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DERIVATIONS OF VON NEUMANN ALGEBRAS
INTO THE COMPACT IDEAL SPACE OF A
SEMIFINITE ALGEBRA

SORIN POPA anD FLORIN RADULESCU

1. Introduction and statement of results. Let M be a semifinite von Neumann
algebra and let #( M) be the norm closed two-sided ideal generated by the finite
projections of M. Let N C M be a subalgebra of M. A derivation of N into
F(M) is a linear application §: N — Z(M) satisfying 8(xy) = 8(x)y + x8(y)
for x, y € N. For instance, if K € #(M), then the derivation §(x) = (ad K)(x)
= Kx — xK is of this type. Such derivations implemented by elements in #(M)
are called inner. There are many examples of derivations of *-subalgebras
N C M into the ideal #(M) which are not inner. A typical such example is as
follows: Take M = Z(L*(T, p)), where p is the Lebesgue measure on the torus
T, let N=C(T) act on L*(T, ) by left multiplication, and define 8(x) =
(ad Py2)(x), where Py is the projection onto the Hardy subspace H*(T, u)
([1], [11]). Then it is easy to see that 8(x) € A (H#) =_F(HB (X)) for x € C(T)
and that 8 is not implemented by a compact operator.

We will, however, show in this paper that if N is self-adjoint and w-closed in
M, then, except for certain situations, all derivations of N into (M) are inner.
Moreover, for the most typical excepted case we’ll construct a counterexample.

This derivation problem was initiated in the case M = #(J¢) and #(M) =
A () by Johnson and Parrott in a paper of the early *70s ([3]). In that paper
Johnson and Parrott wanted to characterize the commutant modulo the ideal of
compact operators X () C #(5¢) for a von Neumann algebra N C B(¥).
They noted that in order to identify it with the compact perturbations of the
commutant of N in #(¢), it suffices to show that any derivation §: N — X '(¢)
is inner. They proved that this is indeed the case if N has no certain type II,
factors as direct summands. To do this they first solved the case when N is
abelian, the other cases being rather easy consequences of it. The general type II,
case was proved recently in [7] by different techniques and using more of the
ergodic theory of the type II, factors.

In [4] this derivation problem is studied in the more general setting when
AB() is replaced by a semifinite von Neumann algebra, /(o) by the ideal
F (M), and the center of N is assumed to contain the center of M. Under this
hypothesis it is proved that if N is either an abelian or a properly infinite
von Neumann algebra, then any derivation of N into (M) is inner.
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To state our results in precise terms, let us first recall that any von Neumann
algebra N can be decomposed into a direct sum N = N, ® N, with N, a finite
type I von Neumann algebra and N, a von Neumann algebra that has no finite
type I summands. We will then say that N,, as a subalgebra in M, is locally
compatible with the center of M, (M), if there exists a partition of the
unity { p;},c; in the center of Ny, Z(N,), so that for each i we have either
Z(No)p; € Z(M)p, or Z(M)p; C Z(Ny)p;.

1.1. THEOREM. Let M be a semifinite von Neumann algebra and F(M) its
compact ideal space. Let N C M be a weakly closed *-subalgebra of M and suppose
the finite type 1 summand of N is locally compatible with the center of M (in the
sense described above). Then any derivation of N into #(M) is inner. Moreover, if
8: N - #(M), then there exists K € #(M), |K|| < 2||8]| with § = ad K. In
particular, the commutant modulo F(M) of N in M equals N' N M + #(M).

Thus, Theorem 1.1 solves in the affirmative the derivation problem if N is of
type II; or properly infinite. It also gives an affirmative answer to the remaining
case when N is finite of type I (e.g., when N is the tensor product of a matrix
algebra with an abelian algebra) under an additional assumption of local compat-
ibility between the centers of N and M. The typical situation when this condition
is not fulfilled is when N is abelian and diffuse (i.e., without atoms), & (M) is
also diffuse, and N and Z'(M) are independent von Neumann algebras, namely,
N and & (M) generate the von Neumann algebra N ® & (M) with N, (M)
sitting inside it as N ® 1 and 1 ® & (M).

The second theorem that we will prove in this paper deals with the most simple
such case, left open by Theorem 1.1, namely, when M = L*([0,1],A) ®
B(LX(T,p)) and N =1 ® L*(T, p). In this case we will construct a counterex-
ample, showing the existence of a derivation of N into ,#(M) not implemented
by an element in #(M). This is somehow unexpected and is probably the first
nonvanishing 1-cohomological result in von Neumann algebras. It practically
shows that the one-parameter version of Johnson and Parrott’s original result
may fail to be true. In order to have an alternative, more intuitive interpretation
of the next theorem, the reader should notice that we may identify M =
L=([0, 1], A) ® B(LX(T, p)) with L2([0, 1], B(LX(T, u))), F(M) with
L>([0,1], X" (LX(T, p))),and N = 1 ® L®(T, p) with the set of constant L*(T, p))
valued functions on the interval [0, 1].

1.2. THEOREM. Let M = L*([0,1], \) ® B(L*(T,p)), N=1® L*(T,p) C
M. There exists an operator T € M which commutes modulo #(M) with all the
elements in N but which is not a compact (i.e., F(M)) perturbation of an element
commuting with M. In particular, there exists a derivation 6(= ad T') from N into
F (M) which is not inner, i.e., not implemented by an element in F(M).

The paper is organized as follows: In sections 2-7 we prove Theorem 1.1 and
in section 8 we prove Theorem 1.2. We will now present some of the ideas behind
the proof of Theorem 1.1.
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A key idea of our proof is to work with a new norm on the algebra M, denoted
Il 1ll, which in our problem turns out to be the right correspondent of the uniform
norm on #(¥). This norm has two main features: it helps one deal with the
center of M when diffuse and with the continuous dimension of projections when
M is of type II .. The definition and main properties of the norm ||| ||| are
discussed in section 2.

We then prove Theorem 1.1 in the case N is atomic and abelian. In the proof
we define the operator implementing & as £;8(e;)e;, where e; are the atoms of N
and the series is strongly convergent, and we use an adaptation of a trick in [3] to
show that ¥,8(e,)e; € #(M).

By the atomic abelian case and by the same argument as in 4.1 [7] (for
M = ZB(5)) we prove a continuity result, namely, that if N is finite and
countably decomposable, then § is continuous from the unit ball of N with the
strong operator topology into ,#(M) with the norm ||| |||. Using this result, we
prove that, in most situations, if an element T is in K = EBW{S(u)u*|u unitary
element in N} C M and implements & on N, then it is in #(M). From this we
easily get the proof of the theorem for finite type I (under the local compatibility
condition) and properly infinite algebras and also reduce the remaining type II,
case to the situation when N is separable and M is countably decomposable.
Moreover, by using the Ryll-Nardzewski fixed point theorem in the same’ way it
is used to prove the Kadison-Sakai theorem on derivations of von Neumann
algebras, we make the reduction to the case when N’ N M contains no finite
projections of M.

Finally, we prove the type 1I; case under the above assumptions: To construct
a candidate for the operator K € _¢(M) implementing § on N, we show that N
has an approximately finite-dimensional type II, von Neumann subalgebra R ¢ N
which contains a maximal abelian *-subalgebra 4 of N such that 4’ N M
contains no finite projections of M. The proof of this fact is inspired by [6].

We then deduce that there exists K € _¢(M) implementing 6 on A, and the
rest of the proof shows that in fact this K implements 8 on all N. To this end we
proceed by contradiction, following the lines of the proof in [7]. The assumption
8, = 8 — ad K # 0 shows that 8,(v) # 0 for some unitary element v € N. Then,
with the help of 4 and v and using some technical devices similar to 2.1 in [7],
we construct a sequence of abelian subalgebras 4, in N on which §, behaves as
badly as possible. More precisely, we construct the algebras A4, together with
some finite projections e, € M so that if we consider M as acting on L(M, o),
then the compressions of §)|4, to the spaces 4,e,C L?(M, ¢) are spatially
isomorphic to a sequence of derivations §,: L*(T, p) = Z(LX(T, p)). We do this
in such a way that the derivations 8, behave more and more like ad P,z and,
moreover, so that by the continuity result the limit ad Py: follows so-normic
continuous. This is easily seen to be a contradiction. We mention that the
construction of the finite projections e,, which doesn’t appear in [7], is essential
here and carries most of the technical difficulties of passing from the case
M = ZB(5) to the general case. In fact the reader will note that, although the
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proof of Theorem 1.1 is inspired in certain places by [3] and [7], our approach is
rather new even when particularized to the case M = #(¢).

It is our feeling that the new techniques we introduce here to deal with the case
M is of type I may also be used to prove Voiculescu or Andersen stability type
theorems obtained when replacing #(5¢) by a type I factor M and X'(5¢) by
F(M).

As the referee of the first version of this paper pointed out to us, the paper
contained an error in one of the preliminary considerations, a fact that actually
made that proof of Theorem 1.1 correct only in the case where the semifinite
algebra M had atomic center. We deeply thank the referee for pointing this out
to us. However, in order to make the proof of 1.1 work in the generality
presented in this paper, we only had to modify the definition of the norm ||| |||
and to adapt accordingly some of the statements and proofs in the preliminary
section 2, a matter that only affected their form, not their spirit. In turn, the fact
that in certain situations the problem has a negative answer seems to us of even
more interest and clearly deserves further investigation. In particular, our Theo-
rem 1.2 shows that one-parameter versions of classical derivation problems (or
higher cohomological problems) may have negative answers.

2. Some preliminaries.

2.1. Let M be a semifinite von Neumann algebra. Assume M has countable
decomposable (or countable type) center Z (M) and let ¢ be a normal faithful
state on & (M), fixed from now on. We will associate to ¥ a normal semifinite
faithful trace ¢ on M in the following way:

Let M be decomposed into a direct sum as M = @, _,(M; ® B(#,)), where
M, are finite von Neumann algebras and dim ¢ # dim ¢, for i+ j. Let
Z, = Z(M,) be the center of M,;. Then 2 (M) is naturally isomorphic to &2.
On each M, there is a unique normal finite faithful trace ¢; which equals ¢ when
restricted to Z,; (here Z, is regarded as a subalgebra of 8%, = Z (M) in the
obvious way). Thus there exists a unique normal semifinite faithful trace ¢ on M
which equals ¢, ® Tr on M, ® #(¢,), where Tr is the usual trace on Z (7).

We denote M, = {x € M|p(x*x) < o0} and, for x € M, ||x||, = @(x*x)'/2.
Let 5, be the Hilbert space completion of M,, in the norm || ||,. M will always
be regarded in its standard representation, acting on J, by left multiplication.
The usual uniform norm of an operator in M will be denoted || ||.

