Metadata of the chapter that will be visualized online

Chapter Title	Design and Cloning of Short H Silencing Vector to Study the H Neuronal Apoptosis	HairpinRNAs (shRNAs) into a Lentiviral Function of Selected Proteins in
Copyright Year	2015	
Copyright Holder	Springer Science+Business Me	edia New York
Corresponding Author	Family Name	Canu
	Particle	
	Given Name	Nadia
	Suffix	
	Division	Department of System Medicine
	Organization	University of "Tor Vergata" Rome
	Address	Via Montpellier 1, Rome, 00137,
		Italy
	Email	cnanda00@uniroma2.it
Abstract	Double-stranded RNA-mediat and fast research tool for s function of their respective p delivery of siRNA to target the use of lentiviral short to identify the involvement that syntheses D-serine m receptor- in regulating ratcere Apoptosis is induce y serum fluorometric caspase 3assay.	ed interference (RNAi) is a new simple shutting down genes and characterizes proteins. Many strategies for design and cells are available. Here, we describe hairpinRN shRNA) RNA silencing of D-serineracemase (SR)- an enzyme nodulate glutamate- <i>N</i> -methyl-D-aspartate bellar granule neurons (CGN) apoptosis. and KCl withdrawal and is detected with
Keywords (separated by "-")	siRNA - ShRNA - Lentiviru racemase	s - Cerebellar granule cells - D-serine

Chapter 9

2

3

4

5

6

13

14

Design and Cloning of Short Hairpin RNAs (shRNAs) into a Lentiviral Silencing Vector to Study the Function of Selected Proteins in Neuronal Apoptosis

[AU1] Nadia Canu

Abstract

Double-stranded RNA-mediated interference (RNAi) is a new simple and fast research tool for shutting 7 down genes and characterizes function of their respective proteins. Many strategies for design and delivery of 8 siRNA to target cells are available. Here, we describe the use of lentiviral short hairpin RNA (shRNA) RNA 9 silencing to identify the involvement of D-serine racemase (SR)- an enzyme that syntheses D-serine to modulate glutamate-*N*-methyl-D-aspartate receptor- in regulating rat cerebellar granule neurons (CGN) apoptosis. 11 Apoptosis is induced by serum and KCl withdrawal and is detected with fluorometric caspase 3 assay. 12

Key words siRNA, ShRNA, Lentivirus, Cerebellar granule cells, D-serine racemase

1 Introduction

Gene knockout is used to study the function of specific gene, detect 15 its protein product, and link it to physiological or pathological processes. Knockout can be deliberately made using different molecular techniques some of which, like homologous recombination, are lengthy and expensive. RNA interference (RNAi) has appeared as a novel pathway to knockdown specific mRNAs, thus preventing 20 translation of the respective protein from occurring. 21

RNAi is a natural process-used in many different organisms 22 to regulate endogenous gene expression-in which non-trans-23 lated, long, double-stranded RNA (dsRNA) led to a strong, long 24 lasting and specific silencing of selected genes [1]. Further stud-25 ies revealed that small dsRNA of 21-25 bp (small interfering 26 RNA = siRNA) derived from endonuclease Dicer-mediated pro-27 cessing of long dsRNAs interact with a protein compex to form 28 the RNA-induced silencing complex (RISC) [2, 3] This complex 29 has nuclease activity and digests mRNA containing a base pair 30 sequence identical to that in the siRNA. Thus, the siRNA serves 31

Nadia Canu

as a target sequence that allows RISC to recognize specific mRNAs and to prevent their translation by cleaving them [4]. Another method to produce siRNA is based on the use of short hairpin RNAs (ShRNAs) that trigger RNAi [5, 6]. Short (60–75 bp long) DNA oligodesoxynucleotides that form hairpins are cloned into a plasmid under the control of the U6 or H1 promoter for RNA polymerase III. Transfection of such a plasmid promotes the expression of ShRNAs that induce RNAi. Non-replicating recombinant viral vectors (adeno, adeno-associated and lentiviruses) are commonly used for ShRNA expression in primary neuronal cells. Lentiviruses may be particularly suited for long-term ShRNA and expression and gene silencing in vivo since the viral DNA gets incorporated in the host genome.

Commonly used lentiviral vector systems belong to the second or third generation, ensuring safe application, as these viruses are unable to self-replicate, since the spontaneous selfassembly is prevented by distributing the least necessary number of virus elements on three and four plasmids, respectively. Here, we describe the methods used in our laboratory to silencing SR in rat CGNs as a tool for identifying the role of this enzyme during apoptosis.

