = 0, which implies
f ∗KX/B ≡num −2(degf )H − (degf )eF . Summing up we have

R ≡num(1 − degf )KX/B and R2 = 0.

Remark 15 If X = P(E ) admits two disjoint sections, then E is isomorphic to the direct
sum of two line bundles, and X = P(O ⊕ L) up to an isomorphism obtained tensoring
by a suitable line bundle. If L is nontrivial, then we denote by S1, S2 the sections of X

corresponding respectively to the line bundles O and L, and by s1, s2 : B → X the associated
embeddings. We have NS1/X � N ∨

S2/X � L, S2
1 = deg(L) = e and S2

2 = −deg(L) = −e.
If deg(L) > 0, then S2 is the only curve on X of negative self-intersection. In case

deg(L) = 0 and L is nontrivial, the curves S1, S2 are the only sections of zero self-
intersection and any class in NS(X) whose square equals zero is either a multiple of the
class of H or a multiple of the class of F .

Remark 16 Curves dominating B and of zero self-intersection on X = P(O ⊕ L), L a tor-
sion line bundle of order k, will play a central role in the proof of Theorem 13. A particular
curve of this type is given by the étale cyclic cover j : ˜B → B of degree k determined by
L. We are going to recall how to construct ˜B , see for instance [1, p. 54]. Denote by L the
total space of L, and by prL : L → B the bundle projection. The zero divisor of the section
1 − lk in L, where l ∈ 
(L,pr∗L L) is the tautological section, is the curve ˜B and j is the re-
striction to ˜B of the bundle map. Observe that there is a canonical isomorphism of varieties
L � X \ S2, and that through this isomorphism the image of ˜B is disjoint from S1. By the
above description the projective irreducible curve ˜B is a principal divisor in X \ S2 and the
normal bundle to ˜B in X is trivial.

Let D �= S1, S2 be an irreducible curve in X dominating B such that D2 = 0, we are
going to show that D ⊂ X \ S2 � L and there exists a ∈ C

∗ such that the automorphism of
varieties

μa : L → L

induced by multiplication by a, sends D to ˜B . Since D2 = 0 and D dominates B , the divisor
D is numerically equivalent to a multiple of S1 and S2, in particular it is disjoint from S1 ∪S2

and thus lies in the complement of the zero section of X \ S2 � L that coincides with S1.
Since ˜B is a principal divisor in X \S2, the intersection of ˜B with a different projective curve
included in X \ S2 is empty. Since multiplication by scalars acts transitively on the nonzero
elements of the fibres of L, there exists a ∈ C∗ such that ˜B ∩ μa(D) is nonempty and this
forces ˜B = μa(D). In particular the restriction of π to such a D gives an étale covering of
B isomorphic to j : ˜B → B , and D · F = k.

Theorem 13 will be a consequence of the next two propositions. In Proposition 17 we
study nontrivial self-maps of surfaces of the form P(O ⊕ L) where L is a torsion line bundle
on a curve B of genus g(B) ≥ 1. In Proposition 18 we characterize P

1-bundles on a curve
of genus greater than one admitting an endomorphism of degree two.

Proposition 17 Suppose X = P(O ⊕ L), where L is a torsion line bundle on B of order
k > 1, and the genus g(B) ≥ 1. X admits a nontrivial self-map f : X → X such that fB ∈
Aut(B) and deg(f ) = d if and only if either
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(i) k|d , or
(ii) there exists ϕ ∈ Aut(B) such that ϕ∗L � Lm with d ≡ ±m mod k.

In case (ii) there exists a nontrivial self-map f of degree d such that fB = ϕ and either
f ∗Si = dSi for i = 1,2 or f ∗Si = dSj for i �= j .

Proof We begin by proving the only if part of our statement. Since fB is an automor-
phism f (Si) is a section. Moreover, see Remark 9, (f∗(Si))

2 = 0, therefore f (Si) = Sj

for i, j ∈ {1,2}. Then there are three possible cases

f (S1) = S1 and f (S2) = S2 (4)

f (S1) = S2 and f (S2) = S1 (5)

f (S1) = f (S2) = Si for either i = 1 or i = 2 (6)

and in any of the cases above the pullback of the divisor Sj is given by

f ∗Sj = n1,j S1 + n2,j S2 +
∑

ι

kιCι (7)

where n1,j , n2,j are nonnegative integers, kι are positive integers, and Cι �= S1, S2 are dis-
tinct irreducible curves. Since X contains no curve with negative self-intersection, the ir-
reducible components of f ∗(Sj ) are disjoint, Cι dominates B , and C2

ι = 0 for every ι. By
Remark 16 we also know that Cι intersects transversally every fiber of π in k points. Since
f ∗(F )≡num F we are able to recover the degree of f as the intersection number between F

and f ∗Sj hence

d = n1,j + n2,j + k
∑

ι

kι.

