
Maskkot – An Entity-centric Annotation Platform

Armando Stellato
1
, Heiko Stoermer

2
, Stefano Bortoli

2
, Noemi Scarpato

1
, Andrea Turbati

1
,

Paolo Bouquet
2
, Maria Teresa Pazienza

1

1
 ART Research Group, Dept. of Computer Science,

Systems and Production (DISP) University of Rome, Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy

{pazienza, stellato, turbati}@info.uniroma2.it

2
University of Trento

Department of Engineering and Information Science

Trento, Italy

{bortoli, bouquet, stoermer}@disi.unitn.it

Abstract

The Semantic Web is facing the important challenge to maintain its promise of a real world-wide graph of interconnected resources.
Unfortunately, while URIs almost guarantee a direct reference to entities, the relation between the two is not bijective. Many different
URI references to same concepts and entities can arise when -- in such a heterogeneous setting as the WWW -- people independently
build new ontologies, or populate shared ones with new arbitrarily identified individuals.
The proliferation of URIs is an unwanted, though natural effect strictly bound to the same principles which characterize the Semantic
Web; reducing this phenomenon will improve the recall of Semantic Search engines, which could rely on explicit links between
heterogeneous information sources.
To address this problem, in this paper we present an integrated environment combining the semantic annotation and ontology building
features available in the Semantic Turkey web browser extension, with globally unique identifiers for entities provided by the okkam
Entity Name System, thus realizing a valuable resource for preventing diffusion of multiple URIs on the (Semantic) Web.

1. Introduction

Whichever name it will assume, be it Web 3.0, Giant
Global Graph, or any other, the Semantic Web will have
to face an important challenge to maintain its promise of a
real world-wide graph of interconnected resources: their
identity and retrieval. If entities are uniquely identified in
the Web, then anyone can make statements about them,
thus incrementing their intensional description and
contributing to their success and retrievability.
Unfortunately, while URIs almost guarantee a direct
reference to entities, the relation between the two is not
bijective. Many different URI references to same concepts
and entities can easily arise when, in such a
heterogeneous setting as the WWW, people independently
build new ontologies, or populate shared ones with new
arbitrarily named individuals.
In this work we present an integrated framework
combining the semantic annotation and ontology building
features provided by the Semantic Turkey web browser
extension, with global, unique identifiers for entities
provided by the OKKAM Entity Name System (ENS). The
integration has been carried out through the development
of a dedicated ENS extension for Semantic Turkey –
maskkot -- which extends its ordinary ontology building
functionalities with entity search over the okkam service.
Through maskkot, users can create, extend and/or
populate ontologies with individuals, while maintaining
reference to their okkam unique identifiers, giving life to a
virtuos cycle in which they may contribute and/or get
additional information from the ENS-empowered semantic
search engine, and at the same time fighting a
proliferation of identifiers for the same entity.

It is a commonly accepted fact that whenever a computer
system needs to describe an object (or ``entity'' as we call
it), it needs to create some kind of identifier in the system
which is then regarded as the placeholder or proxy for this
object. This holds true for e.g. database systems, but is of
special significance for the Semantic Web, where the
notion of the Uniform Resource Identifier (URI) fulfills
exactly this task, but has the additional goal of linking
information about entities in a distributed but global
fashion. In this way, distributed information sources are
supposed to become integrateable on the fly, to create
links between pieces of information that were previously
not linked before, enabling systems to answer queries that
were previously impossible to answer.
The Semantic Web in its current state suffers from several
weaknesses which we are trying to address in this paper:

– A lack for convenient, user-friendly tools for
semantic annotation of Web content. While solutions
exist and are described in more detail in section 2, we
believe that means for semantic annotation should be
given as pervasively as possible, and should be
(almost) as easy as creating a bookmark.