53 2 Materials

 and Preparation of Lentiviral Vectors 2. 15 cm plates (Becton Dickinson Labware, Franklin Lakes, NJ) 3. Dulbecco's modified Eagle's medium (DMEM, Gibco™— Life Technologies™) with 2 and 10 % fetal bovine serum (FBS). See Note 2. 4. Lipofectamine 2000 (Invitrogen™—Life Technologies™). 5. Opti-MEM 1× (Gibco™—Life Technologies™). 6. Plasmids: pLVTHM; pCMVdR8.74; pMD2G (available from Addgene: http://www.addgene.org/) for second lentivirus gen eration. For third lentivirus generation, refer to Dull et al. [7]. 7. 10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M boric acid, 0.01 M EDTA. 8. Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany). 9. Endotoxin-free plasmid maxipreps columns (Quiagen). 10. Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. 11. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	54 55 56	2.1 Design, Production, and Cloning of shRNAs	1.	Packaging cell line: HEK (human embryonic kidney)-293T (Invitrogen [™] —Life Technologies [™] , Gaithersburg, MD). See Note 1 .
 of Lentiviral Vectors 3. Dulbecco's modified Eagle's medium (DMEM, GibcoTM-Life TechnologiesTM) with 2 and 10 % fetal bovine serum (FBS). See Note 2. 4. Lipofectamine 2000 (InvitrogenTM-Life TechnologiesTM). 5. Opti-MEM 1× (GibcoTM-Life TechnologiesTM). 6. Plasmids: pLVTHM; pCMVdR8.74; pMD2G (available from Addgene: http://www.addgene.org/) for second lentivirus generation. For third lentivirus generation, refer to Dull et al. [7]. 7. 10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M boric acid, 0.01 M EDTA. 8. Extraction Kit (DNA 70-10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany). 9. Endotoxin-free plasmid maxipreps columns (Quiagen). 10. Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. 11. Primer, 5′ forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	57	and Preparation	2.	15 cm plates (Becton Dickinson Labware, Franklin Lakes, NJ).
 Life Technologies[™]) with 2 and 10 % fetal bovine serum (FBS). See Note 2. Lipofectamine 2000 (Invitrogen[™]—Life Technologies[™]). Opti-MEM 1× (Gibco[™]—Life Technologies[™]). Plasmids: pLVTHM; pCMVdR8.74; pMD2G (available from Addgene: http://www.addgene.org/) for second lentivirus gen eration. For third lentivirus generation, refer to Dull et al. [7]. 10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M boric acid, 0.01 M EDTA. Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany). Endotoxin-free plasmid maxipreps columns (Quiagen). Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	58	of Lentiviral Vectors	3.	Dulbecco's modified Eagle's medium (DMEM, Gibco™—
 (FBS). See Note 2. 4. Lipofectamine 2000 (Invitrogen[™]—Life Technologies[™]). 5. Opti-MEM 1× (Gibco[™]—Life Technologies[™]). 6. Plasmids: pLVTHM; pCMVdR8.74; pMD2G (available from Addgene: http://www.addgene.org/) for second lentivirus gen eration. For third lentivirus generation, refer to Dull et al. [7]. 7. 10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M boric acid, 0.01 M EDTA. 8. Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany). 9. Endotoxin-free plasmid maxipreps columns (Quiagen). 10. Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. 11. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	59		C	Life Technologies [™]) with 2 and 10 % fetal bovine serum
 4. Lipofectamine 2000 (Invitrogen[™]—Life Technologies[™]). 5. Opti-MEM 1× (Gibco[™]—Life Technologies[™]). 6. Plasmids: pLVTHM; pCMVdR8.74; pMD2G (available from Addgene: http://www.addgene.org/) for second lentivirus gen eration. For third lentivirus generation, refer to Dull et al. [7]. 7. 10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M boric acid, 0.01 M EDTA. 8. Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany). 9. Endotoxin-free plasmid maxipreps columns (Quiagen). 10. Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. 11. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	60			(FBS). See Note 2.
 5. Opti-MEM 1× (Gibco[™]—Life Techonologies[™]). 6. Plasmids: pLVTHM; pCMVdR8.74; pMD2G (available from Addgene: http://www.addgene.org/) for second lentivirus gen eration. For third lentivirus generation, refer to Dull et al. [7]. 7. 10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M boric acid, 0.01 M EDTA. 8. Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany). 9. Endotoxin-free plasmid maxipreps columns (Quiagen). 10. Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. 11. Primer, 5′ forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	61		4.	Lipofectamine 2000 (Invitrogen [™] —Life Technologies [™]).
 6. Plasmids: pLVTHM; pCMVdR8.74; pMD2G (available from Addgene: http://www.addgene.org/) for second lentivirus gen eration. For third lentivirus generation, refer to Dull et al. [7]. 7. 10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M boric acid, 0.01 M EDTA. 8. Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany). 9. Endotoxin-free plasmid maxipreps columns (Quiagen). 10. Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. 11. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	62		5.	Opti-MEM 1× (Gibco [™] —Life Techonologies [™]).
 Addgene: http://www.addgene.org/) for second lentivirus gen eration. For third lentivirus generation, refer to Dull et al. [7]. 7. 10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M boric acid, 0.01 M EDTA. 8. Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany). 9. Endotoxin-free plasmid maxipreps columns (Quiagen). 10. Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. 11. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	63		6.	Plasmids: pLVTHM; pCMVdR8.74; pMD2G (available from
 7. 10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M boric acid, 0.01 M EDTA. 8. Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany). 9. Endotoxin-free plasmid maxipreps columns (Quiagen). 10. Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. 11. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	64 65			Addgene: http://www.addgene.org/) for second lentivirus generation. For third lentivirus generation, refer to Dull et al. [7].
 8. Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany). 9. Endotoxin-free plasmid maxipreps columns (Quiagen). 10. Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. 11. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	66 67		7.	10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M boric acid, 0.01 M EDTA.
 P. Endotoxin-free plasmid maxipreps columns (Quiagen). Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	68 69		8.	Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 (Quiagen GmbH, Hamburg, Germany).
 Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA pH 8.0 with HCl. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	70		9.	Endotoxin-free plasmid maxipreps columns (Quiagen).
 73 74 11. Primer, 5' forward must contain an MLu I site; Primer, 3 reverse must contain a Cla I site. 	71 72		10.	Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA, pH 8.0 with HCl.
	73 74		11.	Primer, 5' forward must contain an MLu I site; Primer, 3' reverse must contain a Cla I site.

