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Abstract

We propose a methodology based on the Laplace transform to compute the
variance of the hedging error due to time discretization for financial deriva-
tives when the interest rate is stochastic. Our approach can be applied to any
affine model for asset prices and to a very general class of hedging strategies,
including Delta hedging. We apply it in a two-dimensional market model,
obtained by combining the models of Black-Scholes and Vasicek, where we
compare a strategy that correctly takes into account the variability of interest
rates to one that erroneously assumes that they are deterministic. We show
that the differences between the two strategies can be very significant. The
factors with stronger influence are the ratio between the standard deviations
of the equity and that of the interest rate, and their correlation. The method-
ology is also applied to study the Delta hedging strategy for an interest rate
option in the Cox-Ingersoll and Ross model, measuring the variance of the
hedging error as a function of the frequency of the rebalancing dates. We
compare the results obtained to those coming from a classical Monte Carlo
simulation.

Keywords:
Laplace transform, incomplete markets, Delta hedging, contingent claim,
stochastic interest rates

1. Introduction

Most of the mathematical models for arbitrage pricing in continuous time
assume that markets are always open and that trading is performed continu-
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ously in time. Although it is obvious that such an assumption does not hold
in practice, the pricing formulas and the hedging strategies valid in the case
of continuous trading are usually also adopted in everyday practical situa-
tions. Our goal is to propose a methodology to evaluate the impact of trading
in discrete time when hedging strategies are constructed under a continuous
time assumption.

The object of our investigation is the ex-ante assessment of the perfor-
mances of dynamic trading strategies. Probably, the most notable instance of
such problem is measuring the hedging error of a strategy, based on a liquid
assets, that tries to hedge a future liability. Problems of such kind arise when
replicating either a claim using futures contracts, or a payoff of a derivative
security with a Delta hedging strategy based on the underlying asset, and
in any case when a dynamic strategy is adopted. Ex-ante, a possible way to
measure the performance of a strategy is by evaluating expected value and
variance of its hedging error. This is usually done by approximations or by
Monte Carlo simulations. The approach we propose, based on Laplace trans-
forms, allows to efficiently perform such computations for a very general class
of models. This paper is the third one of a series of studies that addressed
such an issue in different settings. Our previous works on this subject, to
whom we refer for a deeper introduction to the problem, are Angelini and
Herzel [1, 2], the first dealing with market models based on Lèvy processes,
the second where the more general class of affine processes are considered.

We consider a market model driven by continuous time affine processes, in
which, by definition, the conditional characteristic function is an exponential
of an affine function of the state variables (see Duffie et al. [5] for a formal
definition and properties of affine models). In this framework, Angelini and
Herzel [1, 2] provide semi-closed formulas for the efficient computation of
expected value and variance of the hedging error for a quite general class of
strategies, called “affine”, that includes the popular Delta hedging strategy.
Such formulas are obtained by using a Laplace transform approach, that
is based on the idea of writing the payoff of the contingent claim as an
inverse Laplace transform, introduced by Hubalek et al. [7] in the context
of variance-optimal hedging. An important feature of the result is that one
can study different type of misspecification. For instance, it is possible to
analyze the performance of the standard Black-Scholes Delta strategy when
the underlying asset is driven by a process which is not log-normal, like in a
stochastic volatility model.