– A proliferation of URIs for entities. As we have
argued in (Bouquet, Stoermer, & Bazzanella, 2008),
to date no scalable and open service is available to
make possible and to support a consistent reuse of
identifiers for entities, and this undermines the
practical possibility of a seamless integration of
distributed knowledge into a global knowledge space.

The work presented in this paper attempts to contribute to
the state of the art in the Semantic Web on several levels:
firstly, by providing an intuitive tool for the creation of
semantic content; secondly, by making sure that the
semantic annotations created are also globally aligned on

the identifiers for entities, enabling seamless, syntactical
integration of data without the need for complex ex-post
alignment mechanisms; and thirdly, by contributing to an
ever-expanding public space of entity identifiers which
offers significant positive network externality effects

1

2. Related Work

The maskkot integrated platform is rather original in its
combination of ontology editing/annotation/semantic
browsing functionalities supported by an entity
identification service. We therefore report here relevant
past works related to the most relevant features
characterizing the presented tool.

2.1. Semantic Browsing and Semantic/Social
Bookmarking/Annotation

One of the first examples of Semantic Browser can be
probably traced back to the Haystack (Quan & Karger,
May, 2004) web client. Developed at the MIT
laboratories, Haystack was conceived as an application
that could be used to browse arbitrary Semantic Web
information in much the same fashion as a Web browser
can be used to navigate the Web. Standard point-and-click
semantics let the user navigate over aggregation of RDF
repositories from different arbitrary locations. The
application had been built as an extension for the popular
Integrated Development Environment Eclipse

2
 this choice

facilitated extension of the tool thanks to Eclipse flexible
plug-in mechanism, but required the user to adopt Eclipse
as a platform for browsing the web and collecting data
from it: a strong requirement for the user, who would just
prefer to rely on his trusted personal web browser and try
out other features which are not too invasive for his usual
way of working.
Such a less invasive approach was followed by Magpie
(Dzbor, Domingue, & Motta, 2003), that was deployed as
a plug-in for the Microsoft Internet Explorer Web

1 See (Liebowitz & Margolis, 1998) or

http://en.wikipedia.org/wiki/Network_effect for an introduction.
2 http://www.eclipse.org/

Browser. Magpie allowed for semantic browsing, and
perceived it as a parallel navigational style to complement
the "exposed" web content (i.e. free text) by an associated,
dynamic semantic layer (which was derived from one or
more ontologies semantically describing typical content in
a particular domain). Magpie also allows for collaborative
semantic web browsing, in that different persons may
gather information from the same web resource and
exchange it on the basis of a common ontology.
Subsequent work on Magpie (Dzbor, Motta, & Domingue,
2004) extended the platform more and more towards the
vision of the Semantic Web as "an open web of
interoperable applications" (Berners-Lee, Hendler, &
Lassila, 2001), by allowing bi-directional exchange of
information among users and services, which can be
opportunistically located and composed, both manually
(web services) or automatically (semantic web services).
From (part of) the same authors of Haystack, comes
Piggy-Bank (Huynh, Mazzocchi, & Karger, 2005), an
extension for the Firefox web browser that lets Web users
extract individual information items from within web
pages and save them in RDF, replete with metadata. Piggy
Bank then lets users make use of these items right inside
the same web browser. These items, collected from
different sites, can then be browsed, searched, sorted, and
organized, regardless of their origins and types. Piggy-
Bank users may also rely on Semantic Bank, a web server
application that lets them share the Semantic Web
information they have collected, enabling, as for Magpie,
collaborative efforts to build sophisticated Semantic Web
information repositories from daily navigation through
their enhanced web browser.

2.2. Identity and Reference

When attempting to give an identity to ``things'' in a way
that makes them describable in the Semantic Web (i.e.
choosing or creating a URI as a placeholder for them), we
can encounter three different approaches:

2.2.1. Local Identification
This is unfortunately -- as mentioned in the introduction --
the common practice at the moment: new URIs for entities
are created on the fly, because they are regarded as a mere
technical necessity to be able to make RDF statements.
Such identifiers do not consider a scope that goes beyond
the local knowledge base, and even the Semantic Web
community itself has been following this practice, e.g. in
the case of authors of Semantic Web conferences as we
have shown in (Bouquet, Stoermer, & Bazzanella, 2008).