Short Hairpin RNAs

	12.	Restriction endonucleases: MLu I, Cla I (New England Biolabs, Ipswich, MA).	75 76
	13.	T4 DNA ligase 400,000 U/mL (New England Biolabs).	77
	14.	10× T4 DNA ligase buffer: 50 mM Tris–HCl, 10 mM MgCl ₂ , 1 mM ATP, 10 mM DTT, pH 7.5.	78 79
	15.	Bacterial growth strain(s): DH5α for pMD2G and pCMVdR8; HB101 for pLVTHM lentiviral vector. <i>See</i> Note 3 .	80 81
	16.	LB agar ampicillin plates: Use a 2 L flask to prepare 1 L of LB broth with agar (Lennox) (Sigma Chemicals, St. Louis, MO). To 1 L of distilled water add 35 g of LB agar. Swirl to dissolve and autoclave for 15 min at 120 °C to sterilize. Cool medium to 50 °C, and add 50–100 μ g/mL ampicillin. Pour into Petri dishes and allow to solidify, store at 4 °C.	82 83 84 85 86 87
	17.	Hank's Buffered Salt Solution (HBSS): 0.137 M NaCl, 5.4 mM KCl, 0.25 mM Na ₂ HPO ₄ , 0.1 g glucose, 0.44 mM KH ₂ PO ₄ , 1.3 mM CaCl ₂ , 1.0 mM MgSO ₄ , 4.2 mM NaHCO ₃ .	88 89 90
	18.	20 % [w/v] sucrose in HBSS.	91
,	1.	Basal medium Eagle (BME; Life Technologies™).	92
anule	2.	Bovine serum albumin (BSA, Sigma Chemicals).	93
re, n of	3.	Krebs-Ringer bicarbonate medium (KRB): 120 mM NaCl, 5 mM KCl, 1.22 mM KH ₂ PO ₄ , 25.5 mM, 14 mM glucose, 4.2 mM phenol red.	94 95 96
	4.	Solution A: KRB supplemented with 1.2 mM MgSO ₄ , 3 mg/mL BSA.	97 98
	5.	DNAse I (Sigma Chemicals).	99
	6.	Soybean trypsin inhibitor (Sigma Chemicals).	100
	7.	Trypsin type III (Sigma Chemicals).	101
	8.	L-Glutamine.	102
	9.	Gentamicin sulfate.	103
\mathbf{N}	10.	Fetal bovine serum (FBS, Gibco™).	104
	11.	CGN culture medium: BME, 10 % FBS, 25 mM KCl, 2 mM glutamine, 100 mM gentamicin sulfate.	105 106
	12.	1β-Arabinofuranosylcytosine (Sigma Chemicals).	107
	13.	Caspase 3 substrate: Ac-DEVD-AMC [<i>N</i> -Acetyl-Asp-Glu-Val-Asp-AMC (7-amino-4-methyl coumarin)] (Biomol International, Plymouth Meeting, PA).	108 109 110
	14.	Caspase 3 lysis buffer A: 10 mM HEPES, pH 7.4, 42 mM KCl, 5 mMMgCl ₂ , 1mM , 1 mM PMSF, 0.5 % 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), 1 µg/mL leupeptin.	111 112 113 114
	15.	Caspase 3 assay buffer B: 25 mM HEPES, 1 mM EDTA, 0.1 % CHAPS, 10 % sucrose, 3 mM DTT, pH 7.5.	115 116

