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DERIVATIONS OF VON NEUMANN ALGEBRAS
INTO THE COMPACT IDEAL SPACE OF A

SEMIFINITE ALGEBRA

SORIN POPA AND FLORIN RDULESCU

1. Introduction and statement of results. Let M be a semifinite von Neumann
algebra and let ate(M) be the norm closed two-sided ideal generated by the finite
projections of M. Let N

_
M be a subalgebra of M. A derivation of N into

aC’(M) is a linear application : N aC(M) satisfying 6(xy) 6(x)y + x(y)
for x, y N. For instance, if K aC(M), then the derivation (x) (ad K)(x)
Kx xK is of this type. Such derivations implemented by elements in o9"(M)

are called inner. There are many examples of derivations of *-subalgebras
N
_
M into the ideal at(M) which are not inner. A typical such example is as

follows: Take M ,,(L2(]l", p,)), where/ is the Lebesgue measure on the torus
qi, let N C01") act on L2(]l",/.t) by left multiplication, and define 8(x)=
(ad PH2)(x), where PH is the projection onto the Hardy subspace H2(]1,/)
([1], [11]). Then it is easy to see that 8(x) )U(o’) =aC(’(gd)) for x C(ql)
and that 8 is not implemented by a compact operator.
We will, however, show in this paper that if N is self-adjoint and w-closed in

M, then, except for certain situations, all derivations of N into o(M) are inner.
Moreover, for the most typical excepted case we’ll construct a counterexample.

This derivation problem was initiated in the case M-- ’() and at(M)
OU() by Johnson and Parrott in a paper of the early ’70s ([3]). In that paper
Johnson and Parrott wanted to characterize the commutant modulo the ideal of
compact operators g(of)

_
’(9’) for a yon Neumann algebra N

_
().

They noted that in order to identify it with the compact perturbations of the
commutant of N in ’(9’), it suffices to show that any derivation
is inner. They proved that this is indeed the case if N has no certain type IIx
factors as direct summands. To do this they first solved the case when N is
abelian, the other cases being rather easy consequences of it. The general type II
case was proved recently in [7] by different techniques and using more of the
ergodic theory of the type II factors.

In [4] this derivation problem is studied in the more general setting when
,,() is replaced by a semifinite yon Neumann algebra, (/’) by the ideal
,,’(M), and the center of N is assumed to contain the center of M. Under this
hypothesis it is proved that if N is either an abelian or a properly infinite
yon Neumann algebra, then any derivation of N into at(M) is inner.
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To state our results in precise terms, let us first recall that any von Neumann
algebra N can be decomposed into a direct sum N NO

, N with NO a finite
type I von Neumann algebra and N avon Neumann algebra that has no finite
type I summands. We will then say that N0, as a subalgebra in M, is locally
compatible with the center of M, (M), if there exists a partition of the
unity { Pi}1 in the center of No, (N0), so that for each we have either
.r(No)p

_
.(M)pi or .(M)p

_
.(No)p,.

1.1. THEOREM. Let M be a semifinite yon Neumann algebra and (M) its
compact ideal space. Let N c M be a weakly closed *-subalgebra ofM and suppose
the finite type I summand of N is locally compatible with the center of M n the
sense described above). Then any derivation ofN into ag(M) is inner. Moreover, if: N ag(M), then there exists K ag(M), IIKll < 211ll with ad K. In
particular, the commutant modulo ag(M) of N in M equals N’ M + ag(M).

Thus, Theorem 1.1 solves in the affirmative the derivation problem if N is of
type 111 or properly infinite. It also gives an affirmative answer to the remaining
case when N is finite of type I (e.g., when N is the tensor product of a matrix
algebra with an abelian algebra) under an additional assumption of local compat-
ibility between the centers of N and M. The typical situation when this condition
is not fulfilled is when N is abelian and diffuse (i.e., without atoms), (M) is
also diffuse, and N and (M) are independent von Neumann algebras, namely,
N and (M) generate the von Neumann algebra N (R) (M) with N, (M)
sitting inside it as N (R) 1 and 1 (R) (M).
The second theorem that we will prove in this paper deals with the most simple

such case, left open by Theorem 1.1, namely, when M= L([0,1], ,)(R)
(L2(ql", #)) and N 1 (R) L(T, ). In this case we will construct a counterex-
ample, showing the existence of a derivation of N into at(M) not implemented
by an element in at(M). This is somehow unexpected and is probably the first
nonvanishing 1-cohomological result in von Neumann algebras. It practically
shows that the one-parameter version of Johnson and Parrott’s original result
may fail to be true. In order to have an alternative, more intuitive interpretation
of the next theorem, the reader should notice that we may identify M
L([0, 1], ,) - .(L2(]]", /.t)) with L([0, 1], (L2(]I", ))), ag(M) with
L([0,1], (’(L2(li",/.t))), and N 1 (R) L(]", ) with the set of constant L(’, ))
valued functions on the interval [0, 1].

1.2. THEOREM. Let M L([0,1], A) - ’(L2(ql,/)), N 1 (R) L(ql,/) c
M. There exists an operator T M which commutes modulo at(M) with all the
elements in N but which is not a compact (i.e., ,(M)) perturbation of an element
commuting with M. In particular, there exists a derivation 8(= ad T) from N into
at(M) which is not inner, i.e., not implemented by an element in at(M).

The paper is organized as follows: In sections 2-7 we prove Theorem 1.1 and
in section 8 we prove Theorem 1.2. We will now present some of the ideas behind
the proof of Theorem 1.1.
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A key idea of our proof is to work with a new norm on the algebra M, denoted
Ill ill, which in our problem turns out to be the right correspondent of the uniform
norm on ,(’). This norm has two main features: it helps one deal with the
center of M when diffuse and with the continuous dimension of projections when
M is of type II. The definition and main properties of the norm III III are
discussed in section 2.
We then prove Theorem 1.1 in the case N is atomic and abelian. In the proof

we define the operator implementing B as itS(ei)e, where e are the atoms of N
and the series is strongly convergent, and we use an adaptation of a trick in [3] to
show that Y’.iS(ei)e a’(M).
By the atomic abelian case and by the same argument as in 4.1 [7] (for

M (’t)) we prove a continuity result, namely, that if N is finite and
countably decomposable, then t$ is continuous from the unit ball of N with the
strong operator topology into at(M) with the norm III III. Using this result, we
prove that, in most situations, if an element T is in K --w{,$(u)u,lu unitary
element in N } c M and implements/$ on N, then it is in at(M). From this we
easily get the proof of the theorem for finite type I (under the local compatibility
condition) and properly infinite algebras and also reduce the remaining type II
case to the situation when N is separable and M is countably decomposable.
Moreover, by using the Ryll-Nardzewski fixed point theorem in the same way it
is used to prove the Kadison-Sakai theorem on derivations of von Neumann
algebras, we make the reduction to the case when N’ M contains no finite
projections of M.

Finally, we prove the type II case under the above assumptions: To construct
a candidate for the operator K at(M) implementing t$ on N, we show that N
has an approximately finite-dimensional type li von Neurnann subalgebra R c N
which contains a maximal abelian *-subalgebra A of N such that A’ M
contains no finite projections of M. The proof of this fact is inspired by [6].
We then deduce that there exists K aC(M) implementing on A, and the

rest of the proof shows that in fact this K implements iS on all N. To this end we
proceed by contradiction, following the lines of the proof in [7]. The assumption
i$o ad K : 0 shows that 0(v) 0 for some unitary element v N. Then,
with the help of A and v and using some technical devices similar to 2.1 in [7],
we construct a sequence of abelian subalgebras A in N on which 0 behaves as
badly as possible. More precisely, we construct the algebras A together with
some finite projections e M so that if we consider M as acting on L2(M, W),
then the compressions of 801An to the spaces Aec L2(M, ) are spatially
isomorphic to a sequence of derivations ,: L(ql",/) ,(LE(ql", )). We do this
in such a way that the derivations tS, behave more and more like ad PH and,
moreover, so that by the continuity result ,the limit ad PH follows so-normic
continuous. This is easily seen to be. a contradiction. We mention that the
construction of the finite projections en, which doesn’t appear in [7], is essential
here and carries most of the technical difficulties of passing from the case
M ’(tv) to the general case. In fact the reader will note that, although the
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proof of Theorem 1.1 is inspired in certain places by [3] and [7], our approach is
rather new even when particularized to the case M (

It is our feeling that the new techniques we introduce here to deal with the case
M is of type Iloo may also be used to prove Voiculescu or Andersen stability type
theorems obtained when replacing ’() by a type IIo factor M and d’(cg’) by
a(M).
As the referee of the first version of this paper pointed out to us, the paper

contained an error in one of the preliminary considerations, a fact that actually
made that proof of Theorem 1.1 correct only in the case where the semifinite
algebra M had atomic center. We deeply thank the referee for pointing this out
to .us. However, in order to make the proof of 1.1 work in the generality
presented in this paper, we only had to modify the definition of the norm
and to adapt accordingly some of the statements and proofs in the preliminary
section 2, a matter that only affected their form, not their spirit. In turn, the fact
that in certain situations the problem has a negative answer seems to us of even
more interest and clearly deserves further investigation. In particular, our Theo-
rem 1.2 shows that one-parameter versions of classical derivation problems (or
higher cohomological problems) may have negative answers.

2. Some preliminaries.
2.1. Let M be a semifinite von Neumann algebra. Assume M has countable

decomposable (or countable type) center (M) and let be a normal faithful
state on .o’(M), fixed from now on. We will associate to 6 a normal semifinite
faithful trace q9 on M in the following way:

Let M be decomposed into a direct sum as M ;t(Mi (R) ,(5d/)), where
M are finite von Neumann algebras and dim 4: dim for i4: j. Let

(M) be the center of M. Then (M) is naturally isomorphic to ,.
On each M there is a unique normal finite faithful trace tp which equals qo when
restricted to .Z (here . is regarded as a subalgebra of ,0’ (M) in the
obvious way). Thus there exists a unique normal semifinite faithful trace qo on M
which equals qo (R) Tr on M (R) ’(), where Tr is the usual trace on ’(0/).
We denote M {x Mlp(x*x < c} and, for x M, Ilxll--- p(x*x)1/.