2.2.2. Vertical Identification
Vertical approaches usually refer to a certain domain of
interest, for which an organization is issueing identifiers
for entities. Examples include publications (DOI

3
),

geographical locations (Geonames
4
 or Yahoo! Internet

Locations
5
), life science entities(LSID

6
), and many more.

The issue with these vertical approaches is the findability
of the identifiers: if we are creating RDF statements about
entities from many different domains, how do we find out

3 http://www.doi.org
4 http://www.geonames.org
5 http://developer.yahoo.com/geo/
6 http://lsids.sourceforge.net/

Figure 1: Entities in different information sources and

formats, annotated with unique identifiers issued by the

okkam ENS

which is the source of an identifier for an entity, and how
do we make sure that we chose ``the right'' (i.e.
authoritative) one?

2.2.3. Global Identification
Global identification in our sense is a horizontal approach
as an attempt to overcome the issues of both the local and
the vertical approach. Currently, there are two main
streams of activity in the Semantic Web which can be
considered relevant in this respect. The first one is the
Linking Open Data initiative

7
, which pursues an ex-post

approach trying basically to discover identity relations
between entities that have been given different identifiers
in different knowledge bases, but are actually (believed to
be) ``the same''. As we have discussed in (Bouquet,
Stoermer, Cordioli, & Tummarello, 2008), this approach
is viable due to the simple fact that such un-aligned data
sources exist, but it has the obvious downside that it does
not provide a solution for avoiding such a proliferation of
identifiers. An orthogonal approach to address all these
issues are the efforts around the okkam Entity Name

7http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProject

s/LinkingOpenData

System (ENS), which is described in further detail in
section 3.1.

3. Towards an Entity-centric Semantic
Annotation Platform

3.1. The Entity Name System (ENS)

The key idea behind the proposal of an ENS is that the
Semantic Web can become an open and scalable space for
publishing knowledge (in the form of RDF data) only if
there will be a reliable (and trustworthy) support for the
reuse of URIs. Therefore, at a very general level, the core
functionality of the ENS can be characterized as follows:
given any representation of an entity (e.g. a bag of
keywords, a paragraph of text, a collection of key-value
pairs, a graphical depiction, and so on), decide if a URI
for this entity is already available in an entity repository
(using some method(s) for entity matching); if it is, then
the ENS will return its URI (or at least a ranked list of
candidates), otherwise it will issue a new URI which will
be stored in the ENS repository.
As we have argued in (Bouquet, Stoermer, & Bazzanella,
An Entity Naming System for the Semantic Web, 2008),
issues of entity identification are optimally solved a-
priori, across data sources and formats. Instead of creating

Figure 2: Entity-centric Annotation Activity Diagram

RDF repositories in which the same real-world entity is
denoted by two or more different URIs, and then trying to
reconcile these URIs, we should aim at enabling any
application which produces RDF content to reuse a
globally unique URI for that resource from the outset,
possibly even beyond the Semantic Web data space, as
illustrated in Figure 1.
The positive effects are evident. Instead of using one of
the many possible names for an entity

8
 a uniform

electronic surrogate is used. The local effect within a
single system is that ambiguities of references to entities
in metadata can be eliminated to the largest part already at
creation time. The global effect is that:

i. information integration is largely reduced to schema
level integration, as entity identifiers provide large
parts of data-level integration for free (besides
dealing with conflicting and redundant data in
different collections), and

ii. completely new hyper-structures are possible that
link between different entities and between artifacts
and entities via the shared entity identifiers.