2.2 Primary Cerebellar Granule Neuron Culture, Induction, and Detection of Apoptosis

117 118	2.3 Western Blotting and Immuno-	1. Lysis buffer: 25 mM Tris–HCl (pH 7.6), 150 mM NaCl, 1 % NP-40, 1 % sodium deoxycholate, 0.1 % SDS.
119 120	fluorescence for D-Serine Racemase	2. 10 % SDS-PAGE (Sodium Dodecyl Sulfate—PolyAcrylamide Gel Electrophoresis)- Laemmli protocol:
121 122 123 124 125 126		(a) 10 % lower gel (resolving gel): 4.9 mL distilled H_2O , 2.5 mL 40 % acrylamide/Bis-acrylamide (29:1), 2.5 mL 1.5 M Tris, pH 8.8, 50 µL 20 % SDS, 50 µL 10 % ammo- nium persulfate, 10 µL TEMED (total volume = 10 mL). Mix well and quickly transfer the gel solution by using 1 mL pipette to the casting chamber between the glass
127		plates. Once the gel has polymerized, prepare stacking gel.
128 129 [AU2] ³⁰ 131		 (b) 3.75 % stacking gel: 2.44 mL distilled H₂O, 0.46 mL 40 % acrylamide/Bis- acrylamide (29:1), 1 mL 0.5 M Tris, pH 6.8, 40 μL 10 % SDS, 15 μL 10 % ammonium persulfate. Righ before pouring the gel add 1.5 μL TEMED.
132		3. Agarose gel: agarose 1 % in TBE buffer 0.5×.
133 134		4. Phosphate-buffered saline 1× (PBS): 137 mM NaCl, 2.7 mM KCl, 10 mM Na ₂ HPO ₄ , 1.8 mM KH ₂ PO ₄ .
135 136		5. Normal goat serum (NGS) (Jackson ImmunoResearch, Europe Ltd., Newmarket, UK).
137		6. 100 % methanol.
138 139		7. Antifade mounting medium (ProLong [®] Gold Antifade—Life Technologies).
140 141		 Mouse D-serine racemase antibody (BD Transduction laboratories[™], San Jose, CA).
142 143		9. Affinity purified-goat D-serine racemase antibody (Santa Cruz Biotechnology, Dallas, TX).
144 145		0. Secondary TRITC-conjugated donkey anti-goat antibody (Jackson ImmunoReseach Europe Ltd.).
146	2.4 Equipment	1. Centrifuge (e.g., Beckman Coulter Inc, Brea, CA).
147		2. Tissue culture 15 cm dishes.
148		3. Tissue culture 6-well dishes.
149 150		4. Tissue-culture 24-well dishes for CGNs (Nunc A/s, Roskilde, Denmark).
151		5. Filters (0.22- or 0.45-µm).
152		6. Incubators preset to 37 °C (5 % CO_2).
153		7. Microcentrifuge.
154		8. PCR thermocycler.
155		9. SW 28 and SW 55 rotors (Beckman Coulter).
156 157		10. Sterile round-bottom polypropylene tubes 5 mL (e.g., BD Falcon, BD Biosciences, San Jose, CA).

	11. 50 mL tubes.	158
	12. Centrifuge, polyallomer, 5 mL tubes (Beckman Coulter).	159
	13. Centrifuge, polyallomer, 12 mL tubes (Beckman Coulter).	160
	14. Microcentrifuge tubes.	161
	15. Vortexer.	162
	16. 96-Well plate fluorescence reader (EnVision, PerkinElmer, Wellesley, MA).	163 164
	17. Spectrofluorometer (e.g., Kontron AG, Zurich, Switzerland).	165
	18. Protein electrophoresis/Western blotting apparatus.	166
	19. Acrylamide gel electrophoresis apparatus.	167
	20. Fluorescence microscope.	168
nde		160

3 Methods

3.1 Design, Production, and Cloning of shRNAs and Preparation of Lentiviral Vectors

3.1.1 Design of shRNAs

ShRNA oligonucleotide design describes the process of identifying170target sequences within a gene of interest and designing the cor-171responding oligonucleotides to generate the ShRNA.172

A number of algorithms may been utilized to predict effective 173 siRNA sequences and design ShRNA (e.g., http://www.ambion. 174 com/ or http://sfold.wadsworth.org/; http://eu.idtdna.com/ 175 Scitools/Applications/shRNA etc). Here are general guidelines 176 for ShRNA design based on the work of Tuschl et al. [8] and 177 Elabishir et al. [9, 10] (see also: http://www.mpibpc.gwdg.de/ 178 abteilungen/100/105/sirna.htmL). 179

- Select a region of 19 nt within the gene to be silenced [in our 180 case, rat D-serine racemase (NCBI accession number 181 NM_198757)] do not opt for region near the start codon (within 50-100 bases), nor untranslated regions [9, 10]. See Note 4.
- Sequences that have at least 3 A or T residues in positions 184 15–19 of the sense sequence appear to have increased knockdown activity. See Note 5.
- Ensure the content of GC of the 19 bases oligonucleotide 187 between 40 and 60 %, and a GC content of approximately 188 45 % is ideal. 189
- Examine the 19 bases oligonucleotide for secondary structure 190 and long base runs, both of which can interfere with the process of annealing. 191
- 5. Filter out, by appropriate database search, candidate targets 193 that are present in other genes to avoid silencing of these loci. 194 *See* Note 6. 195
- 6. Add the 7–9 nt hairpin loop sequence between sense and antisense strand [11–14]. One of the most effective loop sequences 197 for H1 promoter is TTCAAGAGA [15].
 198

169


```
a
446
GCGCAATCTCTTCTTCAAA
597
GCTCTCACCTATGCTGCTA
772
GCATCTTGGTCCATCCCAA
888
GGAGGAATGGTTGCTGGAA
b
5'-cgcgtGCGCAATCTCTTCTTCAAATTCAAGAGATTTGAAGAAGAGATTGCGCCTTTTTTat-----3'
5'-cgatAAAAAAAGCGCAATCTCTTCTTCAAATCCATGAAGAAGAGATTGCGCCTTTTTTat-----3'
and the annealed oligos are:
5'-cgcgtGCGCAATCTCTTCTTCAAATTCAAGAGATTTGAAGAAGAGATTGCGCCTTTTTTat-----3'
3'-----aCGCGTTAGAGAAGAAGAAGTTTAAGTTCTCTAAACTTCTTCTCTAACGCGAAAAAAttagc-5'
```

Fig. 1 (a) Potential RNAi target sequences identified in the rat SR-coding region. (b) For one of the chosen sequences (GCGCAATCTCTTCTTCAAA) the complementary oligonucleotide pair for the hairpin siRNA and the annealed oligonucleotides are reported. The TTCAAGAGA loop sequence is highlighted in *yellow*, the stretch T is highlighted in *light blue* and the restriction sites (MLu I and Cla I) in red lowercase