In case (6) there exists j such that n1,j = n2,j = 0 and the intersection number between
f ∗Sj and F is k

∑

ι kι. In cases (4)–(5) we have f (S1) = Sj the multiplicity n2,j is zero and
d ≡ n1,j mod k, j = 1,2. We have then

f ∗
B NSj /X � f ∗

Bs∗
j O(Sj ) � s∗

1f ∗O(Sj ) � s∗
1 O(n1,j S1) � (NS1/X)n1,j . (8)

Since NS1/X � N ∨
S2/X � L we get f ∗

B L � Ln1,1 in case (4) and f ∗
B L � L−n1,2 in case (5).

Setting ϕ = fB we get ϕ∗L � Lm with d ≡ m mod k for m = n1,1 in case (4) and ϕ∗L � Lm

with d ≡ −m mod k for m = −n1,2 in case (5).
Now we come to the proof of the if part of our statement. Denote by O,L respectively

the total spaces of O and L and by Ox and Lx fibres of the bundle map over the point x. First
of all suppose that k|d . In this case, the isomorphism i : L⊗d → O enables us to construct a
degree d morphism of varieties

� : O ⊕ L → O ⊕ L⊗d−1

(α, l) ∈ Ox ⊕ Lx �→ (αd + i(l⊗d), α · l⊗d−1) ∈ Ox ⊕ L⊗d−1
x .

Since � is homogeneous on the fibres it induces a degree d morphism

�̂ : P(O ⊕ L) → P(O ⊕ Ld−1)
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and composing with the canonical isomorphism P(O ⊕ Ld−1) � P(L ⊕ O) induced by ten-
sorization by L we get the desired endomorphism.

Suppose now that d ≡ ±m mod k and that there is an automorphism of B , say ϕ, such
that ϕ∗L � Lm. Since L is of k-torsion, we have a degree d map

O ⊕ L → O ⊕ Ld � O ⊕ L±m � O ⊕ ϕ∗L±1

given on the fibres by

(α, l) �→ (αd, l⊗d)

and hence a map φ1 : P(O ⊕ L) → P(O ⊕ ϕ∗L) of degree d that induces the identity on the
base. Moreover the natural map

φ2 : P(O ⊕ ϕ∗L±1) � P(O ⊕ L±1) ×ϕ B → P(O ⊕ L±1) � P(O ⊕ L)

is an isomorphism that induces ϕ on the base. It follows that φ = φ1 ◦ φ2 is a nontrivial self-
map of P(O ⊕ L) that induces ϕ on the base. The final part of the statement holds setting
f = φ. �

Proposition 18 Let X = P(E ) → B be a projective bundle, with E a locally free sheaf of
rank two on B a curve of genus g(B) ≥ 2. Suppose X admits a nontrivial self-map f of
degree two, then either

(i) X = P(O ⊕ L) with L a torsion line bundle, or
(ii) The ramification divisor Rf of f is a smooth irreducible curve, the restriction of π to

Rf is an étale double covering of B and the normal bundle NRf /X to Rf in X is a
torsion line bundle of order strictly greater than 2.

Proof Let f : X → X be a nontrivial self-map of degree two. Since fB is an automorphism,
the restriction of f to every fiber is a double covering of P

1, hence it ramifies at exactly two
points. It follows that Rf is a smooth curve intersecting transversally every fiber of π in two
points. Therefore Rf is either union of two disjoint sections S1 and S2 or it is irreducible
and an étale double covering of B .

In the first case each one of this sections has zero self-intersection by Lemma 10. If
X is not the trivial projective bundle then S1 and S2 are the unique sections of zero self-
intersection. Moreover the image T = f (S1) is a section of zero self-intersection by Re-
mark 9, therefore T = Sj for either j = 1 or j = 2. As a particular case of (8) we get

f ∗
B NSj /X � (NS1/X)2

and since NS1/X � N ∨
S2/X we obtain

either f ∗
B(N ∨

S1/X) � (NS1/X)2 or f ∗
B NS1/X � (NS1/X)2.

In both cases, since fB has finite order in the group of automorphisms of B , NS1/X (hence
also NS2/X) is a torsion line bundle.

