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Birkho� periodic orbits associated to spin-orbit resonances in Celestial Mechanics and in particular to the Moon{

Earth and Mercury{Sun systems are considered. A general method (based on a quantitative version of the Implicit

Function Theorem) for the construction of such orbits with particular attention to \e�ective estimates" on the

size of the perturbative parameters is presented and tested on the above mentioned systems. Lyapunov stability

of the periodic orbits (for small values of the perturbative parameters) is proved by constructing KAM librational

invariant surfaces trapping the periodic orbits.

1. Introduction and Results

The study of periodic orbits in Celestial Mechanics is strongly motivated by the abundance of

\resonant relations" existing in the solar system. In particular, in this paper, we are concerned

with commensurabilities between the revolutional and the rotational period, i. e., with the so-called

spin-orbit resonances (see, e. g., [2], [3], [4], [5], [8], [9], [11]). As is well known, most of the evolved

satellites of the solar system point always the same face toward the host planet (the most familiar

example being, of course, that of our Moon). In such a case one speaks of 1:1 or \synchronous"

spin-orbit resonance. The only exception to 1:1 spin-orbit resonances is provided by the Mercury{Sun

system, which moves in a 3:2 resonance (in fact, the ratio between the revolutional period of Mercury

around the Sun and its period of rotation amounts to 3/2 within a very good approximation).

In Section 2 we introduce a mathematical model describing an approximation of the spin-orbit

problem. In particular we reduce such a problem to the study of a Hamiltonian equation of the form

�x� "fx(x; t) = 0; (1)

where x represents the librational angle, " is a positive \perturbative" parameter measuring the

equatorial oblateness of the satellite and f = f(x; t) is a smooth x- and t-periodic function, which

depends also on the eccentricity of the satellite's orbit assumed to be Keplerian. A spin-orbit resonance

Matematics Subject Classi�cation 58F10, 58F22, 70F15

c
 REGULAR AND CHAOTIC DYNAMICS, V.3, é3, 1998 107



� A.CELLETTI, L. CHIERCHIA

of order p : q is a Birkho� periodic orbit with frequency ! =
p

q
. We present a (general) method

(Section 3), based on a quantitative version of the classical Implicit Function Theorem (applied to a

Poincar�e map associated to (1), which allows to construct such periodic orbits. In particular we provide

explicit approximations to the initial conditions associated to the periodic orbit and we give explicit

\e�ective" estimate on the equatorial oblateness parameter " ensuring the existence of the periodic

orbit. Results for the 1:1, 3:2, 2:1 resonances in the Moon{Earth and the Mercury{Sun systems are

discussed in Section 4. In particular, we are able to prove the existence of a synchronous periodic

orbit for the observed parameters of the Moon. Instead we cannot establish an analogous result for

the 3:2 and 2:1 resonances: this suggests a greater robustness (and therefore a bigger probability of

capture) of the 1:1 resonance compared with other resonances.

The Mercury{Sun case appears to be di�erent: the existence of the three main resonances cannot

be proved for \realistic" values of the parameters and a less pronounced discrepancy (compared with

the Moon{Earth case) is found between the 1:1 and 3:2 resonances.

A comparison with the observed data on the libration in longitude given in the Astronomical

Almanac is also provided.

Finally we consider the stability of the periodic orbits constructed in Section 4 and show that

Lyapunov stability can be obtained by proving the existence of librational KAM invariant surfaces

trapping the periodic orbits. In particular, in Section 5, we show that the \Siegel{Moser conditi-

ons" [10] for the existence of librational invariant surfaces are satis�ed in our model-problem. Here,

however, we do not pay attention about optimal estimates on the parameters: such estimates will be

discussed in a future work.

Details on the results of Section 4 and Section 5 are provided, respectively, in Appendix A and B.

We close this introduction by mentioning that a further extension of this work might concern the

computation of the actual ephemeris of the Moon: in fact one might use our approximate periodic

orbit as a starting point to compute the e�ective lunar motion, using a strategy similar to that adopted

by Hill [7].

2. The spin-orbit model

In this section we discuss brie
y the so-called \spin-orbit" model in Celestial Mechanics.

Let S be a triaxial ellipsoidal satellite moving around a central planet P . We denote by Trev

and Trot the revolutional period of the satellite around P and the rotational period about an internal

spin-axis. A p : q spin-orbit resonance occurs whenever

Trev

Trot
=

p

q
; for p; q 2 N; q 6= 0 :

In particular, when p = q = 1 we speak of 1:1 or synchronous spin-orbit resonance; in this case,

the satellite always points the same face to the host planet. As is well known, most of the evolved

satellites or planets of the solar system (like, e. g., the Moon) are trapped in a 1:1 resonance [12]. The

only exception is provided by Mercury which is observed in a nearly 3:2 resonance. We introduce a

mathematical model describing the spin-orbit coupling, assuming that

i) the center of mass of the satellite moves on a Keplerian orbit around P with semimajor axis

a and eccentricity e (secular perturbations on the orbital parameters are neglected);

ii) the spin-axis is perpendicular to the orbit plane (i. e., we neglect the so-called \obliquity");

iii) the spin-axis coincides with the shortest physical axis (i. e., the axis whose moment of inertia

is largest);

iv) dissipative e�ects as well as perturbations due to other planets or satellites are neglected.

Let A < B < C be the principal moments of inertia of the satellite, let r and f be, respectively,

the instantaneous orbital radius and the true anomaly of the Keplerian orbit, �nally let x be the angle
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between the longest axis of the ellipsoid and the periapsis line (see Figure 1). Under assumptions

i) � iv), the equation of motion may be derived from the standard Euler's equations for rigid body

and (in normalized units) takes the form

�x+ "(
1

r
)3 sin(2x� 2f) = 0; (2)

where " �
3

2

B �A

C
is proportional to the equatorial oblateness coe�cient

B �A

C
(and the dot denotes

time di�erentiation). The mean motion has been normalized to one, i. e. 2�=Trev = 1. Notice that (2)

is trivially integrated when A = B or in the case of zero orbital eccentricity (since e = 0 implies

r = constant, f =
2�

Trev
t).