199 200		7.	Place a stretch of 5–6 T at the end of ShRNA to guarantee the termination of RNA polymerase III transcription.
201 202		8.	Add to the end of two complementary oligonucleotides restriction sites (in our case MLu I at $5'$ and Cla I at $3'$) (<i>see</i> Fig. 1).
203 204 205		9.	Include a negative control ShRNA. Usually ShRNA design online tools returns a scrambled sequence with the same nucle- otide composition as your siRNA/shRNA input sequence.
206		10.	Sense and antisense oligos must be phosphorylated and PAGE
207			purified in order to increase cloning efficiency. When order-
208			ing, be sure to require that oligonucleotides are supplied after
209 210 211 212	3.1.2 Annealing of shRNA Oligonucleotides	For 1.	expedience, annealing can be done in a thermal cycler. Resuspend each PAGE-purified oligonucleotide in TE buffer to a concentration of 100 µM.
213 214 215		2.	Mix the oligos for the sense strand and the anti strand at a 1:1 ratio. This will ultimately give 50 μ M of ds oligonucleotide (assuming 100 % theoretical annealing).
216		3.	Heat the mixture to 95 °C for 30 s. See Note 7.
217		4.	Heat at 72 °C for 2 min.
218		5.	Heat at 37 °C for 2 min.
219		6.	Heat at 25 °C for 2 min.
220		7.	Store on ice or at -20 °C until use.

VA	1.	Dilute the annealed oligonucleotides with TE buffer to obtain a concentration of $0.5 \ \mu M$.	221 222
	2.	For each ligation, add the following reagents in a microfuge tube:	223
		• 2 μ L digested (MLu I/Cla I) and dephosphorylated pLVTHM vector (100 ng/ μ L).	224 225
		• 4 μ L diluted, annealed oligonucleotide (0.5 μ M).	226
		• $2 \mu L 10 \times T4$ DNA ligase buffer.	227
		• 0.5 μL BSA (10 mg/mL).	228
		• 11 μ L Nuclease-free H ₂ O.	229
		• 0.5 μL T4 DNA ligase (400 U/μL).	230
		• For a 20 µL total volume.	231
	3.	Set up separate ligation using 2 μ L of the negative scramble control ShRNA annealed oligonucleotide.	232 233
	4	Set up separate ligation using 2 μ L of digested (MLu I/Cla I) pLVTHM vector (50 ng/ μ L) without annealed oligonucleotide.	234 235
	5.	Incubate ligation mixture at room temperature for 3 h. <i>See</i> Note 8.	236 237
	6.	Transform immediately competent bacteria (with high trans- formation efficiency) and select on ampicillin plates.	238 239
	7.	Digest plasmid DNA from colonies with MLu I/Cla I and run on a 12 % DNA polyacrylamide gel in TBE 1× buffer gel (<i>See</i> Note 9). Positive clones will contain an approximately 60-bp insert compared to 17 bp for colonies without an insert.	240 241 242 243
	8.	Sequence the insert with human H1 primer (TCGNTATGTG TTCTGGGAAA) to check hairpin integrity.	244 245
59	9.	Validate, by Western blot analysis or indirect immunofluores- cence, the cloned ShRNA cassettes by transfecting pLVHTM- ShRNA as well as scramble vector in cell line that coexpresses the target gene. In our case, the cDNA for D-serine racemase together with ShRNA silencing cassette were transfected in an highly transfectable cell line (e.g. LIEK-293). See Note 10.	246 247 248 249 250 251
	Yo toc inf	a need to observe Biosafety-level-2since application of this pro- ol leads to the production of pseudoviral particles capable of ecting mammalian cells.	252 253 254
	1	For a 10 cm dish lentiviral preparation: plate lentivirus HEK-293-T cells at a density of approximately 100 cells/mm ² in 10 mL of DMEM, supplemented with 10 % FBS, 12–24 h before transfection. Addition of antibiotic solution does not interfere with transfection.	255 256 257 258 259
	2	To increase cell adherence, precoat twelve 15 cm dishes with 10 mL of poly-L-lysine, incubate for 30 min at room temperature	260 261

