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Chapter 9

Design and Cloning of Short Hairpin RNAs (shRNAs)  
into a Lentiviral Silencing Vector to Study the Function 
of Selected Proteins in Neuronal Apoptosis

Nadia Canu

Abstract

Double-stranded RNA-mediated interference (RNAi) is a new simple and fast research tool for shutting 
down genes and characterizes function of their respective proteins. Many strategies for design and delivery of 
siRNA to target cells are available. Here, we describe the use of lentiviral short hairpin RNA (shRNA) RNA 
silencing to identify the involvement of d-serine racemase (SR)- an enzyme that syntheses d-serine to modu-
late glutamate-N-methyl-d-aspartate receptor- in regulating rat cerebellar granule neurons (CGN) apoptosis. 
Apoptosis is induced by serum and KCl withdrawal and is detected with fluorometric caspase 3 assay.

Key words siRNA, ShRNA, Lentivirus, Cerebellar granule cells, d-serine racemase

1 Introduction

Gene knockout is used to study the function of specific gene, detect 
its protein product, and link it to physiological or pathological pro-
cesses. Knockout can be deliberately made using different molecu-
lar techniques some of which, like homologous recombination, are 
lengthy and expensive. RNA interference (RNAi) has appeared as a 
novel pathway to knockdown specific mRNAs, thus preventing 
translation of the respective protein from occurring.

RNAi is a natural process—used in many different organisms 
to regulate endogenous gene expression—in which non-trans-
lated, long, double-stranded RNA (dsRNA) led to a strong, long 
lasting and specific silencing of selected genes [1]. Further stud-
ies revealed that small dsRNA of 21–25 bp (small interfering 
RNA = siRNA) derived from endonuclease Dicer-mediated pro-
cessing of long dsRNAs interact with a protein complex to form 
the RNA-induced silencing complex (RISC) [2, 3] This complex 
has nuclease activity and digests mRNA containing a base pair 
sequence identical to that in the siRNA. Thus, the siRNA serves 
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as a target sequence that allows RISC to recognize specific 
mRNAs and to prevent their translation by cleaving them [4]. 
Another method to produce siRNA is based on the use of short 
hairpin RNAs (ShRNAs) that trigger RNAi [5, 6]. Short (60–
75 bp long) DNA oligodesoxynucleotides that form hairpins are 
cloned into a plasmid under the control of the U6 or H1 pro-
moter for RNA polymerase III. Transfection of such a plasmid 
promotes the expression of ShRNAs that induce RNAi. Non-
replicating recombinant viral vectors (adeno, adeno-associated 
and lentiviruses) are commonly used for ShRNA expression in 
primary neuronal cells. Lentiviruses may be particularly suited for 
long-term ShRNA and expression and gene silencing in vivo since 
the viral DNA gets incorporated in the host genome.

Commonly used lentiviral vector systems belong to the  
second or third generation, ensuring safe application, as these 
viruses are unable to self-replicate, since the spontaneous self-
assembly is prevented by distributing the least necessary num-
ber of virus elements on three and four plasmids, respectively. 
Here, we describe the methods used in our laboratory to silenc-
ing SR in rat CGNs as a tool for identifying the role of this 
enzyme during apoptosis.

2 Materials

 1. Packaging cell line: HEK  (human embryonic kidney)-293T 
(Invitrogen™—Life Technologies™, Gaithersburg, MD). See 
Note 1.

 2. 15 cm plates (Becton Dickinson Labware, Franklin Lakes, NJ).
 3. Dulbecco’s modified Eagle’s medium (DMEM, Gibco™—

Life Technologies™) with 2 and 10 % fetal bovine serum 
(FBS). See Note 2.

 4. Lipofectamine 2000 (Invitrogen™—Life Technologies™).
 5. Opti-MEM 1× (Gibco™—Life Techonologies™).
 6. Plasmids: pLVTHM; pCMVdR8.74; pMD2G (available from 

Addgene: http://www.addgene.org/) for second lentivirus gen-
eration. For third lentivirus generation, refer to Dull et al. [7].

 7. 10× Tris-buffered EDTA buffer (TBE buffer): 1 M Tris, 0.9 M 
boric acid, 0.01 M EDTA.