Let be the Hilbert space completion of M in the norm II I1. M will always
be regarded in its standard representation, acting on by left multiplication.
The usual uniform norm of an operator in M will be denoted II II.
Note that if e M is a finite projection, then we do not necessarily have

e M (actually, this implication holds true only in the case where the properly
infinite part of M has finite-dimensional center). However, we clearly have

2.1.1. If e M is an finite projection, then there is an increasing sequence of
central projections p, (M), so that p, ’ 1 and ep M for all n.

2.2. We set M,+ (x MI Ilxll-< 1, p(x*xp) < /(p)for all p :(M)}.
Although we will not use any reduction theory argument in this paper, it may be
helpful for the reader to note that if M is regarded as a measurable field of
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(semifinite) von Neumann factors, then, roughly speaking, a projection is in M1,
if in each point it has dimension < 1.

The following properties of M1, g, will be frequently used"

2.2.1. If T M, IITII < 1, then TM, M, and M1, q,T c 1M1, .
2.2.2. If eo, e are projections in M with eo -< e and e M,,, then eo

2.2.3. If x M, q,, then x* M,q, and Ixl M,,.
2.2.4. If f is a nonzero projection in M, then there exists a projection eo # 0

in M, q, with eo < f. If, in addition, e is properly infinite with central support p,
then eo may be chosen so as to have central support p and so that q(eo) q(p).

Properties 2.2.1-2.2.3 are trivial consequences of the definitions. To prove 2.2.4
it is sufficient to consider the case M Mo (R) ((’), where M0 is finite with
center (M0) (M) , k is a normal faithful state on ., and p (R) Tr,
where is the unique trace on M0 which equals k when restricted to (Mo) .
Let e be a minimal projection of (o,) and e0 1 (R) e. By the comparison
theorem there exists a central projection p such that eop-< fp and
e0(1 p) >- f(1 p). Thus, in particular, if f is properly infinite, then f(1 p)

0 so that 0 #: eop-< fp f and in fact p equals the central support of f
(because e0 has central support one). Thus we always have a nonzero projection e
under f in M. g,, and if, in addition, f is properly infinite, then e may be chosen
to have the trace equal to the trace of eop, i.e., p(e) p(eop ) p(p).

2.3. Definition. For T M we put IIITIII sup{ IITxlllx M1, }. This is
clearly a norm on M. It will play an important role in the sequel. Note that
IIITIII < IITII and that the equality holds if M (of’) but fails if M is non-
atomic.

The next few properties are easy consequences of the definitions and of the
properties of Mt, .

2.3.1. If T, T2, T M, then IIITxTT2111 < IITlll IIITIII lIT211 and IIITIII lilT*Ill
III ITI III.

2.3.2. If T M and { p}, are disjoint central projections in M, then
IIITEPIII 2-- EIIITpIII 2.

2.3.3. If T, TO M, liT011 < 1, and’lllZlll IIITZ0111, then IIIZPlll IIIZZoPlll for
any central projection p (M).

2.3.4. If f M is a properly infinite projection with central support p
.o*(M), then Illflll- (p)1/2.

2.4. We denote by ag(M) the norm closed two-sided ideal of M generated by
the finite projections of M. Thus an element 7’ M is in pC(M) if and only if all
the spectral projections Ett, oo)(ITI) of ITI, corresponding to intervals [t, o) with
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> 0, are finite projections. Alternatively, at(M) may be characterized as
follows:

2.4.1. K aC(M) if and only if, given any e > 0, there is a K0 M
a projection Po (M) such that q(P0) > 1 e, Kopo Ko
IlgPo- Koll < e.

and
and

Indeed, assume K aC(M) and let e Et,)(IKI). Then e is a finite projec-
tion of M, so that by 2.1.1 there exists a projection Po (M) so that
(Po) > 1 e and q(epo < oo. Let Ko Kepo. Then q(K"Ko) IlKll2q(epo)
< o and clearly IlgP0- g011 < e.
The other implication is trivial and, in fact, will not be needed in the sequel.

2.5. Let K (M) and { e }, be a sequence of mutually orthogonal projec-
tions in M. If M (0), then it follows that [IKe[[ 0 and [[eKll 0. This
is no longer true for general M, but still we have [liKe, Ill 0 and IlleKll , 0.
Indeed, to prove this, since K is a linear combination of four positive elements in
at(M), we may assume K is positive and K < 1. Let e > 0 and p .(M),
Ko aC(M)+ such that q0(K) < oo, liKe K01l < e/3, and q(p) >

2 Ileg011 z1 e/3 as in 2.4.1. Since e, tend weakly to zero, we have [[Koellw w
q(e,,K) O. But if x M,+, then we have

Ilge,,xll, < tlKoe,,x[l, + ]I(K- Ko)e,,px]], + II(K- Ko)e,(1 -p)xllw

IIg0e,llw + liKe g011 + q(1 -p) IIg0e, llw + 2e/3,

so that if n is big enough, then Ilge,,xllw < e independently on x M, +. Thus
IIIge, lll 0 and, similarly, Ille, glll 0.

2.6. If T M, we denote by IIITIIlss-inf(lllT-gllllg (M)). Note
that if T ,(M), then IIITIIlss > 0. Indeed, if T at(M), then there exists
> 0 such that Ett, o)(ITI) is an infinite projection. Thus there exists a sequence

of mutually orthogonal, mutually equivalent infinite projections (fn }n with 0 4: f,
< Ett,)(ITI). For each n we take0 4: en < f,,, e, M, ,, e mutually equivalent.
Thus if K(M), we get by 2.5 lilT-Kill > limosupll(T-g)e,llw--
lim,supllTe,ll > tllelll, which shows that IIITIIl,s > tllexllw > 0.

In fact, in certain simple situations this norm can be computed.

2.6.1. If f is a properly infinite projection of central support p; then
IIIflll,,,- k(P)x/2 IIIflll. More generally, if T M, T> 0 is of the form
T Y’."i= lcif for some c > 0 and properly infinite mutually orthogonal projec-
tions f/of the same central support p, then IIITIIl,s (max(c }).q,(p)l/2.

Indeed we have ckf, < T < (max{ c })Ejfj. for all k, which shows that the first
part implies the second. Now the first part follows by taking a sequence of
mutually orthogonal, mutually equivalent projections e, M1, under f so that
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each e, has central support p and so that p(e,) q(p). Then for any K ag(M)
we get IIIf- Kill > lim,supll(f- K)e,ll k(p)1/2.

Let us also note that we have for the norm III IIlss similar properties as the
properties 2.3.2 and 2.3.3 of the norm

2.6.2. If T, TO M, liT011 < 1, and IIITllless--IllTT0llless, then IllTpllles---
IIITZoPlll,,s for any central projection p (M).

2.6.3. If (p,}, are disjoint central projections in M, then IIITY’.P, llle2
EIIITpIII 2

ess"

2.7. The norms III III and III Ills will play a similar role in this paper as the
uniform and usual essential norms do in the proof of the case M (’) in [3]
and [7]. For our general problem these norms have all the advantages but one:
for two operators of disjoint right and left supports the norm of their sum does
not equal the maximum of their norms (as do the uniform and usual essential
norms for M (.,)). We will instead use the following weaker property of the
norm III Ill es.
LEMMA. If T M and fl, f2 are mutually orthogonal projections in M, then

there are central projections pl, P2 (M) such that Pl + P2 1 and
IIIfTfplllss IIl(flTf + f2Tf,_)Plllss, i= 1,2.

Proof Let’s first show that if T1, T2 M, then there exists a central projec-
tion p (m) such that [[[qTx[[[ > I[IT2q[l[ for any projection q Y’(M),
q < p, and IllTlqlllss < [llT2qlllss for any projection q (M), q < 1 p. In-
deed, by 2.6.3 it follows that there exists a maximal projection p in (M) so
that for any q < p, q (Y’(M)), we have [llTqlllss > [[IT2qlllss Now if for
some q0 < 1 p we have [llTq0llles > [[[T2qollless, then there exists some P0 < q0
so that for any q < P0 we have [[[Tlqllless > [[[T2qllless; otherwise, by 2.6.3 and a
maximality argument, we get a contradiction. Thus [[[Tqll[ < [[[Tzqll[, for any
q<l-p.
Now we have that if T flTfl, T2 f2Tf2, and p is the central projection

corresponding to T, T2 as above, then P P, P2 1- p, will satisfy the
conditions. To show this, note first that since [fxTfl + fzTf[ [fxTf[ + [f,.Tf21,
by 2.3.1 it follows that it is sufficient to prove this assertion in the case T1, T2 > 0.

Let e > 0. Let Xx, 2 M+ be elements with finite spectrum so that X >
Tx, X2 < T2, [IX Tx[ < e/2, [IX2 T21 < e/2. Since [[[Txqllless > [[[T2qllless for
all q < p, we also have IIIgqlllss > IIIg2qllles for all q < p. Moreover, by
subtracting a compact operator from each Xj, if necessary, we may assume

X.i Eicff/, where c/> 0 and f/ are properly infinite, mutually orthogonal
projections for all i, j. Assume in addition that all f/ have the same central
support. Then by 2.6.1 we have IIl(gx / g2)Plllss=lllg.Pllles and since
IIIfxTfaPllle, + e/2 > IIIXxPlII, IIl(g + g2)Plllss > IIl(f.Zf. + f2Zf2)Pllles
-e/2, tending with e to zero, we get the result (the reverse inequality is trivial) in
the case where all f/ have the same central support. Now the general case
reduces immediately to this one by 2.6.3. Q.E.D.
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2.8. Since the norm III III is a supremum of vector norms, it is inferior
semicontinuous with respect to the weak operator topology. Indeed, if T tends in
the weak operator topology to T, then IITII < limsupllTll, so that

IIITIII sup{ IITxlllx M, } < lim,sup(sup{ IITxlllx M, }
-limsuplllTlll.

2.9. We now prove a version of Johnson and Parrott’s trick in [3].

LEMMA. Let N M be a oon Neumann algebra and T M such that
(ad T)(N) /(M) and T /(M). Suppose the set { f (N)I IIIfTfllless

IIITIII} contains no minimal projections. Then there exist a c > 0 and a
sequence of mutually orthogonal projections { e } in N such that Ill eTelll > c for
all n.