A \p : q periodic orbit" (or \Birkho� periodic orbit of rotation number p=q") is a solution of (2)

such that

x(t+ 2�q) = x(t) + 2�p;

namely after q orbital revolutions the satellite makes p rotations about the spin-axis.

Due to assumption i), the quantities r and f are known Keplerian functions of the time; therefore

we can expand (2) in Fourier series as

�x+ "

1X
m 6=0;m=�1

W (
m

2
; e) sin(2x�mt) = 0; (3)

where the coe�cientsW (
m

2
; e) decay as powers of the orbital eccentricity asW (

m

2
; e) / e

jm�2j (see [1],

for explicit expressions).

We simplify further the model as follows. According to iv), we neglected dissipative forces and

gravitational attractions beside that of the central planet; one of the most important contribution

comes from the non-rigidity of the satellite, which provokes a tidal torque due to the internal friction.

Following [9], we can write the tidal torque as

T = �

3

2
k2
GM

2
R
5

a6
sin(2�);

where G is the gravitational constant, M is the mass of P , R is the satellite's mean radius, a its

semimajor axis and k2, � are the so-called Love number and lag angle of high tide, which depends on

the internal structure of the satellite. Since the magnitude of the dissipative e�ects is small compared

to the gravitational term, we simplify further (3) retaining only those terms whose magnitude is of

the same order or bigger than the average e�ect of the tidal torque T . Therefore we are led to an

equation of the form

�x+ "

X
m 6= 0;m = N1

N2 ~W (
m

2
; e) sin(2x�mt) = 0;

where N1 and N2 are suitable integers and ~W (m
2
; e) are truncations of the coe�cients W (m

2
; e), which

are power series in the eccentricity. For example, in the case of the Moon{Earth system we obtain the

following equation of motion:

�x+"
h
(� e

2
+ e

3

16
) sin(2x� t)+

+(1� 5

2
e
2 + 13

16
e
4) sin(2x� 2t) + (7

2
e�

123

16
e
3) sin(2x� 3t)+

+(17
2
e
2
�

115

6
e
4) sin(2x� 4t) + (845

48
e
3
�

32525

768
e
5) sin(2x� 5t)+

+533

16
e
4 sin(2x� 6t) + 228347

3840
e
5 sin(2x� 7t)

i
= 0;

(4)

having taken N1 = 1 and N2 = 7 in (3). In the Mercury{Sun case the above criterion leads to the

values N1 = �17 and N2 = 6: however we shall make one more simpli�cation taking again N1 = 1

and N2 = 7.
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3. Construction of Birkho� periodic orbits

Motivated by the model described in the previous section, here we show how to construct certain

periodic solutions of the second order equations

�x = "fx(x; t); (5)

where f is a smooth (say C
2) periodic function of x and t (with period 2�) and " is a scalar

\perturbative parameter".

Equation (5) is equivalent to the system

_x = y; _y = "fx(x; t); (6)

which forms the Hamilton equations associated to the time-dependent Hamiltonian H = 1

2
y
2+f(x; t).

Here y and x are standard symplectic variables; the cylinder R�T is the phase space (T being the

circle R=(2�Z)), while R�T2 is the so-called generalized phase space.

We are interested in \continuing" (and constructing) non-degenerate (and, in particular, elliptic)

equilibria of (5), for as large as possible values of the parameter ", so as to obtain \Birkho� periodic

orbits" t! x(t) with rotation number (or \frequency") ! = p=q (for given positive integers p and q).

This means that x(t) is a periodic solution of (5) with period T = 2�q which \winds around" the

cylinder R�T p times:

x(t+ 2�q) = x(t) + 2�p; y(t+ 2�q) = y(t):

Since t! f(x; t) is 2� periodic, by uniqueness of the solution for the Cauchy problem for (6), one has

that t ! (x(t); y(t)) is a Birkho� periodic orbit with rotation number ! = p=q of (6) if and only if

x(t) � x(t;x; y) and y(t) � y(t;x; y) form a solution of (6) with x(0;x; y) = x, y(0;x; y) = y andZ
2�q

0

y(s)ds� 2�p = 0;

Z
2�q

0

fx(x(s); s)ds = 0: (7)

Our plan is therefore to solve problem (7) with the aid of a quantitative form of the Implicit

Function Theorem, which we proceed to formulate.

Theorem 1 (Implicit Function Theorem). Let � > 0, 0 < � < 1, z0 2 Rn
and let A be a

compact set of Rp
. Let F : (z; �) 2 B�(z0) � A ! F (z; �) 2 Rn

(B�(z0) denoting the closed ball

of radius � and center z0) be a continuous function with continuous and invertible Jacobian matrix

@F

@z
(z0; �), for any � 2 A. Denote by M(�) �

�
@F

@z
(z0; �)

��1
and by m an upper bound on supA kMk

(k � k denoting the standard \operator norm" on matrices). If

(i) sup
B�(z0)�A




I �M
@F

@z




 � � ; (ii) sup
A

jF (z0; �)j � (1� �)
�

m
;

then there exists a unique continuous function � 2 A ! z(�) 2 B�(z0) such that F (z(�); �) � 0 for

any � 2 A.

The proof is standard: conditions (i) and (ii) are immediately seen to guarantee that the map

u 2 X � C(A;B�(z0))! �u de�ned by

(�u)(�) � u(�) �M(�)F (u(�); �)

is a contraction from X (equipped with the supremum-norm) into itself (with contraction constant �).

Thus, by the contraction mapping theorem, there is a unique �xed point in X which corresponds

to z(�) in the thesis of the Implicit Function Theorem.
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Remark i. If F is C2 in z then, choosing � = 1=2 and

� � 2m sup
A

jF (z0; �)j ;

(and using the mean value theorem) one sees immediately that conditions (i) and (ii) above are

enforced by the requirement

4m2 sup
A

jF (z0; �)j sup
B�(z0)�A




@2F
@z2




 � 1 : (8)

This is the form we shall use below. The choice of � = 1=2 is the one that \optimizes" condition (8).

(ii) The above formulation is meaningful also in the case A is a singleton, A � f�0g.