 8. Extraction Kit (DNA 70–10 kb): e.g., QIAquick Gel 8 
(Quiagen GmbH, Hamburg, Germany).

 9. Endotoxin-free plasmid maxipreps columns (Quiagen).
 10. Tris-EDTA buffer (TE buffer 1×): 10 mM Tris, 1 mM EDTA, 

pH 8.0 with HCl.
 11. Primer, 5′ forward must contain an MLu I site; Primer, 3′ 

reverse must contain a Cla I site.

2.1 Design, 
Production, 
and Cloning of shRNAs 
and Preparation 
of Lentiviral Vectors

Nadia Canu

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

http://www.addgene.org/


 12. Restriction endonucleases: MLu I, Cla I (New England 
Biolabs, Ipswich, MA).

 13. T4 DNA ligase 400,000 U/mL (New England Biolabs).
 14. 10× T4 DNA ligase buffer: 50 mM Tris–HCl, 10 mM MgCl2, 

1 mM ATP, 10 mM DTT, pH 7.5.
 15. Bacterial growth strain(s): DH5α for pMD2G and pCMVdR8; 

HB101 for pLVTHM lentiviral vector. See Note 3.
 16. LB agar ampicillin plates: Use a 2 L flask to prepare 1 L of LB 

broth with agar (Lennox) (Sigma Chemicals, St. Louis, MO). 
To 1 L of distilled water add 35 g of LB agar. Swirl to dissolve 
and autoclave for 15 min at 120 °C to sterilize. Cool medium 
to 50 °C, and add 50–100 μg/mL ampicillin. Pour into Petri 
dishes and allow to solidify, store at 4 °C.

 17. Hank’s Buffered Salt Solution (HBSS): 0.137 M NaCl, 
5.4 mM KCl, 0.25 mM Na2HPO4, 0.1 g glucose, 0.44 mM 
KH2PO4, 1.3 mM CaCl2, 1.0 mM MgSO4, 4.2 mM NaHCO3.

 18. 20 % [w/v] sucrose in HBSS.

 1. Basal medium Eagle (BME; Life Technologies™).
 2. Bovine serum albumin (BSA, Sigma Chemicals).
 3. Krebs-Ringer bicarbonate medium (KRB): 120 mM NaCl, 

5 mM KCl, 1.22 mM KH2PO4, 25.5 mM, 14 mM glucose, 
4.2 mM phenol red.

 4. Solution A: KRB supplemented with 1.2 mM MgSO4, 3 mg/
mL BSA.

 5. DNAse I (Sigma Chemicals).
 6. Soybean trypsin inhibitor (Sigma Chemicals).
 7. Trypsin type III (Sigma Chemicals).
 8. l-Glutamine.
 9. Gentamicin sulfate.
 10. Fetal bovine serum (FBS, Gibco™).
 11. CGN culture medium: BME, 10 % FBS, 25 mM KCl, 2 mM 

glutamine, 100 mM gentamicin sulfate.
 12. 1β-Arabinofuranosylcytosine (Sigma Chemicals).
 13. Caspase 3 substrate: Ac-DEVD-AMC [N-Acetyl-Asp-Glu-

Val- Asp-AMC (7-amino-4-methyl coumarin)] (Biomol 
International, Plymouth Meeting, PA).

 14. Caspase 3 lysis buffer A: 10 mM HEPES, pH 7.4, 42 mM 
KCl, 5 mMMgCl2, 1 mM , 1 mM PMSF, 0.5 % 
3 - [ ( 3 -  c h o l a m i d o p r o p y l ) d i m e t h y l a m m o n i o ] - 1 - 
propanesulfonic acid (CHAPS), 1 μg/mL leupeptin.

 15. Caspase 3 assay buffer B: 25 mM HEPES, 1 mM EDTA, 0.1 % 
CHAPS, 10 % sucrose, 3 mM DTT, pH 7.5.

2.2 Primary 
Cerebellar Granule 
Neuron Culture, 
Induction, 
and Detection of 
Apoptosis
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 1. Lysis buffer: 25 mM Tris–HCl (pH 7.6), 150 mM NaCl, 1 % 
NP-40, 1 % sodium deoxycholate, 0.1 % SDS.