In our previous contributions we made the simplifying assumption of de-
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terministic interest rates. In the present work, we extend the analysis to
the case of stochastic interest rates. Such an extension gives us the oppor-
tunity to study the hedging problem in a more general and realistic model.
For example, we can measure the effect of assuming that the interest rate
is deterministic when in fact it is stochastic. As an example, we consider a
simple two-dimensional affine model, where the underlying evolves according
to the Black-Scholes dynamics, while the short-term interest rate follows the
process of the Vasicek model, and the stock and the interest rate may be cor-
related. This is a particular case of a model considered in van Haastrecht et
al. [9] to price long-term derivatives. Within this model, we implement two
types of Delta strategies: the correct strategy that takes into account the ran-
domness of the interest rate, which may be called the model Delta, and the
plain Black-Scholes Delta with deterministic rate. We show that the differ-
ences between the two strategies may be very relevant. The most important
factors are the correlation and the ratio between the volatility of the risky
asset and that of the interest rate. Therefore, the standard Black-Scholes
Delta-hedging strategy, still widely used by practitioners, may be not appro-
priate because it may lead to a variance of the error much higher, in relative
terms, to that produced by the correct Delta, especially when the volatility
of the interest rates is comparable to that of the stock. It is noteworthy to
observe that the relatively poor performances of the Black-Scholes Delta are
peculiar of the present setting. In fact, Angelini and Herzel [2] showed that
if the interest rates are deterministic but the volatility is stochastic, then the
Black-Scholes Delta often outperforms the model Delta. We conclude with
a study of the Delta hedging for an interest rate option in the Cox, Ingersoll
and Ross model ([3]), providing numerical illustrations for the cases of ob-
jective measures different from the risk-neutral measures used to implement
the strategy. In that setting we are also able to provide a further numerical
validation of the precision of our algorithm, by comparing its results to those
obtained by simulations.

2. The Computational Algorithm

Let us consider the problem of hedging a European contingent claim with
maturity T , whose payoff H is represented as an inverse Laplace transform:

H =

∫
C
ezyT Π(dz), (2.1)
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where C = R+ iR, with R ∈ R, Π is a finite complex measure on C and yT =
ln(ST ), where S is the price of a risky asset. The log-return y = ln(S) of the
underlying asset and a short term stochastic interest rate r are components of
a multi-dimensional affine process X, whose other components may include
stochastic volatility, dividend yields, etc. The simplest example of such a
model is obtained by taking the Black-Scholes dynamics for the underlying
and a short rate model for the interest rate, like the Vasicek model ([10]).
In this case one can also consider a non zero correlation between stock and
interest rate. We will use this model for applications in Section 3.1. If the
Cox, Ingersoll and Ross model ([3]) is used for the interest rate, the resulting
two-dimensional model would be affine if and only if the correlation is zero.
A model that includes stochastic volatility as well as stochastic interest rate
is studied in van Haastrecht et al. [9]. Pan [8] studied a four-dimensional
affine model combining stochastic volatility, interest rates and dividend yield.

Let (Ω,F , (Ft)0≤t<∞, P ) be a filtered probability space satisfying the
usual technical conditions. We interpret P as the physical or objective prob-
ability measure. Let us consider an affine time-homogeneous Markov process
X defined in a state space D ⊂ Rd and write its conditional characteristic
function as

φ(u,Xt, t, s) = Et
[
eu·Xs

]
= eα(u,t,s)+β(u,t,s)·Xt , (2.2)

where u ∈ iRd, t, s ∈ [0, T ] with t ≤ s, Et denotes the expected value
conditional on Ft and · the scalar product. The functions α(u, t, s) and
β(u, t, s) go from iRd × R+ × R+ to C and to Cd respectively, and satisfy
a system of Riccati equations whose general form is given in Duffie et al.
[5, Equations (2.5) and (2.6)]. We suppose that the functions α(u, t, T )
and β(u, t, T ) can be analytically extended to an open convex domain U
containing 0 ∈ Cd for all t ∈ [0, T ]. In this paper we skip technical conditions
on the domain U (see Angelini and Herzel [2] for a thorough analysis on this
point).