(iii) Notice that it is not required to have an initial solution of the equation F = 0 but it is enough

to have an approximate solution z0 (uniformly in the parameter �).

To construct an initial approximation for (7) we proceed as follows. Considering " as a small

parameter we write explicitely the �rst "-order of the general solution of (6) with initial data (x; y):8>><
>>:

x1(t) � x1(t; y; x) =

Z
t

0

y1(s)ds;

y1(t) � y1(t; y; x) =

Z
t

0

fx(x+ ys; s)ds;

and let �(t) and �(t) be the solution of(
_� = �; �(0) = 0;

_� =
1

"

�
fx(x+ yt+ "x1(t) + "

2
�(t); t)� fx(x+ yt; t)

�
; �(0) = 0:

(9)

Then, as one readily veri�es,

x(t) � x+ yt+ "x1(t) + "
2
�(t); y(t) � y + "y1(t) + "

2
�(t) (10)

solve (6) with initial data x(0) = x and y(0) = y. Notice that � and � are well de�ned and bounded

also in " at " = 0 (interprete the right-hand-side of the second equation in (9) as fxx(x+ yt; t)).

The initial data (x; y) has now to be �xed so as to meet (7) (and will, of course, depend on ").

We shall take

x = x0 + "x1 ; y = y0 + "y1 ; (11)

with xi and yi independent of ". The choice of xi and yi will be made in the natural fashion: the

problem (7) may be formally solved expanding in power series of " and equating coe�cients and x0,

x1, y0, y1 will be taken as the �rst orders of such formal series. Keeping this in mind, one �nds that

y0 =
p

q
; (12)

and that x0 has to be a nondegenerate critical point of the (periodic) function

� !

Z
2�q

0

fx(� + y0s; s)ds ;

i. e., x0 is such thatZ
2�q

0

fx(x0 + y0s; s)ds = 0 ; � �

Z
2�q

0

fxx(x0 + y0s; s)ds 6= 0 : (13)
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In fact we shall see in Appendix B that the sign of � determines the type of the solution: � > 0

corresponds to hyperbolic periodic solutions while � < 0 to elliptic ones. The next \orders" x1 and y1

are given by

y1 = �

1

2�q

Z
2�q

0

Z
t

0

fx(x0 + y0s; s)dsdt ; (14)

x1 = �

1R
2�q

0
f0
xx
(t)dt

�
y1

Z
2�q

0

tf
0
xx
(t)dt+

Z
2�q

0

f
0
xx
(t)x1(t; y0; x0)dt

�
; (15)

where f0
xx
(t) � fxx(x0 + y0t; t).

Having �xed such approximate initial data, the function �(t) and �(t) in (9) are determined and

hence the whole solution x(t) and y(t) in (6) is also uniquely determined and one can proceed to apply

the Implicit Function Theorem performing the necessary \a-priori estimates" on the solution x(t), y(t)

(see Appendix A for detailed estimates).

We remark that the word \approximate" refers to the equation (7) and not to equations (6) of

which x(t) and y(t) give an exact solution with initial data (11). We also notice that having choosen

the �rst two nontrivial orders in " is of course rather arbitrary (for example one could take higher

"-order approximations).

4. Periodic solutions for the spin-orbit problem

Here we apply the theory described in the previous section to the spin-orbit model discussed in

Section 2.

We consider the two most signi�cative examples of spin-orbit coupling, namely the Moon{Earth

and Mercury{Sun systems. As everybody looking up in the sky knows, the Moon{Earth system lies in

a 1:1 spin-orbit resonance. The Mercury{Sun system lies instead in a 3:2 resonance. Here, besides the

1:1 and 3:2 resonances, we shall consider also the 2:1 resonance since numerical computations show

that the 2:1 is surrounded, in phase space, by a \librational region" which appears to be larger than

the ones associated to the remaining resonances.

In applying the theory of Section 3 we shall �x

����
����
Fig. 1. The spin-orbit geometry.

the value of the eccentricity equal to the astronomically

observed one. For the astronomical observed values of

the parameters for the Moon{Earth and Mercury{Sun

systems see Table 1.

The mathematical results are listed in Table 2,

which shows the maximum value of the perturbing

parameter " for which we can establish the existence

of a periodic orbit with frequency p=q, associated to a

p : q spin-orbit resonance. We stress that the results

are obtained for the true values of the eccentricities, i. e. e = 0:0549 for the Moon and e = 0:2056 for

Mercury.

Table 2 shows that the existence of a synchronous periodic orbit close to the actual motion of the

Moon can be proved for values of the perturbing parameter bigger than the corresponding physical

value. Instead a stable 3:2 or 2:1 periodic orbit for the Moon cannot be established for values of the

parameter consistent with the observations. This remark suggests that the most likely ending state for

the Moon is toward the synchronous resonance, validating previous results ([9], [6]) on probablities of

capture into a resonance. Less evident is the situation for Mercury, for which the discrepancy between

the theoretical results on resonance's stability is less pronounced.
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����
����
�	
�

����
����
�	
�

Fig. 2. Values of the libration angle x

over 1 year, computed every lunar month.

Theoretical predictions (�) and astronomical

observations (�).

Fig. 3. The di�erence between the theoretical

value of the libration angle x and the

revolutional mean motion. The total period

corresponds to 1 lunar month. Theoretical

predictions (�) and the average over one solar

year of the astronomical observations (�).

In Figure 2 we compare our theoretical results with the actual motion of the Moon as it can

be found in the [12]. More precisely, we plot the value of the x-coordinate over a year every lunar

month (� 27d). These values are obtained by integrating (with a leap-frog method) the equation of

motion (4) with initial data x̂ = x0+"x1, ŷ = y0+"y1, where x0, x1, y0, y1 can be explicitely computed

through eq.s (3:8){(3:11) of Section 3. Since (x̂; ŷ) provide a good approximation of the theoretical

location of the 1:1 periodic orbit, the successive x-values are almost the same every lunar month. We

compare these results with the libration in longitude provided by the [12]. The small oscillations of the

observed data are due to the physical librations of the Moon. We remark that the di�erence between

our theoretical periodic orbit and the astronomical variation amounts to some thousandths of degree.