Note that if e € M is a finite projection, then we do not necessarily have
e € M, (actually, this implication holds true only in the case where the properly
infinite part of M has finite-dimensional center). However, we clearly have

2.1.1. If e € M is an finite projection, then there is an increasing sequence of
central projections p, € Z (M), so that p,11 and ep, € M, for all n.

22. Weset M) , = {x € M||lx|| < 1, p(x*xp) < ¢(p)forall p € Z(M)}.
Although we will not use any reduction theory argument in this paper, it may be
helpful for the reader to note that if M is regarded as a measurable field of
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(semifinite) von Neumann factors, then, roughly speaking, a projection is in Mql). v
if in each point it has dimension < 1.

The following properties of Mq1>,'lz will be frequently used:

221. f T€ M, |T|| <1, then TM, ,C M, , and M) ,T C M} .

%.2.2. If ey, e are projections in M with ey <e and e € Mql,";,,'then ey €
M
133

223. Ifxe M, ,, then x* € M, , and |x| € M, .

2.2.4. 1If f is a nonzero projection in M, then there exists a projection e, # 0
in M;w with e, < f. If, in addition, e is properly infinite with central support p,
then e, may be chosen so as to have central support p and so that ¢(ey) = ¢(p).

Properties 2.2.1-2.2.3 are trivial consequences of the definitions. To prove 2.2.4
it is sufficient to consider the case M = M, ® B(#), where M, is finite with
center (M,) = Z (M) = £, ¢ is a normal faithful stateon &, and ¢ = 7 ® Tr,
where 7 is the unique trace on M, which equals { when restricted to Z'(M,) = Z.
Let e/ be a minimal projection of #(5¢) and e, = 1 ® e;. By the comparison
theorem there exists a central projection p € Z such that eyp < fp and
eo(1 — p) > f(1 — p). Thus, in particular, if f is properly infinite, then f(1 — p)
=0 so that 0 # eyp < fp = f and in fact p equals the central support of f
(because ¢, has central support one). Thus we always have a nonzero projection e
under f in Mqlw, and if, in addition, f is properly infinite, then e may be chosen
to have the trace equal to the trace of e,p, i.e, p(e) = @(eyp) = ¥ (p).

2.3. Definition. For T € M we put ||T|| = sup{||Tx||,|x € M, ,}. This is
clearly a norm on M. It will play an important role in the sequel. Note that
IIT}|l < ||T|| and that the equality holds if M = #( ) but fails if M is non-
atomic.

The next few properties are easy consequences of the definitions and of the
properties of M, ,

231. If T}, T, T € M, then |TTT ||| < I NTNNITI and [|T = WIT* =
Wz -

232. If TeM and {p,}, are disjoint central projections in M, then
WTZ, Palll*> = Z I TPl

233. If T, T, € M, |Tyll < 1, and || T|| = [|TTolll, then ||Tp||| = |ITTop||| for
any central projection p € Z(M).

234. If f€ M is a properly infinite projection with central support p €
Z(M), then ||IflIl = ¥(p)*/2

2.4. We denote by #(M) the norm closed two-sided ideal of M generated by
the finite projections of M. Thus an element T € M is in #(M) if and only if all
the spectral projections E|, .,(|T'|) of |T|, corresponding to intervals [¢, c0) with
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t > 0, are finite projections. Alternatively, Z(M) may be characterized as
follows:

241. K& (M) if and only if, given any e > 0, there is a K, € M,, and
a projection p, € (M) such that Y(p,) > 1 — ¢ Kyp, = K, and
1Kpo — Kol < e

Indeed, assume K € #(M) and let e = E, ,(]K|). Then e is a finite projec-
tion of M, so that by 2.1.1 there exists a projection p, € Z(M) so that
¥(po) > 1 — e and @(ep,) < 0. Let K, = Kep,. Then ¢(K*Ko) < || K ||%p(epo)
< oo and clearly ||Kp, — K| < e.

The other implication is trivial and, in fact, will not be needed in the sequel.

25. Let K € ¢(M) and {e,}, be a sequence of mutually orthogonal projec-
tions in M. If M = Z(5¢), then it follows that ||Ke,|| = 0 and ||e,K|| — 0. This
is no longer true for general M, but still we have |||Ke,||| = 0 and |||e,K]|| = O.
Indeed, to prove this, since K is a linear combination of four positive elements in
F (M), we may assume K is positive and K < 1. Let ¢ > 0 and p € (M),
K, € #(M), such that ¢(K}) < oo, [|Kp — Ky|| < ¢/3, and ¢(p) >
1 — ¢/3 as in 2.4.1. Since e, tend weakly to zero, we have || Kge, |12 = |le, Koll2 =
¢(e,K¢) = 0. Butif x € M}, then we have

"Kenx”(p < "K()enx"tp + "(K - KO)enpx "tp + ”(K - I<0)en(1 - p)x”qJ
< IKeeully + I1Kp — Koll + ¥(1 = p) < |IKee,ll, + 26/3,

so that if n is big enough, then ||Ke,x||,, < ¢ independently on x & Mql,",,. Thus
| Ke,|[| = O and, similarly, ||le,K||| = O.

26. If Te M, we denote by ||T||., = inf{||T — K||| |K €,2(M)}. Note
that if T & _Z(M), then ||T|||.s > 0. Indeed, if T & _#(M), then there exists
¢t > 0 such that E;, ., (|T)) is an infinite projection. Thus there exists a sequence
of mutually orthogonal, mutually equivalent infinite projections { £, },with 0 # f,
< E|; )(IT|). Foreach n we take 0 # ¢, < f,, e, € Mq},, 4> €, mutually equivalent.
Thus if K € ¢(M), we get by 2.5 ||T — K||| > lim,sup|(T — K)e,|l, =
lim sup||Te,||, > t|lejll,, which shows that |||T||| s > ?|le;llg, > O.

In fact, in certain simple situations this norm can be computed.

26.1. If f is a properly infinite projection of central support p, then
N Mess = $(P)V? = |Ifll. More generally, if T€ M, T> 0 is of the form
T = %" 1cf; for some ¢; > 0 and properly infinite mutually orthogonal projec-
tions f; of the same central support p, then |||T||., = (max{c, )¢ (p)/%

Indeed we have ¢, f;, < T < (max{c,;})X;f; for all k, which shows that the first
part implies the second. Now the first part follows by taking a sequence of
mutually orthogonal, mutually equivalent projections e, € M$.¢ under f so that
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each e, has central support p and so that ¢(e,) = ¥/(p). Then for any K € ¢(M)
we get [|f — K|l > lim,sup|l(f — K)e,ll, = ¥(p)"/>

Let us also note that we have for the norm ||| |||, similar properties as the
properties 2.3.2 and 2.3.3 of the norm ||| |||

262‘ If T’ Tb € M’ "72)" < 1’ and |"T|"ess = ”lTTE)I”ess’ then I”Tpmess =
N1 TTypllless for any central projection p € Z(M).

2.6.3. If {p,}, are disjoint central projections in M, then ||TLp,l|%, =
Z TPl

2.7. The norms ||| ||| and ||| ||| Will play a similar role in this paper as the
uniform and usual essential norms do in the proof of the case M = #(5#) in [3]
and [7]. For our general problem these norms have all the advantages but one:
for two operators of disjoint right and left supports the norm of their sum does
not equal the maximum of their norms (as do the uniform and usual essential
norms for M = Z(5¢)). We will instead use the following weaker property of the
001 | [ es-

LemMMA. If T € M and f,, f, are mutually orthogonal projections in M, then
there are central projections p,, p, € (M) such that p, + p, =1 and

”Iszfxpzmess = ”I(flel + f2Tf2)pi|”ess’ i = 1’2'

Proof. Let’s first show that if T;, T, € M, then there exists a central projec-
tion p € (M) such that |||qTy||les = |IT29lles fOr any projection g € Z (M),
q < p, and [|Tiglless < ITpqlls for any projection g € Z(M), g <1 - p. In-
deed, by 2.6.3 it follows that there exists a maximal projection p in Z(M) so
that for any ¢ < p, ¢ € Z(Z(M)), we have [[|Tq|l|es > 1729 llless- Now if for
some ¢y < 1 — p we have ||| Tygollless > I T24ollless» then there exists some p, < g
so that for any ¢ < p, we have |||T19|lles > I729]lless; Otherwise, by 2.6.3 and a
maximality argument, we get a contradiction. Thus |||Ty¢q||| < ||T»¢lll, for any
g<1-—p.

Now we have that if T} = f,Tf;, T, = f,Tf,, and p is the central projection
corresponding to T),7, as above, then p, =p, p, =1 — p, will satisfy the
conditions. To show this, note first that since |f,Tf, + £,Tf| = | iTfil + | T1,)
by 2.3.1 it follows that it is sufficient to prove this assertion in the case 7}, T, > 0.

Let ¢ > 0. Let X, , € M, be elements with finite spectrum so that X; >
T, X, < Tp, | X, — Tyl < &/2, || X, = T3 < &/2. Since [|Tgllless > [ITodllless for
all ¢ <p, we also have ||| Xq|ll.ss = Il X2gllles for all g < p. Moreover, by
subtracting a compact operator from each X, if necessary, we may assume
X; = ¥,c/f/, where ¢/ >0 and f/ are properly infinite, mutually orthogonal
projections for all i, j. Assume in addition that all f/ have the same central
support. Then by 2.6.1 we have ||[(X; + X5)Pllless = 1 X1Pllless and since
l"flelpmess + 8/2 > ”lepme;s = l"(Xl + Xl)pmess 2 "l(flel +f2Tf2)Pmess
—¢/2, tending with ¢ to zero, we get the result (the reverse inequality is trivial) in
the case where all f/ have the same central support. Now the general case
reduces immediately to this one by 2.6.3. Q.E.D.
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2.8. Since the norm ||| ||| is a supremum of vector norms, it is inferior
semicontinuous with respect to the weak operator topology. Indeed, if 7; tends in
the weak operator topology to T, then ||T§|| < lim;sup||T;£||, so that

T = sup{ITxllglx € My, } < lim,sup(sup { IT;xll Ix € M;., }
= lim,sup|| T}
2.9. We now prove a version of Johnson and Parrott’s trick in [3].

LEMMA. Let NC M be a von Neumann algebra and T € M such that
(adTYN) € #(M) and T & #(M). Suppose the set P = { f € P(N)||IfTfllless
=|IIT s} contains no minimal projections. Then there exist a ¢ >0 and a
sequence of mutually orthogonal projections {e,}, in N such that ||e,Te,l|| > c for
all n.

Proof. Let & be a maximal chain in & and let f, = inf #. Since £ ‘has no
minimal projections, f, € Z. Thus ¢ = (|||T||less — Il foTSfollless)/2 > 0. Then the
chain &’ = { f — f,|f € # } decreases to zero, and since

NCF = DTS = fo) lless + MfoTfollless = WCf = f)T(S = o) + foThollless

= /T Mess = T Mess:

it follows that ||| f'Tf’|||.s = 2¢ for any f' € F".