Proof. Let be a maximal chain in : and let f0 inf. Since \has no
minimal projections, f0 . Thus c (lllTIIles- IIIfoTfolllss)/2 > O. Then the
chain ’ { f- folf } decreases to zero, and since

IIl(f f0) T(f f0) IIl  s + IIIfoZfolll IIl(f fo) T(f fo) + foTfo IIl ss
IIIfTfllls IIITIIls,

it follows that IIIf’Tf’lllss > 2c for any f’ ’.
We can now construct recursively the required sequence {e,}. Assume

f’,..., f,,’ are n projections in " with IIl(f’ f_)T(f f’-)lll > c,
n > k > 1. Since " is a chain decreasing to zero, by the inferior semicontinuity
of the norm III III it follows that there exists a projection fnt+X "’ with
f’/ < f’ such that

Ill( f,,’ f,,’+ ) T( f’ f’+ ) III [[[f,,’ Tf’ [11/2.

Thus IIIf’TL’III > IIIf’Zf’llless > 2c, and consequently

111( f’ fn’+l) T( f’ f/+l )1[[ C,

so that e f’+ f’ will do. Q.E.D.

2.10. Let now M be an arbitrary semifinite von Neumann algebra and
N a M a weakly closed *-subalgebra of it. Let 8: N /(M) be a derivation. By
[3] iS is norm continuous and by [2] it is weakly continuous. Let p be the unit of
N and K 8(p)p -pS(p) /(M). Then Kp -pK 8(p)p 2p(p)p +
pi$(p) (iS(p) pi$(p)) (28(p2)p 2t$(p)p2) + pi(p) 8(p) so that
(8- adK)(p) =0 and (8- adK)(x)=(8- adK)(pxp)=p(8- adK)
(x)p, which shows that iS ad K takes values in pMp.

This shows that in order to prove Theorem 1.1, we may assume the weakly
closed *-subalgebra N M has the same unit as M, i.e., N is a von Neumann
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subalgebra of M. Therefore, in all the rest of the paper the subalgebra N will be
considered to have the same unit as M.

2.11. Let (Pi)iz be a family of mutually orthogonal projections in the
center of M with Y’-iP 1. Assume that for each there exists K aC(M)p
mCr(Mp,) such that ,$(x)p ad Ki(x ) and IIKill < 21111 for all x N. Then
K Y’-i zK is in at(M) and i ad K on N.

Since in a semifinite von Neumann algebra there exist mutually orthogonal
central projections Pi with Y’.pi 1 such that each .(M)p is countable decom-
posable (or, equivalently, has a normal faithful state), it follows by the above
observation that to prove Theorem 1.1 for general M it is sufficient to prove it
for each Mp,, i.e., under the assumption that e(M) is of countable type. Thus
we may and will assume in the rest of the paper that M has countable
decomposable center (M), that k is a normal faithful state on e(M), and
that tp is the unique normal faithful trace on M associated to q as in 2.1. The
reader will note that each time we get a K(M), =adK for M of
countable type, we also have IIgll < 211ll.

2.12. Let NO c N be a finite-dimensional yon Neumann subalgebra of N,
the unitary compact group of N0, and the normalized Haar measure on o.
Then K f(u)u* dh(u) at(M) satisfies for any u0 q/0:

guo- uog= f (u)u*uodX(u)- fuo (U)U*dX(u)

fS(u)(uu)* dh(u) fuoS(U)U* d(u)

fn(.ou)u, dX(u) fuo(U)U* dX(u)

n(uo)f dX(u) + fuo (u)u* dX(u) fuo (U)U*

Thus (8 ad K)(xo) 0 for any x0 N0. In particular, this shows that if N
is a finite direct sum, then to prove 1.1 for N c M it is sufficient to prove it for
each summand.

3. The atomic abelian case. In this section we prove Theorem 1.1 in the case
N is isomorphic to the algebra g’(I) for a set I of arbitrary cardinality.
To do this, let (ei} t be the minimal projections of N g’(I) and note first

that the series E ti(ei)e is convergent in the strong operator topology. Indeed,
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the sequence is bounded because if el, e2,. e, ( ei )i z, then

(*) E ,(e.)e, fz, Y.,,(e,)e, dX(z)
k--I k,l=l

where X is the normalized Haar measure on the torus 1TM and z (z, z2,... Zn)
", so that

E (e)ek
k--1  /II C i z’ek)(k--1 /=1

Now if M is normally represented on some Hilbert space ogf, ’, and
e > 0, then there exists a finite set I0 c I such that I1 (E loe)ll < e, and
thus for any finite set Jo C 1 with J0 I0 we have

J =Jo

which shows that E zS(ei)ei is convergent for any ’.
Let T Ei 7,(ei)ei. Since is a derivation and (Ei . t(ei)ei)eio ,(eio)ei,,,

we have

Te,o e,oT 8(eio)e,o

_
ei,(ei)e,

i: l

8(e/o)e,o- E 8(eioei)e, + (e,o) Y’ e,
il il

8(eio)eio- 8(eio)eio + 8(eio ) 8(eio,).

Since both 8 and ad T are weakly continuous on N and the linear span of
(e } is weakly dense in N g’(I), it follows that 8 ad T on N.
We show that T is in ag(M). Suppose T at(M). Let

= ( f (N)I IIIfTfllless IIITIIless)-

Then contains no minimal projections, because if e is a minimal
projection of and eo < e is a minimal projection of N, then eoTeo 0 (by the
definition of T), so that e- e0 , a contradiction. Thus by 2.9 there exist
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c > 0 and a sequence of mutually orthogonal projections { fn } N in N such that

IIILTLIII > c for all n.

Moreover, by the inferior semicontinuity of the norm III III we may assume each
projection f. is the sum of a finite set J c J of minimal projections in N. But by
(.) we have

Tfn= _, 8(ej)ej fs( ., ziei) ( .jej) dh(z),
J’Jn i:Jn J’J,,

so that

which implies that for some u. Eij.ziei,

Now let u E,,NUn. Then, for each n,

L (u)u*L L (Lu)u* L L (L)f L (uZ )u L,

so that

Since 8(u)u* is in at(M), by 2.5 this is a contradiction. Thus -.i zS(ei)ei is in
a(M), and the case N ’(I) is solved.

4. The continuity result. For the next result we assume N c M is a finite
yon Neumann algebra with a normal faithful finite trace , r(1) 1. We denote
by Ilxl12 "r(x*x)1/2, x N.

4.1. PROPOSITION. Let i: N aC(M) be a derivation. Then is continuous

from the unit ball of N with the strong operator topology into at(M) with the norm

Proof We first prove that if { f. }. is a sequence of projections in N with
(f) 0, then III(L)III 0. Suppose 1118(f.)lll does not converge to 0. By

taking a subsequence, if necessary, we may assume that Illi(f.)lll > c for some
c > 0 and all n and that E(f.)< . Let g. be the supremum of (f
Then z(g.) < Ek>.z(fk) tends to zero with n. Denote by s.,., the support of
f,g.f.,. Then s.., < f,. and s.,., is majorized by g. and thus, z being a trace,
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Z(S,m ) z(g,) , 0 for each m. Since (g,),N is decreasing, ( fmg,fm),N is
decreasing so that (S,m), is decreasing for each m. Thus (fm S,m },
increases to f,,, so that (8(fm S,m)}, is weakly convergent to i(f,,). By the
inferior semicontinuity of the norm Ill Ill (of. 2.8) it follows that for a fixed m, if n
is big enough, IIl(fm- S.m)lll C/2.
We may thus get by induction an increasing sequence of integers n x, n2,...

such that the projections h k f.k s.k+,. satisfy IIl(hk)lll > c/2. These pro-
jections also satisfy z(h k) < r(f) k 0.

Moreover, since h k < f. and s.+,,.k is the support of f.g.+,f., by the
definition of h k we get

hkgn+hk hkfnkgn+fnh k hksn+fnh k hks,k+,,h k O.

Thus h,g,,+ 0, in particular hkf,, for > k + 1, and so h khl 0, which
means that h k are all mutually orthogonal projections. Since we also have
lllS(h,)ll > c/2, we obtain a contradiction, by the atomic abelian case ([}3) and
2.5.
Now we turn to the general case. Since II 112 induces the strong operator

topology on the unit ball of M, we have to show that if (x,), is a bounded
sequence in M with Ilx.ll 2 0, then II](x.)lll 0. It is clear that we only need
to prove this implication in the case where x. are self-adjoint elements and
IIx.II < 1. Moreover, since Ix.1112 IlXnll2, it follows that if IIx.l12 0, then
II(x.)+l12 0 and II(x.)-112 0, so that it is sufficient to prove that if x. are
positive elements and IIxl12 0 (equivalently, z(x.) 0), then IIl(x.)lll 0.

Let x. F.,.>12-me be the diadic decomposition of x.. It follows that
(e) . 0 for each rn > 1. Let e > 0 and m0 > 1 so that 2 -’o < e/2. Then by

the first part of the proof there exists n o such that for n > n 0, IIl(e"m)lll < e/2
for any m < mo. Thus, for n > n o we get

m

IIl (x.) III E 2- lll (e m)III + I1 11 E 2-m < e. Q.E.D.
m ,m > m

The above continuity result will enable us to reduce the theorem to more
tractable situations and to prove it in several cases. We will actually use the
following consequence of 4.1.

4.2. COROLLARY. Let Kn --dw(8(u)u*lu unitary element in N). Assume N
is finite and countable decomposable and denote by z a normalfinite faithful trace on
it, ’(1) 1. Given fl > O, there exists a > 0 such that if x N, llxl] < 1, and
IlX[[2 a, then

IIITxlll < B and IIIxTIII < forall T e K.
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Proof By the preceding proposition there exists a > 0 such that Ilyll < 1,
IlYlI2 < a, implies IIl(Y)lll </3/3. Since 8(u)u*y 8(y) uS(u’y) and Ilu*Yll_
---[[yl[_, it follows that

Ill u*y III III (y)l[[ + Ill  (u*y)lll < 2fl/3

for any unitary element u in M. By taking convex combinations of 8(u)u* and
using the fact that the norm III !11 is weak inferior semicontinuous, we get
IIITylII </3 for all T Ks. Similarly, IllyTIII </3. Q.E.D.

Actually, we will mostly use 4.1 and 4.2 through the next technical results,
which show that in many cases, whenever there exists T Ks (defined as in 4.2)
with ad T 8, then T aC’(M).