We also assume that X is affine under a pricing measure Q. Conditions
for a process to be affine under both measures P and Q are given by Duffie
et al. [5]. We consider the discounted conditional characteristic function

ψ(u,Xt, t, s) = EQ
t

[
exp

(
−
∫ s

t

rτdτ

)
eu·Xs

]
= eᾱ(u,t,s)+β̄(u,t,s)·Xt (2.3)
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The functions ᾱ(u, t, s) and β̄(u, t, s) solve a system of Riccati equations
depending on the risk-neutral dynamics of X. Setting u = 0 in (2.3) we get
the discount factor between time t and s

P (t, s) = EQ
t

[
exp

(
−
∫ s

t

rτdτ

)]
= eᾱ(0,t,s)+β̄(0,t,s)·Xt

We define the normalized price of the underlying

S̄t = St/P (t, T )

and its increment
∆S̄k = S̄tk − S̄tk−1

Given a finite and fixed set of dates from time 0 until maturity T , 0 =
t0 < t1 < . . . < tN = T , we let ϑ = (ϑtk), for k = 0, . . . , N − 1, be a
stochastic process representing a trading strategy. The random variable ϑtk
represents the number of shares of S held from time tk up to time tk+1. We
assume that it depends only on the information available at time tk, i.e.
that it is Ftk-measurable. Assuming that the portfolio starts with an initial
cash endowment c and that all portfolio readjustments are invested in, or
borrowed from, the money market account, the final value of the strategy ϑ
is

GT (ϑ) = c/P (0, T ) +
N∑
k=1

ϑtk−1
∆S̄k. (2.4)

The hedging error of the strategy is then given by

ε(ϑ, c) = H −GT (ϑ). (2.5)

We consider strategies of the following affine form:

ϑtk =

∫
C
ea(z,tk)+b(z,tk)·Xtk Π(dz), (2.6)

for all k = 0, . . . , N − 1, where a(z, tk) and b(z, tk) are functions from C ×
R+ to C and to Cd respectively. We skip here technical conditions on the
functions a(z, tk) and b(z, tk), referring to Angelini and Herzel [2] for details
and comments on the assumed form of the strategy.
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From (2.3) and using (the conditional version of) Fubini’s Theorem, it
is possible to obtain an integral representation for the value at time t of a
European claim with payoff expressed as in (2.1) (see Angelini and Herzel
[2, Section 3]). By differentiating such a representation, it is possible to
compute the sensitivities of the pricing formula with respect to the factors of
the model. In particular, the Delta is obtained by differentiating with respect
to S and the “Rho” by differentiating with respect to the interest rate. It is
easy to see that those are examples of strategies of the form (2.6).

The hedging error (2.5) of a strategy of the form (2.6) for a contingent
claim whose payoff can be written as (2.1), has the integral representation

ε(ϑ, c) = −c/P (0, T ) + (2.7)

+

∫
C

(
ezyT −

N∑
k=1

ea(z,tk−1)+b(z,tk−1)·Xtk−1∆S̄k

)
Π(dz).

The following result extends the main theorem of Angelini and Herzel [2] to
the case of stochastic interest rates:

Theorem 2.1. Let H be a contingent claim satisfying condition (2.1), ϑ be
strategy of the form as in (2.6), and c be the initial capital, then

E[ε(ϑ, c)] =

∫
C
e(z)Π(dz)− c/P (0, T ) (2.8)

and

E[ε(ϑ, 0)2] =

∫
C

∫
C
(v1(w, z)−v2(w, z)−v3(w, z)+v4(w, z))Π(dw)Π(dz) (2.9)

The functions e(z), vi(w, z), i = 1, 2, 3, 4 can be explicitly computed.

The proof, as well as the expressions for the functions e(z), vi(w, z), i =
1, 2, 3, 4, are a generalization to the case of stochastic interest rates to those
of Theorem 3.1 in Angelini and Herzel [2] and can be obtained from the
authors upon request.

Theorem 2.1 states that the expected value and the variance of the hedg-
ing error may be represented respectively as a one-dimensional and a two-
dimensional inverse Laplace transforms. It may be used to study the effects of
model misspecification or trader personal views, in terms of hedging strate-
gies and parameters, on the performance of the hedge. This because the
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claim, the model and the strategy are completely independent from each
other. As an example, in Section 3.1, we will consider the use of a plain
Black-Scholes Delta, implemented considering a deterministic interest rate,
in a two-dimensional model where instead the interest rate is stochastic.
This is an example of misspecified strategy and it will be compared with the
correct model Delta, which takes into account the randomness of interest
rate.