Optimally, such a global identifier for every entity
referenced in a data source is used throughout all
records/terms/statements that refer to this entity, in every
data source referring to this entity, and in (external)
content such as websites or other documents (Figure 1).
This leads to the possibility to relate and integrate --
without additional efforts -- textual and multimedial
content referring to a specific entity. This becomes more
and more relevant taking into consideration the fast pace
of development in multimedia libraries, as can be seen in
current services such as YouTube

9
 or Flickr

10
.

Okkam is an implementation of an Entity Name System
(ENS), which is currently under development in a large-
scale European project. The aim of this system is to
provide a more complete set of distributed ENS
functionality, an adaptive matching layer, and vastly
improved storage.
The standard use-case -- further illustrated in Figure 2 --
for assigning an okkam identifier to an entity that is being
annotated in any kind of content, such as an OWL/RDF
ontology, an XML file, or a database, to make the entity
globally identifiable: querying okkam for the existance of
the entity at hand, and re-using the global identifier for
this entity. This is usually achieved through functionality
provided by a client application -- e.g. the one presented
in this paper, or others like Foaf-O-Matic (Bortoli,
Stoermer, & Bouquet, 2007) or okkam4p (Bouquet,
Stoermer, & Xin, Okkam4P - A Protégé Plugin for
Supporting the Re-use of Globally Unique Identifiers for
Individuals in OWL/RDF Knowledge Bases., 2007). Such
a client application accesses the okkam API, and presents
(if available) a list of top candidates which match the
description for the entity provided within the client
application. If the entity is among these candidates, the
client agent (human or software) uses the associated
okkam identifier in the respective information object(s)
instead of a local identifier. If the entity cannot be found,
the client application can create a new entry for this entity
in okkam and thus cause an identifier for the entity to be

8 The interested reader is referred to the seminal philosophical

discourse about naming by Saul Kripke
9 http://www.youtube.com
10 http://www.flickr.com

issued and used as described before. The okkam ENS
implements a variety of methods for entity matching,
typically achieving very good recall and precision values(
(Stoermer, Rassadko, & Vaidya, 2010), (Ioannou, et al.,
2009).

3.2. Semantic Turkey

Semantic Turkey (ST), in its original version (Griesi,
Pazienza, & Stellato, 2007), is a "Semantic Bookmarking"
platform: an hybrid between a Web Browser, an
Annotation tool and an Ontology Editor. The expression
Semantic Bookmarking was coined to indicate the process
of annotating information from (web) documents, to
acquire new knowledge and represent it through
representation models. Its basic functionalities allow for:

1. capturing information from web pages - both by
considering the page as a whole, as well as by
selecting portions of its text - and annotating them
with respect to adopted referenced ontologies

2. editing the above ontologies for classifying the
annotated information and for better characterizing
their relevance to the interests of the user

3. navigating the structured information as an underlying
semantic net which, populated with the many
relationships which bind the annotated objects
between them, eases the process of retrieving the
knowledge (and associated web pages) which was
buried by the past of time, by means of associative
search (e.g. i remember there were a guy - who? - who
worked in that project - which? - which were led by
that university - again, which? - where that other
person - yes, i have that name! - has a position) rather
than traditional target-focused search&retrieval
solutions

Its architectural and functional design make Semantic
Turkey differentiate from similar, existing semantic
browsers and annotation tools, as it offers a lightweight
structure, which completely exploits the infrastructure of
the hosting web browser (with respect to, for example, the
complex completely-web based interface of Piggy-Bank
(Huynh, Mazzocchi, & Karger, 2005) and which grants
the user a good control over its personal domain
representation (while traditional semantic
annotation/browsing tools like Magpie (Dzbor,
Domingue, & Motta, 2003) and Melita (Ciravegna,
Dingli, Petrelli, & Wilks, 2002), are only able to import
and adopt ontologies without any editing capability).