We turn our attention to case (ii), namely when Rf is irreducible. We denote by
i : X → X the involution associated with f . We may assume that X contains no sec-
tions with zero self-intersection. Otherwise, denote by S such a section, the curves S and
S ′ := i(S) are numerically equivalent, hence they are disjoint. It follows that NS/X = N ∨

S′/X
.
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On the other hand, since i descends to the identity on B it induces an isomorphism
NS/X � NS′/X . We conclude X � P(O ⊕ NS/X) and N ⊗2

S/X � O and we are in case (i).
We may also assume that f (Rf ) = Rf . Otherwise the image T = f (Rf ) satisfies, by

Remark 9, T 2 = 0 and since by the above argument we may suppose that f (T ) is not
a section, we have that T �= i(T ). Since T and i(T ) are numerically equivalent they are
disjoint too. Hence making a base change by the étale double covering π|T : T → B we
get a P

1-bundle over T with four disjoint sections (two of them mapping onto T and the
others onto i(T )), so this projective bundle is trivial and X is the quotient of T × P

1 by a
Z/2Z-action without fixed points. Such an action is always diagonal (see Remark 19), hence
there exist p1,p2 ∈ P

1 such that T × pi is sent to itself by the Z/2Z-action. The image Si

of T × pi in X is a section and the pullback of its normal bundle to T × pi is trivial. Hence
NSi/X is a torsion line bundle of order two and we are again in case (i) of the proposition.

Finally assuming f (Rf ) = Rf and denoting by f̂ : Rf → Rf the restriction of f we get
f̂ ∗NRf /S � N 2

Rf /S and since f̂ has finite order, the normal bundle NRf /S is a torsion line

bundle. We can exclude that N 2
Rf /S � O. Indeed this would imply that NRf /S = O, and after

a base change by the restriction of π to Rf we get a P
1-bundle over Rf having two sections

with trivial normal bundles, so again it is the trivial P1-bundle and X is as in case (i). �

We are now in position to prove Theorem 13.

Proof of Theorem 13 Let X = P(E ) be a surface admitting a self-map of degree n for every
n ∈ N. By Proposition 18 either

(i) X = P(O ⊕ L) with L a torsion line bundle, or
(ii) there exists a nontrivial self-map of X of degree two such that the restriction of π to the

ramification divisor Rf of f is a nontrivial étale double covering of B and the normal
bundle NRf /X to Rf in X is a torsion line bundle of order strictly greater than 2.

In case (i) we may suppose that L is not trivial since otherwise our statement is clearly true.
Let k ≥ 2 be the order of L. By Proposition 17, for every non zero r ∈ Z/kZ there exists
ϕ ∈ Aut(B) such that ϕ∗(L) � L±r . We only need to remark that k must be prime since
pulling back by an automorphism of B preserves the order of a torsion line bundle.

In case (ii) let m be the order of NRf /X .

Claim 1 For every curve C �= Rf on X such that C2 = 0, the intersection number C · F is
a multiple of m.

Proof of Claim 1 The étale double covering Rf → B induces an étale double covering
h : Rf ×B X → X and h−1(Rf ) is the union of two disjoint sections S1 and S2 whose normal
bundles are NRf /X and N ∨

Rf /X . Hence Rf ×B X � P(O ⊕ NRf /X). Let C ′ be a component

of h−1(C), since P(O ⊕ NRf /X) contains no curve with negative self-intersection we have
C ′2 = 0. Moreover C ′ �= S1, S2 because C �= Rf . By Remark 16, C ′ is a degree m cover of
Rf and, since the degree of h is two, the degree of the restriction of π to C = h(C ′) ⊂ X is
either m or 2m. In both cases m divides C · F . �

We are going to show now that X does not admit a nontrivial self-map of degree m.
Indeed, let g : X → X be such a map. Pulling back the divisor Rf we get

g∗(Rf ) = aRf +
∑

biCi (9)
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where bi > 0 and C2
i = 0 for all i. By Remark 9 the curve g(Rf ) has self-intersection zero,

moreover since g induces an automorphism on the base B , we have g∗(Rf ) · F = 2 < m.
We deduce by Claim 1 that g(Rf ) = Rf . Therefore a is strictly positive too. Intersecting
both members of (9) with F we get

2m = 2a + bm

where b = ∑

i bi . Since a > 0 either b = 1 and 2a = m or b = 0 and a = m. In both cases
a ≥ 2 because m > 2. Let ĝ : Rf → Rf be the restriction of g and denote by i : Rf → X the
closed embedding. Then

ĝ∗(NRf /S) = i∗g∗(O(Rf )) = i∗(O(aRf )) = N a
Rf /S.

This is absurd because ĝ is an automorphism, NRf /S is a torsion line bundle of order m

and N a
Rf /S is a torsion line bundle of order m/a < m. This proves the ‘only if’ part of the

statement, the ‘if’ part follows directly from Proposition 17. �

It is not immediately clear whether or not surfaces satisfying the characterization of The-
orem 13 do exist. In order to provide examples of such surfaces, we are going to reformulate
Theorem 13 in terms of étale quotients of trivial projective bundles, this is the content of
Corollary 20. This will lead us to explicit examples, see Examples 21.

We start with the following remark in which among other things we will fix notations
needed later on.

Remark 19 Let C be a smooth projective curve of genus g(C) > 1. Let h : P
1 ×C → P

1 ×C

be a nontrivial self-map, since g(C) > 1 we have h = h1 × h2 where h1 : P
1 → P

1 is a
nontrivial self-map and h2 : C → C is an automorphism.