We can now construct recursively the required sequence {e,},cn. Assume
fls--., f] are n projections in F' with ||(f¢ — f_ )T = fi-Dll = ¢
n > k > 1. Since %"’ is a chain decreasing to zero, by the inferior semicontinuity
of the norm ||| ||| it follows that there exists a projection f/ ; € %’ with
fl-1 < f, such that

WA = £ DT = Fao = WA THN/2.
Thus |Il£;/ Tf/ | > £,/ Tf, lless > 2¢, and consequently

WA = LD T = A)lll = e
so that e, = f,/,; — f, will do. Q.E.D.

2.10. Let now M be an arbitrary semifinite von Neumann algebra and
N C M a weakly closed *-subalgebra of it. Let 8: N — ¢ (M) be a derivation. By
[3] & is norm continuous and by [2] it is weakly continuous. Let p be the unit of
N and K =8(p)p — pd(p) €F(M). Then Kp — pK = 8(p)p — 2pd(p)p +
p8(p) = (8(p) — pd(p)) — (28(p*)p — 28(p)p*) + p8(p) = 8(p) so that
(6 —adK)(p)=0 and (6 — ad K)(x) = (8 — ad K)(pxp) = p(6 — ad K)
(x)p, which shows that § — ad K takes values in pMp.

This shows that in order to prove Theorem 1.1, we may assume the weakly
closed *-subalgebra N C M has the same unit as M, i.e., N is a von Neumann
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subalgebra of M. Therefore, in all the rest of the paper the subalgebra N will be
considered to have the same unit as M.

211. Let {p,;},,; be a family of mutually orthogonal projections in the
center of M with ¥, p, = 1. Assume that for each i there exists K, € #(M)p, =
F(M,) such that 8(x)p; = ad K;(x) and ||K}|| < 2||8]| for all x € N. Then
K=%,.,K,isin #(M)and & = ad K on N.

Since in a semifinite von Neumann algebra there exist mutually orthogonal
central projections p; with ¥ p; = 1 such that each 2'(M)p, is countable decom-
posable (or, equivalently, has a normal faithful state), it follows by the above
observation that to prove Theorem 1.1 for general M it is sufficient to prove it
for each M, , i.e., under the assumption that Z(M) is of countable type. Thus
we may and will assume in the rest of the paper that M has countable
decomposable center (M), that ¢ is a normal faithful state on &' (M), and
that ¢ is the unique normal faithful trace on M associated to ¢ as in 2.1. The
reader will note that each time we get a K€ ¢#(M), § =ad K for M of
countable type, we also have || K| < 2||0]).

2.12. Let N, C N be a finite-dimensional von Neumann subalgebra of N, %,
the unitary compact group of N;, and A the normalized Haar measure on %,
Then K = [8(u)u* dA(u) € F(M) satisfies for any u, € %

Kuy — ugK = /S(u)u*uodk(u) - fu08(u)u*d)\(u)
= [8(u)(ugu)* dN(u) — [ugd(u)u* d\(u)
- /s(uou)u*d)\(u)— fuos(u)u*d)\(u)

= 8(u0)fd>\(u) + quS(u)u*d)\(u) - /uoﬁ(u)u*d)\(u)

= 8(uy)-

Thus (8 — ad K)(x,) = 0 for any x, € N,. In particular, this shows that if N
is a finite direct sum, then to prove 1.1 for N C M it is sufficient to prove it for
each summand.

3. The atomic abelian case. In this section we prove Theorem 1.1 in the case
N is isomorphic to the algebra £*°(1) for a set I of arbitrary cardinality.

To do this, let {e,},, be the minimal projections of N = £*(I) and note first
that the series ¥, - ;8(e;)e; is convergent in the strong operator topology. Indeed,
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the sequence is bounded because if e}, e,,..., e, € {e;},, then

(+) Talee= ¥ [aiple)edr:)

_ /s(élzkek)(é:lz,e,)ax(z),

where A is the normalized Haar measure on the torus T” and z = (z,, z,,..., z,)
€ T7", so that

dA(z) < 18]l

Y (e
k=1

< fls(élzkek)(éz,e,)

Now if M is normally represented on some Hilbert space J#, ¢ € 5, and
€ > 0, then there exists a finite set I, C I such that ||§ — (X, ,e,)éll < e, and
thus for any finite set J, C I with J; N I, = & we have

> s(ej)ejg

i€Jy

< ¢l|8]] +

[ Z8(e)e ) & e,.)s“ — &3l

JE€J i€l

which shows that ¥, _ ;8(e;)e;£ is convergent for any ¢ € .
Let 7= %, .;8(e;)e,. Since 8 is a derivation and (T, c ;8(e;)e;)e, = 8(e; )e;,
we have
Te, — e, T =8(e, e, — Y e 8(e)e;

{o

iel
= 8(eio)ei0 - Z s(eioei)ei + 6(":‘0) E €
iel iel

= s(eio)eio - S(eio)eio + 8("’10) = 8(ei0)’

Since both § and ad T are weakly continuous on N and the linear span of
{e;}ic is weakly dense in N = £*(I), it follows that § = ad T on N.
We show that T is in #(M). Suppose T & _¢#(M). Let

P={f€PN)N/TfMess = T lless } -

Then £ contains no minimal projections, because if e € £ is a minimal
projection of # and e, < e is a minimal projection of N, then e, Te, = 0 (by the
definition of T'), so that e — ¢, € &, a contradiction. Thus by 2.9 there exist
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¢ > 0 and a sequence of mutually orthogonal projections { f,},n in N such that
AT = ¢ forall n.
Moreover, by the inferior semicontinuity of the norm ||| ||| we may assume each

projection f, is the sum of a finite set J, C J of minimal projections in N. But by
(*) we have

Tf,= Y 8(e;)e; = f8( Y z,.e,.)( Y Ejej)dk(z),

JE€J, ieJ, JjE€J,

so that

/

which implies that for some u, = X, ze;,

A8 Cu)urfll > c.

Now let u = ¥, a4, Then, for each n,

£8(w)urf, = f8(fu)urf, = £8(L) fo = £8(u})u, f,,

dA(z) > NLTAIN > e,

58 Lz T 2 ),

iel, JE€J,

so that
A8 () w*f,ll = N8 (k) u, flll > c.

Since 8(u)u* is in F(M), by 2.5 this is a contradiction. Thus ¥,  ;8(e;)e; is in
F (M), and the case N = £*(I) is solved.

4. The continuity result. For the next result we assume N C M is a finite
von Neumann algebra with a normal faithful finite trace 7, 7(1) = 1. We denote
by |Ix|l, = T(x*x)?, x € N.

4.1. PROPOSITION. Let 8: N — g(M) be a derivation. Then 8 is continuous
from the unit ball of N with the strong operator topology into (M) with the norm

Proof. We first prove that if { f,},cn 1S @ sequence of projections in N with
7(f,) — 0, then |||8(f )| — 0. Suppose [|6(f,)|| does not converge to 0. By
taking a subsequence, if necessary, we may assume that |||6(f,)||| > ¢ for some
¢ >0 and all n and that ¥7(f,) < o0. Let g, be the supremum of {f .}, ,.
Then 7(g,) < X, ,7(f;) tends to zero with n. Denote by s, ,, the support of
fn8nfw Then s, < f, and s, , is majorized by g, and thus, 7 being a trace,
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7(8,m) < 7(g,) —, 0 for each m. Since { g,},cn is decreasing, { f,,8,/» }nen 1S
decreasing so that {s,,},cn is decreasing for each m. Thus {f, — s, }nen
increases to f,,, so that {8(f, — 5,..)}.en is Weakly convergent to 8( f,,). By the
inferior semicontinuity of the norm ||| ||| (cf. 2.8) it follows that for a fixed m, if n

is big enough, [|8(f,, = sl > ¢/2.
We may thus get by induction an increasing sequence of integers ny, n,,...

such that the projections h, = f, — S"k+ n, Satisfy [[|8(h )|l > c¢/2. These pro-
jections also satlsfy T(he) < (£, ) -,
Moreover, since h, < f, and’ S, n, is the support of f, g, f,, by the

definition of h, we get
hkgnkﬂhk = hkfnkgnkﬂfnkhk < ksnk+,fnkhk hksnkﬂ,nkhk = 0.

Thus h,g,, =0, in particular h,f, for /> k + 1, and so h,h, = 0, which
means that h, . are all mutually orthogonal projections. Since we also have
éCh)IIl = c/2, we obtain a contradiction, by the atomic abelian case (§3) and

Now we turn to the general case. Since || ||, induces the strong operator
topology on the unit ball of M, we have to show that if (x,), is a bounded
sequence in M with ||x,|| —, 0, then |||6(x,)||| = O. It is clear that we only need
to prove this implication in the case where x, are self-adjoint elements and
|lx,ll < 1. Moreover, since || |x,||l, = ||x,l|l,, it follows that if ||x,||, — O, then
I(x,)+ll2 = 0 and [|(x,)_|l, = O, so that it is sufficient to prove that if x, are
positive elements and ||x,||, = 0 (equivalently, 7(x,) — 0), then [|8(x,)||| — O.

Let x,=1X,.,27 ", be the diadic decomposition of x,. It follows that
7(e,,) =, 0 for each m > 1. Let ¢ > 0 and m > 1 so that 27 ™ < ¢/2. Then by
the first part of the proof there exists n, such that for n > n,, |||8(e )| < &/2
for any m < my,. Thus, for n > n, we get

No(x )l < X 27"l8Cer) I +1181 £ 27" <. Q.ED.
m=1 m>my

The above continuity result will enable us to reduce the theorem to more
tractable situations and to prove it in several cases. We will actually use the
following consequence of 4.1.

4.2. COROLLARY. Let K= co {8(u)u*|u unitary element in N}. Assume N
is finite and countable decomposable and denote by T a normal finite faithful trace on
it, 1(1) = 1. Given B > 0, there exists a > 0 such that if x € N, ||x|| < 1, and
x|, < a, then

IITx|| < B and ||xT||< B forall T € K.
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Proof. By the preceding proposition there exists a > 0 such that ||y| < 1,
I¥ll, < a, implies |||8(y)||| < B/3. Since 8(u)u*y = 8(y) — ud(u*y) and ||ju*y||,
= ||¥ll,, it follows that

NoCu)uryll <8y +NoCu*p)lll < 28/3

for any unitary element u in M. By taking convex combinations of §(u)u* and
using the fact that the norm ||| ||| is weak inferior semicontinuous, we get
1Tylll < B for all T € K. Similarly, |||¥7T||| < B. Q.ED.

Actually, we will mostly use 4.1 and 4.2 through the next technical results,
which show that in many cases, whenever there exists T € K;; (defined as in 4.2)
with ad T = §, then T € #(M).

First we consider the case when N is abelian and locally compatible with
Z (M) (in the sense of 1.1).