3.3. maskkot: Entity-centric Annotation

This section aims at introducing the concept of entity-
centric annotation and describing its realization by means
of the integration of ENS services in the Semantic Turkey
Firefox extension, named maskkot. As described in
previous section, Semantic Turkey allows for ontology-
based annotation of web pages. In simple words, users
annotate web pages linking web documents to an instance
of a concept in a domain ontology, creating some kind of
``surfing experience'' knowledge base. Successively, users
of Semantic Turkey can make use of the semantic
structure of the defined ontology to discover further
annotations related with other instances, improving the
capability of reusing the already performed
surfing/annotation experience.

The current Semantic Turkey annotation process consists
in highlighting one or more keywords, thus giving a hint
about the definition of an instance of a concept in the
selected domain ontology. The highlighted keywords are
used as a name for the annotated instance, and a web-link
to the web document is added.
The keyword-based instance identification, combined
with an analysis of the related semantic structure defined
in the ontology, generally allows human users to
recognize the entity described by the annotated keywords.
Unfortunately, this kind of instance naming leads to a
proliferation of the identifiers used for the annotation of
the same entity in different knowledge bases created by
means of Semantic Turkey. As a result, this fact prevents
a precise and easy information integration of such
knowledge bases. In order to solve this integration
problem we decided to apply an apriori approach,
evolving the concept of local keyword-based annotation to
a more global entity-centric annotation approach. The
goal of this approach is that, in the act of annotating, a
user is enabled to discern to which real world entity the
annotation refers, allowing the reuse of the globally
unique related entity identifier. In this way the annotation
explicitly refers to a globally recognizable entity, creating
a knowledge base which is, in principle, integrable with
others knowledge bases created using the same approach.
In order to realize the entity-centric annotation process we
need to modify the standard Semantic Turkey annotation
work-flow, integrating in the process the functionalities
provided by the okkam ENS.
Without diving into technical details, the current Semantic
Turkey annotation system can be described as this
sequence of steps:

1. the user highlights a set of keywords

2. the keywords are dragged and dropped on a class in
the ontology panel triggering the creation of a new
instance in the ontology

3. a link to the web document annotated is added to the
instance description;

The entity-centric annotation process based on okkam is
described in the activity diagram depicted in figure Figure
2. The steps of the entity-centric annotation process
implemented in maskkot and described in the activity
diagram are:

1. the user highlights a set of keywords

2. the keywords are dragged and dropped on a class in
the ontology panel triggering the creation of a new
instance in the ontology

3. the keywords are used to create an annotated query
and inquire okkam

4. okkam solves the query and returns a list of candidate
entities matching the provided description, if any

5. the user selects one among the returned entities or
triggers the publication of a new entity when none of
the returned entities represent the annotation

6. the identifier of the selected/created entity is integrated
in the knowledge base as URI of the annotated
ontology instance

7. a link to the web document annotated is added to the
instance description;

The screenshot in Figure 3 shows the retrieval of potential
matching entities for the annotated text ``Armando
Stellato'' from the okkam service

Figure 3: Maskkot inaction

4. maskkot Architecture

4.1. Semantic Turkey Architecture

Semantic Turkey integrates different technologies which
are in part dictated by its hosting web browser (Mozilla
Firefox) and in part expressly chosen (Java) due to the
large availability of libraries for managing Semantic Web
data.
Though the implemented system can easily be deployed
as a single XPI (Cross Platform Installer) and installed as
a Firefox extension application, with no further
configuration requirement, the architecture of Semantic
Turkey consists of a rather complex framework, designed
as a web application, using a three layered approach.
The first layer, the Presentation layer, is the real
extension for the Firefox web browser. This layer has
been developed through a combined use of the XML User
Interface Language XUL