 2. 10 % SDS-PAGE (Sodium Dodecyl Sulfate—PolyAcrylamide 
Gel Electrophoresis)- Laemmli protocol:

 (a)  10 % lower gel (resolving gel): 4.9 mL distilled H2O, 
2.5 mL 40 % acrylamide/Bis-acrylamide (29:1), 2.5 mL 
1.5 M Tris, pH 8.8, 50 μL 20 % SDS, 50 μL 10 % ammo-
nium persulfate, 10 μL TEMED (total volume = 10 mL). 
Mix well and quickly transfer the gel solution by using 
1 mL pipette to the casting chamber between the glass 
plates. Once the gel has polymerized, prepare stacking gel.

 (b)  3.75 % stacking gel: 2.44 mL distilled H2O, 0.46 mL 40 % 
acrylamide/Bis- acrylamide (29:1), 1 mL 0.5 M Tris, pH 
6.8, 40 μL 10 % SDS, 15 μL 10 % ammonium persulfate. 
Righ before pouring the gel add 1.5 μL TEMED.

 3. Agarose gel: agarose 1 % in TBE buffer 0.5×.
 4. Phosphate-buffered saline 1× (PBS): 137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4.
 5. Normal goat serum (NGS) (Jackson ImmunoResearch, 

Europe Ltd., Newmarket, UK).
 6. 100 % methanol.
 7. Antifade mounting medium (ProLong® Gold Antifade—Life 

Technologies).
 8. Mouse d-serine racemase antibody (BD Transduction labora-

tories™, San Jose, CA).
 9. Affinity purified-goat d-serine racemase antibody (Santa Cruz 

Biotechnology, Dallas, TX).
 10. Secondary TRITC-conjugated donkey anti-goat antibody 

(Jackson ImmunoReseach Europe Ltd.).

 1. Centrifuge (e.g., Beckman Coulter Inc, Brea, CA).
 2. Tissue culture 15 cm dishes.
 3. Tissue culture 6-well dishes.
 4. Tissue-culture 24-well dishes for CGNs (Nunc A/s, Roskilde, 

Denmark).
 5. Filters (0.22- or 0.45-μm).
 6. Incubators preset to 37 °C (5 % CO2).
 7. Microcentrifuge.
 8. PCR thermocycler.
 9. SW 28 and SW 55 rotors (Beckman Coulter).
 10. Sterile round-bottom polypropylene tubes 5 mL (e.g., BD 

Falcon, BD Biosciences, San Jose, CA).

2.3 Western Blotting 
and Immuno-
fluorescence 
for d-Serine Racemase
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 11. 50 mL tubes.
 12. Centrifuge, polyallomer, 5 mL tubes (Beckman Coulter).
 13. Centrifuge, polyallomer, 12 mL tubes (Beckman Coulter).
 14. Microcentrifuge tubes.
 15. Vortexer.
 16. 96-Well plate fluorescence reader (EnVision, PerkinElmer, 

Wellesley, MA).
 17. Spectrofluorometer (e.g., Kontron AG, Zurich, Switzerland).
 18. Protein electrophoresis/Western blotting apparatus.
 19. Acrylamide gel electrophoresis apparatus.
 20. Fluorescence microscope.

3 Methods

ShRNA oligonucleotide design describes the process of identifying 
target sequences within a gene of interest and designing the cor-
responding oligonucleotides to generate the ShRNA.

A number of algorithms may been utilized to predict effective 
siRNA sequences and design ShRNA (e.g., http://www.ambion.
com/ or http://sfold.wadsworth.org/; http://eu.idtdna.com/
Scitools/Applications/shRNA etc). Here are general guidelines 
for ShRNA design based on the work of Tuschl et al. [8] and 
Elabishir et al. [9, 10] (see also: http://www.mpibpc.gwdg.de/
abteilungen/100/105/sirna.htmL).

 1. Select a region of 19 nt within the gene to be silenced [in our 
case, rat d-serine racemase (NCBI accession number 
NM_198757)] do not opt for region near the start codon (within 
50-100 bases), nor untranslated regions [9, 10]. See Note 4.

 2. Sequences that have at least 3 A or T residues in positions 
15–19 of the sense sequence appear to have increased knock-
down activity. See Note 5.

 3. Ensure the content of GC of the 19 bases oligonucleotide 
between 40 and 60 %, and a GC content of approximately 
45 % is ideal.

 4. Examine the 19 bases oligonucleotide for secondary structure 
and long base runs, both of which can interfere with the pro-
cess of annealing.