In Figure 3 we compare the values obtained plotting over one lunar month the theoretical solution

x(t) = x� + y�t+ " x1(t) ;

where
x1(t) =

7X
j=1

cj

�
sin((2y� � j)t+ 2x�)� sin(2x�)

(2y� � j)2
�

cos(2x�)t

(2y� � j)

�

(here x� and y� are the values x and y given in (11)). More precisely, the value of the angle x(t) was

decreased by the revolutional mean motion and compared to the average over one solar year of the

librational values provided by the [12].

As is well known, periodic orbits are often used as the starting points for computing the e�ective

motion of solar system objects. For example, concerning the Moon, Hill [7] found an exact special orbit

and computed neighboring trajectories. More precisely, the idea is to solve the variational equations

around a suitable periodic orbit and to recover the actual ephemeris within a good precision. We

suggest that a similar method might be implemented, using as a starting point the orbits constructed

above, to derive a semi-analytical theory of the Moon's physical librations.
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5. KAM stability for the elliptic case

Lyapunov stability of the periodic orbits constructed in Section 3 can be obtained by proving the

existence of surrounding librational invariant surfaces. More precisely, according to [10], we consider

the 2-dimensional area-preserving Poincar�e map associated to (4), having the origin as a �xed point.

We reduce ourselves to study the stability of the origin, which implies the stability of the periodic orbit

for the system (4). As an example, we study the synchronous periodic orbit having period T = 2�.

We outline the sketch of the proof, referring to the Appendix B for further details. Following [10],

we reduce the Poincar�e map for (6) to the form

�
0
1 = a�1 + b�2 + p(�1; �2); �

0
2 = c�1 + d�2 + q(�1; �2); (16)

where S =

�
a b

c d

�
is the matrix associated to the linear part and p(�1; �2), q(�1; �2) are higher order

polynomials (with degree greater or equal than 3) in �1; �2. Since, in the elliptic case, the matrix S

has complex conjugated eigenvalues (�; �), we proceed by reducing (16) to a diagonal form through a

symplectic coordinate change (�1; �2)! (~x; ~y)

~x0 = �~x+ ~p(~x; ~y); ~y0 = �~y + ~q(~x; ~y); (17)

for some complex polynomials ~p(~x; ~y), ~q(~x; ~y). Next we perform a symplectic transformation which

conjugates (17) to the form

�
0 = � e

i(
0+
1��+
2(��)
2+:::)

; �
0 = � e

�i(
0+
1��+
2(��)
2+:::)

;

where the coe�cients 
j depend on " and e. According to Siegel and Moser the existence of an invariant

curve around the origin is guaranteed by the condition that at least one of the coe�cients 
j, for j � 1,

is non-zero. In particular, an explicit computation shows that the leading order in " is given by


1 =
(3 + "T

2)T

2(3 � 4"T 2 + "2T 4)

r
2"T 2

�

2

3
"2T 4 ;

which implies that the origin of the Poincar�e map is a stable �xed point, providing the stability of the

above periodic orbits of the di�erential system (4).

Appendix A

In this appendix we perform the main estimates in order to prove the results of Section 4, using the Implicit

Function Theorem of Section 3. We denote by x� = x � x0+"x1, y� = y � y0+"y1 as in (11) and z0 � (x�; y�).

In particular we provide explicit estimates to check condition (8), i. e.

4 kMk
2
k

@
2
F

@(x; y)2
k� kF (x�; y�)k � 1 ;

with

� = 2 kMk kF (x�; y�)k ;

here the parameter vector � is replaced by " varying in the interval A � [0; "0]. For simplicity we have denoted

k � k � sup
A
j � j, k � k� � sup

B�(z0)�A
k � k. From (7), (10) the function F (x; y) = (F1(x; y); F2(x; y)) is explicitely

given by

F1(x; y) � yT + "0

R
T

0

R
t

0
fx(x+ ys; s)dsdt+ "

2
0

R
T

0
�(t; y; x)dt� 2�p;

F2(x; y) �
R
T

0
fx(x + yt+ "0x1(t; y; x) + "

2
�(t; y; x); t)dt:
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Let fx(x; t) be as in (4{6); the norm of F (x�; y�) is obtained as

kF (x�; y�; ")k � supfkF1(x�; y�; ")k; kF2(x�; y�; ")kg;

kF1(x�; y�; ")k � "
2
h
kfxxk

h
jx1j+ jy1j

T

3

i
T
2

2
+ k�kT

i
;

kF2(x�; y�; ")k � "
2
0

h
kfxxkTk�k+

1
2
kfxxxkTk�k

2
"
2
0

i
;

(having choosen in R2 the sup-norm) where

kx1(t;x�; y�)k �

7X
j=1

jcj j j
sin((2y� � j)T + 2x�)� sin(2x�)

(2y� � j)2
�

cos(2x�)T

(2y� � j)
j; (A:1)

and

k�k �
T
2

2

kfxxkkx1(t;x�; y�)k

1� "0
T 2

2
kfxxk

;

k�k � Tkfxxk

�
kx1(t;x�; y�)k+ "0k�k

�
:

(A:2)

� Estimate of the norm of M : let

M �

�
@F (x�; y�; ")

@(x; y)

��1

:

Let us explicit the derivatives as follows. If we denote by

G1(x; y) � Ty � 2�p+ "
R
T

0
y1(t; y; x)dt;

G2(x; y) �
R
T

0
fx(x+ yt+ "x1(t; y; x); t)dt;

then, omitting the arguments of the functions, we obtain:

@F1

@x
= @G1

@x
+ "

2
R
T

0
�x dt;

@F2

@x
= @G2

@x
+ "

2
R
T

0
fxx �x dt;

@F1

@y
= @G1

@y
+ "

2
R
T

0
�y dt;

@F2

@y
= @G2

@y
+ "

2
R
T

0
fxx �y dt:

Denoting by

HG �

�
@G(x�; y�)

@(x; y)

�
;

we can write M�1 � HG + "
2 ~H , where

~H �

 R
T

0
�x dt

R
T

0
�y dtR

T

0
fxx �x dt

R
T

0
fxx �y dt

!
:

Therefore an estimate on M can be obtained through the above quantities as

kMk �
kH

�1
G

k

1� "
2
0kH

�1
G

k k ~Hk
:

Now we provide estimates on H
�1
G

and ~H . Let

HG �

�
@G(x�; y�)

@(x; y)

�
�

�
� �


 �

�
;

then

kH
�1
G

k = k
1

�� � �

k � supfk�k+ k�k; k�k+ k
kg :

Denoting by a = 2x� and by bj = 2y� � j, one has

� = "kfxxk
T
2

2
;

� = T + "

7X
i=1

cj f�
T

b
2
j

cos(a+ bjT ) +
2

b
3
j

sin(a+ bjT )�
T

b
2
j

cos(a)�
2

b
3
j

sin(a)g;


 = kfxxkT (1 + "kfxxk
T
2

2
);

� = kfxxkT (
T

2
+ "kfxxk

T
3

24
):
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Concerning the estimate on ~H we have:

k ~Hk � supfkH11k+ kH12k; kH21k+ kH22kg ;

and
kH11k � Tk�xk; kH21k � kfxxkTk�xk;

kH12k � Tk�yk; kH22k � kfxxkTk�yk;

where k�xk, k�yk, k�xk, k�yk may be estimated as follows:

k�xk � Tkfxxk

�
k
@x1

@x
k+ "0k�xk

�
+ Tkfxxxk

�
kx1k+ "0k�k

��
1 + "0k

@x1

@x
k+ "

2
0k�xk

�
;

k�yk � Tkfxxk

�
k
@x1

@y
k+ "0k�yk

�
+ Tkfxxxk

�
kx1k+ "0k�k

��
T

2
+ "0k

@x1

@y
k+ "

2
0k�yk

�
;

k�xk �

T
2kfxxkk

@x1

@x
k+ T

2kfxxxkg

�
kx1k+ "0k�k

��
1 + "0k

@x1

@x
k

�
2
�
1� T 2

2
kfxxk"0 �

T 2

2
kfxxxk"

2
0

�
kx1k+ "0k�k

��

k�yk �

T
2kfxxkk

@x1

@y
k+ T

2kfxxxk

�
kx1k+ "0k�k

��
T

2
+ "0k

@x1

@y
k

�
2
�
1� T 2

2
kfxxk"0 �

T 2

2
kfxxxk"

2
0

�
kx1k+ "0k�k

�� :

(A:3)

The estimates for the derivatives of kx1(t;x; y)k (computed at the point (x�; y�)) are derived similarly as in

(A:1).

� Estimate on k
@
2
F

@(x;y)
k:

In order to give the estimate on k
@
2
F

@(x;y)
k we need to provide the norms of the second derivatives of the

functions �, � (the estimates on �, � and their �rst derivatives were already given in (A:2), (A:3)). We �nd:

k�xxk �

h
1� T

2

2
kfxxk"0 �

T
2

2
kfxxxk

�
kx1k+ "0k�k

�
"
2
0

i�1
1
2

h
T
2kfxxkk

@
2
x1

@x2
k

+2T 2
�
k
@x1

@x
k+ "0k�xk

�
kfxxxk

�
1 + "0k

@x1

@x
k+ "

2
0k�xk

�
+T 2kfxxxxk

�
kx1k+ "0k�k

��
1 + "0k

@x1

@x
k+ "

2
0k�xk

�2
+"0T

2k
@
2
x1

@x2
kkfxxxk

�
kx1k+ k"0k�k

�i
;

k�xxk � Tkfxxk

�
k
@
2
x1

@x2
k+ "0k�xxk

�
+ 2T

�
k
@x1

@x
k+ "0k�xk

�
kfxxxk�

1 + "0k
@x1

@x
k+ "

2
0k�xk

�
+ Tkfxxxk

�
kx1k+ "0k�k

�
�
1 + "0k

@x1

@x
k+ "

2
0k�xk

�2
+
�
kx1k+ "0k�k

�
Tkfxxxk"0

�
k
@
2
x1

@x2
k+ "0k�xxk

�
;

k�yyk �
T

2

h
1� T

2

2
kfxxk"0 �

T
2

2
kfxxxk

�
kx1k+ "0k�k

�
"
2
0

i�1 h
Tkfxxkk

@
2
x1

@y2
k

+2T
�
k
@x1

@y
k+ "0k�yk

�
kfxxxk

�
T

3
+ "0k

@x1

@y
k+ "

2
0k�yk

�
+kfxxxxk

�
kx1k+ "0k�k

�
�
T
3

6
+ T"

2
0(k

@x1

@y
k+ "0k�yk)

2 + "0
T
2

3
(k@x1

@y
k+ "0k�yk)

�
+"0Tk

@
2
x1

@y2
kkfxxxk

�
kx1k+ k"0k�k

�i
;

k�yyk � Tkfxxk

h
k
@
2
x1

@y2
k+ "0k�yyk

i
+ 2T

h
k
@x1

@y
k+ "0k�yk

i
kfxxxk�

T

2
+ "0k

@x1

@y
k+ "

2
0k�yk

�
+ kfxxxxk

�
kx1k+ "0k�k

��
T
3

3
+ T"

2
0(k

@x1

@y
k+ "0k�yk)

2

+"0T
2(k@x1

@y
k+ "0k�yk)

�
+ "0Tkfxxxk(kx1k+ "0k�k)

�
k
@
2
x1

@y2
k+ "0k�yyk

�
;

k�yxk �
1
2

h
1� T

2

2
kfxxk"0 �

T
2

2
kfxxxk(kx1k+ "0k�k)"

2
0

i�1 h
T
2kfxxkk

@
2
x1

@y@x
k
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+T 2
�
k
@x1

@y
k+ "0k�yk

�
kfxxxk

�
1 + "0k

@x1

@x
k+ "

2
0k�xk

�
+ kfxxxxk

�
kx1k+ "0k�k

�
�
1 + "0(k

@x1

@x
k+ "

2
0k�xk

�2
T
2
�
T

3
+ "0k

@x1

@y
k+ "