3.1.3 Cloning ShRNA Oligonucleotides into pLVTHM

Author's Proof

3.1.4 Preparation of Lentiviral Vectors

262 263		under UV, and aspirate off the liquid. Grow the cells overnight at 37 °C in 5 % CO ₂ . See Note 11.
264 265	3.	Aliquot in 200 μL of Opti-MEM the three plasmids into a sterile polypropylene tube. For a 10 cm dish, use:
266		 –10 μg of lentivector pLVTHM.
267		• -3.5 µg of pMD2G (Gag-Pol).
268		• -6.5 μg of pCMVdR8.74.
269	4.	In a separate tube, dilute 20 µL lipofectamine 2000 in 200 µL
270		of Opti-MEM 1×.
271	5.	Add diluted lipofectamine reagent drop-wise to the DNA
272		solution while gently vortexing the DNA-containing tube and
273		incubate for 30 min at room temperature. See Note 12.
274 275	6.	Remove medium from cell plate, wash cells twice with Opti-MEM and add 5 mL of Opti-MEM without antibiotics. <i>See</i> Note 13.
276	7.	Add the transfection mixture to each plate. Swirl the plates
277		gently to distribute the complex and incubate overnight at
278		$37 ^{\circ}\mathrm{C}$ in a 5 % CO_2 atmosphere.
279	8.	Approximately 6–8 h after transfection, remove media. Add
280		15 mL of fresh DMEM plus 2 % heat-inactivated FBS and
281		at 37 °C in a 5 % CO ₂ atmosphere. See Note 14.
283	9	Collect the supernatant from the plates and centrifuge at
284	<i>.</i>	$500 \times g$ for 10 min to remove cell debris and filter through
285		0.45 µm filters. See Note 15.
286 1	10.	Add 15 mL of fresh medium to each plate and incubate over-
287		night. Filtered supernatants can be stored for several days at 4 °C.
288 1	1.	Collect media and filter as in step 9. See Note 16.
289 1	2.	Pool collected supernatants from steps 9 and 11. Transfer to
290		Beckman tubes using 25–29 mL per tube.
291	3.	Concentrate viral particles by centrifuging in a Beckman SW
292		28 rotor at $65,000 \times g$ or 2 h at 20 °C.
293	4.	Resuspend all pellets in a total of 1 mL of HBSS and wash
294		tubes a second time with 1 mL of HBSS.
295 1	5.	Increase the combined volume from 2 to 3 mL with HBSS
296		(in HBSS) cushion in Beckman tubes
237	6	Contribute using a Backman SW 55 rotor at $52500 \times a$ for
290 I 299	.0.	1.5 h at 20 °C.
300 1	7	Resuspend the pellet in 100 µL of HRSS containing 1 % RSA and
301	., .	wash the tube with an additional 100 uL of HBSS containing 1 %
302		BSA. Shake the resuspended viral preparation on a low-speed
303		vortexer for 15–30 min. Centrifuge for 10 s to remove debris.

Short Hairpin RNAs

	18. Aliquot the cleared viral solution and store at -80 °C. It can be stored for many months. Avoid repeated freeze-thaw cycles.	304 305
	19. Titrate the viral preparations by biological titration using GFP,	306
	which is the marker contained in the lentivector. The fraction	307
	of GFP fluorescent cells can be counted by FACS (fluores-	308
	cence activated cell sorting). GFP fluorescence may be also	309
	visualized under a fluorescence microscope. Usually 10–15	310
	of fluorescing cells in each well.	311 312
,	Cultures enriched in CGNs are obtained from dissociated cerebella	313
anule	of 8-day-old Wistar rats according to Levi et al. [16]. The prepara-	314
res	tion of CGN cultures is carried out at $Day I$, transduction at $Day 2$,	315
S	induction and detection of apoptosis at Days 6-7.	316
	1. Remove 4-5 cerebella from 8-day-old rats and slice them	317
Cerebellar	(0.4 mm thickness) with a mechanical tissue chopper.	318
Cultures	2. Suspend in 10 mL solution A, centrifuge for 15 s at $150 \times g$.	319
	3. Resuspend the tissue in 10 mL solution A containing 0.25 μ g/	320
	mL trypsin III and incubate at 37 °C for 15 min in a shaking	321
	water bath at rate of 125 rpm.	322
	 Add to the suspension 10 mL solution A containing 12.8 μg DNAase I and 83 μg soybean trypsin inhibitor. 	323 324
	5. Centrifuge immediately for 15 s at $150 \times g$.	325
	6. Resuspend the pellet in 2 mL of solution A containing 80 μ g	326
	DNAase I, 0.52 mg soybean trypsin inhibitor and 2.7 mM	327
	MgSO ₄ . Triturate the tissue with a Pasteur pipette (25 strokes).	328
	7. Allow the suspension to stand for 15 min, aspirate carefully	329
	the upper 1.5 mL, readjust the volume to about 2 mL ad dis-	330
	sociate as above. After allowing the suspension to stand for	331
	15 min, take off the supernatant, leaving only 0.2 mL contain-	332
	ing clumps and debris.	333
	8. Transfer the supernatant into 3 mL Solution A containing	334
	allow to stand for another 10 min and resuspend the pellet in	335
	CGN cultur	337
	9. Count the cell in the suspension.	338
	10 Plate 4×10^5 CGN per well in a NUNC 24-well plate in 800 µL	330
	CGN culture medium. Incubate the cells at 37 °C with 5 % CO ₂ .	340
	11 After 24 h add 10 µM 18-Arabinofuranosylcytosine to CGN	341
	culture medium to prevent proliferation of non-neuronal cells.	342
ction	1. Transduce CGN cells with lentivirus. For each well, prepare	343
bellar	50 μ L of virus suspension diluted in CGN culture medium (See	344
Cultures	Note 17). To transduce CGN reduce the volume of the	345