4.3. PROPOSITION. Assume that the von Neumann subalgebra N of M is abelian
and that there exist projections {e;};; in N so that Le; = 1 and so that for each i
we have either Ne, D Z(M)e; or Ne; C Z(M)e,. Moreover, assume that there
exist projections { p;};c; in N so that Xp; =1, N, is of countable type for each j
and & vanishes on the set { p;};.

If T € Ky =co{8(u)u*|u € U(N)) is so that ad T = 8, then T € J(M).

Proof. Assume T & _#(M), so that |||T||. > 0. Let
P={ec P(N)llleTellless = T llless } -

If 2 contains no minimal projections, then by 2.9 there exists a sequence of
mutually orthogonal projections {e,}, in N so that |||e,Te,||| = ¢ for some ¢ > 0
and all n.

By the inferior semicontinuity of the norm ||| |||, for each n we can find a
projection p, in the von Neumann algebra generated by { p; }; < ; such that N, is
countable decomposable and

lle.Te, plll = llle,Te,lll/2 = c/2.

Let p be the supremum of { p,},. Then p belongs to { p;}/<,; (and thus
8(p) = 0), N, is countable decomposable and clearly

”IenTenPHI = 0/2 for all n.

By construction e, p tends strongly to zero in N,.

If we consider §": N, - #(M,) defined by §'(xp) = 8(x)p, then obviously
Tp € K,. Thus by 4.2 we have |||e,Te, p|l| — 0, a contradiction.

Assume now that 2 has minimal projections and denote one of them by e.
Assume first that ee; # 0 for some i with Ne, C Z (M )e,. Denote f, = ee,. Then
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we also have Nf, € Z(M)f,. It follows that for any unitary element u € #(N)
there is a z, € #(Z(M)) such that ufy = z,f,, and we have

fd(u)urfo = 8(fo) fo — 8(fou)u*fy
= 8(fo)fo — (Thou = fouT ) u*f,
=8(fo)fo — (Tzofo — 2ofoT) 28,

=8(fo)fo — (Tfo — £oT) 2928 fs = 0.

Thus, since T € co {8(u)u*|u € %(N)}, we get f,Tf, = 0, which implies that
eTe — (e — fy)T(e — fy) € 2(M). Thus e — f, € P, contradicting the minimal-
ity of e in 2.

Now the only case left is when there is a nonempty set I, C I so that ¢; < e
and Ne;, D Z(M)e, foralli € I,and L, ;¢; = e. Fix an i in I, with e; # 0. If
Ne, = Z(M)e,, then the first case applies and leads to a contradiction, so we
may assume Ne, # Z'(M)e,, and in fact we may assume there exists no e/ € Ne;,
so that Ne/ = Z(M)e/. It then follows that there exists a projection f; € Ne; so
that gf; & Z(M)e, for any g € Z (M), q + 0.

Then by 2.7 it follows that there exists a projection g/ € 2 (M) such that

I“Tfiqi,llless = ”lTeiqi/mess’
17 Cei = £ = g llewe =1 Tei(1 = 47) [loss
Thus if we denote by e/ = f,q/ + (e; — f,)1 — gq/), then we have e/ < e,

e/ # e, e/ € P(N), and by 2.3.2 we have |[|Te/||2, = lITfiq/ 3 + 1T (e; — f)
(l - qi,)mgss = I“Teiqi’mgss + ”ITex(l - qi,)mgss = ”lTeil"gss'

Denote by e’ = (e —¢;) + ¢/. Then e’ € N, e’ < e and e’ # e.
Then let g, € Z (M) be a projection satisfying
1Te;gillless = Il Teqllless.
IT(e = €)1 = g) lles =ITe( = g,) [l
Then we have
2
INTelllzs =T (e = )1 = g;) [l + N1 Teqilll e
=lIT(e = €)1 = ) % + NTe/g 1%,
2
= "IT(el,ql + (e - ei)(l - ql)) I"ess

2
<|ITCef + e = ;) o = Te’lll2s < I Telll2s-

€ss
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Thus |||Tel||.s = lIT€’||ls» Which again contradicts the minimality of e. This
ends the proof of the proposition. Q.E.D.

4.4. PROPOSITION. Let N C M be a von Neumann subalgebra of type 11,.
Assume the derivation 8: N — #(M) vanishes on a set of projections {p;}; C
Z (M) with the property that .p;, = 1 and N, is countable decomposable for all i.
If T € Ky is such that ad T = § on N, then Tef(M)

Proof. Since N is of type II,, there exists a decreasing sequence of projections
{e,}nso in N withey=1,¢,,, ~¢,—¢,,, for all n> 0. Suppose we have
shown that for some »n > 0 we have |||ekTek|||ess = || |||ss for all k& < n. Let u,,
be a unitary element in N such that u.e, u*=e,— e, ;. Since u,Tu* —
T eg(M), we have |le,,1Te, 1qllless = NunenirTe,rufqlles =

ety 1t Tt 4 117Gl s = (s = €04)T(€, = €11)lles for amy central
projection ¢ € 2 (M). Since

”IenTen”Iess = I” en+1Ten+1 + (en - en+1)T(en - en+1) “less’

by 2.7 and 2.3.2 it follows that [le, +,Te,1lless = leaTelless: Thus [le, Te,lless =
1T}l for all n.

Assume T & #(M), so that |||le,Te,|ll. = ¢ > 0 for all n.
Then the proof continues exactly the same way as the first part of the proof of
4.3 and leads to a contradiction. Q.E.D.

4.5. LEMMA. Let A C N be an abelian von Neumann subalgebra of N and
suppose there exists a decreasing sequence of nonzero projections {e,}, in A such
that e, 10, e; =1, and e, is equivalent to e, — e, in N for all n > 0. If
T e K&A = co { 8(u)u*|u unitary element in A} is so that ad T = 8 on N, then
T e f(M).

Proof. 1f v, € N are so that v*v,=e,,, 0,0F = ¢, — e,.;, then we have
v,T — Tv, € #(M) and for any ¢ € Z (M),

|”en+ lTen+1q|”ess = |“vnen+ lTen+ 1U:Q|||ess |||U Cn+ IU*TU €n+ 1Ur:kq|”ess
= Iu(en - en+l)T(en - en+1)q”|ess'
The rest of the proof is exactly as the proof of 4.4. Q.E.D.

We end this section by proving a useful converse to the preceding results. Note
that the proof doesn’t use the continuity result 4.1.

4.6. LEMMA. Let N be an arbitrary von Neumann subalgebra of M and
8: N — _Z(M) a derivation. If there exists K € (M) such that § = ad K, then
there exists T € K such that § = ad T.

Proof. Assume first that p(K*K') < o0. Let

C =co {uKu*|u unitary element in N }.
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Then || y||, < ||K|l, for all y in C and C is a weakly compact convex subset of
M. By the inferior semicontinuity of the norm || ||, it follows that there exists a
unique element y, € C with || yll,, < |lyll, for all y € C. Since uyyu* € C and
llwyo™|lg, = | Yol it follows that uyou* = y, for all unitary elements u € N. Thus
YV ECNN'.

Let’s now show that for arbitrary K there also exists some y € C N N’. To
this end note first that for each n there exist (by 24) p,€ P(Z(M)) and
K, € M, C #(M) such that ||K,|| <||X|, K,p, = K,, |IKp, — K,|| < 1/n, and
¢(p") > 1 — 1/n. Let C, = co"{uK ,u*|u unitary element in N} and y, € C, N
N’ (cf. the first part of the proof). Then the Hausdorf distance between C, and
p,C satisfies

d(PnC’ Cn) < ”Kpn - Kn“ < 1/"

Thus there exists x, € Cp, so that ||x, — y,|| — 0.

Now let y be a weak limit point of {y,},. It follows that y € N’ (because
¥, € N’ for each n) and y € C (because y is also a limit point of {x,},).

Now set T=K —y. Then K~y € K~ C=co {K — uKu*|u unitary ele-
ment in N} = K and, moreover, since y € N’,ad T = ad K = 4. Q.ED.

5. The type I and properly infinite cases. We first prove Theorem 1.1 when N
is a finite type I von Neumann algebra locally compatible with & (M) (in the
sense explained in section 1 and in 4.3). Since N is finite, there exists a partition
of the unity { p,}; < in the center of N such that N, is countable decomposable
for each i. By §3 there exists an element K, € j(M ) such that (6 — Ad Ky)(p;)
= 0 for all i. Thus we may assume that § vanishes on { p,}, ;. Moreover, by
refining { p, }, if necessary, we may assume N, is homogeneous for each i.

The unitary group of N has an amenable subgroup %, such that %§’ = Z(N).
Let Ty = (3 8(u)u*dpo(u), where p, is the invariant mean on % and the
integral has the usual significance (see e.g., [2]). Then T is in the K set
corresponding to Z(N), and by the same computations as in 2.12 we have

Since both § and ad T;, are weakly continuous and Z(N) is the closed linear
span of %,, it follows that § = ad T, on Z'(N) and thus 4.3 applies to get that
T, € #(M). Thus, by taking § — ad T;, instead of § if necessary, we may assume
8 vanishes on Z(N).

Since N, is homogeneous, we have N, = M, ® Z, for some n(i) X n(i)
matrix algebra (i) and an abelian algebra Z,. Let %; be the unitary group of
M,;,®1 and %= &%, Then % is amenable with an invariant mean p. Set
T= fq,b‘(u)u* dp(u). Then T is in the K; set corresponding to N and the
integral p; [5,8(u)u* dp(u)p; = p;[o0(u)u* dp(u)p; is norm convergent (since
%, is compact). Thus p,Tp, € #(M) (as a norm limit of elements &(u)u*

1
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which are in #(M)). Moreover, ad T equals § on % and also on Z°(N). But
% and Z'(N) generate N, so that ad7T =6 on N. Now if T & _#(M) and,
P={e€ P(N)||l|eTellless = I |lless }> then it follows that & has no minimal
projections (if e would be such a minimal projection, then ep, # 0 for some i and
e — ep, contradicts the minimality of e). To get a contradiction from this, we
continue exactly as in the proofs of 4.3 or 4.5. Thus T lies in #(M) and the
proof of Theorem 1.1 in the case where N is finite type I is completed.

Assume now that N is properly infinite. Then N and M are isomorphic
to N, ® #(1%2Z)) and M, ® B(1*(Z)), respectively, where N, C M, are
von Neumann algebras, in such a way that the inclusion N C M becomes
N, ® #(1*(Z)) ¢ M, ® B(1*(Z)). Note first that if the derivation 8: N = #(M)
vanishes on C1 ® #(1%(Z)) € N = N, ® #(1%(2)), then, given a unitary u € N,
® C1, we have for any x € C1,, ® Z(1*(2)),

8(u)x = 8(ux) = 8(xu) = x8(u),

so that 8(u) € £(M)N (C1® B(1XZ)) N M, ® B1*Z)) = J(M) N (M, ®
Clgu2(zy) = 0. Thus § =0 on N.