First we consider the case when N is abelian and locally compatible with
(M) (in the sense of 1.1).

4.3. PROPOSITION. Assume that the yon Neumann subalgebra N ofM is abelian
and that there exist projections { e }i i in N so that Eeg 1 and so that for each
we have either Ne D .(M)e or Ne c (M) eg. Moreover, assume that there
exist projections ( pj } s in N so that Z,p 1, Npj is of countable type for each j
and i vanishes on the set (p2 }.

If T K --w( i(u) u*[u all(N)} is so that ad T 8, then T J(M).

Proof Assume T ag(M), so that IIITllls > 0. Let

= { e (N)I IlleZellle -IllZllless}.

If contains no minimal projections, then by 2.9 there exists a sequence of
mutually orthogonal projections { e }n in N so that IlleZelll > c for some c > 0
and all n.
By the inferior semicontinuity of the norm III III, for each n we can find a

projection p, in the von Neumann algebra generated by { pi} such that Np. is
countable decomposable and

Ille,Ze, p, lll Ille,Ze, lll/2 c/2.

Let p be the supremum of { p.}.. Then p belongs to (Pi}:’I (and thus
p) 0), Np is countable decomposable and clearly

Ille,Te, Plll > c/2 for all n.

By construction e,p tends strongly to zero in Np.
If we consider " Np ag(Mp) defined by i’(xp)= i(x)p, then obviously

Tp Ks,. Thus by 4.2 we have IIleTeplll 0, a contradiction.
Assume now that has minimal projections and denote one of them by e.

Assume first that ee 4:0 for some with Ne c (M)e. Denote f0 eel. Then
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we also have Nfo <7_ .(M)]"o. It follows that for any unitary element u ah’(N)
there is a zo qz’((M)) such that ufo zofo, and we have

fo,(u)u*yo ,(fo)fo- ,(fou)u*fo

,(fo)fo (rfou four)u*fo

,(fo)fo (ofo- zofor)fo

,(fo)fo (rfo -for)Zozfo o.
Thus, since T --w( 8(u)u.lu qz’(N)}, we get foTfo 0, which implies that

eTe (e fo)T(e fo) ,,(M). Thus e fo , contradicting the minimal-
ty of e in .
Now the only case left is when there is a nonempty set I0 c I so that e < e

and Ne ,.’(M)e for all I0 and E oe e. Fix an in Io with e 0. If
Ne (M)e, then the first case applies and leads to a contradiction, so we
may assume Ne #: 0(M)e, and in fact we may assume there exists no e’ Ne
so that Ne (M)e. It then follows that there exists a projection f Ne so
that qfi .-(M)e for any q .(M), q : 0.
Then by 2.7 it follows that there exists a projection q’ (M) such that

IIITfq;lllss IIITeq;llless,

III Z(e, f,)(1 q; ) IIlss III Ze (1 q; ) Itlss.
Thus if we denote by e/’ f/q/’ + (e -fi)(1- q/’), then we have e/’ < ei,

e’ e, e’ (N), and by 2.3.2 we have IIITe’lllss--IIITLq’III + IIIT(e- f,.)
(1 q’)lllss- IIITeqlll 2 + IIIZe(1 q’)lll 2 2

*ss ss- IIIZelllss.
Denote by e’ (e- el) + e.. Then e’ N, e’ < e and e’ : e.
Then let q (M) be a projection satisfying

IIITe,q, lll,ss IIITeq, llls,

IIIT(e- e/)(1 qi)IIlss-- IIITe(1 qi)IIlss.

Then we have

IllZellle2ss IIIT(e- e,)(1 q,)ill 2 + IIITe,q, lll :z
ess ess

=lllT(e- e,)(1 q,)[ll + IllTe[q, lll2essess

[llT(e;q, + (e- ei)(1 qi))111 ess

lilT(e; / e e,)III - ItlTe’lllCss Cs < IIITelllCs.
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Thus IllTelll- IIITe’llles, which again contradicts the minimality of e. This
ends the proof of the proposition. Q.E.D.

4.4. PROPOSITION. Let N M be a yon Neumann subalgebra of type II x.
Assume the derivation " N ag(M) vanishes on a set of projections (Pi}i c
.(M) with the property that EPi 1 and Np, is countable decomposable for all i.

lf T K is such that ad T 8 on N, then T at(M).

Proof Since N is of type IIx, there exists a decreasing sequence of projections
(e,},>0 in N with e0 1, en+ e,- e,+ for all n > 0. Suppose we have
shown that for some n > 0 we have IlleTelllss--IIITIIless for all k < n. Let u,
be a unitary element in N such that Unen+lU --e,- e,+ 1. Since u,Tu,
T at(M), we have Ille.+ xTe.+xqllle IIlu,e,+Te,+u, ql[less

*Tu *Illue+xu e+uqllls--IIl(e- e,+)T(e,- e+l)qllls for any central
projection q (M). Since

IIle.Te.lllss =lllen+lTen+ + (en- en+x)T(en- en+x) II[ess,
by 2.7 and 2.3.2 it follows that Ille+ Ze+xlllss [lleZellles. Thus IlleZellls
III TIlls for all n.
Assume T at(M), so that Ille.Tellls > c > 0 for all n.
Then the proof continues exactly the same way as the first part of the proof of

4.3 and leads to a contradiction. Q.E.D.

4.5. LEMMA. Let A c N be an abelian oon Neumann subalgebra of N and
suppose there exists a decreasing sequence of nonzero projections (e, } in A such
that e, $0, eo 1, and en+ is equivalent to e,- en+ in N for all n > O. If
T K,, -w(8(u)u*lu unitary element in A} is so that ad T =/ on N, then
T(M).

Proof If v. N are so that v.*v en+ 1, vv* e, e+ 1, then we have

roT- To. ag(M) and for any q (M),

[lie.+ xTen+ lqllless lily.e,,+ Ten+ lVn*qllless lily.e,,+ v*Tv.e,,+ lVn*qllless

[[[( en e +1) T( en e +1) q[l[ess"

The rest of the proof is exactly as the proof of 4.4. Q.E.D.

We end this section by proving a useful converse to the preceding results. Note
that the proof doesn’t use the continuity result 4.1.

4.6. LEMMA. Let N be an arbitrary yon Neumann subalgebra of M and

" N at(M) a derivation. If there exists K at(M) such that 8 ad K, then
there exists T Ks such that 8 ad T.

Proof Assume first that q(K*K) < o. Let

C c--w { uKu*lu unitary element in N }.
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Then Ilyll < IIKII for all y in C and C is a weakly compact convex subset of
M. By the inferior semicontinuity of the norm II IIw it follows that there exists a
unique element Yo C with IlY011w -< IlYllw for all y C. Since uyou* C and
Iluyou*ll, IlYollw, it follows that uyou* Yo for all unitary elements u N. Thus
yoCON’.

Let’s now show that for arbitrary K there also exists some y C (3 N’. To
this end note first that for each n there exist (by 2.4) Po ((M)) and
K Mo ca(M) such that II gll -< IIg II, gp g, II gp,, gll -< l/n, and
q,’(Po) > 1 1/n. Let Co --w( uKou,iu unitary element in N } and Yo Co N
N’ (cf. the first part of the proof). Then the Hausdorf distance between Co and
poC satisfies

d(poC, Co) < IIKp,, K, II < 1/n.

Thus there exists x,, Cp, so that IIx -YII 0.
Now let y be a weak limit point of { Yo }o- It follows that y N’ (because

Yo N’ for each n) and y C (because y is also a limit point of (x,}o).
Now set T K- y. Then K-y K- C --w{ K- uKu*lu unitary ele-

ment in N } Ks and, moreover, since y N’, ad T ad K . Q.E.D.

5. The type I and properly infinite cases. We first prove Theorem 1.1 when N
is a finite type I von Neumann algebra locally compatible with (M) (in the
sense explained in section 1 and in 4.3). Since N is finite, there exists a partition
of the unity { Pi )i. ! in the center of N such that Np, is countable decomposable
for each i. By {}3 there exists an element K0 aC(M) such that (8 Ad Ko)(Pi)

0 for all i. Thus we may assume that 13 vanishes on { Pi )i l" Moreover, by
refining (Pi }i if necessary, we may assume N1, is homogeneous for each i.
The unitary group of N has an amenable subgroup q/0 such that q/’ (N).

Let TO fo(U)u*do(U), where 0 is the invariant mean on qz’o and the
integral has the usual significance (see e.g., [2]). Then TO is in the Ks set
corresponding to (N), and by the same computations as in 2.12 we have

Touo uoTo 8( Uo) for any uo q/0.

Since both/$ and ad TO are weakly continuous and (N) is the closed linear
span of q/o, it follows that iS ad TO on (N) and thus 4.3 applies to get that
TO at(M). Thus, by taking 19 ad TO instead of if necessary, we may assume

vanishes on (N).
Since N,, is homogeneous, we have N,, Moi) (R) i for some n(i) n(i)

matrix algebra Mo<) and an abelian algebra i. Let qz’ be the unitary group of

Mo(i) (R) 1 and q/= ,q/. Then qz’ is amenable with an invariant mean /. Set
T= f,6(u)u*d#(u). Then T is in the Ks set corresponding to N and the
integral pif,fl(u)u* d#(u)p pif,$(u)u* d#(u)p is norm convergent (since
qz’ is compact). Thus piTpi (M) (as a norm limit of elements 6(u)u*
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which are in at(M)). Moreover, ad T equals on q/ and also on .e(N). But
and .’(N) generate N, so that ad T on N. Now if T tog(M) and,

= (e (N)I IlleTelllss IIITIilss), then it follows that has no minimal
projections (if e would be such a minimal projection, then epi 4:0 for some and
e- epi contradicts the minimality of e). To get a contradiction from this, we
continue exactly as in the proofs of 4.3 or 4.5. Thus T lies in ,if(M) and the
proof of Theorem 1.1 in the case where N is finite type I is completed.
Assume now that N is properly infinite. Then N and M are isomorphic

to N -,,(12(’))and M (R) ’(12(7/)), respectively, where N c M are
von Neumann algebras, in such a way that the inclusion N c M becomes
N "-,(12(7/)) cM -,(12(’)). Note first that if the derivation 8" N aC(M)
vanishes on C1 (R) ,(12(’)) c N-- N (R) (12(7/’)), then, given a unitary u N
(R) C1, we have for any x Clot (R) (12(7/)),

so that /J(u) aC(M) N ((31 (R) ’(12(’)) q M --(12(7/)) J(M) N (M (R)

Clatl2Z)) ) 0. Thus 8 0 on N.
From this it follows that to prove the properly infinite case it is sufficient to

prove the case when 8: N (12(7/)) ff(M).
Let D be the diagonal von Neumann subalgebra of ’(12(7/)) and L the

von Neumann algebra generated by the bilateral shift u. Let o(x)= uxu* for
x D be the automorphism of D implemented by the shift u. By 3 we may
assume 8 vanishes on D. Then for any x D we have

which shows that 8(u")u-" . D’ M for all n 7/.