 5. Filter out, by appropriate database search, candidate targets 
that are present in other genes to avoid silencing of these loci. 
See Note 6.

 6. Add the 7–9 nt hairpin loop sequence between sense and anti-
sense strand [11–14]. One of the most effective loop sequences 
for H1 promoter is TTCAAGAGA [15].
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 7. Place a stretch of 5–6 T at the end of ShRNA to guarantee the 
termination of RNA polymerase III transcription.

 8. Add to the end of two complementary oligonucleotides restric-
tion sites (in our case MLu I at 5′ and Cla I at 3′) (see Fig. 1).

 9. Include a negative control ShRNA. Usually ShRNA design 
online tools returns a scrambled sequence with the same nucle-
otide composition as your siRNA/shRNA input sequence.

 10. Sense and antisense oligos must be phosphorylated and PAGE 
purified in order to increase cloning efficiency. When order-
ing, be sure to require that oligonucleotides are supplied after 
PAGE purification.

For expedience, annealing can be done in a thermal cycler.
 1. Resuspend each PAGE-purified oligonucleotide in TE buffer 

to a concentration of 100 μM.
 2. Mix the oligos for the sense strand and the anti strand at a 1:1 

ratio. This will ultimately give 50 μM of ds oligonucleotide 
(assuming 100 % theoretical annealing).

 3. Heat the mixture to 95 °C for 30 s. See Note 7.
 4. Heat at 72 °C for 2 min.
 5. Heat at 37 °C for 2 min.
 6. Heat at 25 °C for 2 min.
 7. Store on ice or at −20 °C until use.

3.1.2 Annealing 
of shRNA Oligonucleotides

Fig. 1 (a) Potential RNAi target sequences identified in the rat SR-coding region. (b) For one of the chosen 
sequences (GCGCAATCTCTTCTTCAAA) the complementary oligonucleotide pair for the hairpin siRNA and the 
annealed oligonucleotides are reported. The TTCAAGAGA loop sequence is highlighted in yellow, the stretch T 
is highlighted in light blue and the restriction sites (MLu I and Cla I) in red lowercase
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 1. Dilute the annealed oligonucleotides with TE buffer to obtain 
a concentration of 0.5 μM.

 2. For each ligation, add the following reagents in a microfuge tube:
●● 2 μL digested (MLu I/Cla I) and dephosphorylated 

pLVTHM vector (100 ng/μL).
●● 4 μL diluted, annealed oligonucleotide (0.5 μM).
●● 2 μL 10× T4 DNA ligase buffer.
●● 0.5 μL BSA (10 mg/mL).
●● 11 μL Nuclease-free H2O.
●● 0.5 μL T4 DNA ligase (400 U/μL).
●● For a 20 μL total volume.

 3. Set up separate ligation using 2 μL of the negative scramble 
control ShRNA annealed oligonucleotide.

 4. Set up separate ligation using 2 μL of digested (MLu I/Cla I) 
pLVTHM vector (50 ng/μL) without annealed oligonucleotide.

 5. Incubate ligation mixture at room temperature for 3 h. See 
Note 8.

 6. Transform immediately competent bacteria (with high trans-
formation efficiency) and select on ampicillin plates.

 7. Digest plasmid DNA from colonies with MLu I/Cla I and run 
on a 12 % DNA polyacrylamide gel in TBE 1× buffer gel (See 
Note 9). Positive clones will contain an approximately 60-bp 
insert compared to 17 bp for colonies without an insert.

 8. Sequence the insert with human H1 primer (TCGNTATGTG 
TTCTGGGAAA) to check hairpin integrity.

 9. Validate, by Western blot analysis or indirect immunofluores-
cence, the cloned ShRNA cassettes by transfecting pLVHTM- 
ShRNA as well as scramble vector in cell line that coexpresses 
the target gene. In our case, the cDNA for d-serine racemase 
together with ShRNA silencing cassette were transfected in an 
highly transfectable cell line (e.g., HEK-293). See Note 10.

You need to observe Biosafety-level-2since application of this pro-
tocol leads to the production of pseudoviral particles capable of 
infecting mammalian cells.