From this it follows that to prove the properly infinite case it is sufficient to
prove the case when 8: N = #(12(2)) » #(M).

Let D be the diagonal von Neumann subalgebra of #(12(Z)) and L the
von Neumann algebra generated by the bilateral shift u. Let o(x) = uxu* for
x € D be the automorphism of D implemented by the shift u. By §3 we may
assume 8 vanishes on D. Then for any x € D we have

x8(u")u™" = 8(xu")u""=8(u"s""(x))u""
=8§(u")o "(x)u""=8(u")u""6"(¢""(x)) = &(u")u""x,
which shows that §(u")u™" € D' N M forall n € Z.

But if we take T to be a (weak) mean (after n) of §(u™)u™",then T€ D' N M
and, as in the preceding proof of the type I case, we have

8|, =adT|,.

Thus ad T equals 8 on both D and L. Since § and ad T are weakly continuous
derivations, it follows that 8 = ad T on the von Neumann algebra generated by
D and L, which is easily seen to be Z(13(Z)) = N. Since T belongs to the K ; set
corresponding to L, 4.5 applies to get that T € #(M).

6. Some technical results. To prove the remaining type II, case of the
theorem we need some technical devices that we prove below. As before, we
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continue to assume that M is countable decomposable and use the notations of
section 1.

6.1. LEMMA. Let N be a von Neumann algebra without atoms, ¢ a normal
faithful state on N and {w,}, a sequence of unitary elements in N such that
Y(wk) =, 0 for all k # 0. Then there exist unitary elements {v,}, in N such that
Y(5) =0, k+ 0, and ||w, — v,|| = 0.

Proof. The proof is the same as the proof of 1.3 in [7], but we give it here
anyway for the sake of completeness.

Since N has no atoms, each w, is contained in some diffuse abelian
von Neumann subalgebra 4, C N with separable predual and (4,, ¥|, ) can be
identified by some measure preserving isomorphism ¢, with L*(T, p), where p is
the normalized Lebesgue measure on the torus T. Moreover, ¢, can be chosen so
that ¢,(w,) = f,, where f,(e2"") = 2" for some nondecreasing function
h.,: [0,1] = [0,1]. By Helly’s selection principle there exists a subsequence {4, },
tending everywhere to some nondecreasing function A: [0,1] — [0,1]. Thus, if
f(e*™") = 2™, then {f, }, tends everywhere to f, so that by Lebesgue’s
theorem [ff dp - [fPdp for all p, which by the hypothesis implies [f? dp = 0
for p # 0. Thus fq(f)dp = [qdp for Laurent polynomials g so that [go fdu

= [gdp for any g € L°(T, p). In particular, if we define g,(e2™*) = { 1 fO<s <!

Oifrgs<1’
where z = ¢, then we get [, <, dA(s) = [g,° fdu = fg,dp = ¢, A being the
Lebesgue measure on [0,1]. This implies A(¢) =t and hence f(z) =z is the
identity function on T. Now, since A, are monotone and converge everywhere to
a continuous function, it follows that & k, converge uniformly to h, so that
| fx, — fIl = O. Since any limit point of f, was shown to be equal to the identity
£, it follows that IIf = fll = 0.

We can now take v, = @, '(f). Since [fPdp =0, $(vF) =0 for all p # 0.

Moreover, [[w, = o,ll = [19,(%,) = @.(e.)lI = I/ = £| = 0. QED.

6.2. LEMMA. (1). Let N C M be a von Neumann subalgebra such that N' N M
contains no finite projections of M. Let ¢ > 0 and e, f two finite projections of M
with p(e) < oo, p(f) < co. Then there exists a unitary element u € N such that
|| fuell, < e. Moreover, if N is abelian, then, given any n > 1, there exists a unitary
element u € N such that || fu* ell, < e fork#0, |k| < n.

(2). If N is of type 11, and countable decomposable, M is countable decompos-
able, and N’ N M contains no finite projections of M, then there exist an approxi-
mately finite-dimensional type 11, von Neumann algebra R C N which contains a
diffuse abelian von Neumann subalgebra A C R such that A’ N M contains no finite
projections of M. Moreover, if N has separable predual, then we can make the
construction so that, in addition to the above properties, A is maximal abelian in N.

Proof. (1). Let ¢, be the semifinite faithful trace on M?" given by

Pul(Xi)1ky < m ke 20) = LP(x;). Set Kf=co co™{(uteu” )|k|<n K=ol ¥ unitary ele-
ment of N} € M?". Then ¢,(X) < 2mp(e) and ||X||p, < 2n||e||,, for any X € K.
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By the inferior semicontinuity of the norm || ||, , there exists a unique element
X, € K7 with ||Xll,, < |IX|lg, for all x € K7. But if N is abelian, then for any
unitary element u € N, if i = (u")‘kisn’k,ﬁo, then #K7a* C K7 and (|iixo@*||,,
= ||xoll,, so that, by the uniqueness of X,, #X,#* = X,. Thus if X, =
(X )jy<niwo * 0, then x, # 0 for some k and u*x, = x,u* for any unitary
element u € N. Since in a von Neumann algebra N any unitary element v € N
can be written as u* for some u € N, it follows that vx, = x,v for unitary
elements v € N, and by taking linear combinations, yx, = x,y for all y € N.
But 0 <||x,|l, <|lell, and x, € N'N M, a contradiction. This shows that
0 = x, € K%, so that given any e > 0 and any f € (M), thereis a u € %(N)
such that X, < (futeu™*) < &% Thus | fu*e||, < & for all k + 0, |k| < n. If
N is arbitrary, we take M instead of M?" and the proof is the same.

(2). The argument we use is similar to the one in [6]. We first prove that if
p €N, then N/ N M, contains no finite projections of M,. To show this, let
/ # 0 be a projection in N N M, and z a projection in the center of N. Then
zf € NJ N M, and if f is finite in M, then zf is finite in M,,. Take z to
be so that fz # 0 and pz divides z, say n times. It follows that the inclusion
N,C M, is the same as N,,® M,,, C M,,® M, , and that f' =zf® [, €
(N,®M,,,)N(M,®M,,,) Hence f"€ N/ NM,=z(NNM)zCN'N
M, and if f is finite, then f’ is finite, contradicting the hypothesis.

Since M is countable decomposable, there exists an increasing sequence of
finite projections { f,}, in M with f, 11. Moreover, by cutting each f, with a
central projection if necessary, we may assume ¢(f,) < oo, n € N.

We now recursively construct an increasing sequence of finite-dimensional
von Neumann subalgebras R, in N with matrix units {e/?},_ _ . = satisfying
the following properties: L<p<m(k)

1. Each e%~!" is the sum of some ef?.

2. If A, is the diagonal algebra of R, generated by {e}”}, ,, then
I|1E4; am(fOlls < G/Hk

3. n(k, p) > k foreach p=1,2,..., m(k).

Assume we have constructed these objects up to some k. By (1) it follows that
for each g = eff there exists a unitary element u € N, such that if e is the
support of ¥,ek?f,,.ekr, then for each nonzero x; = ef’f,..ek”? we have
@ (eueu*) = ||eue||2 < 1/2||x,||2. Approximating  in the uniform norm, we may
assume it has finite spectrum so that u = YA e, with ¥e, = g and |A| = 1. Then,
since @(x,uxu*) < ¢(eueu*), we have

2 2 2 2 2
lxillg = 201xil1G = Ixlly < lxallg + lwxu*llg — 2o (xux,u*)
2

Z (>\r7\s - 1)erxies

r#s [

2 __ 2 2
<4 Y llexell2 = 4lx)12 — 4X|le,xell2.
r

r#s

= 2 _
= Ilx; — uxu*|ly =
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Thus L,|le,x,e,|2 < 3/4||x,]|2. Now we can apply the same trick to e,x;e,
instead of x; and get a refinement {e?}, of the projections e! = e,, so that
IE,e2x,e2)|2 < 3/4)*Lllerx,e;l|2 < (3/4)%||x,||2. More generally, we apply the
trick k + 1 times to get projections g = ef*! so that |T,gx,gl2 <
(3/4)*1|x,|12 and L;g, = elf.

Now since N is type II,, each g, can be divided into k + 1 mutually
orthogonal equivalent projections. Thus we may consider matrix units
(8.0} 1<a peksr With L,g., =g, Then easy computations show that if we
denote by {ek™""}, , . an appropriate relabeling of {ef’g.e{?}, 5 1. ) ,» then
this matrix unit and the von Neumann algebra R, ; generated by it, together
with its diagonal A4, ,, will satisfy conditions 1, 2, and 3.

Let R = U, R . Then condition 3 implies that R is of type II,.

Let A =U,4 : Suppose e € 4’ N M, e # 0, is a finite projection of M. Then
by cutting e with a projection in &' (M) if necessary, we may assume @(e) < oo.
Since f, 11, there exists n such that || f,ef, — ell, < 1/2|le||,- By the construction
of A, C A there exists a partition of the unity e,,..., e,, with projections in 4
such that

“zi:eifnei

<1/2|ell,-
®

But then

|Zesere) <|Teise] <1720,
i P i L4

so that, since e = L,e;ee;,

llelly = Nzei‘-’ei
i

<|Zeten - e
. 1

+ “ Zeifnefnei
[ i

<llellg>
P

which is a contradiction.

Finally, if we assume N is separable, then it has a normal faithful trace 7 and
there is a set of elements { y,}, C N dense in N in the norm ||y||, = 7(y*y)'/?
and we may construct recursively 4,, R,, so that, in addition to conditions 1, 2,
and 3, to satisfy condition 4, ||E,  ,(3)) — E4(y)ll2 <1/k, 1 < i<k

Then by [6] it follows that, besides the above properties, 4 is also maximal
abelian in N. Q.E.D.

In the rest of this section N € M will be a type 1I; von Neumann subalgebra
with a fixed normal finite faithful trace 7, 7(1) = 1. The norm on N given by 7 is
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denoted ||x||, = 7(x*x)!/2, x € M. If BC N is a von Neumann subalgebra,
then E, denotes the unique normal r-preserving conditional expectation onto B
(cf. [10]).

6.3. LEMMA. Assume A C N is a maximal abelian von Neumann subalgebra of
N such that A’ N M contains no finite projections of M. Let ¢ > 0, n > 1, e and f
finite projections in M, and v a unitary element in N. Then there exists a unitary
element u € A such that ||f(uv)"e||§, < e forany k # 0, |k| < n.