2
0k�yk

�
+"0T

2k
@
2
x1

@y@x
kkfxxxk

�
kx1k+ "0k�k

�
+kfxxxk

�
k
@x1

@x
k+ "0k�xk

�
T
2
�
T

3
+ "0k

@x1

@x
k+ "

2
0k�yk

�i
;

k�yxk � Tkfxxk

�
k
@
2
x1

@y@x
k+ "0k�yxk

�
+ T

�
k
@x1

@y
k+ "0k�yk

�
kfxxxk�

1 + "0k
@x1

@x
k+ "

2
0k�xk

�
+ kfxxxxk

�
kx1k+ "0k�k

��
1 + "0k

@x1

@x
k

+"20k�xk
�
T

�
T

2
+ "0k

@x1

@y
k+ "

2
0k�yk

�
+ "0Tkfxxxk

�
kx1k+ "0k�k

�
�
k
@
2
x1

@y@x
k+ "0k�yxk

�
+ kfxxxk

�
k
@x1

@x
k+ "0k�xk

�
T

�
T

2
+ "0k

@x1

@x
k+ "

2
0k�yk

�
:

Thus, 


 @
2
F

@(x;y)




 = sup
�


@2F1

@y2




+ 


@2F1
@x2




+ 2



 @2F1
@y@x




 ; 


@2F2
@y2




+ 


@2F2
@x2




+ 2



 @2F2
@y@x




� ;

and

k
@
2
F1

@y2
k +k@

2
F1

@x2
k+ 2k @

2
F1

@y@x
k � "0kfxxxk

h
T
2

2
+ T

3

3
+ T

4

12

i
+"20

h
k�xxk+ k�yyk+ 2k�xyk

i
;

k
@
2
F2

@y2
k +k@

2
F2

@x2
k+ 2k @

2
F2

@y@x
k � kfxxxk

h
(T

3

3
+ ("0k

@x1

@y
k+ "

2
0k�yk)T

2 + ("0k
@x1

@y
k

+"20k�yk)
2
T ) + T (1 + "0k

@x1

@x
k+ "

2
0k�xk)

2 + 2(T
2

2
+ ("0k

@x1

@y
k

+"20k�yk)T )(1 + "0k
@x1

@x
k+ "

2
0k�xk)

i
+kfxxkT

h
"0k

@
2
x1

@y2
k+ "

2
0k�yyk+ "0k

@
2
x1

@x2
k+ "

2
0k�xxk

+2"0k
@
2
x1

@y@x
k+ 2"20k�yxk

i
:

In the above formulae, the function x1(t;x; y) and its derivatives are estimated on the domain of radius �,

rather then being computed on the point (x�; y�). Let us remark that the function x1(t;x; y) involves a term

which dominates due to the resonance relation; therefore, we evidentiate this term labelling it with the index

k. In particular it is k = 2 for the 1:1 resonance, k = 3 for the 3:2, k = 4 for the 2:1. More precisely, we write

x1(t) � x1(t;x; y) as

x1(t) =

7X
j=1;j 6=k

cj

h sin((2y � j)t+ 2x)� sin(2x)

(2y � j)2
�

cos(2x)t

(2y � j)

i
+ ck

h sin((2y � k)t+ 2x)� sin(2x)

(2y � k)2
�

cos(2x)t

(2y � k)

i
:

Denoting by M � T (2�+ j2y�� kj), b � 2(jx�j+ �), Nl � j2�� j2y�� ljj for l = 1; :::; 7, we obtain the following

estimates:

kx1(t)k �

7P
j=1;j 6=k

jcj j

h
2
N

2

j

+ T

Nj

i
+ jckj

h
T
2 sinh(M)�M

M2 + bT
2 cosh(M)�1

M2

i
;

k
@x1(t)

@x
k � 2

7P
j=1;j 6=k

jcj j

h
2
N

2

j

+ T

Nj

i
+ 2jckj

h
T
2 cosh(M)�1

M2 + bT
2 sinh(M)�M

M2

i
;

k
@
2
x1(t)

@x2
k � 4

7P
j=1;j 6=k

jcj j

h
2
N

2

j

+ T

Nj

i
+ 4jckj

h
T
2 sinh(M)�M

M2 + bT
2 cosh(M)�1

M2

i

k
@x1(t)

@y
k �

7P
j=1;j 6=k

jcj j

h
8
N

3

j

+ T

N
2

j

i
+ 2jckj

h
2T 3 sinh(M)�M

M3 + T
3 cosh(M)�1

M2

+2bT 3 cosh(M)�1

M3 + bT
3 sinh(M)

M2

i
;

k
@
2
x1(t)

@y@x
k �

7P
j=1;j 6=k

jcj j

h
16
N

3

j

+ 8T
N

2

j

i
+ 4jckj

h
2bT 3 sinh(M)�M

M3 + bT
3 cosh(M)�1

M2

+2T 3 cosh(M)�1

M3 + T
3 sinh(M)

M2

i
;

k
@
2
x1(t)

@y2
k � 4

7P
j=1;j 6=k

jcj j

h
12
N

4

j

+ 6T
N

3

j

+ T
2

N
2

j

i
+ 4jckj

h
T
4
�
6
sinh(M)�M

M4

+4
cosh(M)�1

M3 +
cosh(M)

M2

�
+ bT

4
�
6
cosh(M)�1

M4 + 4
sinh(M)

M3 +
cosh(M)

M2

�i
:
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Appendix B

In this appendix, following [10] we provide details about the existence of KAM librational invariant surfaces

around the synchronous periodic orbit. We do not claim to obtain optimal estimates on the parameters ensuring

the stability of the periodic orbit, but just to prove that there exist invariant surfaces around the periodic orbit

for suitably small values of the parameters. Therefore we consider the simpler problem with zero eccentricity.