 1. For a 10 cm dish lentiviral preparation: plate lentivirus HEK-
293- T cells at a density of approximately 100 cells/mm2 in 
10 mL of DMEM, supplemented with 10 % FBS, 12–24 h 
before transfection. Addition of antibiotic solution does not 
interfere with transfection.

 2. To increase cell adherence, precoat twelve 15 cm dishes with 
10 mL of poly-l-lysine, incubate for 30 min at room temperature 

3.1.3 Cloning ShRNA 
Oligonucleotides into 
pLVTHM
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under UV, and aspirate off the liquid. Grow the cells  
overnight at 37 °C in 5 % CO2. See Note 11.

 3. Aliquot in 200 μL of Opti-MEM the three plasmids into a 
sterile polypropylene tube. For a 10 cm dish, use:

●● −10 μg of lentivector pLVTHM.
●● −3.5 μg of pMD2G (Gag-Pol).
●● −6.5 μg of pCMVdR8.74.

 4. In a separate tube, dilute 20 μL lipofectamine 2000 in 200 μL 
of Opti-MEM 1×.

 5. Add diluted lipofectamine reagent drop-wise to the DNA 
solution while gently vortexing the DNA-containing tube and 
incubate for 30 min at room temperature. See Note 12.

 6. Remove medium from cell plate, wash cells twice with Opti- MEM 
and add 5 mL of Opti-MEM without antibiotics. See Note 13.

 7. Add the transfection mixture to each plate. Swirl the plates 
gently to distribute the complex and incubate overnight at 
37 °C in a 5 % CO2 atmosphere.

 8. Approximately 6–8 h after transfection, remove media. Add 
15 mL of fresh DMEM plus 2 % heat-inactivated FBS and 
penicillin-streptomycin to each plate and incubate overnight 
at 37 °C in a 5 % CO2 atmosphere. See Note 14.

 9. Collect the supernatant from the plates and centrifuge at 
500 × g for 10 min to remove cell debris and filter through 
0.45 μm filters. See Note 15.

 10. Add 15 mL of fresh medium to each plate and incubate over-
night. Filtered supernatants can be stored for several days at 4 °C.

 11. Collect media and filter as in step 9. See Note 16.
 12. Pool collected supernatants from steps 9 and 11. Transfer to 

Beckman tubes using 25–29 mL per tube.
 13. Concentrate viral particles by centrifuging in a Beckman SW 

28 rotor at 65,000 × g or 2 h at 20 °C.
 14. Resuspend all pellets in a total of 1 mL of HBSS and wash 

tubes a second time with 1 mL of HBSS.
 15. Increase the combined volume from 2 to 3 mL with HBSS 

and layer the resuspended pellets on 1.5 mL of a 20 % sucrose 
(in HBSS) cushion in Beckman tubes.

 16. Centrifuge using a Beckman SW 55 rotor at 53,500 × g for 
1.5 h at 20 °C.

 17. Resuspend the pellet in 100 μL of HBSS containing 1 % BSA and 
wash the tube with an additional 100 μL of HBSS containing 1 % 
BSA. Shake the resuspended viral preparation on a low-speed 
vortexer for 15–30 min. Centrifuge for 10 s to remove debris.
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 18. Aliquot the cleared viral solution and store at -80 °C. It can be 
stored for many months. Avoid repeated freeze-thaw cycles.

 19. Titrate the viral preparations by biological titration using GFP, 
which is the marker contained in the lentivector. The fraction 
of GFP fluorescent cells can be counted by FACS (fluores-
cence activated cell sorting). GFP fluorescence may be also 
visualized under a fluorescence microscope. Usually 10–15 
random fields of view are used to estimate the overall fraction 
of fluorescing cells in each well.

Cultures enriched in CGNs are obtained from dissociated cerebella 
of 8-day-old Wistar rats according to Levi et al. [16]. The prepara-
tion of CGN cultures is carried out at Day 1, transduction at Day 2, 
induction and detection of apoptosis at Days 6–7.

 1. Remove 4–5 cerebella from 8-day-old rats and slice them 
(0.4 mm thickness) with a mechanical tissue chopper.

 2. Suspend in 10 mL solution A, centrifuge for 15 s at 150 × g.
 3. Resuspend the tissue in 10 mL solution A containing 0.25 μg/

mL trypsin III and incubate at 37 °C for 15 min in a shaking 
water bath at rate of 125 rpm.