Proof. Since ¢(e), p(f) < oo, it follows that p(e V f) < co. Since ||(e V f)
(uv)k(e v Dllg = Il f(uv)¥e]|,, it is sufficient to prove the statement when e = f.
Since ||e(uv)"e||q, = ||e(uv)"e||,, we only need to prove the estimates for k > 0.
We'll actually prove the following more general result:

(*)If e>0,n>1,%CN is a finite self-adjoint set of norm one elements
containing the identity and e, f are finite projections in M, then there exists a
unitary element u € A such that

2

k
fro [T (wx)e

<e
®

forany 1 < k < n and xg, x;,..., X, € F.

We first prove (*) in the case @(xe) < c7(x), (fx) < cr(x), x € N, for
some constant ¢ > 0. Let "= {w partial isometry in A||| fxol—l,’-‘gl(wx,.)e”i <
er(w*w) for any 1 < k < n, Xy, X;,..., X, € F } and consider on #~ the usual
order: w, < w, if w, is a restriction of wj, i.e., w, = wywg*w,. The set is clearly
inductively ordered. Let u be a maximal element of it and suppose u*u # 1.
Denote by 45 = (1 — u*u)A(Q — u*u), Ny= (1 — u*u)N(1 — u*u), and F; =
{@Q = w*u)xo(@TE (ux)A — w*u)l < k < n, xg, X35, X, €EF}. By 1.2 in
[6], given any & > 0, there exists a partition of the unity e,,..., e, in A4, such
that X|le; ye; — EAO(y)ei”% = |[Zie;ye; = E((p)II5 < 87(1 — u*u) = 8L,7(e;) for
all y € #,. It follows that for some e, = e, we have

(*x) lleoyeo — EAo(y)eolli < 87(e), Yy EF.

Let n>2r,s>20,x€%,y, y,.., ), €EFp. X' €EF* ), y,....Y €%
and w € Age, |||l <1 and put a = |p(exTI]_;(y/w*) y'fyIT;_1(wy;)xe)|, with
the convention that a product over a void set equals 1.

If s = 1, then by the Cauchy-Schwartz inequality we have

a < || fywyxell, < |lyworxellllell,

¢

,
o B
i=1

< [l wellgllellg
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where ¢ is the supremum of the left supports of all the elements of the form
zyxe, with x € F, y, €%, and z € F = (II\L,E(y)eol0 < k < n,
Yooy Vi € %y}, and f is the supremum of the right supports of all the elements
fy with y € #,.

If s > 2, then we have

s s—1{Jj-1
lfl—ll(wy,')xe <X H(WYi)W(EA(J’j)eo_eOYjeo)
= e J=1j'=
) s—1 _ s—1
W“’( QIEA(y,))ysxe + fwsHlEA(y,»)ysxe
= @ = @

< LA{IEL(y0)eo — eoyoeo) wizpxe|l |1 < j < s,
X 6'97’ Yo ¥ E‘%’Z e*9z-1} + “f-wsé”q”

where &, f are as before. Thus if 8 denotes the sum in the right-hand side of the
above last inequality, then by (* *) we get 8 < SNNZN,c'/281/2||e||,, where N,
N,, and N, are the number of elements in &#, %;, and %, respectively.

Thus, by the Cauchy-Schwartz inequality we obtain

(B +l1fwell,)

P

a <

,
ex’ l_[1 (y/w*)y'freq
L

< Ilpveoll, (B + I1/well,) < el (B + Il fwell,)
< SNNENc82leol12 + ¢/ legll,ll fweell -

Thus, if § is such that snNNZN;c8'/? < £272"~1 and if, using 6.2, we choose w
to be a unitary element in Age, = Ae, C egMe, such that c'/?||fw'e]|, <

€272 ll,, then we get a < 27 2"gr(e).
We now show that if w is chosen like this, then u, = u + w contradicts the
maximality of u. Indeed we have for any 1 < k < n and x,, x,,..., x, € Z:

2
<

2
+ Ya,
P

k
frol T (e

fx°(,-=ﬁl(u + w)x,.)e

P
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where the a’s appearing in the sum are of the form estimated above and there are
2% — 1 terms in that sum. It follows that Ya < et(ey), so that

2

<e(r(u*u) + r1(w*w)) = er((u + w)*(u + w)).

fxo(ﬁ(u+w)x,~)e

This ends the proof of (*) in the case ¢(xe) < cr(x), p(fx) < cr(x), for
x=N,.

To prove the general case, ie., for arbitrary e, f in M,, note that given
any &> 0 there exist finite projections e’, f' € M, with |le —¢’||, <¢&/3,
Ilf — f'll, < &/3, and such that ¢(xe’) < c7(x), (f'x) < ¢r(x) for some con-
stant ¢ > 0. Indeed, since @(.e), p(f.) are in N,, there exist X, Y € LY(N, 1),
such that p(xe) = 7(xX), ¢(fx) = 7(xY), for x € N. Thus if E,, F, are the
spectral projections of X and Y, respectively, corresponding to the intervals
[0, n], then E,11, F,?1 and o¢(xE,E,) = @(E,xEe) = 7(E,xE,X) =
7(xE,X) < nt(x) and, similarly, @(F, fF,x) < n7(x). It follows that || E,eE, —
ell, = O, | F, fF, — fll, = 0, so that if e,, f, are the spectral projections of
E.eE, and F,fF,, respectively, corresponding to the interval [1/2, c0), then any
easy computation shows that |le; —el|l, = 0, ||f) — fll,— 0 and @(xe;) <
2¢p(xE,eE,) < 2n7(x), o(f,/x) < 2¢9(F,fF,x) < 2nt(x) (see, e.g., 1.4 in [8]).
Now by the first part of the proof, given ¢ > 0 and n > 1, there exists a unitary
element u € A such that |fxIT (ux;)e’ll, < /3 for any 1<k <
n, Xg, X1, ..., X;, € . But then

<2/3+

¢

<2e/3+¢e/3=¢. QED.

?

k k
froI T (uxi)e fxo T (wxi)e!

6.4. COROLLARY. Let € >0,n> 1,e, f be two finite projections in M, and
v € N a unitary element. There exist a finite projection e, € M and a unitary
element w € N such that

1. (e, ,wke,) =0 for any k + 0;

2.e,<e,p(le—e,) <g

3. ||fwke,|| < & for k # 0, |k| < n;

4. ||w — w|| < & for some unitary element u € A.

Proof. First we prove that given any & > 0 there exist unitary elements
u € A and w’ € N and a finite projection e, € M such that

() e, <e ple—e,)<¢;

( (b) |Ifwke, |l <€ fork +0, |k| < n;
*)

(© lw —wll <¢;

(d) ¢(ew™e) =0forall k + 0.
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Then it follows by (a) and (d) that |p(w'*e,)| < € for any k # 0 and thus if ¢ is
small enough and ¢ < ¢/2, by 6.1 there exists a unitary element w € N such
that ||w — w'|| < &/2n and @(wke,) = 0 for any k # 0. But then | fwke,| <
lfwe, |l + nllw — w'|| <e for k+0, |k|]<n, and |w— w| <|w—w/|+
W — uw|| < e/2n+¢e/2 <

Now to prove (*) we let ¢’ > 0, n” > 1. By the preceding lemma there exists a
unitary element u € 4 such that ||(e Vf)(uv)"e“ <¢ for k#0,|kl<n. It
follows that |p(e(uv)ke)| < < llelly lle(uv)e], < e"||e||q,, for all £+ 0, |k|<
and @(e(uv) *f(uv)ke) = ||f(uv) ke||2 < ¢ If e/ is the spectral projection
of e(uv) *f(uv)ke corresponding to the interval (0, ¢’], then e} <
e, ef(uv) *f(uv) e, < ¢ and e — e} < &’ le(uv) *f(uv)*e so that @(e — e})
<& l?=¢" Lete,= A{ejlk # 0, k| <n}). Then e, < e, p(e,) > p(e) —
2ne”, and || f(u0)*e, || < || f(wo)ef|? < ¢

Lemma 6.1 shows that if n’ is large enough and ¢” is small enough with
¢’ < (¢/(n + 1)), then there exists a unitary element w’ € N such that
p(wke) = 0 for all k# 0 and |w — wv| < ¢/n + 1. But then
Il fwke, |l < Zpzbll f(uv)?(w” - uv)(W)" Pl |l + | f(uv)re,ll < ke'/(n + 1) +
€/(n+1)=(k+1)¢/(n+ 1) < ¢, which proves (*). Q.E.D.

7. End of the proof of Theorem 1.1: The type II, case. In this section we
prove 1.1 in the case where N is of type II,. By 2.11 and §5 this will end the
proof of the theorem. We begin the section by reducing the problem in several
steps to the case when the type II, von Neumann algebra N is separable, M is
countable decomposable, and N’ N M contains no finite projections of M. Note
from the beginning that by section 3 we may assume § vanishes on a set of
projections { p; }, in the center of M having the properties _p, = 1 and N, is of
countable type for each i.

7.1. First reduction. 1t is sufficient to prove the theorem for separable N (i.e.,
N with separable predual).

To show this, let R C N be a copy of the hyperfinite type II; factor with the
same unit as N (cf. [5]). There exists an increasing net of separable von Neumann
subalgebras { N;}; of N with R ¢ N, and U;N;” = N. Indeed, if { p;},c, is a
partition of the unity in the center of N such that Np; is countable decomposable
for each j, then any countably generated von Neumann subalgebra of Np; is
separable, so that if N, are such that N,p; is countably generated and contains
Rp; for a finite number J, of j € J and if NX ¢, P; =R ¢, pj» then N; will
do. Since R C N,, each N, is of type II;, and if K; € j(M ) is such that
8|y, = ad K, then by 4.6 there exists T, € K, (in fact, in co"{8(u)u*|u unitary
element of N} € K;) such that ad 7, = ad K, = 8|y Let T be a weak limit
point of {7;},. Then ad T = § on UN,, so that by the weak continuity of ad T and
8,adT =8 on N =UN" Since N 1s of type II;, by 4.4 we have T € ¢#(M).
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7.2. Second reduction. 1t is sufficient to prove the theorem when N is sep-
arable and M is countable decomposable.

Indeed, by the preceding reduction we may assume N is separable. Let %, be
a countable subset in the unitary group # of N, dense in % in the *-strong
operator topology. Let { p;}, <, be an increasing net of countable decomposable
projections of M with p; 11. By the density of %, in %, it follows that for each
i, V{up,u*|u € %} = V{up,u*|u € %,}, so that if we denote this projection by
s;, then it is countable decomposable (being a supremum of a countable set of
countable decomposable projections) and, moreover, s; € N' N M, s; 1 1. Define
8: N, = 5, #(M)s; = #(M,) by 8,(xs;) = 5,6(x)s;. Since s;, € N'N M, 5, are
well-defined derivations. If for each i there exists an element K; € #(M,) such
that §, = ad K, then by 4.6 there exists T, € K such that s5,T;s; € K; C 5,K;s,
satisfies §; = ad(s;T;s;). Let T be a weak limit point in M of the net {T}},
(€ M). Since {s,}, converges strongly to theidentity, T € K5 and ad T = & on
N. Then 4.4 applies to get T € _¢#(M).