But if we take T to be a (weak) mean (after n) of (un)u-n, then T D’ ( M
and, as in the preceding proof of the type I case, we have

81 ad TI.

Thus ad T equals 8 on both D and L. Since/J and ad T are weakly continuous
derivations, it follows that 8 ad T on the von Neumann algebra generated by
D and L, which is easily seen to be (1(7/)) N. Since T belongs to the K set
corresponding to L, 4.5 applies to get that T at(M).

6. Some technical results. To prove the remaining type 111 case of the
theorem we need some technical devices that we prove below. As before, we
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continue to assume that M is countable decomposable and use the notations of
section 1.

6.1. LEMMA. Let N be a yon Neumann algebra without atoms, q a normal
faithful state on N and (w, } a sequence of unitary elements in N such that
(wf) 0 for all k 4: O. Then there exist unitary elements (v,) in N such that

q(vk,) O, k O, and IIw oll 0.

Proof The proof is the same as the proof of 1.3 in [7], but we give it here
anyway for the sake of completeness.

Since N has no atoms, each w, is contained in some diffuse abelian
von Neumann subalgebra A. c N with separable predual and (A., ql..) can be
identified by some measure preserving isomorphism q% with L(T,/), where is
the normalized Lebesgue measure on the torus ql. Moreover, q% can be chosen so
that q.(w.)=fo, where f,,(e :’it) e -’i’.t) for some nondecreasing function
h,," [0,1] [0,1]. By Helly’s selection principle there exists a subsequence { h k. }.
tending everywhere to some nondecreasing function h" [0,1]--, [0,1]. Thus, if
f(e 2rit) e 2*rih(t), then {fk.}. tends everywhere to f, so that by Lebesgue’s
theorem ffg. d fft, d/ for all p, which by the hypothesis implies ffP dt* 0
for p 4: 0. Thus fq(f)d fq d/ for Laurent polynomials q so that fg fd

lif0<s<fgd for any g L(,/). In particular, if we define gz(e2ris)
0 if < < 1’

where z e 2rit, then we get fh(s).<, d)t(s) fgfdt fgzdl t, )k being the
Lebesgue measure on [0,1]. This implies h (t) and hence f(z) z is the
identity function on ]r. Now, since h ,. are monotone and converge everywhere to
a continuous function, it follows that h k. converge uniformly to h, so that
Ilf,. f]l 0. Since any limit point of f,. was shown to be equal to the identity
f, it follows that Ilf, -fll--’ 0.
We can now take v, %--1(f). Since ff d# 0, +(v,p) 0 for all p 4: 0.

Moreover, IIw o11---II(w) (o)11--IIf-f,II 0. Q.E.D.

6.2. LEMMA. (1). Let N M be a yon Neumann subalgebra such that N’ ( M
contains no finite projections of M. Let e > 0 and e, f two finite projections of M
with q(e) < c, q(f ) < o0. Then there exists a unitary element u N such that

Ilfuellw < e. Moreover, ifN is abelian, then, given any n > 1, there exists a unitary
element u N such that Ilfuellw < e for k 4 O, Ikl-< n.

(2). If N is of type II and countable decomposable, M is countable decompos-
able, and N’ M contains no finite projections of M, then there exist an approxi-
mately finite-dimensional type IIx yon Neumann algebra R N which contains a

diffuse abelian yon Neumann subalgebra A c R such that A’ M contains no finite
projections of M. Moreover, if N has separable predual, then we can make the
construction so that, in addition to the above properties, A is maximal abelian in N.

Proof (1). Let q0. be the semifinite faithful trace on M2n given by
n((Xk)lkln,k.O)-’Eqg(Xk). Set KOe=-C-6w{(ukeu-k)l.l<.o,k,olU unitary ele-
ment of N } c M2". Then q%() < 2n(e) and I111 -< 2nllellw for any K.
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By the inferior semicontinuity of the norm I1, there exists a unique element
o Ke with I1011 < I111 for all x K. But if N is abelian, then for any
unitary element u N, if (U)lkl<.,,.kO, then Ke* C K and I10*11.
--IIx0ll so that, by the uniqueness of 0, o*= o. Thus if 0
(Xk)lkl<n.k 0 4: 0, then x 0 for some k and ukx xuk for any unitary
element u N. Since in avon Neumann algebra N any unitary element v N
can be written as u for some u N, it follows that vx xv for unitary
elements v N, and by taking linear combinations, yxk xy for all y N.
But 0 < Ilxkllw < Ilellw and xk N’ C M, a contradiction. This shows that
0 xo K, so that given any e > 0 and any f (M)+ there is a u ag(N)
such that EO<ll<.,,p(fukeu-k) < e2. Thus Ilfukellw < e for all k 0, Ikl < n. If
N is arbitrary, we take M instead of M-" and the proof is the same.

(2). The argument we use is similar to the one in [6]. We first prove that if
p N, then N;, Mp contains no finite projections of Mp. To show this, let
f : 0 be a projection in N Mp and z a projection in the center of N. Then
zf N; C3 Mp, and if f is finite in Mp, then zf is finite in Mzp. Take z to
be so that fz 4= 0 and pz divides z, say n times. It follows that the inclusion
N c M is the same as Nzp (R) M,,,, c Mp (R) M,,,, and that f’= zf(R) I.
(Np (R) M,,.)’ c3 (Mzp (R) M..). Hence f’ Nz’ C3 M z(N’ c3 M)z c N’ C3

M, and if f is finite,, then f’ is finite, contradicting the hypothesis.
Since M is countable decomposable, there exists an increasing sequence of

finite projections (f. }. in M with f. ’ 1. Moreover, by cutting each f. with a
central projection if necessary, we may assume qo(f.) < o, n .
We now recursively construct an increasing sequence of finite-dimensional

von Neumann subalgebras R in N with matrix units ( e.p }.,. ..,,. p satisfying
the following properties: l<p<m(k)

1. Each est-x’r is the sum of some ep.
2. If A, is the diagonal algebra of R, generated by {eP}.p, then

2 < (3/4),IIEz c (fk)llw
3. n(k, p) > k for each p 1, 2,..., rn(k).
Assume we have constructed these objects up to some k. By (1) it follows that

for each g efp there exists a unitary element u Ng such that. if e is the
kpkP then for each nonzero x eiPfk/xeix we havesupport of Z,ieiPfk+ ei

< 1/21Ix = Approximating u in the uniform norm, we mayq)( eueu*) Ileuellw .
assume it has finite spectrum so that u Y’.Xe with Ee g and I’1 1. Then,
since p(xiuxiu*) < p(eueu*), we have

IIx,llw2 211x,ll_w -IIx,ll [[x/ll 9p + Ilux,u*ll 2p(xiuxiu*)

2UXiU*IIp E (rffts- 1)erXies
r:

2< 4 Ilexie, ll2-- 411xi[l
rq

24[[erXier[[.
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2 2Thus Elle,,xellw < 3/4llxll. Now we can apply the same trick to erxie
2instead of x and get a refinement (e }s of the projections er er, so that

2 22 12IlEesXes II < (3/4)2E[[erXierll < (3/4)-11xll. More generally, we apply the
trick k + 1 times to get projections gt e/k+l so that IIEtgtxigtll2 <

2 and Etgt e.(3/4)k+allxllw
Now since N is type 111, each gt can be divided into k + 1 mutually

orthogonal equivalent projections. Thus we may consider matrix units
{ gtb } <.,,. b <. ,+ with Y’.gta gt- Then easy computations show that if we
denote by ( ekst+ l’r}s,t, an appropriate relabeling of { kp’’i.il ,Sab’lj"kP }a, b, 1, i, j, p, then
this matrix unit and the von Neumann algebra Rk+ generated by it, together
with its diagonal Ak/ 1, will satisfy conditions 1, 2, and 3.

Let R LIkR k. Then condition 3 implies that R is of type II 1.

Let A LI,A. Suppose e A’ ( M, e 4: 0, is a finite projection of M. Then
by cutting e with a projection in (M) if necessary, we may assume tp(e) < oo.
Since f, 1’ 1, there exists n such that [[f,ef, el[ < 1/211e11. By the construction
of A, A there exists a partition of the unity el,..., e with projections in A
such that

IIi eif,,e.ll < 1/211e11.

But then

< 1/211ell,

so that, since e Y’.eiee,

-.ei(f,,ef. e,e, +lli eif.ef,,ei

which is a contradiction.
Finally, if we assume N is separable, then it has a normal faithful trace and

there is a set of elements (yk }k C N dense in N in the norm IlYlI2 r(y*Y)1/2
and we may construct recursively Ak, Rk, so that, in addition to conditions 1, 2,
and 3, to satisfy condition 4, IIEau(y) E(y)II2 < 1/k, 1 < < k.
Then by [6] it follows that, besides the above properties, A is also maximal

abelian in N. Q.E.D.

In the rest of this section N c M will be a type 111 von Neumann subalgebra
with a fixed normal finite faithful trace ,, ,(1) 1. The norm on N given by is
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denoted [[xl[ 2 ’i’(X*X)1/2, X M. If B c N is a von Neumann subalgebra,
then Es denotes the unique normal z-preserving conditional expectation onto B
(cf. [10]).