11
, the eXtensible Binding

Language XBL
12

 and a version of the Javascript language
comprising the standard ECMA-262 ECMAScript and
dedicated extensions for interacting with the Mozilla
technology. Everything related to user interaction is
directly managed by this layer: user operations trigger
client requests which are forwarded according to the
AJAX paradigm as http requests to the service layer; the
returned XML-formatted data is then parsed to
dynamically modify/populate the XUL user interface.
The second layer, the Service layer, is realized through a
collection of Java Web Services, published through the
Web Server "Jetty"

13
. This java web server is embedded in

a java application which is activated during initialization
of the Semantic Turkey extension, through an XPCOM
(Cross Platform Component Object Model) bridge

14

implemented in javascript. Once the server is started, any
further interaction between the first and second layer is
handled via client-server AJAX communication. This
solution also allows for a flexible deployment of the tool,
since it can both be adopted as a completely autonomous
web browser extension, as well as a personal access point
for collaborative web exploration and annotation: in the
latter case, a centralized solution should be adopted, in
which distributed Firefox clients communicate with the
same centralized server, requiring extra-effort due to the
technologies and policies to adopt for managing the
collaborative environment, but no substantial
modifications to the architecture as a whole.
Finally, the Data layer provides access to a RDF/OWL
semantic repository of data. RDF triples are made
accessible through the ART Ontology API, an abstract set
of API developed at the University of Tor Vergata, which
actually serve as an interface for the several available
semantic technologies.

4.2. Semantic Turkey Extension Framework

Though Semantic Turkey has been developed as a Firefox
extension, it can in turn be extended by dedicated
components, to add new functionalities, extend existing
ones, or to host entire new applications which may sit on
top of ST and benefit of its working environment and

11 http://www.mozilla.org/projects/xul/
12 http://www.mozilla.org/projects/xbl/xbl.html
13 http://jetty.mortbay.org/jetty/
14 http://www.mozilla.org/projects/xpcom/

facilities. Being the result of two different technologies -
those associated to the Mozilla framework on the client
side, and Java regarding the service and data layers,
Semantic Turkey required proper integration of two
different extension frameworks to produce guidelines and
a coordinated environment for the production of dedicated
extensions.
Each ST plug-in can be developed by extending either one
of or both the presentation and service layers. Another
feature allows to create specific extensions for the data
layer, implementing different technologies for RDF
management. The presentation layer extension mechanism
completely inherits the Mozilla extension framework:
each ST plug-in extending the presentation layer must be
declared as a new Firefox extension which has a
"dependency" over Semantic Turkey. Mozilla extension
mechanism has an highly unrestricting policy regarding
interference with pre-existing extensions or with the
hosting application (the Firefox web browser, in our case):
it is possible to remove/overwrite existing content of the
user interface and/or its associated events and
functionalities, so that an extension could even drastically
change the aspect/behavior of the hosting application or of
an another extension. Though this may reveal of potential
interest for high customization of the tool, it is not
recommendable to do that for plug-ins which aim to
coexist - and thus be compatible - with other ones in an
open scenario. While this freedom of development cannot
be restricted in any way, it would be important to support
the ST extension developer with facilities like firing and
catching of events associated to responses from the server,
data changes etc… apart from a few triggers and handlers,
we are still investigating on how to realize the whole
framework for supporting extension development in this
sense.
The services and data layers (realized in Java) required
instead the development of a dedicated extension
mechanism. We decided to adopt OSGi technology for
java modularization

15
 for fulfilling this objective. OSGi

technology originally targeted embedded devices and
home services gateways, but it is ideally suited for any
project that is interested in principles of modularity,
component-oriented, and/or service-orientation, as it is the
case of Semantic Turkey. From OSGi strong impact on
the open-source community, originated the Apache Felix
project, a community effort to implement the OSGi R4
Service Platform, which includes the OSGi framework
and standard services, as well as providing and supporting
other interesting OSGi-related technologies, such as the
OASIS standard Service Component Architecture SCA

16
.