3.2 Primary Cerebellar Granule Neuron Cultures and Lentivirus Transduction

3.2.1 Primary Cerebellar Granule Neuron Cultures

3.2.2 Transduction of Primary Cerebellar Granule Neuron Cultures

Nadia Canu

346 347 348 349 350		medium to one-third; add the recombinant lentivirus at different dilutions. Allow the virus to adsorb for $1-2$ h, thus render back the medium to its original volume. Then cultivate neurons up to $6-7$ days in vitro (DIV) when apoptosis will be induced (Fig. 1).
351 352 353 354 355 356	 3.3 Induction and Detection of Apoptosis 3.3.1 Induction of Apoptosis 	 Induction of apoptosis is carried out in serum-free medium at low (5 mM) KCl [17]. 1. Wash cultures twice and maintain in serum-free low (5 mM) KCl CGN culture medium for 8 h. 2. Wash and maintain control cultures in serum-free CGN culture medium for 8 h.
357 358 359 360 361	3.3.2 Detection of Apoptosis	 Measure caspase 3 activity as follows: 1. Wash 500,000 CGNs with PBS once. 2. Add 100 μL of caspase 3 lysis buffer A to lyse cells. 3. Combine 25 L of lysate with 75 μL of caspase 3 assay buffer B containing 30 μM Ac-DEVD-AMC.
362 363 364		 4. Incubate for 20 min at room temperature. 5. Measure fluorescence at an excitation of 380 nm and an emission of 460 nm using a spectrofluorometer (Fig. 2).

Fig. 2 In vitro CGNs (2 DIV) were were ducted either with Sh-RNA/scramble and Sh-RNA/SR lentivirus at MOI 40. At 6DIV they were induced to undergo apoptosis by serum and KCI deprivation (S-K5); control cells were maintained in serum-free medium supplemented with 25 mM KCI (S-K25). Eight hours after apoptosis induction neurons were lysed and assayed for DEVD-MCA cleavage. Fold-induction of caspase-3 activity is the mean (±SEM) of triplicate determinations from three independent experiments. Note that silencing of SR increases caspase-3 activity in CGNs undergoing poptosis, suggesting that this enzyme has a protective role in survival of CGN (*see* ref. 17)

Short Hairpin RNAs

Fig. 3 (a) In vitro CGNs (2 DIV = day in vitro) were trans scramble and Sh-RNA/SR lentivirus at MOI indicated. At 6DIV lysates were processed for SDS-PAGE and Western blot for immunodetection of SR and β -actin as control of silencing efficiency and specificity. (b) Confocal microscope analysis of SR expression at 6 DIV (red) in Sh-RNA/scramble and Sh-ImpSR transducted CGNs at 2DIV at MOI 40. Transdu/recommended guidelines

3.4 Western Blotting and Immuno- fluorescence for p-Serine Racemase	 Extract total proteins by scraping cells in SDS-reducing sample buffer. Boil for 5 min. Perform western blot analysis with mouse anti-p-serine race- 	365 366 367
3.4.1 Western Blotting	mase antibody (<i>see</i> Fig. 3a).	369
3.4.2 Immuno- fluorescence	1. Fix and permeabilize CGN cultured in the chamber slide with methanol 100 % for 20 min at -20 °C.	370 371
	2. Block with 4 % NGS in PBS for 1 h at room temperature.	372
	3. Incubate slides with affinity purified-goat anti-D-serine race- mase antibody diluted 1:50 in PBS overnight at 4 °C.	373 374
	4. Wash three times with PBS.	375

Auth	or's Proof	
	Nadia Car	าน
376 377 378		5. Add secondary TRITC-conjugated donkey anti-goat antibody diluted 1:200 in PBS and incubate at room temperature for 30 min in a humid chamber.
379		6. Wash three times with PBS.
380		7 Remove excess moisture from the slide before adding anti-fade
381		mounting medium.
382		8 Examine slide under fluorescence/confocal microscope (see
383		Fig. 3b).
384	4 Notes	
385 386		1. Cells should be of low-passage number and should not be used after passage 20 or if growth is slow.
387		2. Certain brands of FBS do not support efficient transfection
388		and can result in low viral titers. We routinely use FBS,
389		Qualified, Australia Origin from Gibco™.
390		3. There is an additional Cla I site in pLVTHM vector that is blocked
391		by Dam methylation. The plasmid needs to be grown in a Dam ⁺
392		bacterial strain such HB101 in order to use Cla I for cloning.
393		4. Although it is recommended to avoid to select target sequence
394		in the untranslated regions, since regulatory protein binding
395		to regions in and near the untranslated region might interfere
390 397		lated regions (UTR) have been also reported [18]
209		5 Avoid selecting target sense or antisense sequences that con-
398		tain a consecutive run of three or more thymidine residues: a
400		poly(T) tract within the sequence can potentially cause prema-
401		ture termination of the shRNA transcript.
402		6. Many online tools to design shRNA gives a link to the NCBI
403		BLAST server to search for similarity of the suggested target
404		against the mRNA database of the organism of interest.
405		7. Heating to 95 °C is essential to remove all secondary struc-
406		ture, disrupt the internal hairpin of each oligonucleotide and
407		promote intermolecular annealing.
408		8. If you are unable to perform immediately transformation,
409		store ligation at -20 °C.
410		9. See Tables 5 and 6 in Sambrook and Russell, Molecular Cloning
411		3rd Ed VIII, p5.42 for different acrylamide concentrations and
412		the effective range of DNA fragment sizes separated.
413		10. We have transfected 200 ng of target cDNA plasmid (HA-D-
414		serine racemase) plus 500–1,000 ng of the plasmid containing
415		the silencing cassette per 6-well plate and harvest the cells for
416		immunoblot analysis 48–72 h after transfection.