6.3. LEMMA. Assume A c N is a maximal abelian oon Neumann subalgebra of
N such that A’ 3 M contains no finite projections of M. Let e > O, n > 1, e and f
finite projections in M and o a unitary element in N. Then there exists a unitary

2 e for any k :/: O, Ikl < n.element u A such that Ilf(uo)kellw
Proof Since (e), (f) < , it follows that (e v f) < o. Since II(e v f)

(uu)k(e v f)llw > [If(uo)kellr, it is sufficient to prove the statement when e f.
Since Ile(uv)ellw -Ile(uv)-ellw, we only need to prove the estimates for k > 0.
We’ll actually prove the following more general result:

(.) If e > 0, n > 1, ’c N is a finite self-adjoint set of norm one elements
containing the identity and e, f are finite projections in M, then there exists a
unitary element u A such that

fxo I-I (ux,)e < e
i=1

for anyl<k<n andx0,xl,...,xk.
We first prove (.) in the case (xe) < cr(x), q(fx) < cz(x), x N/, for

some constant c > 0. Let g’= (w partial isometry in AI IlfxoFlx(Wx)ell2 <
e(w*w) for any 1 < k < n, xo, xl,..., xk } and consider on g" the usual
order" wo < w if wo is a restriction of w1, i.e., w0 wwg’wo. The set is clearly
inductively ordered. Let u be a maximal element of it and suppose u*u :/: 1.
Denote by Ao (1 u*u)A(1 u’u), NO (1 u*u)N(1 u’u), and o
((1 u*U)Xo(I-Iki_l(uxi))(1 u*u)ll < k < n, Xo, x,..., Xn -}. By 1.2 in
[6], given any iS > 0, there exists a partition of the unity e,..., e in A0 such
that F,illeye Eo(Y)eill IIF,ieyei- E(y)ll2 < 8z(1 u’u) iSEiz(e) for
all y o. It follows that for some e0 e we have

( * * ) Ileoyeo EAo(Y)eol122 < 8z(eo), Y o.
Let n > r,s > 0, x , y, Yx,.-., Ys ’o, x’ ’*, Y’, Y,.., Y’ ’o

and w Aoeo, Ilwll < 1 and put a Iq(ex’I-I.=(yi’w*)y’fyl-l=l(wyj)xe)l, with
the convention that a product over a void set equals 1.

If s 1, then by the Cauchy-Schwartz inequality we have

a < Ilfywyxell

< Ilfwllllell,
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where g, is the supremum of the left supports of all the elements of the form
zyxxe, with x o’, Y o, and z (I-Ii=E,(y)eolO < k < n,
Yl,..., Yk ’o }, and f is the supremum of the right supports of all the elements
fy with y ’o.

If s > 2, then we have

]1--I (wy,)xe < 1-I (wyi)w(E,(yj)eo- eoYjeo)
i=1 q j--1 i=1

t=j+
P

j--1 qo

< ., {ll(Ea(yo)eo- eoYoeo)wJzyxellll <j < s,

where , f are as before. Thus if/3 denotes the sum in the right-hand side of the
above last inequality, then by (, ,) we get fl < sNNo2Nlcl/El/Elleoll2, where N,
No, and N1 are the number of elements in , o, and 1, respectively.

Thus, by the Cauchy-Schwartz inequality we obtain

i=1

Thus, if is such that snNNoENlc81/2 < e2 -2n- and if, using 6.2, we choose w
to be a unitary element in Aoeo Aeo c eoMeo such that c/2[IfwSll <
e2-E’-llleoll2, then we get a < 2-2ner(eo).
We now show that if w is chosen like this, then uo u / w contradicts the

maximality of u. Indeed we have for any 1 < k < n and xo, Xl,..., x, ’:

fXo H (U + W)X e
i=1

2 k

fxoI-I(ux,)e
i=1

2

+ ECZ,



DERIVATIONS INTO THE COMPACTS 507

where the a’s appearing in the sum are of the form estimated above and there are
2k 1 terms in that sum. It follows that Y’.a < ez(e0), so that

fxo I-I (u + w)x e
i--1

+ + w)*(u + w)).

This ends the proof of (,) in the case p(xe)< cz(x), p(fx)< cz(x), for
x=N+.
To prove the general case, i.e., for arbitrary e, f in M, note that given

any e > 0 there exist finite projections e’, f’ M with lie- e’ll < e/3,
IIf- f’ll < e/3, and such that p(xe’) < cz(x), p(f’x) < c(x) for some con-
stant c > 0. Indeed, since (.e), (f.) are in N,, there exist X, Y
such that p(xe)= (xX), p(fx)= (xY), for x N. Thus if En, F, are the
spectral projections of X and Y, respectively, corresponding to the intervals
[0, n], then E,I’I, F,’I and q(xE,eE,)= p(EnxE,e)= (E,xE,X)=
(xE,X) < n(x) and, similarly, p(FnfF,x) < n(x). It follows that IIE.eE.
ell 0, IIFfF- fll 0, so that if e’, f/ are the spectral projections of
E,eE, and F,fF,, respectively, corresponding to the interval [1/2, o), then any

0 and p(xef,,)easy computation shows that [[e’ e[[ 0, [[f’ f[[
2p(xE,,eE,,) < 2nz(x), p(f,,’x) < 2p(F,,fF,,x) < 2he(X) (see, e.g., 1.4 in [8]).
Now by the first part of the proof, given e > 0 and n > 1, there exists a unitary
element u A such that Ilf’xoI-Ii_(uxi)e’[l, < el3 for any 1
n, x0, x,..., x -. But then

k

fxo I-I (uxi)e
i----1

< 2e/3 + f’xoI-I (uxi)e’ < 2e/3 + e/3 e. Q.E.D.
i=1

6.4. COROLLARY. Let e > 0, n > 1, e, f be two finite projections in M and
v N a unitary element. There exist a finite projection e M and a unitary
element w N such that

1. cp(ewen) 0 for any k 0;
2. e < e, cp(e- e) < e;
3. Ilfwke.II < e for k q O, Ikl < n;
4. IIw uoll < e for some unitary element u A.

Proof. First we prove that given any e’> 0 there exist unitary elements
u A and w’ N and a finite projection e M such that

(a) e, < e,(e- en) <

(b) Ilfw%,ll < e’ for k : 0, Ikl < n;

(c) IIw’- uvll <

(d) q(ew’ge) 0 for all k : 0.
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Then it follows by (a) and (d) that I(w’ke.)l e’ for any k 4:0 and thus if e’ is
small enough and e’ < e/2, by 6.1 there exists a unitary element w N such
that IIw w’ll < e/2n and (wken) 0 for any k 4: 0. But then Ilfwkell <
Ilfw%ll / nllw w’ll < e for k 4: 0, Ikl < n, and IIw uvll < IIw w’ll /
IIw’- uoll < e/2n + el2 < e.
Now to prove (,) we let e" > 0, n’ > 1. By the preceding lemma there exists a

unitary element u A such that [[(e v f)(uo)kel[w < e" for k ’-- 0, ]kl < n’. It
follows that Iq(e(uv)e)l < Ilelllle(uv)ell < e’llell, for all k 4: 0, Ikl < n’,
and q(e(uv)-f(uv)e)= Ilf(uv)ell2 < e’’. If e is the spectral projection
of e(uv)- kf(uv)ke corresponding to the interval (0, e"], then e/, <
e, e[,(uv)-f(uv)e[, < e" and e- e < e"-le(uv)-f(uv)e so that (e- e,)
< e"-e’’ e". Let e / { e;,Ik 4 O, Ikl < n }. Then e < e, q(e) > q(e)
2ne", and Ilf(uv)ell - < Ilf(uv)e;,[I < e".
Lemma 6.1 shows that if n’ is large enough and e" is small enough with

e"< (e’/(n + 1)) 2, then there exists a unitary element w’ N such that
q(w’ke) 0 for all k 4:0 and IIw’- uvll < e’/n + 1. But then
Ilfw%,ll < Ekl,:ollf(uv)l"(w’- uv)(w)-p-le,,ll + IIf(uv)e.II < ke’/(n + 1)+
e’/(n + 1) (k + 1)e’/(n + 1) < e’, which proves (,). Q.E.D.

7. End of the proof of Theorem 1.1: The type II case. In this section we
prove 1.1 in the case where N is of type II t. By .2.11 and {}5 this will end the
proof of the theorem. We begin the section by reducing the problem in several
steps to the case when the type IIt von Neumann algebra N is separable, M is
countable decomposable, and N’ ( M contains no finite projections of M. Note
from the beginning that by section 3 we may assume t vanishes on a set of
projections ( p } in the center of M having the properties Ep 1 and Np, is of
countable type for each i.

7.1. First reduction. It is sufficient to prove the theorem for separable N (i.e.,
N with separable predual).
To show this, let R c N be a copy of the hyperfinite type II factor with the

same unit as N (cf. [5]). There exists an increasing net of separable von Neumann
subalgebras { N }i of N with R N and [,.JiNiw= N. Indeed, if (pj }jj is a
partition of the unity in the center of N such that Npy is countable decomposable
for each j, then any countably generated von Neumann subalgebra of Np is
separable, so that if N are such that Nipj is countably generated and contains

Rp for a finite number J0 of j J and if Y’.j. so pj RE jopj, then N will
do. Since RcN, each N is of type II t, and if K(M) is such that

81, ad K, then by 4.6 there exists T K (in fact, in --w(8(u)u,lu unitary
element of N) c K) such that ad T ad K 8IN,. Let T be a weak limit
point of ( T )i. Then ad T 8 on UN, so that by the weak continuity of ad T and, ad T 8 on N LINw. Since N is of type II t, by 4.4 we have T ,k(M).



DERIVATIONS INTO THE COMPACTS 509

7.2. Second reduction. It is sufficient to prove the theorem when N is sep-
arable and M is countable decomposable.

Indeed, by the preceding reduction we may assume N is separable. Let ok’0 be
a countable subset in the unitary group q/ of N, dense in q/ in the .-strong
operator topology. Let { p), be an increasing net of countable decomposable
projections of M with p ’ 1. By the density of 0 in q/, it follows that for each
i, V( upiu*lu - ql ) V(upiu*lu q/o), so that if we denote this projection by
s, then it is countable decomposable (being a supremum of a countable set of
countable decomposable projections) and, moreover, s N’ M, s ’ 1. Define

8i: N, siaC(M)s =aC(M;) by 8i(xsi)= siS(x)si. Since s N’ tq M, 8i are
well-defined derivations. If for each there exists an element K; aC(M,) such
that tJ ad Ki, then by 4.6 there exists T K such that siTs K, siKs
satisfies tJ ad(sTsi). Let T be a weak limit point in M of the net {T}i
( M). Since {s} converges strongly to the’identity, T K and ad T tJ on
N. Then 4.4 applies to get T at(M).