 4. Add to the suspension 10 mL solution A containing 12.8 μg 
DNAase I and 83 μg soybean trypsin inhibitor.

 5. Centrifuge immediately for 15 s at 150 × g.
 6. Resuspend the pellet in 2 mL of solution A containing 80 μg 

DNAase I, 0.52 mg soybean trypsin inhibitor and 2.7 mM 
MgSO4. Triturate the tissue with a Pasteur pipette (25 strokes).

 7. Allow the suspension to stand for 15 min, aspirate carefully 
the upper 1.5 mL, readjust the volume to about 2 mL ad dis-
sociate as above. After allowing the suspension to stand for 
15 min, take off the supernatant, leaving only 0.2 mL contain-
ing clumps and debris.

 8. Transfer the supernatant into 3 mL Solution A containing 
0.1 mM CaCl2. After about 10 min decant the supernatant, 
allow to stand for another 10 min and resuspend the pellet in 
CGN culture medium.

 9. Count the cell in the suspension.
 10. Plate 4 × 105 CGN per well in a NUNC 24-well plate in 800 μL 

CGN culture medium. Incubate the cells at 37 °C with 5 % CO2.
 11. After 24 h add 10 μM 1β-Arabinofuranosylcytosine to CGN 

culture medium to prevent proliferation of non-neuronal cells.

 1. Transduce CGN cells with lentivirus. For each well, prepare 
50 μL of virus suspension diluted in CGN culture medium (See 
Note 17). To transduce CGN reduce the volume of the 

3.2 Primary 
Cerebellar Granule 
Neuron Cultures 
and Lentivirus 
Transduction
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medium to one-third; add the recombinant lentivirus at different 
dilutions. Allow the virus to adsorb for 1–2 h, thus render back 
the medium to its original volume. Then cultivate neurons up 
to 6–7 days in vitro (DIV) when apoptosis will be induced 
(Fig. 1).

Induction of apoptosis is carried out in serum-free medium at low 
(5 mM) KCl [17].

 1. Wash cultures twice and maintain in serum-free low (5 mM) 
KCl CGN culture medium for 8 h.

 2. Wash and maintain control cultures in serum-free CGN cul-
ture medium for 8 h.

Measure caspase 3 activity as follows:

 1. Wash 500,000 CGNs with PBS once.
 2. Add 100 μL of caspase 3 lysis buffer A to lyse cells.
 3. Combine 25 L of lysate with 75 μL of caspase 3 assay buffer B 

containing 30 μM Ac-DEVD-AMC.
 4. Incubate for 20 min at room temperature.
 5. Measure fluorescence at an excitation of 380 nm and an emis-

sion of 460 nm using a spectrofluorometer (Fig. 2).

3.3 Induction 
and Detection 
of Apoptosis

3.3.1 Induction 
of Apoptosis

3.3.2 Detection 
of Apoptosis

Fig. 2 In vitro CGNs (2 DIV) were transducted either with Sh-RNA/scramble and 
Sh-RNA/SR lentivirus at MOI 40. At 6DIV they were induced to undergo apoptosis 
by serum and KCl deprivation (S-K5); control cells were maintained in serum- 
free medium supplemented with 25 mM KCl (S-K25). Eight hours after apoptosis 
induction neurons were lysed and assayed for DEVD-MCA cleavage. Fold- 
induction of caspase-3 activity is the mean (±SEM) of triplicate determinations 
from three independent experiments. Note that silencing of SR increases cas-
pase- 3 activity in CGNs undergoing apoptosis, suggesting that this enzyme has 
a protective role in survival of CGN (see ref. 17)
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 1. Extract total proteins by scraping cells in SDS-reducing sample 
buffer.

 2. Boil for 5 min.
 3. Perform western blot analysis with mouse anti-d-serine race-

mase antibody (see Fig. 3a).

 1. Fix and permeabilize CGN cultured in the chamber slide with 
methanol 100 % for 20 min at −20 °C.

 2. Block with 4 % NGS in PBS for 1 h at room temperature.
 3. Incubate slides with affinity purified-goat anti-d-serine race-

mase antibody diluted 1:50 in PBS overnight at 4 °C.
 4. Wash three times with PBS.