Semantic Turkey features the Felix component, allowing
developers to extend the middle and lower layer of ST
through dynamically loaded components. The extension
policy is driven by the concept of "Extension Points":
extension points are interfaces which specify "entry
points" for external components, so that the application
knows in advance where extensions will be connected to
its architecture and will be able to interact with them
without being previously "aware" of their existence.
Currently, two main extension points, which can be seen
in figure 4, allow the development of new services to be
dynamically added to the collection of servlets in the

15 http://www.osgi.org
16 http://www.oasis-opencsa.org/sca

middle layer, and to the adoption of wrappers for different
RDF management technologies in place of the default
one, which exploits the Sesame RDF API (Broekstra,
Kampman, & van Harmelen, 2002) and the OWLim
Semantic Repository (Kiryakov, Ognyanov, & Manov,
2005). Currently, any kind of extension, be it a complete
plugin (client+service extension), a purely java service
extension (e.g. a monitor reacting to events fired in the
middle layer) or a RDF technology replacement, can be
packed as a Firefox XPI package, thus easing installation
procedures for the user. Once started, Semantic Turkey
always re-scans the Firefox extension directory looking
for declared ST extension bundles. When one is detected,
its content is dynamically added to the core system.

4.3. Extending Semantic Turkey to host
maskkot

The maskkot platform has been developed as a Semantic
Turkey plug-in which extends already available
annotation and instance creation functionalities with a
lookup operation on the okkam service, exploiting its
results to reuse existing individuals from the okkam
repository or, conversely, contributing to the repository
with new annotated entities.
The kind of interaction required with the okkam service,
described in Figure 2: Entity-centric Annotation Activity
DiagramFigure 2, is rather intrusive with respect to the
ordinary operations of instance creation and semantic
annotation which can be performed through Semantic

Figure 4: Architectural view of the maskkot extension and its interfacing with Semantic Turkey and okkam

Turkey. An optimal approach would have required a non
trivial extension mechanism in the client which should
have foreseen in advance possible interruptions in the
editing operations and partial rerouting of the standard
workflow of operations, which unfortunately is not
available at the moment in the client layer of ST. On the
other hand, the open architecture of the client and the
strong modularization of the servlets, which tend to
separate as possible the preparation of the XML response
from the internal query/update operations, still permitted
the development of a dedicated extension, without any
modification on the core ST system, nor rather unclean
pratiques of copying&pasteing existing code from the
core system to the developed extension.
When maskkot extension is loaded inside Firefox, it
informs Semantic Turkey that its instance creation and
semantic annotation operations are redirected on different
services (i.e., the http GET request to the service layer
changes using different parameters). These new services -
provided by a new component dynamically loaded
through Felix (maskkot business logic in figure 4) -
largely reuse the same methods (exposed by the core
Semantic Turkey API) adopted by the original services,
but include the added interaction with the okkam service
to get/contribute with identifiers from/to the okkam entity
repository. The new services produce - at each interaction
- an enriched versions of the XML responses traditionally
associated to the modified operations, which includes the
additional information obtained from the okkam service.
When the client receives the XML, it is passed to the new
handlers which have been added through the client
extension.

5. Conclusion

Semantic Web technologies are becoming ever and ever a
concrete reality which is no more limited to academical
scope. However, while existing frameworks and products
offer now solutions for Knowledge Management and
Information Exchange which may reveal to be of interest
inside confined settings, the original dream of a
distributed and pervasive Semanticized Web has still a few
steps to do before its realization. With maskkot we
propose an application which is ready to introduce
Semantic Web into everyday life of the average web user:
the web browser-embedded bookmarking system can be
utilized during usual web navigation for personal needs,
as well as being adopted in collaborative environments
involving social tagging of data with respect to reference
ontologies, and be customized according to different
scopes and users. At the same time, constant reference to
the okkam ENS, which is almost transparently injected
inside the annotation&build process, can avoid the
proliferation of concurrent references to same entities,
thus enabling content reuse and proliferation of
information across distributed and independent actors.