Formulas (2.8) and (2.9) can be evaluated numerically through numerical
inversion of one-dimensional and two-dimensional Laplace transform. For
more details on this as well as numerical integration schemes and tests we
refer to Angelini and Herzel [1, 2]. In Section 3.2, we provide a test for the
algorithm by comparing the results computed with it to those obtained via
a Monte Carlo simulation in the Cox, Ingersoll and Ross model.

3. Applications

In this section we apply our results to analyze the performances of Delta
hedging strategies first to the case of an option written on a risky asset, e.g.
a stock, in a two dimensional model where the interest rate is stochastic,
and then to the case of an option written on a zero coupon bond in a model
where the only source of risk comes from a stochastic interest rate.

3.1. Options on Equities

To study the case of an option written on a risky asset when the interest
rate is stochastic, we use a simple two-factor model. In this model, the state
variable X = (y, r) has two components, y = ln(S) and r, the stochastic
short-term interest rate. The respective dynamics under the risk-neutral
measure are

dyt = (rt −
1

2
σ2
y)dt+ σydW

1
t , (3.10)

drt = κ(θ − rt)dt+ σrdW
2
t (3.11)

We suppose that the two Brownian motions are correlated with correlation
coefficient ρ. This is a combination of the Black-Scholes model with the
Vasicek model for the short term interest rate ([10]). In the degenerate case
where σr = 0, the short rate process is deterministic, and, if in addition
θ = r0, one recovers the Black-Scholes model with constant rate.
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This model is affine and one can write the Riccati Equations (see Duffie
et al. [5, Equations (2.5) and (2.6)]) for α(u, t, T ), β(u, t, T ) of (2.2) and
ᾱ(u, t, T ) and β̄(u, t, T ) of (2.3). The differential equations for the two com-
ponents of the β̄ and β functions are particularly simple to solve. The func-
tions α and ᾱ are then determined by a straightforward integration. We do
not report the results here because they are a particular case of those ob-
tained in van Haastrecht et al. [9]. For simplicity, in our numerical analysis
we suppose that the objective measure and the risk-neutral measure coincide.
Notice that if we replaced the Vasicek dynamics for the short rate model with
the CIR dynamics, the model would be affine if and only if the correlation
between stock and interest rate is zero. Hence, the model would be much
less flexible, if analytic tractability were required.

We consider two interesting hedging strategies: the first one is the model
Delta, in which we use the model’s ᾱ and β̄, the second one is the standard
Black-Scholes Delta, for which ᾱ and β̄ are given according to that model
and the drift would be given by a deterministic risk-free rate. Of course in
the model, the risk-free rate will change with time, and the hedger has to
insert a value for it at each rebalancing date tk. To do so, the hedger will
naturally extrapolate it from the price of a riskless bond as follows:

r̃tk = − log(P (tk, T ))

T − tk
= − ᾱ(0, tk, T ) + β̄(0, tk, T )rtk

T − tk

This is an example of a misspecified strategy, as it ignores the randomness of
interest rates. Since this is a strategy widely used in practice, it is of interest
to compare its hedging performances to those of the first strategy.

Let us consider a European call option written on the risky asset S, with
maturity T = 0.5 years and strike K = S0 = 100. For our analysis, we
fix once and for all some of the parameter of the model: the initial rate
r0 = 0.05, the drift parameters θ = r0 and κ = 0.05, and the volatility of
the underlying σy = 0.3. We also fix the number of rebalancing dates to be
N = 12 (roughly twice a month), but the results are analogous for different
values of N , the only difference being the level of the variance of hedging
errors, which obviously decreases with N .