- 11. For best result and to optimize viral titer cells must be at41770-80 % confluence, equably distributed and with flat mor-
phology before transfection.418
- 12. The DNA-lipofectamine complex must be formed in the 420 absence of proteins even though the complex is able to transfect 421 cells in the presence of proteins such as 10 % FBS. Opti-MEM I 422 is recommended for diluting both DNA and lipofectamine 423 reagent. The ratio of 2.0 μ L of lipofectamine 2000 per 1 μ g of 424 plasmid has been found to be optimal. Increasing the ratio does 425 not further improve transfection efficiency. 426
- 13. Though the complex is able to transfect cells in the presence
 of proteins such as 10 % FBS, we found an improved transfection efficiency in the absence of serum.
- 14. To increase the lentivirus titer we have added, caffeine to a final 430 concentration of 2–4 mM for 17–40 h post-transfection [19]. 431
- 15. Do not use nitrocellulose filters, as nitrocellulose is known to
 bind lentivirus and reduce titers. Use 0.45 μm polyethersulfone (PES) low protein-binding filters.
 434
- 16. Peak of virus production is normally achieved 24–48 h posttransfection; however collecting medium at multiple times at 36, 48, and 60 h post-transfection increases the viral yield.
 436
- 17. Use several multiplicity of infection (MOI) virus stock to find 438 the more suitable MOI to obtain silencing of you gene of 439 interest. In addition, include a transduction with the scramble 440 control and other appropriate positive and negative controls. 441 Mix the virus with the medium gently by inverting the tubes 442 several times. Do not vortex. 443

Acknowledgments

This work was supported by grants from Italian Ministry of Education,445University and Research (PRIN 2009, 2009KP83CR-02 to NC).446

References

- 448
 448
 449
 449
 449
 449
 449
 450
 450
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
 451
- 452 2. Hannon GJ (2002) RNA interference. Nature
 453 418:244–251
- 454 3. Dykxhoorn DM, Novina CD, Sharp PA (2003)
 455 Killing the messenger: short RNAS that silence
 456 gene expression. Nature 4:457–467
- 457 4. Hammond SM (2005) Dicing and slicing the
 458 core machinery of the RNA interference path459 way. FEBS Lett 579:5822–5829
- 5. Yu JY, DeRuiter SL, Turner DL (2002) RNA 460 interference by expression of short-interfering 461 RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99:6047–6052 463
- 6. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Devel 16:948–958 467
- Dull T, Zufferey R, Kelly M, Mandel RJ, 468 Nguyen M et al (1998) J Virol 72:<u>8463</u>–8471 469
- 8. Tuschl T (2006) Selection of siRN [solution o

447

444

- 472
 473
 473
 474
 474
 475
 475
 476
 476
 477
 478
 479
 479
 470
 470
 470
 471
 472
 473
 474
 474
 475
 475
 476
 476
 476
 476
 477
 478
 478
 479
 479
 470
 470
 470
 470
 471
 472
 472
 473
 474
 474
 475
 475
 476
 476
 476
 476
 476
 477
 478
 478
 478
 479
 479
 470
 470
 470
 470
 470
 470
 470
 471
 471
 472
 472
 472
 473
 474
 474
 475
 475
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
 476
- 477 10. Elbashir SM, Harborth J, Lendeckel W, Yalcin A,
 478 Weber K et al (2001) Duplexes of 21-nucleotide
 479 RNAs mediate RNA interference in cultured
 480 mammalian cells. Nature 411:494–498
- 11. Vermeulen A, Behlen L, Reynolds A, Wolfson
 A, Marshall W et al (2005) The contributions
 of dsRNA structure to Dicer specificity and
 efficiency. RNA 11:674–682
- 12. Hannon GJ, Rossi JJ (2004) Unlocking the
 potential of the human genome with RNA
 interference. Nature 431:371–378
- 488
 488
 489
 489
 489
 490
 490
 490
 491
 491
 492
 492
 491
 493
 494
 494
 494
 494
 495
 495
 496
- 493 14. Jantsch-Plunger V, Glotzer M (1999)494 Depletion of syntaxins in the early

Caenorhabditis elegans embryo reveals a role 495 for membrane fusion events in cytokinesis. 496 Curr Biol 9:738–745 497

- 15. Brummelkamp TR, Bernards R, Agami R 498 (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553 501
- 16. Levi G, Aloisi F, Ciotti MT, Gallo V (1984)
 Autoradiografic localization and depolarizationinduced release of acidic aminoacids in differentiating cerebellar granule cultures. Brain Res 290:77–86
 502
 503
 504
 505
 506
- 17. Esposito S, Pristerà A, Maresca G, Cavallaro S, Felsani A et al (2012) Contribution of serine racemase/d-serine pathway to neuronal apoptosis. Aging Cell 11:588–598 510
- 18. Anthony KG, Bai F, Krishnan MN, Fikrig E, 511
 Koski RA (2009) Effective siRNA targeting of 512
 the 3' untranslated region of the West Nile 513
 virus genome. Antiviral Res 82:166–168 514
- 19. Ellis BL, Potts PR, Porteus MH (2011) 515
 Creating higher titer lentivirus with caffeine. 516
 Hum Gene Ther 22:93–100 517

Author Queries

Chapter No.: 9 0002217839

Queries	Details Required	Author ² Pponse
AU1	Please check whether the affiliation is appropriate as typeset.	
AU2	Please check whether the term "Righ" can be changed to "Right".	
AU3	Please provide complete bibliographic details for Ref. [8].	