Let G be a cyclic group of automorphisms of C that acts on P
1 × C. For every g ∈ G

we denote by �g : P1 × C → P1 × C the induced automorphism. In particular �g = φg × g

where φg is an automorphism of P
1. It follows that G acts on P

1 too and the action on P
1 ×C

is the induced diagonal action. Moreover if g ∈ G is nontrivial, then there exists an affine
coordinate z on P

1 such that φg(z) = εz where ε is a m-th root of the unity.

Corollary 20 Let X be a nontrivial P
1-bundle over a smooth projective curve B of genus

g(B) > 1. The surface X admits self-maps of any given degree if and only if there exist a
prime number p, a curve C and a group G of automorphisms of C acting on P

1 such that

(i) G is cyclic of order p , it acts freely on C, faithfully on P
1 and X is a Galois étale

quotient X � (P1 × C)/G.
(ii) For every non zero δ ∈ Z/pZ there exists an automorphism ϕ ∈ Aut(C) such that for

every g ∈ G either ϕ ◦ g = gδ ◦ ϕ or ϕ ◦ g = g−δ ◦ ϕ.

Proof Let X be a nontrivial P
1-bundle over a curve B admitting nontrivial self-maps of any

given degree. We are going to prove that there exists a prime p such that (i) and (ii) hold. By
Theorem 13, X � P(O ⊕ L) where L is a p-torsion line bundle on B , p a suitable prime. Let
j : C → B be the Galois étale cover of B determined by L, G ⊂ Aut(C) its Galois group,
G is cyclic of order p. Let j : X ×B C → X be the induced Galois étale cover. Since L pulls
back to a trivial line bundle on C,

X ×B C � P
1 × C
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and X is the quotient of X ×B C by a G-action. The action of G on P
1 × C is diagonal

(see Remark 19), moreover G acts freely on C, and faithfully on P
1, otherwise X would be

isomorphic to P
1 × B .

Let δ ∈ (Z/pZ)∗ be the representative of a prime d and let f : X → X be a nontrivial self-
map of degree d . We claim that f lifts to a degree d endomorphism ˜f : P

1 ×C → P
1 ×C. As

a first step we are going to show that the induced automorphism fB lifts to an automorphism
˜fC : C → C. By Proposition 17, f ∗

B(L) � L±δ , hence j ∗ ◦f ∗
B(L) � j ∗(L±δ) � OC and there

exists an induced regular map of algebraic varieties γ : C × C → L, where L denotes the
total space of the line bundle L. Denote moreover by s : C → C × C a non zero section of
C × C and by prL : L → B the bundle map.

The image γ ◦ s(C) is a projective curve in the complement of the zero section in L, by
Remark 16 the restriction of prL to such a curve gives an étale covering of B isomorphic
to the étale covering j : C → B . Denote by σ an isomorphism between these two étale
covering of B , we then have

fB ◦ j = prL ◦ γ ◦ s = j ◦ σ ◦ γ ◦ s

hence fB lifts to the automorphism ˜fC ∈ Aut(C) given by ˜fC := σ ◦ γ ◦ s.

Finally we are going to show that the existence of the lift ˜fC of fB implies the existence of
a lift ˜f : P

1 ×C � X×B C → P
1 ×C � X×B C of f . Indeed, denoting by π̂ : X×B C → C

the projection on the second factor, we have a commutative diagram

X ×B C

˜f

π̂

j

X ×B C

j

π̂X
f

π

X

π

C

j

˜fC

C

j

B
fB

B

where the dotted arrow ˜f exists by the universal property of the fiber product X ×B C since
π ◦f ◦ j = j ◦ ˜fC ◦ π̂ . By Remark 19 we have ˜f = ψ × ˜fC where ψ : P

1 → P
1 is a degree d

nontrivial self-map of P
1. By the last part of Proposition 17, we may also suppose that either

f ∗(Si) = dSi or f ∗(Si) = dSj . Since sections S1 and S2, up to a change of coordinates, lift
to {0} × C and {∞} × C on P

1 × C, it follows that the endomorphism ψ is given by either
z �→ azd or z �→ bz−d , a, b ∈ C

∗. Since ψ × ˜fC descends to X, there exists a positive integer
δ such that for every g ∈ G

(ψ × ˜fC) ◦ �g = (ψ × ˜fB) ◦ (φg × g)

= (φδ
g × gδ) ◦ (ψ × ˜fC) = �δ

g ◦ (ψ × ˜fC). (10)

Recall that g ∈ G nontrivial acts on P
1 × C by φg(z, b) = (εz, g(b)) where ε is a nontrivial

pth root of the unity (Remark 19). The first component of equality (10) gives either aεdzd =

Author's personal copy



Surfaces with surjective endomorphisms

aεδzd or b/εdzd = bεδ/zd hence δ ≡ ±d mod p. The second component of equality (10)
implies instead ˜fC ◦ g = g±δ ◦ ˜fC and setting ϕ := ˜fC we get item (ii).