We are interested in analyzing the effect on the variance of the hedg-
ing error of the correlation coefficient ρ, that we will let vary in the set
[−0.8,−0.6,−0.3, 0, 0.3, 0.6, 0.8], and of the relation between the volatility
σy and that of the interest rate σr. For this, we let σr assume the values
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[0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5]. In particular, we will compare the vari-
ances of the hedging error of the two Delta strategies described above. Figure
1 shows the increasing effect of the correlation ρ on the variance of the hedg-
ing error for both strategies. When the volatility of the interest rate is small
σr = 0.01 (top panel) the two strategies perform in a similar way, while for
higher volatilities, respectively σr = 0.15 and 0.3 (middle and bottom panel),
the two strongly differ. In relative terms, the variance of the hedging error of
the Black-Scholes Delta is higher than that of the model Delta going from less
than 1%, for σr = 0.01, to 10-16%, for σr = 0.15, up to 27-65%, for σr = 0.3.
The range of values for each σr is due to the different correlation coefficients
and it is higher for values near 0, as it is clear from the figure. In Figure 2
we illustrate, for three different values of ρ the impact on the variance of the
interest rate volatility compared to that of the underlying. On the x-axis we
indeed represent the ratio σr/σy. Notice that, for ρ = −0.6 and in general
for negative correlations, the variance of the model Delta decreases with σr,
while for zero and positive values increases.

3.2. Interest Rate Options

In this section we consider an option written on a zero coupon bond and
we apply Theorem 2.1 to the case of affine short rate models, where the
process X is the one-dimensional process of the short rate. The functions
α(u, t, T ) and β(u, t, T ) in (2.2) and ᾱ(u, t, T ) and β̄(u, t, T ) in (2.3) may be
computed explicitly in some important cases as the models by Cox, Ingersoll
and Ross [3] or Vasicek [10], and their expressions can be found in Filipović
[6, Section 10.3.2.1, 10.3.2.2]. We consider here the case of Cox, Ingersoll
and Ross model. The dynamics of the short rate are given by

drt = κ(θ − rt)dt+ σ
√
rtdWt (3.12)

The dynamics (3.12) are given as under the objective measure P and we
assume the market price of risk q = −π/σ

√
r to get the dynamics under a

martingale measure Q, so that the drift of (3.12) under Q is κθ − (κ− π)rt.
Let us now consider a European claim H maturing at date T1, written

on the zero coupon bond with maturity T2 > T1. Hence,

St = P (t, T2) = eᾱ(0,t,T2)+β̄(0,t,T2)rt

and yt = ln(St) = ᾱ(0, t, T2) + β̄(0, t, T2)rt is an affine function of Xt = (rt).
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In this case, the representation in (2.1) is

H =

∫
C
ezyT1Π(dz) =

=

∫
C
eᾱ(0,T1,T2)z+β̄(0,T1,T2)zrT1Π(dz).

With straightforward calculations, one can still represent the price of the
claim at time t as an inverse Laplace transform. Therefore, its derivatives
with respect to the price of the bond, i.e. the Delta of the option, may be
represented as in (2.6). For the Delta, one has

a(z, t) = ln

(
β̄(β̄(0, T1, T2)z, t, T1)

β̄(0, t, T2)

)
+

+ ᾱ(0, T1, T2)z + ᾱ(β̄(0, T1, T2)z, t, T1)− ᾱ(0, t, T2)

b(z, t) = β̄(β̄(0, T1, T2)z, t, T1)− β̄(0, t, T2).

As a numerical illustration, we take parameters estimated in Duan and
Simonato [4], namely κ = 0.1644, θ = 0.0648, σ = 0.0438 and we set r0 =
0.06. In Figure 3, we show the results of our method as a function of the
number of trading intervals N = [1, 3, 6, 12, 24, 48, 60, 72, 80] for an at-the-
money forward European option with maturity T1 = 1 year written on a
zero coupon bond with maturity T2 = 2 years. We consider zero, positive
(0.1237) and negative (-0.1237) risk premia π. In the last two cases then, the
objective measure differs from the risk-neutral measure. In the top panel we
show the variance of the error of Delta hedging. Since the figures are small
for such an option, to get a more precise idea about the cost of hedging, we
also compare the results with the price of the option. In the middle panel
we then show the ratio between the standard deviation of the hedging error
and the price of the option, which is quite relevant, in particular in the case
of a positive risk premium, while a negative risk premium lowers the cost of
hedging. The bottom panel depicts the ratio between the expected value of
the hedging error and the cost of the option. We observe that the expected
value of the hedging error is zero when risk premium is zero (i.e. when the
objective measure and the risk-neutral measure coincide), while it is positive
(negative) in case of a positive (negative) risk premium.