7.3. Third reduction. It is sufficient to prove the theorem when N is sep-
arable, M is countable decomposable, and N’ M contains no finite projections
of M.

Let Po V( e’ N’ Mle’ finite projection of M }. Note that in fact Po
V{ e’ N’ Mle’ projection with (e’) < }. Indeed, this follows immediately
by 2.1, because given any e N’ (q M and p e(M) we have ep N’ (3 M.
Assume now that tJ(x) 8(x)po, x N. Then K Kp0. For each unitary
element u N define on K the weakly continuous affine transformation T(x)

uxu* + ,(u)u*. Then TuTo Tuo, and since Tu(,(v)v*)= u,(v)v*u*+
tJ(u)u* ,(uv)v*u*, it follows that Tu(K) K. Consider on M the semi-
norms S’= { tp(x*xe’)/2 for x Mle’ finite projection in N’ q M with (e’) <
oo }. Then the semigroup of transformations T on K is n0ncontractive, because
if x, y K, x 4: y, then infucp(u(x y)*(x y)u*e’) p((x y)*(x y)e’),
and if ((x y)*(x y)e’) 0, then x y (x Y)Po (x y)( v e’) 0
(by the faithfulness of p). Thus by the Ryll-Nardjewski fixed point theorem. (see
A.3 in [9]) there exists an element X K with T,(X)= X for all unitary
elements u N. But then uXu* + 8(u)u* X and thus 8(u)= Xu- uX, and
by linearity/J(x) Xx xX for all x N. Since N is of type II1, by 4.4 we get
X aC(M). Similarly, if 8(x)= po,(x), for any x N we obtain that 8 is
implemented by an element in at(M). It follows that there exists K aC(M)
such that (8 ad K)(x) (1 po)(t ad K)(x)(1 Po). Thus, if we define

M by /J0(x(1 P0)) (8 ad K)(x)(1 Po), then tJ0 is a0: Nl-po -po
well-defined derivation taking values into (1- po)aC(M)(1- P0)=aC(M-po).
Since Nt’_ Mx_po contains no finite projections of M_o (see the proof of 6.2,
(2)), this shows that in order to prove the theorem for N separable of type II and
M countable decomposable, we may in addition assume that N’ ( M contains no
finite projections of M.
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7.4. In the rest of this section we may therefore assume N is separable, M is
of countable type, and N’ M contains no finite projections of M.
By 6.2 we may construct subalgebras A R c N so that R is an approxi-

mately finite-dimensional type II von Neumann subalgebra of N, A is a
maximal abelian von Neumann subalgebra in N, and A’ M contains no finite
projections of M. Since R is approximately finite-dimensional, there exists an
amenable subgroup of unitary elements q/ in R such that q/" R. Let K
fq/$(u)u* d/(u), where/ is an invariant mean on q/. Then, like 2.12, it is easy to
see that ad K equals/$ on q/ and thus on R. By 4.4 it follows that K o(M).
Thus, by taking/$ ad K instead of 8 if necessary, we may suppose 8 vanishes
on R and thus on A R.
We show that 0 on all N follows from the fact that 81 0, and this will

end the proof of Theorem 1.1.
Assume/$ : 0. Then there exists a unitary element v M such that i(v) : 0.

Moreover, there exists a finite projection e M, such that p(ev*,$(v)e) :/: O,
because otherwise p(v*8(v)x)= 0 for any linear combination x of projections
e M, and thus, by taking norm limits, for any x M, which implies
v*8(v) 0, a contradiction.

Let q N be the support of the normal form N y p(ye). Then qe e
and thus there are central projections p, in N so that

(,) p increases to the central support of g in N;
(, ,) for each n there is a finite number of unitary elements u,..., u(, in

N so that

V uiP,,qu" P,,.

Now from (,) it follows that if n is large enough, then lie -p,,ep,,[[, is small
enough to ensure that p(p,,ep,,v*8(v)p,,ep,,) :/: O. Since A is maximal abelian in
N, A (N), so that/$ vanishes on (N) and thus on all p,. Moreover, if i,:
Np,, ag(p,,Mp,,) is defined by ,$,,(xp,,) p,,$(x)p,,, then vanishes on Ap,, and
the support projection e of F_.iup,,ep,,u (where u are as in (, ,)) satisfies
p(e,,(vp,,)*,,,(vp,,)e,,) 0; Np,, y p(ye,,) is faithful on Np,,; e,, is a finite
sum of elements in M, .

Altogether, these considerations show that, by modifying N, M, iS, p, and k, if
necessary we may suppose we are in the following situation’

(i) M is a countable decomposable semifinite von Neumann algebra with a
normal semifinite faithful trace q constructed from a normal faithful state p on
(M) as in 2.1.

(ii) N c M is a separable type IIt von Neumann subalgebra and A c N is a
maximal abelian von Neumann subalgebra of N such that A’ M has no finite
projections of M.
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(iii) : N ---,,,(M) is a derivation that vanishes on A.
(iv) v N is a unitary element and e M is a finite projection satisfying the

following properties:
(1) There exists a constant c > 1 such that +(q)< p(eq)< c,,(q) for any

q oW.(M).
(2) p(ev*8(v)e) 1 (by suitable amplification of 8 with a scalar).
(3) N y ,-> p(ye) is faithful.
We now prove that for any n there exist a finite projection e. M and a

unitary element w. N such that

(a) e. < e, q0(e- e.) < 2-";

(b) Ile.w.e,,]l < 2-" for k 0, Ikl < n;

(c) p(e.w,e.) 0 for k : O;

(d) Icp(e,,w*’8(w.*’)e.) 11 < 2-" if n > p > O; and

(e) I(e,,w-*(w)e,,)l < 2-" if p. s or p < 0, Ipl, Isl n.

To do this, let fo M be a finite projection such that

Ila(o)(1 fo)II < (5cr/) -12-n-1, I1(1 fo)v-l(v)

< (5cn) -2--’, 11(o-1)o(1 fo)II <

By 2.1 there exists a central projection p (M) such that P(foP) < oo and
(1 -p) .< (5c(1111 / 1)2n+1) -2 (in all these inequalities c > 1 is the constant
appearing in (iv)). Set f fop v e. Then by the preceding Corollary 6.4 there
exist unitary elements w. N and u. A and a projection e,, M such that

(a’) e.<e, q(e-e.) <2-";

(b’) Ilfwe.II < (5cn(llll + 1) + 1)-12 -"-1 for Ikl < 2n, k. 0;

(c’) IIw u.vll < (5cn(llll + 1))-12 -"-1 and p(e.w.e.) 0 for k =/= 0.
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It follows that if n > k > O, then

(i)

Z w(w)w--le. Z ll(w)w--lell
s=0 o s=0

k-2

s=O

k-2

lenll + (k 1)c I111 IIw

k-2

< E II(o)fw--e.ll / (k 1)111111( p)e.ll
s=O

+(k- )c/-II(u)(1 -fo)II + 5-1c-/22-n-<2-"-c-1/2;

(ii)
k-1

II(.-)e.ll < II(wz)’(wZ)(wZ’)*-’-’e.ll
s=O

k-1

z II(<-l)v)(unv)-l(wl) k-s-le.ll
s=O

+ cl/2k111311 Ilu.v wll

e. [l + 2kc/21161111u.v w.II

k-1

< II<-)o(w.-)-sO

+kllSIlll(1 p)e,,ll + (2/5)c-/22-’-x

k-1

e. + (4/5)2-"- lc 1/2 < 2-"-c 1/2

s--O
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Thus for n > p > 0 we have by (i), (c’), and the equality 8(u’v) u.8(v):

[p(e.wP(wf)e’)- 11 <[p(e’w-(w’)e’)- 1[ + 2 -’-x

<lp(e,v-Xu;8(uv)e,)- 11 + 2c/llSIIIIw,-

<lp(ev-18(v)e) 11 + 2-" =2-n

If n > p > 0 and s #: p, then by (i), (c’), and (b’) we have:

[,p(e,,w-(wd)e,) < [(ew-+P-X(w)e,) + 2--1

<[p(e,.wd-*+p-u,#o-’3(v)e,.)[+ 5-12-n-1 + 2-.-

<lcp(e,,w-*+pv-t8(v)e,,)[+ 2.5-2-"-x + 2-,,-x

+ 4.5-1.2 -’’-1 + 2 -’-1

(5 -1 -[- 4.5 -1 + 1)2 -n-l= 2-’.

Finally, if p < 0, then by (ii) and the Cauchy-Schwartz inequality we have for
any s"

I,(e,,wg-(wf )e,,) < [[(wf )e,,lllle,,ll < 2-".

This shows that e, and w" as defined before fulfill conditions (a)-(e).
We now define A, c N to be the von Neumann algebra generated by

Pn (L2(M, P)) to be the orthogonal projections onto A,,e,,; the isometries
L2(ql", ) L2(M, tp) (where/ is the normalized Lebesgue measure on the torus

ql’) to be defined by u’(z k) tp(e)-I/2wfe" and the measure preserving isomor-

phism " L(T, ) (A’, p(e,)-ltp(.e’)) by ’/’’(z k) wf. Moreover, we de-
fine 8,: L(T, ) (L2(]",/)) by 8"(f) u*8(9"(f))u,, for f L(T,/).

A,, an easy computation shows that all 8" are derivations andSince Pn Untln
clearly I111 < I111.