7.3. Third reduction. It is sufficient to prove the theorem when N is sep-
arable, M is countable decomposable, and N’ N M contains no finite projections
of M.

Let p, = V{e’ € N’ N M|e’ finite projection of M }. Note that in fact p, =
V{e’ € N’ N M|e’ projection with ¢(e’) < oo}. Indeed, this follows immediately
by 2.1, because given any e € NN M and p € (M) we have ep € N' N M.
Assume now that 8(x) = 8(x)p,, x € N. Then K; = K;p,. For each unitary
element u € N define on K the weakly continuous affine transformation T,(x)
= uxu* + 8(u)u*. Then TJT,=T,, and since T, (8(v)v*) = ud(v)v*u* +
S(u)u* = 8(uv)v*u*, it follows that T (K;) € K, Consider on M the semi-
norms &= {p(x*xe’)!/? for x € M|e’ finite projection in N’ N M with p(e’) <
oo }. Then the semigroup of transformations T, on K is noncontractive, because
if x, y € K4, x # y, then inf p(u(x — p)*(x — y)u*e’) = o((x — y)*(x — y)e"),
and if @((x = y)*(x —y)e’) =0, then x —y = (x = y)po = (x —y)(Ve) =0
(by the faithfulness of ¢). Thus by the Ryll-Nardjewski fixed point theorem (see
A.3 in [9)]) there exists an element X € K; with T,(X) = X for all unitary
elements ¥ € N. But then uXu* + §(u)u* = X and thus §(u) = Xu — uX, and
by linearity 8(x) = Xx — xX for all x € N. Since N is of type II,, by 4.4 we get
X € #(M). Similarly, if 8(x) = p6(x), for any x € N we obtain that & is
implemented by an element in #(M). It follows that there exists K € _#(M)
such that (8 — ad K)(x) = (1 — po)(6 — ad K)(x)(1 — p,). Thus, if we define
8p: Ny_p, = M;_, by 8y(x(1 —py)) = (8 — ad K)(x)(1 — p,), then §, is a
well-defined derivation taking values into (1 — py) (M )1 — po) = F(M,_, ).
Since N/_, N M, _, contains no finite projections of M, _, (see the proof of 6.2,
(2)), this shows that in order to prove the theorem for N separable of type II; and
M countable decomposable, we may in addition assume that N’ N M contains no
finite projections of M.
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7.4. In the rest of this section we may therefore assume N is separable, M is
of countable type, and N’ N M contains no finite projections of M.

By 6.2 we may construct subalgebras 4 C R C N so that R is an approxi-
mately finite-dimensional type II; von Neumann subalgebra of N, 4 is a
maximal abelian von Neumann subalgebra in N, and A’ N M contains no finite
projections of M. Since R is approximately finite-dimensional, there exists an
amenable subgroup of unitary elements % in R such that #” = R. Let K =
[o8(w)u* dp(u), where p is an invariant mean on %. Then, like 2.12, it is easy to
see that ad K equals § on # and thus on R. By 44 it follows that K € ¢ (M).
Thus, by taking 8 — ad K instead of 8 if necessary, we may suppose 8 vanishes
on R and thuson 4 C R.

We show that § = 0 on all N follows from the fact that §| , = 0, and this will
end the proof of Theorem 1.1.

Assume 8 # 0. Then there exists a unitary element v € M such that §(v) # 0.
Moreover, there exists a finite projection e € Mqlw such that @(ev*8(v)e) # 0,
because otherwise @(v*8(v)x) = 0 for any linear combination x of projections
e€E M;,‘P and thus, by taking norm limits, for any x € M,, which implies
v*8§(v) = 0, a contradiction.

Let g € N be the support of the normal form N 2 y — @(ye). Then ge = e
and thus there are central projections p, in N so that

(*) p, increases to the central support of g in N;

(**) for each n there is a finite number of unitary elements u,,..., u;,, in
N so that

\'/uipnqui"t = pn'

Now from (*) it follows that if n is large enough, then |le — p,ep,||, is small
enough to ensure that ¢o( p,ep,v*8(v)p,ep,) # 0. Since A is maximal abelian in
N, A D Z(N), so that § vanishes on 2 (N) and thus on all p,. Moreover, if §,:
Np, = #(p,Mp,) is defined by 8,(xp,) = p,8(x)p,, then §, vanishes on 4p, and
the support projection e, of X,u;p,ep,u* (where u; are as in (* *)) satisfies
o(e,(vp,)*8,(vp,)e,) # 0; Np, 2y~ @(ye,) is faithful on Np,; e, is a finite
sum of elements in M,

Altogether, these considerations show that, by modifying N, M, §, ¢, and ¢, if
necessary we may suppose we are in the following situation:

(i) M is a countable decomposable semifinite von Neumann algebra with a
normal semifinite faithful trace ¢ constructed from a normal faithful state ¢ on
Z (M) asin 2.1

(ii) N C M is a separable type II; von Neumann subalgebra and 4 C N is a
maximal abelian von Neumann subalgebra of N such that A’ N M has no finite
projections of M.

n
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(iii) 8: N — _#(M) is a derivation that vanishes on 4.
(iv) v € N is a unitary element and e € M is a finite projection satisfying the
following properties:

(1) There exists a constant ¢ > 1 such that ¢(q) < ¢(eq) < cy(q) for any
qEZ(M).

(2) g(ev*8(v)e) = 1 (by suitable amplification of § with a scalar).

(3) N 2 y - ¢(ye) is faithful.

We now prove that for any » there exist a finite projection e, € M and a
unitary element w, € N such that

(a) e, <eple—e,) <27
(b) lle,wke )l <27" fork # 0, |k| < n;
(c) o(ewke,) =0 fork +0;
(d) |p(e.w,?78(wpP)e,) —1] <27 ifn>p>0;and
(¢) |o(ew,“8(wl)e,)| <27" if p#sorp<0,|plls|<n.
To do this, let f, € M be a finite projection such that
18(0)(@ = fo) || < (Sen) 2774 [[(1 = fo) o8 (v) |

< (Sen) ™27 L |[8(0 ) o(1 = fo) | < (5en) 27"

By 2.1 there exists a central projection p € & (M) such that ¢(f,p) < co and
Y(1 = p) < Ge(|8]| + 1)27*1)~2 (in all these inequalities ¢ > 1 is the constant
appearing in (iv)). Set f= f,p V e. Then by the preceding Corollary 6.4 there
exist unitary elements w, € N and u, € 4 and a projection e, € M such that

(a) e, <e, ple—e,) <277
() |l fwke,ll < (Sen(I8] + 1) + 1) "'27""1 for |k| < 2n, k # 0;

() 1w, — upll < (Sen()8]] + 1)) 727" and (e, wke,) = 0for k # 0.
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It follows that if n > k > 0, then

(1) [8(wk)e, — wk8(w,)e, "
k-2
= ZO SS(W )wk s— 1 Z "8(W )wk s=1p "‘p
< Z [8Cu,0)wi= e, ||, + (k = 11181 llellgllw, — u,ll

s=0

k=2
= EO 8(0)wk="e, ||, + (k = 1) /%8| |, — u,ll

k—2
Y 8(0) ke, |, + (k= DISII = p)e,ll,

s=0

N

+(k=1)c?8(v)(Q = fo) || + 577/ Ig2 T 2

@ I0al, < T 10 800 e

P

<Y |(8(o ) 0) (u0) (W) ™ e,

s=0

P

+ 23] [l =

N

+ 2k 2|18 lu,o — w

k-1 ., ks
EO“‘S(" Jo(w, ') e, |,

//\

E |8Co ) er(wi)* e, || + ek (5n) 120

+k(IBII(1 = p)e,ll, + (2/5) /2271

+ (4/5)2n"1m1/2 g 9=l 1/2,

k—1 &
<Iolx | £(w)
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Thus for n > p > 0 we have by (i), (¢), and the equality §(u,v) = u,8(v):
lp(e,wi?8(wP)e,) = 1| <|o(e,w, 8(w,)e,) — 1] +27"7
<|o(ewu;8(up)e,) = 1| + 2728w, — w,pll
+27n71
<|p(ev™'8(v)e) — 1| +27"=2""
If n > p > 0and s # p, then by (i), (¢), and (b’) we have:

I(p(enwn-ss(wr{,)en)l <I‘p(enwn—s."p_ls(Wn)en)| + 2—n—-1

N

lo e, wy P w078 (v)e,) | + 5127 4 27t

N

(
|<p(e,,w,,“+"v"18(v)e,,)| + 25712 "1 4 gl
(

ew P 8(v)e,)| + 457127 4 270

<|e

<G '+45 1) =2,

Finally, if p < 0, then by (ii) and the Cauchy-Schwartz inequality we have for
any s:

lo (e 8(wh)e,) | <[|8(wl)e,|gllell, <277

This shows that e, and w, as defined before fulfill conditions (a)—(e).

We now define 4, C N to be the von Neumann algebra generated by w,;
p, € B(LX(M, 9)) to be the orthogonal projections onto A4 e,; the isometries u,,:
L%(T, p) = L*(M, ¢) (where p is the normalized Lebesgue measure on the torus
T) to be defined by u,(z¥) = p(e,) /*w)e, and the measure preserving isomor-
phism ¥,: L®(T, p) = (4,, ¢(e,) 'p(.e,)) by ¥,(z¥) = wk. Moreover, we de-
fine 8,0 L=(T, p) = BAX(T, p)) by 8,(f) = ud(¥,(/)u, for f€ L*(T, p).
Since p, = u,u* € A, an easy computation shows that all §, are derivations and
clearly ||8,]| < ||l

Let w be a free ultrafilter on N and denote A: L®(T, p) » Z(LX(T, p)) by
A(f)=w — lim,., 8,(f). Then A is also a derivation and ||A|| < ||8]|. We show
that if p denotes the orthogonal projection onto the Hardy space H*(T, u)
= span{z¥|k > 0} ¢ L*(T, p), then A = ad P and A is a continuous function
from the unit ball of L®(T, p) with the norm | ||, into Z(L*(T, p)) with the
uniform norm. To prove the first assertion, note that by (4) (§,(z7)1, z°) =
p(e,w, 8(wP)e,) tend to 1 for p = s > 0 and to 0 otherwise, so that (A(z”)1, z*)
is equal to 1 if p =5 > 0 and to 0 otherwise. Since ad P also satisfies these
equalities and A, ad P are derivations, it follows that (A(z”? yzk, 25y =
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(ad P(z”)z*, z°) for all k, p, s € Z, and thus, by linearity and weak continuity
of A and ad P, A = ad P.

To prove the second assertion (i.e., the continuity result for A), note first that

(*) given B > 0, there exists n, > 1 and a > 0 such that for any n > n, and
a € A,, with ||a|| <1 and ¢(e,a*ae,) < a we have ||6(a)||| < B.