3.4 Western Blotting 
and Immuno-
fluorescence 
for d-Serine Racemase

3.4.1 Western Blotting

3.4.2 Immuno-
fluorescence

Fig. 3 (a) In vitro CGNs (2 DIV = day in vitro) were transducted either with Sh-RNA/
scramble and Sh-RNA/SR lentivirus at MOI indicated. At 6DIV lysates were pro-
cessed for SDS-PAGE and Western blot for immunodetection of SR and β-actin 
as control of silencing efficiency and specificity. (b) Confocal microscope analy-
sis of SR expression at 6 DIV (red ) in Sh-RNA/scramble and Sh-RNA/SR trans-
ducted CGNs at 2DIV at MOI 40. Transdu/recommended guidelines
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 5. Add secondary TRITC-conjugated donkey anti-goat antibody 
diluted 1:200 in PBS and incubate at room temperature for 
30 min in a humid chamber.

 6. Wash three times with PBS.
 7. Remove excess moisture from the slide before adding anti-fade 

mounting medium.
 8. Examine slide under fluorescence/confocal microscope (see 

Fig. 3b).

4 Notes

 1. Cells should be of low-passage number and should not be 
used after passage 20 or if growth is slow.

 2. Certain brands of FBS do not support efficient transfection 
and can result in low viral titers. We routinely use FBS, 
Qualified, Australia Origin from Gibco™.

 3. There is an additional Cla I site in pLVTHM vector that is blocked 
by Dam methylation. The plasmid needs to be grown in a Dam+ 
bacterial strain such HB101 in order to use Cla I for cloning.

 4. Although it is recommended to avoid to select target sequence 
in the untranslated regions, since regulatory protein binding 
to regions in and near the untranslated region might interfere 
with the RNAi process, in some case targets within the untrans-
lated regions (UTR) have been also reported [18].

 5. Avoid selecting target sense or antisense sequences that con-
tain a consecutive run of three or more thymidine residues; a 
poly(T) tract within the sequence can potentially cause prema-
ture termination of the shRNA transcript.

 6. Many online tools to design shRNA gives a link to the NCBI 
BLAST server to search for similarity of the suggested target 
against the mRNA database of the organism of interest.

 7. Heating to 95 °C is essential to remove all secondary struc-
ture, disrupt the internal hairpin of each oligonucleotide and 
promote intermolecular annealing.

 8. If you are unable to perform immediately transformation, 
store ligation at −20 °C.

 9. See Tables 5 and 6 in Sambrook and Russell, Molecular Cloning 
3rd Ed VIII, p5.42 for different acrylamide concentrations and 
the effective range of DNA fragment sizes separated.

 10. We have transfected 200 ng of target cDNA plasmid (HA-d- 
serine racemase) plus 500–1,000 ng of the plasmid containing 
the silencing cassette per 6-well plate and harvest the cells for 
immunoblot analysis 48–72 h after transfection.
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 11. For best result and to optimize viral titer cells must be at 
70–80 % confluence, equably distributed and with flat mor-
phology before transfection.

 12. The DNA-lipofectamine complex must be formed in the 
absence of proteins even though the complex is able to transfect 
cells in the presence of proteins such as 10 % FBS. Opti- MEM I 
is recommended for diluting both DNA and lipofectamine 
reagent. The ratio of 2.0 μL of lipofectamine 2000 per 1 μg of 
plasmid has been found to be optimal. Increasing the ratio does 
not further improve transfection efficiency.

 13. Though the complex is able to transfect cells in the presence 
of proteins such as 10 % FBS, we found an improved transfec-
tion efficiency in the absence of serum.

 14. To increase the lentivirus titer we have added, caffeine to a final 
concentration of 2–4 mM for 17–40 h post-transfection [19].

 15. Do not use nitrocellulose filters, as nitrocellulose is known to 
bind lentivirus and reduce titers. Use 0.45 μm polyethersul-
fone (PES) low protein-binding filters.

 16. Peak of virus production is normally achieved 24–48 h post- 
transfection; however collecting medium at multiple times at 
36, 48, and 60 h post-transfection increases the viral yield.

 17. Use several multiplicity of infection (MOI) virus stock to find 
the more suitable MOI to obtain silencing of you gene of 
interest. In addition, include a transduction with the scramble 
control and other appropriate positive and negative controls. 
Mix the virus with the medium gently by inverting the tubes 
several times. Do not vortex.
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