_x = y _y = �" sin(2x� 2t) � "g(x; t); (B:1)

and perform all computations to �rst order in ". Under suitable coordinate transformations, we reduce (B:1)

to the form

�
0 = � e

i(
0+
1��+
2(��)
2+:::)

; �
0 = � e

�i(
0+
1��+
2(��)
2+:::)

; (B:2)

and we show that the �rst coe�cient 
1 = 
1je=0 of the normal form is di�erent from zero. Since this coe�cient

depends analytically on ", e, we can conclude that the condition 
1("; e) 6= 0 is satis�ed for su�ciently small

values of the parameters ", e. We postpone to a later work the problem of proving the existence of invariant

surfaces for realistic values of the parameters.

B.1 Linerization of (B.1)

Let (x; y) be initial conditions on the periodic orbit and let P (x; y) � (x(T ); y(T )) = (x0; y0) be the Poincar�e

map at time T = 2�q. By (B:1) we can rewrite the Poincar�e map as

x
0 = x+ yT + "

Z
T

0

Z
s

0

g(x(� ;x; y); �)d�ds; y
0 = y + "

Z
T

0

g(x(s;x; y); s)ds; (B:3)

which has (x; y) as a �xed point. We shift the �xed point to the origin by means of the canonical transformation

�1 = x� x �2 = y � y;

so that (B:3) becomes

�
0

1 = �1 + �2T + yT + "
R
T

0

R
s

0
g(x(� ; �1 + x; �2 + y); �)d�ds

�
0

2 = �2 + "
R
T

0
g(x(s; �1 + x; �2 + y); s)ds:

(B:4)

We recall that (x; y) are power series in ":

x = x0 + "x1 + "
2
x2 + :::; y = y0 + "y1 + "

2
y2 + :::;

where, in particular, x0 = 0, y0 = 1. Since

x(� ;x; y) = x+ y� + "

Z
�

0

Z
s

0

g(x(t;x; y); t) dtds ;

up to �rst order in " we have

x(� ;x; y) = x0 + y0� +O(") :

Therefore, disregarding O("2), (B:4) reduces to

�
0

1 = �1 + �2T + y0T + "y1T + "
R
T

0

R
s

0
g(�1 + x0 + (�2 + y0)�; �)d�ds;

�
0

2 = �2 + "
R
T

0
g(�1 + x0 + (�2 + y0)s; s)ds:

(B:5)

The development of the r.h.s. of (B:5) in power series of �1, �2 is performed using the periodicity conditions

y1T = �

Z
T

0

Z
s

0

g(x0 + y0�; �) d�ds;

Z
T

0

g(x0 + y0s; s) ds = 0: (B:6)

By means of (B:6) we obtain

y1T +
R
T

0

R
s

0
g(�1 + x0 + (�2 + y0)�; �)d�ds

=
R
T

0

R
s

0
[g(�1 + x0 + (�2 + y0)�; �) � g(x0 + y0�; �)]d�ds

=
R
T

0

R
s

0
[gx(x0 + y0�; �) (�1 + �2�) +

1
2
gxx(x0 + y0�; �) (�1 + �2�)

2

+ 1
6
gxxx(x0 + y0�; �) (�1 + �2�)

3] d�ds

= �T 2
�1 �

T
3

3
�2 +

2
3
T
2
�
3
1 +

2
3
T
3
�
2
1�2 +

1
3
T
4
�1�

2
2 +

1
15
T
5
�
3
2 :

118 REGULAR AND CHAOTIC DYNAMICS, V.3, é3, 1998



CONSTRUCTION OF STABLE PERIODIC ORBITS FOR THE SPIN-ORBIT PROBLEM OF CELESTIAL MECHANICS �

In a similar way, we obtain

R
T

0
g(�1 + x0 + (�2 + y0)s; s)ds =

R
T

0
[g(�1 + x0 + (�2 + y0)s; s)� g(x0 + y0s; s)]ds

=
R
T

0
[gx(x0 + y0s) (�1 + �2 s) +

1
2
gxx(x0 + y0s) (�1 + �2 s)

2

+ 1
6
gxxx(x0 + y0s) (�1 + �2 s)

3]ds

= �2T�1 � T
2
�2 +

4
3
T�

3
1 + 2T 2

�
2
1�2 +

4
3
T
3
�1�

2
2 +

1
3
T
4
�
3
2 :

Therefore neglecting O("2) and polynomial terms of order higher than 3 in �1, �2, we rewrite (B:5) as

�
0

1 = a�1 + b�2 + p(�1; �2) �
0

2 = c�1 + d�2 + q(�1; �2); (B:7)

where

a = 1� "T
2
; b = T � "

T
3

3
; c = �2T"; d = 1� "T

2
;

p(�1; �2) = "[ 2
3
T
2
�
3
1 +

2
3
T
2
�
2
1�2 +

1
3
T
4
�1�

2
2 +

1
15
T
5
�
3
2 ];

q(�1; �2) = "[ 4
3
T�

3
1 + 2T 2

�
2
1�2 +

4
3
T
3
�1�

2
2 +

1
3
�
3
2 ]:

Provided " <
3

T 2
, the eigenvalues (�; �) of the linear part are complex conjugated, � = �, and precisely � =

�1 + i�2, � = �1 � i�2, with

�1 = 1� "T
2
; �2 =

r
2"T 2 �

2

3
"2T 4 :

Remark 1. Notice that the solution is of elliptic type if the eigenvalues of the linear part of eq. (B:7) are

complex conjugate. Such eigenvalues are determined as the solution of the secular equation

�
2
� (a+ d)�+ ad� bc = 0:

The eigenvalues are complex conjugate, if the discriminant is negative, i. e. � � (a + d)2 � 4 < 0, namely

�2 < a + d < 2. Using the de�nition of d in terms of the function g = g(x; t) and integrating by parts, one

obtains

d = 1 + "

Z
T

0

gx(x0 + y0s; s)sds = 2 + "T

Z
T

0

gx(x0 + y0s; s)ds� a ;

namely a+ d = 2 + "T
R
T

0
gx(x0 + y0s; s)ds, so that the condition for ellipticity becomes

�4 < "T

Z
T

0

gx(x0 + y0s; s)ds < 0 :

B.2 Reduction to diagonal form

Next step is to reduce (B:7) to the form

~x0 = �~x+ ~p(~x; ~y); ~y0 = �~y + ~q(~x; ~y): (B:8)

Let � �

�
�1

�2

�
, z �

�
~x

~y

�
and S =

�
a b

c d

�
. Retaining only linear terms, we have that � 0 = S� and we

want to look for a coordinate change � = Cz, such that

z
0 = C

�1
SCz � Tz with T �

�
� 0

0 �

�
:

Setting C =

�
� �


 �

�
, the change of variables is provided by

�1 = �~x+ �~y �2 = 
~x+ �~y;

with inverse transformation

~x = ��1 � ��2 ~y = �
�1 + ��2;
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" e

Moon{Earth 3:45 � 10�4 0.0549

Mercury{Sun 1:5 � 10�4 0.2056

Table 1. Astronomically oberved values for oblateness (") and eccentricity (e).