6. References

Berners-Lee, T., Hendler, J. A., & Lassila, O. (2001). The
Semantic Web: A new form of Web content that is
meaningful to computers will unleash a revolution of
new possibilities. Scientific American , 279 (5), 34-43.

Bortoli, S., Stoermer, H., & Bouquet, P. (2007). Foaf-O-
Matic Solving the Identity Problem in the FOAF

Network. In Proceedings of the Fourth Italian Semantic
Web Workshop (SWAP2007). Bari, Italy.

Bouquet, P., Stoermer, H., & Bazzanella, B. (2008). An
Entity Naming System for the Semantic Web. In
Proceedings of the 5th European Semantic Web
Conference (ESWC 2008). Springer Verlag.

Bouquet, P., Stoermer, H., & Xin, L. (2007). Okkam4P -
A Protégé Plugin for Supporting the Re-use of Globally
Unique Identifiers for Individuals in OWL/RDF
Knowledge Bases. In Proceedings of the Fourth Italian
Semantic Web Workshop (SWAP2007). Bari, Italy.

Bouquet, P., Stoermer, H., Cordioli, D., & Tummarello,
G. (2008). An Entity Name System for Linking
Semantic Web Data. In Proceedings of LDOW2008.

Broekstra, J., Kampman, A., & van Harmelen, F. (2002).
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. The Semantic Web -
ISWC 2002: First International Semantic Web
Conference (p. 54-68). Sardinia, Italy: Springer Berlin /
Heidelberg.

Ciravegna, F., Dingli, A., Petrelli, D., & Wilks, Y. (2002).
User-system cooperation in document annotation based
on information extraction. 13th International
Conference on Knowledge Engineering and Knowledge
Management, EKAW02. Springer Verlag.

Dzbor, M., Domingue, J., & Motta, E. (2003). Magpie:
Towards a Semantic Web Browser. 2nd International
Semantic Web Conference (ISWC03). Florida, USA.

Dzbor, M., Motta, E., & Domingue, J. B. (2004). Opening
Up Magpie via Semantic Services. 3rd Intl. Semantic
Web Conference (ISWC04). Hiroshima, Japan:
November.

Griesi, D., Pazienza, M., & Stellato, A. (2007). Semantic
Turkey - a Semantic Bookmarking tool (System
Description). In E. Franconi, M. Kifer, & W. May (A
cura di), The Semantic Web: Research and
Applications, 4th European Semantic Web Conference,
ESWC 2007, Innsbruck, Austria, June 3-7, 2007,
Proceedings. Lecture Notes in Computer Science. 4519,
p. 779-788. Springer.

Huynh, D., Mazzocchi, S., & Karger, D. (2005). Piggy
Bank: Experience the Semantic Web Inside Your Web
Browser. Fourth International Semantic Web
Conference (ISWC05), (p. 413-430). Galway, Ireland.

Ioannou, E., Sathe, S., Bonvin, N., Jain, A., Bondalapati,
S., Skobeltsyn, G., et al. (2009). Entity Search with
NECESSITY. 12th International Workshop on the Web
and Databases. Rhode Island.

Kiryakov, A., Ognyanov, D., & Manov, D. (2005).
OWLIM – a Pragmatic Semantic Repository for OWL.
Int. Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2005), WISE 2005. New York
City, USA.

Liebowitz, S., & Margolis, S. E. (1998). Network
Externalities. In The New Palgrave’s Dictionary of
Economics and the Law. MacMillan.

Quan, D., & Karger, D. (May, 2004). How to Make a
Semantic Web Browser. Thirteenth International World
Wide Web Conference (WWW2004). New York City,
USA.

Stoermer, H., Rassadko, N., & Vaidya, N. (2010).
Feature-based Entity Matching : The FBEM Model,
Implementation, Evaluation. CAISE’10, the 22nd
International Conference on Advanced Information
Systems Engineering. Springer.