To prove the remaining implication observe that the endomorphism of P
1 × C given by

(z, b) �→ ( 1+zp

zp−1 , b) always descends to the quotient X. The same holds true for the degree d

endomorphism, p � d , (z, b) �→ (z±d , ϕ(b)) in case ϕ ◦ g = g±δ ◦ ϕ. �

Examples 21 Fix a prime number p, let A be a finite group containing a cyclic group of
order p, Z/pZ ⊂ A. Let NA(Z/pZ) be the normalizer of Z/pZ in A. Letting

ρA : NA(Z/pZ) → Aut(Z/pZ)

be the homomorphism obtained by conjugation, we denote by

ρA : NA(Z/pZ) ⊕ Z/2Z → Aut(Z/pZ)

the homomorphism given by

(g,α) �→ (−1)α ◦ ρA(g).

Item (ii) of Corollary 20 can be restated asserting the surjectivity of the homomorphism

ρAut(C) : NAut(C)(Z/pZ) ⊕ Z/2Z → Aut(Z/pZ).

To construct examples of surfaces that satisfy the conditions in Theorem 13 or Corol-
lary 20 for any prime p, it will be enough to construct a smooth projective curve C of genus
g(C) > 1 such that its automorphisms group contains the group Z/pZ as a subgroup acting
without fixed points and such that ρAut(C) is surjective.

By a classical result of Hurwitz every finite group ̂G can be realized as an automorphism
group of a projective curve C of genus greater than or equal to two [5, Corollary 3.15, p. 15].
Moreover we can also realize ̂G as a subgroup of Aut(C) in such a way that it acts freely on
C. Indeed such a ̂G fits in a short exact sequence

0 → K → 
 → ̂G → 0

where 
 is a free Fuchsian group that acts freely on the upper half plane U and C � U /K .
But now C is an intermediate covering of the universal covering U → U /
 � C/̂G and
hence ̂G must act freely.

Finally, choosing ̂G such that Z/pZ and ρ
̂G is surjective (e.g. taking a semi-direct prod-

uct ̂G = Z/pZ � Aut(Z/pZ)) and letting C be a curve such that ̂G acts freely on C, we get
our examples.

5 κ(X) = −∞: P
1-bundle over an elliptic curve

In this section, as the title suggests, we will fix our attention on P
1-bundles over an elliptic

curve, namely case (v) of Theorem 3. We keep notations introduced at the beginning of the
previous section, in particular E will denote a locally free sheaf of rank two on an elliptic
curve E.

Remark 22 According to the classification of vector bundles of rank two over an elliptic
curve, we may, and will, assume that X is isomorphic to P(E ) where E is one of the following
locally free sheaves:
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(i) E = O ⊕ L for a line bundle L over E;
(ii) there is a nontrivial extension

0 → O → E → O → 0;

(iii) there exists a point q ∈ E and a nontrivial extension

0 → O → E → O(q) → 0.

We start by analyzing (ii)–(iii) of Remark 22.

Proposition 23 Suppose that

0 → O → E → O → 0 (11)

is a nontrivial extension on the curve E. If f : P(E ) → P(E ) is a nontrivial self-map then
fE is not an automorphism of E. It follows that there are infinitely many primes that do not
appear as degree of a nontrivial self-map of P(E ).

Proof Denote by S the section of X associated to the inclusion of O in E given by (11).
In order to prove the proposition it is enough to prove that S is the only irreducible curve
of zero self-intersection on X that is not contained in a fiber of the projection to E. Indeed
suppose that fE is an automorphism of E, since R2

f = 0 and on X there are no curves
of negative self-intersection, the support of Rf is union of irreducible curves of zero self-
intersection whose projection to E is dominant. If S is the only curve on X of such type,
then Rf = mS for a suitable integer m, but this implies that the restriction of f to the fibres
must be a nontrivial self-map of P

1 whose ramification divisor is supported on only one
point, a contradiction.

Let us prove now that S is the only irreducible curve of zero self-intersection on X that
dominates E. Suppose that S ′ in another such curve. Since (KX/E +S ′).S ′ = 0, S ′ is smooth
and h : S ′ → E the restriction of the projection π : X → E to S ′ is étale. After extending
the base to S ′ we have

S ′ ×E X = P(h∗E ),

and P(h∗E ) has two sections of self-intersection zero, namely the pullback of S and S ′ by
the second projection. It follows that h∗E splits, and the pull-back of the extension (11)

0 → OS′ → h∗E → OS′ → 0

is trivial. But the map induced by h on Ext1

Ext1
E(O, O) → Ext1

S′(O, O)

corresponds in co-homology to

H1(E, O) → H1(S ′, O)

which is injective, a contradiction. �
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Proposition 24 Let

0 → O → E → O(q) → 0 (12)

be a nontrivial extension on the elliptic curve E. If f : P(E ) → P(E ) is a nontrivial self-map
then degf �= 2.