1 : 1 3 : 2 2 : 1

Moon{Earth "0 = 7:1 � 10�4 "0 = 7:8 � 10�6 "0 = 1:1 � 10�5

Mercury{Sun "0 = 8:8 � 10�5 "0 = 5:7 � 10�6 "0 = 2:8 � 10�5

Table 2. Theoretical values for the existence of periodic orbits for " � "0.

under the area-preserving requirement

�� � �
 = 1 :

Therefore we obtain

� =
b


�� a
; � =

b�

�� a
; 
 =

(�� a)(�� a)

�� �

1

b�
;

while � is a free parameter. Under such transformation (B:2) is reduced to

~x0 = �~x+ ~p(~x; ~y); ~y0 = �~y + ~q(~x; ~y);

where
~p(~x; ~y) = �p(�~x + �~y; 
~x+ �~y)� �q(�~x + �~y; 
~x+ �~y);

~q(~x; ~y) = �
p(�~x+ �~y; 
~x+ �~y) + �q(�~x + �~y; 
~x+ �~y):

Notice that ~q(~x; ~y) = ~p(~x; ~y).

B.3 Normal form and computation of 
1

We look for a near-to-identity canonical transformation of the form

~x = �(�; �) = � +�2(�; �) + �3(�; �) + :::; ~y = 	(�; �) = � +	2(�; �) + 	3(�; �) + :::;

where �j(�; �) and 	j(�; �) are polynomial functions in �, � of degree j. For elliptic normal forms [10], the

functions �j and 	j are aimed to transform (B:8) to (B:2), which we rewrite as

� � u� = e
iw
�; � � v� = e

�iw
�;

where w = 
0 + 
1�� + 
2(��)
2 + ::: The functional equations for � and 	 are

�(u�; v�) = ~p(�(�; �);	(�; �)); 	(u�; v�) = ~q(�(�; �);	(�; �)):

Since ~p and ~q are third-degree polynomials, we easily obtain �2(�; �) = 	2(�; �) = 0, while �3(�; �), 	3(�; �)

must satisfy the relations

�3(��; ��) + i�
1�
2
� = ��3(�; �) + ~p(�; �); 	3(��; ��)� i�
1��

2 = �	3(�; �) + ~q(�; �): (B:9)

Let

~p(�; �) = p30�
3 + p21�

2
� + p12��

2 + p03�
3
; �3(�; �) = �30�

3 +�21�
2
� +�12��

2 +�03�
3

and similarly for ~q(�; �) and 	3(�; �). From (B:9) we obtain

i�
1 = p21; i�
1 = q12;

namely


1 =
p21 + q12

2i�1
;
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which provides


1 =
(3 + "T

2)T

2(3� 4"T 2 + "2T 4)

r
2"T 2 �

2

3
"2T 4 :

According to Siegel and Moser, since 
1 6= 0 we can conclude that for " and e su�ciently small there exists an

invariant curve around the elliptic �xed point of the Poincar�e map associated to (2:3). This result implies the

stability of the periodic orbit for the di�erential system (2:3).
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�.�������, �.��������

���������� ���������� ������������� �����

��� ����-����������� �������� �������� ��������

�®±²³¯¨«  ¢ °¥¤ ª¶¨¾ 2 ±¥­²¿¡°¿ 1998 £.

� ±±¬ ²°¨¢ ¾²±¿ ¡¨°ª£®¢±ª¨¥ ¯¥°¨®¤¨·¥±ª¨¥ ®°¡¨²», ±¢¿§ ­­»¥ ±® ±¯¨­-®°¡¨² «¼­»¬¨ °¥§®­ ­± ¬¨ ¢ ­¥-

¡¥±­®© ¬¥µ ­¨ª¥, ¢ · ±²­®±²¨, ± ±¨±²¥¬ ¬¨ �³­ {�¥¬«¿ ¨ �¥°ª³°¨©{�®«­¶¥. �¡¹¨© ¬¥²®¤ (®±­®¢ ­­»©

­  ª®«¨·¥±²¢¥­­®© ¢¥°±¨¨ ²¥®°¥¬» ® ­¥¿¢­®© ´³­ª¶¨¨) ¯°¨¬¥­¥­ ¤«¿ ­ µ®¦¤¥­¨¿ ½²¨µ ®°¡¨² ¨, ¢ · ±²-

­®±²¨, ¯®«³·¥­¨¿ æ½´´¥ª²¨¢­»µ ®¶¥­®ªç ¢¥«¨·¨­» ¢®§¬³¹ ¾¹¥£® ¯ ° ¬¥²°  (½²¨ °¥§³«¼² ²» ¯°®¢¥°¥­» ­ 

³ª § ­­»µ ±¨±²¥¬ µ). �®ª § ­  ³±²®©·¨¢®±²¼ ¯® �¿¯³­®¢³ ¯¥°¨®¤¨·¥±ª¨µ ®°¡¨² (¤«¿ ¬ «»µ §­ ·¥­¨© ¢®§-

¬³¹ ¾¹¥£® ¯ ° ¬¥²° ) ¯°¨ ¯®¬®¹¨ ­ µ®¦¤¥­¨¿ «¨¡° ¶¨®­­»µ ¨­¢ °¨ ­²­»µ ¯®¢¥°µ­®±²¥© (±«³· © ���

²¥®°¨¨), ®ª°³¦ ¾¹¨µ ¯¥°¨®¤¨·¥±ª¨¥ ®°¡¨²».
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