Indeed, since N 2 x — @(xe) is faithful on N by 4.1, there exists «’ > 0 such
that if a € N, ||a|| < 1, p(ea*ae) < o/, then |||6(a)||| < B. Let n, be such that if
n > ng then @(e —e,) < a'/2. If we take a = o’/2 and if @(e,a*ae,) < a,
then we get ¢@(ea*ae) < p(e —¢,)|a*a||+ a<a'/2 +a'/2 = a', so that
l8¢a)ll < B.

Now the required continuity assertion on A states that given any 8 > 0
there exists a > 0 such that if f€ L*(T, ), ||fll <1, and ||f|, < a, then
IACS)€|l, < B for any & € LX(T, p), ||€]|, < 1. In fact it is sufficient to check this
for ¢ Laurent polynomials, § = T, ¢ ,@,z* (with E|e,|? < 1). Let « be the one
given by (*). Then if a, = ¥,(f), we have

1a(£)¢ll, < limsup |8,(£)£],

= timsup | p3(a,)pn| T et ]| w(e,)
n lkl<sm P

< limsup 8((1")( Z akwnk)en q')(en)—l/z'
n |k|<m [

But “(zlk|<makwnk)en”2 =iz, JCIL e e, |l < ):i|"‘i|2 + Ei¢j|ai| |at] lle,w! e, |l
and since I, /o lla)]l = Cla,)? < Cm + DZ|ey|* < 2m + 1, by (b) we
get [(Cawf)e > <1+ 2m + 127" Thus, since for n > n, we have
I8Ca)ll < B, it follows that if n > ny, [18(a, )y <mtiWi)ell, <
(1 + 2m + 1)27")'/Bg(e,)'/?. Hence lim,sup||8(a,)Eayw, )e,ll, < Bo(e,)"
and thus ||A(f)é]l, < B.

We have thus proved that ad P is continuous from the unit ball of L*(T, u)
with the two-norm into Z(L*(T, p)) with the uniform norm. But ad P takes
values into the finite rank operators for all the polynomials in L*(T, p), so that
by the above continuity it follows that ad P takes values into )" (L%(T, p)) on all
L*(T, p). But then by §5 (the abelian case of the theorem) ad P is equal to ad K
for some K € X" (L¥(T, p)). It follows that P — K € L®(T, u) and thus P — K
is a multiplication operator M, for some function f € L*(T, p) (since L(T, p)
is maximal abelian in #(LX(T, p)). But 1 =lim,_ ((P — K)z", z") =
[z7"fz"dp(z) = [fdp(z) = lim,,,_ ((P — K)z", z") = 0, which is a contra-
diction.

The initial assumption § # 0 is therefore false and so Theorem 1.1 is com-
pletely proved.
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8. The counterexample: Proof of Theorem 1.2. The most simple yet typical
situation when the condition of local compatibility between N and Z (M) is not
fulfilled, for abelian (or, more generally, finite type I) N algebras, is when M is
the algebra L*([0,1], A) ® Z(L*(T, p)) and N =1 ® L*(T, p), where p is the
Lebesgue measure on the torus T and A is the Lebesgue measure on the unit
interval [0, 1].

It is well known that L®([0,1], A) ® Z(L*(T, ) can be identified with
L*([0, 1), (L% (T, p)) with L® having here the obvious significance (i.e., weak
A-measurable functions of [0, 1] into #(L%(T, p)), uniformly bounded, considered
modulo a.e. vanishing such functions). Under this identification the ideal #(M)
may be identified with the functions in L*([0, 1], Z(L*(T, p)) which take values
a.e. in X' (L¥(T)). We denote this set by L=([0,1], #"(L*(T)). The subalgebra
N =1® L*(T, p) in turn becomes the algebra of all constant, L*(T, u)-valued
functions on [0,1]. Moreover, the center of M may be identified with the
scalar-valued functions on [0,1], i.e., Z(M) = L=([0,1], Clz(q)).

Note also that the von Neumann algebra generated by N and Z(M) is
N = L=([0,1], L®(T, p)) € M = L>([0,1}, B(LX(T, p))) (in tensor product terms
it equals L=([0,1] ® L®(T)).

Now a general observation concerning problems on derivations into Z(M): By
Theorem 1.1, if the von Neumann subalgebra N contains the center of M, then
any derivation 8 of N into ,#(M) is implemented by an element in #(M); thus,
if N does not contain &(M), it is natural to try to show that the unique
extension of & to the von Neumann algebra generated by N and Z'(M) still take
values into Z(M). It turns out that this is not always the case. More precisely, we
will construct an element T € M = L*([0,1], Z(L%(T, p))) so that [T, N]cC
F(M) but so that [T, N] ¢ £(M). Then if K € #(M) were such that T — K €
N’ N M, it would follow that ad T = ad K on N, so that [T, N]C #(M), a
contradiction.

The key point of the construction of an element T as above is the following:

8.1. LEMMA. There exists Ty € B(L*(T, p)) such that:

(1) Given any measurable set E C T with1 € T a point of Lebesgue density 0 or
1 for E, the projection e = x z € L*(T, ) satisfies [T, e] € o (L*(T, p)).

(2) There exists a projection e, € L°(T, p) such that [Ty, e;] &€ o (L*(T, p)).

Before proving this lemma, let us show how one can construct the desired
element T in M from the operator Tj,.

8.2. PROPOSITION. Let U be the unitary element in M = L*([0, 1],
BAA(T, p))) defined by U = (U)oc,c1. With Uz LXT, p) = LT, p),
(Uf)e*™*) = f(e* D), x € [0,1). Let T, be the element Ty of Lemma 8.1
regarded as a constant function in M (i.e., TO =1® Ty). Then T = UTU* satisfies
[T, N] € _#(M), but there exists no K E}'(M) so that ad T = ad K on N.

Proof of 8.2. To prove that [T, N]C _£(M) it is sufficient to show that
[T, €] € _#(M)) for any projection € € N = 1 ® L*(T, p). Thus we have to show
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that given any projection e € L®(T, n) we have [UTU,*, e] € X (LT, n)) for
A-almost all ¢ € [0, 1].

Now if e = x for some measurable subset £ C T, then by Lebesgue’s

theorem for almost all ¢ € [0,1], 2™ has density O or 1. But if ¢ is so that

e € T is a point of density 0 or 1 in E, then the set E, corresponding to the
projection U, *eU, (i.e., x g, = U;*el}) has density 0 or 1 in the point 1 € T. Thus
by 8.1, (1), [7},, U*eU] ex’(Lz('ll' p)), which shows that [UT\U*, e] €
A (LT, ). _

This shows that [UTU,*, e] € X" A-a.e.in ¢ € [0,1] and proves that T = UT,U*
satisfies [T, N] € ' (LA(T, p)).

Now if K € #(M) = L*([0,1], 2 (L*(T, p))) is such that ad T = ad K on N,
then, since the elements in 2°(M) commute with both T and K, it follows that
ad T = ad K on the von Neumann algebra N = L*([0,1],L*(T, p)) generated by
N and Z(M). But UNU* = N and more precisely & = (UegU,*)g<,<; is in
L*=([0, 1], L*(T, p)), so that [T, €] = [K, é] € £(M), which means that [T}, ;] =
[UTU,*, UeyU,*] € X' (LXT, p)) for A-almost all ¢ € [0,1]. But this contradicts
8.1, (2). Q.E.D.

Proof of 81. Let A,, B, be subsets of T defined as follows: A4, =
exp(2mi[1/2%",1/2*" 1)), B, = exp(2mi[1/2*"*1,1/2?")), for each n > 1

For an element f € L%(T, ) we denote by ||f||, its norm. We define ¢, =
X 4,11z'X 4, € L*(T, p) and M. = X3, 2'x 5, € LX(T, p).

Note that {£,},Y {n,}, 1s an orthonormal family of vectors in L(T, p).

If ¢ ne L%T,u), we denote by D¢, the one-dimensional operator in
B(LX(T, p)) defined by

Peq(§) = (5, )¢

We define T, = ¥, p; , (the infinite sum is so-convergent because §,, 7,, are
all mutually orthogonal vectors) Note that in fact T is a partial isometry with
T2 =0.

Let E C T be a measurable set of density zero in 1. We show that e = x
satisfies Ty, Toe € X' (LX(T, p)). Indeed, we have eT,=ZXp, . ,. Since the
vectors {x E£ )}, are mutually orthogonal in L*(T, p), to show ‘that eT, is
compact it is sufficient to show that ||x z£,/l, — 0. But

£ 2 p(En4,) p(Enexp(2mi[-1/2271,1/2271]
= <
Pestals = =0, w(4,)

H(E N exp(2m’[—1/22"-1,1/22n—1])
M(eXp(qui[——l/zbr—l’1/22n-1])) s

and this last term tends to zero, because 1 is point of density zero for E.
Similarly, we have Toe = Zp; , ., € X (LX(T, p)).
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Moreover, if e corresponds to a set of density one in 1, then by the above
[Ty, 1 — e] € A (LX(T, p)), so that [Ty, e] is also compact.

Now to show that T also satisfies condition 8.1, (2), let E,C T be a
measurable set so that p(E, N A4,) = u(4,)/2 and u(E, N B,) = p(B,)/2 (e.g.,
take E, to be the union of the halves of each interval 4, or B,).

It is easy to see that if ey=xg, then [Tj,e)) =%, Pa=xe b xigmn ~
>, Pxsobn 0= xsp)n Moreover, the vectors

{XEogn’(l - XEo)én, XEonn’(l - XEO)nnIn > 1}

are all mutually orthogonal. Thus, to prove that [T, e,] & X' (L*(T, p)) it is
sufficient to show that {||x E0£n||§|](l - X Eo)nn”%},, does not tend to zero. But

(1 ,_ MEN4,) p(BNE)
IXe &3 = xz)mll3 = === =T = 1/4

Thus [T, e,] & X (LX(T, p)), which ends the proof of 8.1. Q.E.D.

8.3. Final remarks. Theorem 1.2 suggests that in all the cases left uncovered
by Theorem 1.1 the derivation problem into the compacts has a negative answer.
In fact, with some extra effort one may easily extend the methods of this section
to get counterexamples in a large class of cases. However, let us point out here
one case left open which deserves attention and for which we could not construct
a counterexample:

8.3.1. Problem. Let M, be a type II, factor, 5 an infinite-dimensional
Hilbert space and M = L*([0,1], \) ® M, ® Z(¥#). Let 4, C M, be a (maxi-
mal) abelian *-subalgebra of M, and 4, C #(s#) an atomic (maximal) abelian
*-subalgebra of Z(#). Let Ny=1® A, ® 1and N=18® 4, ® 4,. Is it true
that any derivation of N, (or of N) into #(M) is inner?
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