Proof Suppose f is a nontrivial self-map of degree two. Let S be the section of X cor-
responding to the inclusion of O in E given by (12) and as usual let F be a fiber of the
projection of π : X → E. Since by hypothesis f has degree two and S2 = 1 we have

f ∗S · f ∗S = 2. (13)

Moreover by the Projection Formula

F · f ∗S =
{

2 if deg(fE) = 1

1 if deg(fE) �= 1
(14)

then

(f ∗S)2 =
{

1 + 2b

4 + 4b

for a suitable integer b. In either cases this leads to a contradiction in view of (13). �

Now we come to (i) of Remark 22. We will need the following elementary lemma. If
deg(L) > 0 then X = P(O ⊕ L) has a unique curve of negative self-intersection and by
Lemma 10 every nontrivial self-map of X has degree a square. Hence we may suppose that
deg(L) = 0.

Lemma 25 Suppose X = P(O ⊕ L), where L is a line bundle of degree zero on E.

(i) If L is not a torsion line bundle, then there is no nontrivial self-map of X that induces
an automorphism on the curve E.

(ii) There exists a nontrivial self-map f : X → X that induces isomorphisms on the fibres
and a nontrivial self-map ϕ on the base if and only if ϕ∗L = L±1.

Proof On X there are only two sections of zero self-intersection, we denote them by S1

and S2, and keep notations introduced in Remark 15. If C is another irreducible curve on
X that dominates E such that C2 = 0 and C �= S1, S2, then since the numerical class of C

must be a multiple of the numerical class of S1 we have C · Si = 0 and C is disjoint from
S1, S2. Moreover the restriction of the projection π : P(O ⊕ L) → E, π|C : C → E is étale.
Extending the base to C we obtain three sections of zero self-intersection, and then a trivial
bundle. But then

π∗
|C L = (π∗

|C ◦ s∗
1 )O(S1) = OC(S1) = OC

and L must be a torsion bundle. Suppose then that S1 and S2 are the only irreducible curves
of zero self-intersection on X different from a fiber. Since on X there are no curves of
negative self-intersection, if a nontrivial self-map f induces an automorphism on the base
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then the ramification divisor is such that Rf = deg(f )S1 + deg(f )S2. We have that f (Si) =
Sj , and then arguing as in the proof of Proposition 17,

f ∗
E NSj /X = f ∗

Es∗
j O(Sj ) = s∗

i f
∗O(Sj ) = s∗

i O
(

(deg(f )Si

) = (NSi /X)deg(f ).

Since NS1/X = N ∨
S2/X = L the above equalities implies that f ∗

E L = L±deg(f ), and then, since
deg(f ) ≥ 2, L is a torsion bundle.

We are going to prove item (ii) now. We may suppose that L is not a trivial sheaf. Since f

restricts to an automorphism on the fibres, f ∗Si ·F = 1 and f −1(Si) is a section of zero self-
intersection, i = 1,2, hence f (Si) = Sj . Again, it follows that either f ∗

E L = L or f ∗
E L = L∨.

This concludes the proof of the only if part of our statement. For the if part, observe that the
first projection

X ×ϕ E → X

is a finite surjective morphism and since X ×ϕ E � X as projective bundles it induces a
nontrivial self-map of X with the desired properties. �

Remark 26 As a consequence of Lemma 25, if deg(L) = 0 and L is not a torsion bundle,
then every nontrivial self-map of P(O ⊕ L) induces an isomorphism on fibres, and the only
possible degrees of nontrivial self-maps of X are degrees of nontrivial self-maps of E. In
view of Corollary 6 we will then assume through the rest of this paper that X is as in case (i)
of Remark 22 and L is a k-torsion line bundle.

If k = 1,2,3, then every prime is either a multiple of k or is congruent to ±1 modulo k,
and by Proposition 17(ii) there exists a nontrivial self-map of any given degree of X. If k > 3
then the existence of nontrivial self-maps of any given degree depends on the geometry of
E and L.

Notations 27 We will denote by Ei = C/(C ⊕ Ci) and Eρ = C/(C ⊕ Cρ) where ρ3 = 1,
ρ �= 1. We have

Aut(Ei) = {1,−1, i,−i} � Z4

and

Aut(Eρ) =
{

1

2
+

√
3

2
i,−1

2
+

√
3

2
i,−1

2
−

√
3

2
i,

1

2
−

√
3

2
i,−1,1

}

� Z6

moreover if E �= Ei,Eρ then

Aut(E) = {1,−1} � Z2

where Aut(E) denotes the automorphism group for the abelian variety structure of an elliptic
curve E.