Let 0 be a free ultrafilter on N and denote A: L(,/) (L2(ql, #)) by
A(f) w limn.,,fl’(f ). Then h is also a derivation and Ilall < I111. We show
that if p denotes the orthogonal projection onto the Hardy space H2(,/)

span{ zklk > 0} C L2(,/), then A ad P and A is a continuous function
from the unit ball of L(T,/) with the norm II 112 into (L2(, #)) with the
uniform norm. To prove the first assertion, note that by (4) (8"(zp)l, z s)
p(e,,wSS(wf)G) tend to 1 for p s > 0 and toO otherwise, so that (A(zP)I, z
is equal to 1 if p s > 0 and to 0 otherwise. Since ad P also satisfies these
equalities and A, adP are derivations, it follows that (A(zP)zk, z)
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(ad p(gp)gk, gs) for all k, p, s 71, and thus, by linearity and weak continuity
ofA andadP, A=adP.
To prove the second assertion (i.e., the continuity result for A), note first that
(,) given fl > 0, there exists n o > 1 and a > 0 such that for any n > n o and

a A,, with Ilall < 1 and p(ena*aen) < a we have IIIt(a)lll </3.
Indeed, since N x ,--> p(xe) is faithful on N by 4.1, there exists a’ > 0 such

that if a N, Ilall < 1, q(ea*ae) < a’, then IIIt(a)lll </3. Let n o be such that if
n > n o, then q(e en) < a’/2. If we take a a’/2 and if p(ena*ae,) < a,
then we get p(ea*ae) < p(e- en)lla*all / a < a’/2 + a’/2 a’, so that
IIl(a)lll </3.
Now the required continuity assertion on A states that given any fl > 0

there exists a > 0 such that if f L(T,/), Ilfll < 1, and Ilfl12 < a, then
IIZ(f)[I 2 </3 for any L2(T,/), llll2 < 1. In fact it is sufficient to check this
for Laurent polynomials, Ei/,l<.makzk (with Y’.lal 2 < 1). Let a be the one
given by (,). Then if a q’n(f), we have

IIA(f) II= < limsup

n Ikl<m ,p

< lim sup
Ikl<m p

But 2 j-i 2ot w e Z otaew e < a +Y’.
and since Ei 1lal Ilalll (Elal) < (2m + 1)Elal < 2m + 1, by (b) we
get II(Eaw2),ll < 1 + (2m + 1)2-’. Thus, since for n n o we have

  8(a.)lll < it follows that if n n
+ (2m + -n)/2(en)l/2. Hence lim,supllo(a)(Ea,w)e,ll (en)1/2

ana thus Ila()l12 #.
We have thus proved that ad P is continuous from the unit ball of L(, )

with the two-norm into (L2(, )) with the uniform norm. But ad P takes
values into the finite rank operators for all the polynoals in L2(, ), so that
by the above continuity it follows that ad P takes values into (L2(, )) on all
L(, ). But then by 5 (the abelian case of the theorem) ad P is equal to ad K
for some K (L2(T, )). It follows that P K L(, ) and thus P K
is a multiplication operator M/ for some function f L(, ) (since L(, )
is mammal abelian in (L(,)). But 1 lim,_((P-K)z",z)
fz-fzd(z) ffd(z)= lim,_((P- K)z", z")= 0, wch is a contra-
diction.
The initial assumption 8 0 is therefore false and so Theorem 1.1 is com-

pletely proved.
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$. The counterexample: Proof of Theorem 1.2. The most simple yet typical
situation when the condition of local compatibility between N and e(M) is not
fulfilled, for abelian (or, more generally, finite type I) N algebras, is when M is
the algebra L([0,1], h)(L2(T, )) and N 1 (R) L(ql,/), where/ is the
Lebesgue measure on the torus T and X is the Lebesgue measure on the unit
interval [0, 1].

It is well known that L([0,1],X)-(L2(T,/)) can be identified with
L([0,1], (L2(B",/)) with L having here the obvious significance (i.e., weak
X-measurable functions of [0,1] into (L2(,/)), uniformly bounded, considered
modulo a.e. vanishing such functions). Under this identification the ideal o(M)
may be identified with the functions in L([0,1], (L2(T,/)) which take values
a.e. in .gr’(L2(qF)). We denote this set by L([0,1], .,Y’(L2(T)). The subalgebra
N 1 (R) L(T,/) in turn becomes the algebra of all constant, L(ql, #)-valued
functions on [0, 1]. Moreover, the center of M may be identified with the
scalar-valued functions on [0,1], i.e., .Z(M) L([0, 1], C1L2tr).
Note also that the von Neumann algebra generated by N and .Z(M) is

L([0,1], L(,/)) c M L([0,1], (L2(,/x))) (in tensor product terms
it equals L([0, 1] (R)

Now a general observation concerning problems on derivations into ag(M)" By
Theorem 1.1, if the von Neumann subalgebra N contains the center of M, then
any derivation 8 of N into ag(M) is implemented by an element in ,,(M); thus,
if N does not contain .(M), it is natural to try to show that the unique
extension of 8 to the von Neumann algebra generated by N and ’(M) still take
values into ag(M). It turns out that this is not always the case. More precisely, we
will construct an element T M L([0,1], (L2(B",/))) so that IT, N] c
ag(M) but so that [T, 7]
N’t M, it would follow that ad T ad K on N, so that [T, AT] c(M), a
contradiction.
The key point of the construction of an element T as above is the following"

8.1. LEMMA. There exists TO .(L2(q]",/.t)) such that:
(1) Git)en any measurable set E c with 1 " a point of Lebesgue density 0 or

1 for E, the projection e X E L(", ) satisfies To, e oof’(L2(’", #)).
(2) There exists a projection eo L(V, #) such that [To, .eo] )f’(LE(ql",/.t)).

Before proving this lemma, let us show how one can construct the desired
element T in M from the operator T0.

8.2. PROPOSITION. Let U be the unitary element in M L([0, 1],
(L2(’", /.t))) defined by U (Ut)o<t<l~ with Ut: LE(T,/x) LE(T,/.t),
(Utf)(e2"x) f(e2itx+t)), x [0, 1]. Let TO be the element TO of Lemma 8.1
regarded as a constant function in M (i.e., o 1 (R) To). Then T UoU* satisfies
IT, N] c af’(M), but there exists no K at(M) so that ad T ad K on N.

Proof of 8.2. To prove that [T, N] caC(M it is sufficient to show that
IT, ] ag(M)) for any projection N 1 (R) L(T, #). Thus we have to show
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that given any projection e LO(ql", it) we have [UtToUt*, e] (LE(ql",/.t)) for
X-almost all [0,1].
Now if e X e for some measurable subset E c , then by Lebesgue’s

theorem for almost all [0,1], e 2rit has density 0 or 1. But if is so that
e 2rit T is a point of density 0 or 1 in E, then the set E, corresponding to the
projection Ut*eU (i.e., X e, Ut*eU,) has density 0 or I in the point 1 T. Thus
by 8.1, (1), [To, Ut*eUt] #(LE01,tt)), which shows that [UtToUt*,e]
,Xd’(L2(’li", )).

This shows that [GToG*, e] X-a.e. in [0,1] and proves that T UToU*
satisfies [T, N] c X’(L2(’, )).
Now if K dr(M) L([0, 1], d(L2(", ))) is such that ad T ad K on N,

then, since the elements in .’(M) commute with both T and K, it follows that
ad T ad K on the yon Neumann algebra N L([0,1], L(IF, )) generated by
N and r(M). But UNU*= N and more precisely = (GeoU,*)o.<,.< is in
L([0,1], L(, )), so that [T, ] [K, ] o(M), which means that [To, eo]
[U,ToU,*, GeoG*] X’(L2(’, )) for A-almost all [0, 1]. But this contradicts
8.1, (2). Q.E.D.

Proof of 8.1. Let An, B. be subsets of T defined as follows: A.
exp(2ri[1/22n, 1/22-1]), Bn exp(2ri[1/22n+x, 1/22n]), for each n > 1.

For an element f L2(’g, it) we denote by [Ifl[2 its norm. We define f.
IIx.llx,, L2(ql", it) and . Ilxs,,lllx B,, L2(]I",/x).
Note that (fn }. U { r/n} is an orthonormal family of vectors in L2(ql",
If f, r/ L2(T, tt), we denote by P,n the one-dimensional operator in

(L2(ql,/)) defined by

We define TO E.p., . (the infinite sum is so-convergent because f., ’0m are
all mutually orthogonal vectors). Note that in fact TO is a partial isometry with

7"02--0.
Let E c qi be a measurable set of density zero in 1. We show that e X e

satisfies eTo, Toe 5’(L2(,)). Indeed, we have eT0 F.px:.,n,,. Since the
vectors {Xefn}n are mutually orthogonal in L2(ql,tt), to show that eT0 is
compact it is sufficient to show that IIxll 0. But

I*(E 0 A,,) (E q exp(2ri[-1/22n-1,1/22n-]

=4
It( E 0 exp(2ri[-1/2zn-1,1/22"-1])

/, (exp(2ri[- 1/22"- 1,1/22n 11))
and this last term tends to zero, because 1 is point of density zero for E.
Similarly, we have Toe Ep.,x..n. (L2(", it)).
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Moreover, if e corresponds to a set of density one in 1, then by the above
[To, 1 e] ’(L2(!",/)), so that [To, e] is also compact.
Now to show that TO also satisfies condition 8.1, (2), let Eo be a

measurable set so that/(Eo A) =/(A)/2 and/(Eo B) #(B)/2 (e.g.,
take Eo to be the union of the halves of each interval A or B).

It is easy to see that if eo=Xeo, then [To, eo] ZnP(l_x,:o).,X,:on,
E,,PxEo.,(l_Xo)n.. Moreover, the vectors

(Xeolin, (1 Xeo)j,,, Xeorn, (1 Xeo)/nln > 1)

are all mutually orthogonal. Thus, to prove that [T0, e0] ff(L-(qr,/z)) it is
sufficient to show that (11o1111(1 Xo)ll) does not tend to zero. But

.(eo eo)
(A.) 1/4.

Thus [To, eo] ff ,)g’(L2(]",/)), which ends the proof of 8.1. Q.E.D.

8.3. Final remarks. Theorem 1.2 suggests that in all the cases left uncovered
by Theorem 1.1 the derivation problem into the compacts has a negative answer.
In fact, with some extra effort one may easily extend the methods of this section
to get counterexamples in a large class of cases. However, let us point out here
one case left open which deserves attention and for which we could not construct
a counterexample:

8.3.1. Problem. Let Mo be a type 111 factor, o’ an infinite-dimensional
Hilbert space and M L([0, 1], h) (R) Mo (R) (gf’). Let Ao c Mo be a (maxi-
mal) abelian ,-subalgebra of M0 and A c (’) an atomic (maximal) abelian
-subalgebra of ()ff’). Let NO 1 (R) A o (R) 1 and N 1 (R) A o (R) A1. Is it true

that any derivation of NO (or of N) into og(M) is inner?
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