Finally, we asses the validity of our algorithm through a Monte Carlo
simulation, by computing the 95% confidence bands for the simulated value of
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N MC 95% c.i. 2-dim alg
1 (8.0940, 8.3215) 8.1626
3 (5.1330, 5.2772) 5.1637
6 (3.7902, 3.8967) 3.8879
12 (2.9089, 2.9906) 2.9762
24 (2.3431, 2.4089) 2.3518

Table 1: Standard deviation of the hedging error when the number of trading dates is
N = [1, 3, 6, 12, 24]. The two-dimensional inversion algorithm is validated through 95%
confidence intervals from Monte Carlo simulations with 10000 paths. The Table reports,
from left to right, the number of trading intervals N , the 95% confidence interval and
the value returned by the two-dimensional inversion algorithm. The strategy is the model
Delta for an at-the money forward call option with maturity T1 = 1 year written on a zero
coupon bond with maturity T2 = 10 years and notional 103.

the standard deviation of the hedging error. We remark that, with the model
at hand, this can be implemented via an exact simulation of the dynamics of
the short rate. For the test, we set the risk premium π = 0 and consider an
at-the-money forward European option with maturity T1 = 1 year written
on a bond with maturity T2 = 10 and notional 103. We report the results
in Table 1 for number of trading dates N = [1, 3, 6, 12, 24]: the standard
deviation of the Delta hedging error computed with our two-dimensional
algorithm is shown in the third column and the 95% confidence intervals
in a simulation with 10000 paths in the second column. The values with
our method always fall within the confidence bands, hence confirming the
precision of the numerical implementation of the algorithm.

4. Conclusions

We generalized a result of Angelini and Herzel [2] to the case of stochas-
tic interest rates, which allows to consider more general and realistic mod-
els. We apply the result in a two-dimensional model to study the hedging
performance of Delta strategies. We show that the Black-Scholes hedging
strategy, which neglects the stochasticity of interest rates, performs poorly
with respect to the model Delta strategy, especially when the volatility of
the interest rate is comparable to that of the risky asset. The methodology
is based on Laplace transforms, a powerful computational tool that is also
very well suited for dealing with problems of quantitative finance.
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Figure 1: Variances of model Delta and Black-Scholes Delta hedging strategies for a Eu-
ropean call option with maturity T1 = 0.5 years written on the risky asset as a function
of the correlation ρ for σr = 0.01 (Top), σr = 0.15 (middle) and σr = 0.3 (bottom). The
volatility of the underlying is σy = 0.3 and the number of rebalancing dates is N = 12.
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Figure 2: Variances of model Delta and Black-Scholes Delta hedging strategies for a Eu-
ropean call option with maturity T1 = 0.5 years written on the risky asset as a function
of the ratio σr

σy
for ρ = −0.6 (Top), ρ = 0 (middle) and ρ = 0.6 (bottom). The volatility

of the underlying is σy = 0.3 and the number of rebalancing dates is N = 12.
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Figure 3: Variances (top), standard deviation over the price of the option (middle), ex-
pected value over the price of the option (bottom) of Delta hedging for a European call
option with maturity T1 = 1 year written on a zero coupon bond with maturity T2 = 2
years as a function of the number of trading intervals N . CIR model with parameters
r0 = 0.06, κ = 0.1644, θ = 0.0648, σ = 0.0438 and π = [−0.1237, 0, 0.1237].
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