Remark 28 We are going to collect in this remark, for reader’s convenience, some elemen-
tary facts on the ring of endomorphisms of an elliptic curve. Let E be an elliptic curve and
End(E) its ring of endomorphisms. If E does not have complex multiplication then End(E)

is a free Z-module of rank one, every endomorphisms is given by multiplication by n, a
given integer, and the only possible degrees are squares.

If E has complex multiplication then End(E) is a rank two free Z-module and
EndQ(E) = End(E) ⊗Z Q is a complex algebraic extension of Q and [EndQ(E) : Q] = 2.
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Moreover End(E) ⊆ OEndQ(E), i.e. every endomorphism of E is an algebraic integer in
EndQ(E), and

deg(α) = NEndQ(E)/Q(α) = α · ᾱ, ∀α ∈ End(E),

where NEndQ(E)/Q() denotes the norm of an element in the field extension EndQ(E)|Q (see
[9, p. 8]). In particular, if a prime number p which is not ramified in EndQ(E) is the degree
of an endomorphism of E, then it splits completely in EndQ(E).

Lemma 29 Suppose E �= Ei,Eρ and X = P(OE ⊕ L) with L of k-torsion. If X has a
nontrivial self-map of any given degree then ϕ(k) < 4, where ϕ denotes the Euler’s totient
function.

Proof Since we suppose Aut(E) ∼= Z2, if f : X → X is a nontrivial self-map of prime de-
gree p = deg(f ) and fE ∈ Aut(E) then by Proposition 17 either p is congruent to ±1 mod-
ulo k or p = k. Denote by P1 the set of primes obtained in the above way, and denote by P2

the set of primes p such that there exists a nontrivial self-map f : X → X with deg(fE) = p.
By Dirichlet Theorem the analytic density of P1 is less than or equal to 2/ϕ(k) ≤ 1/2. In
what follows we may suppose that E has complex multiplication, otherwise the set P1 ∪P2

would have analytic density less than or equal to 1/2 and our claim would be clearly true.
The set P2 is then contained, up to a finite set containing ramified primes (recall Remark 28
above), in the set of primes that split completely in the complex quadratic number field
EndQ(E), denote this set by P′

2. It follows by Čebotarev density theorem that the analytic
density of P′

2 is less than or equal to 1/2. If moreover ϕ(k) > 4 then the analytic density of
the set P1 is strictly less than 2/5 and it follows that (P1 ∪P2)

c contains an infinite number
of primes.

Suppose then that ϕ(k) = 4 and that P1 ∪ P2 equals the set of primes, then P1 ∪ P′
2

has analytic density one. We are going to show that P1 ∩ P′
2 has non zero analytic density,

and this will lead us to a contradiction. We may suppose that the lattice of E is contained in
Q(i

√
a) where a is a positive square free integer. Observe that

P
′
2 =

{

p prime
∣

∣

∣

(−a

p

)

= 1

}

where (a/p) denotes the Legendre symbol, see [11, p. 199]. Write a = p1 . . . pn for the
prime decomposition of a. Since the Legendre symbol is multiplicative, if (−1

p
) = 1 and

(
pi

p
) = 1 for i = 1 . . . n then ( a

p
) = 1. If p ≡ 1 mod 4pi then (

pi

p
) = 1, indeed for pi odd,

(

pi

p

)

= (−1)
p−1

2
pi−1

2

(

p

pi

)

=
(

p

pi

)

by Gauss’ Quadratic Reciprocity Law and

(

p

pi

)

≡ p
pi−1

2 ≡ 1 mod pi

by Euler’s Criterion. Moreover (−1
2 ) = ( 2

p
) = 1 if p ≡ 1 mod 8 [11, p. 65] for pi = 2. It

follows that p ∈ P1 ∩ P′
2 if p ≡ 1 mod 8ak and the analytic density of the set of primes

satisfying this congruence equals 1/ϕ(8ak). The proof of the Lemma is now complete. �
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Remark 30 If L is a k-torsion line bundle, k = 4,6, then by Proposition 17 the surface
P(O ⊕ L), E �= Ei,Eρ , has nontrivial self-maps of any given prime degree p �= 2 if k = 4
and p �= 2,3 if k = 6. Moreover, if k = 4 then a nontrivial surjective endomorphism f :
X → X with deg(f ) = 2, is such that deg(fE) = 2. Analogously if k = 6 and deg(f ) = 2,3
then we must have deg(fE) = 2,3 respectively. In general if k ≥ 4 and f : X → X is a
nontrivial self-map of degree a prime p < k then we must have deg(fE) = p.

We are now in position to conclude the analysis of case (i) Remark 22. We will make
use of the following elementary Lemma regarding complex multiplications. In what follows
we will always suppose that the lattice relative to a given elliptic curve is generated by 1, τ ,
where τ is a complex number. This does not involve any loss of generality.

Lemma 31 The only possible complex multiplications of degree two are ±1 ± i,± 1
2 ±

√
7

2 i,

±√
2i. If an elliptic curve has complex multiplication by ±1 ± i then it is isomorphic to Ei .

If an elliptic curve has complex multiplication by ± 1
2 + ±

√
7

2 i then it is isomorphic to the

curve relative to the lattice 〈1, 1
2 +

√
7

2 i〉.

Proof For the first part of our statement, recall that if E is an elliptic curve with complex
multiplication then EndQ(E) = Q(i

√
a), a > 0 a rational integer, and End(E) is contained

in the ring of integers of Q(i
√

a). A direct computation shows then that the only complex
multiplications of degree two are the ones listed in our statement. If an elliptic curve E has
complex multiplication by either ±1± i or ± 1

2 +±
√

7
2 i then EndQ(E) coincides respectively

with the ring of integers of Q(i), Q(i
√

7), say R. If � denotes the lattice of E then R ·
� ⊆ � and � is fractional ideal of Q(i), Q(i

√
7) respectively. These two fields have class

number one [9, p. 37], so that, after an isomorphism � becomes equal to 〈1, i〉, 〈1, 1
2 +

√
7

2 i〉
respectively. �

Lemma 32 If L is a k-torsion line bundle on the elliptic curve E, with k ≥ 4, then the
surface X = P(O ⊕ L) admits nontrivial self-maps of any given degree if and only if

• k = 4, E is the elliptic curve relative to the lattice 〈1, 1
2 + i

√
7

2 〉, and μ∗L = 0 where μ is

the endomorphism of E induced by multiplication by either 3
2 + i

√
7

2 or 3
2 − i

√
7

2 .
• k = 5, E = Ei and μ∗L = 0 where μ is the endomorphism of E induced by multiplication

by either 2 + i or 2 − i.
• k = 7, E = Eρ and μ∗L = 0 where μ is the endomorphism of E induced by multiplication

by either 5
2 + i

√
3

2 or 5
2 − i

√
3

2 .

Proof Suppose for the moment that E �= Ei,Eρ . As already observed, see Remark 30, X

admits a nontrivial self-map of degree two if and only if we can lift a nontrivial self-map,
say α, of degree two of E. Thanks to Lemma 25 this is possible if and only if α∗L = L or
what is equivalent

(1 − α)∗L = 0. (15)
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By Lemma 31, α = ± 1
2 ±

√
7

2 i,±√
2i. In the latter case (1 − α) has degree three1 and (15)

implies either k = 3 or k = 1 a contradiction. If α = 1
2 ±

√
7

2 i then (15) implies k = 2 a

contradiction. If α = − 1
2 ±

√
7

2 i then (15) implies k = 4, L is in the kernel of either 3
2 + i

√
7

2

or 3
2 − i

√
7

2 . In either cases we are able to lift α and X admits a nontrivial self-map of any
given degree, see Remark 30.

Suppose now that E = Ei . In order for X to admit a nontrivial self-map of degree two
either we are able to lift ±1 ± i or i∗L = L±2. Hence k = 5, L is in the kernel of either 2 + i

or 2 − i and by Proposition 17 we have nontrivial self-maps of any given degree.
Finally let E = Eρ . In this case the only way to obtain a nontrivial self-map of degree two

is to lift ψ ∈ Aut(E) with ψ∗L = L±2. But this last condition implies that k = 7 and L is in
the kernel of either 5

2 + i
√

3
2 or 5

2 − i
√

3
2 . It follows that there is an element λ ∈ Aut(Eρ) such

that λ∗L = L2 hence and (λ)∗(λ)∗L = L4. By Proposition 17 we have nontrivial self-maps
of any given degree. �

Finally, for reader’s convenience, we collect results obtained in this section in the follow-
ing Corollary. It provides the last step in establishing Theorem 2.

Corollary 33 X is P
1-bundle over an elliptic curve E, P(O ⊕ L), where L is a k-torsion

line bundle on E and either k = 1,2,3 or

• k = 4, E is the elliptic curve relative to the lattice 〈1, 1
2 + i

√
7

2 〉, and μ∗L = 0 where μ is

the endomorphism of E induced by multiplication by either 3
2 + i

√
7

2 or 3
2 − i

√
7

2 .
• k = 5, E = Ei and μ∗L = 0 where μ is the endomorphism of E induced by multiplication

by either 2 + i or 2 − i.
• k = 7, E = Eρ and μ∗L = 0 where μ is the endomorphism of E induced by multiplication

by either 5
2 + i

√
3

2 or 5
2 − i

√
3

2 .

Proof This is an immediate consequence of Remark 26, Proposition 23, Proposition 24 and
Lemma 32. �
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