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ABSTRACT
In some network and application scenarios, it is useful to
cache content in network nodes on the fly, at line rate. Re-
silience of in-network caches can be improved by guarantee-
ing that all content therein stored is valid. Digital signatures
could be indeed used to verify content integrity and prove-
nance. However, their operation may be much slower than
the line rate, thus limiting caching of cryptographically ver-
ified objects to a small subset of the forwarded ones. How
this affects caching performance? To answer such a ques-
tion, we devise a simple analytical approach which permits
to assess performance of an LRU caching strategy storing a
randomly sampled subset of requests. A key feature of our
model is the ability to handle traffic beyond the traditional
Independent Reference Model, thus permitting us to under-
stand how performance vary in different temporal locality
conditions. Results, also verified on real world traces, show
that content integrity verification does not necessarily bring
about a performance penalty; rather, in some specific (but
practical) conditions, performance may even improve.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Network Ar-
chitecture and Design; C.4 [Performance of Systems]:
Modeling techniques

General Terms
Performance, Security, Theory

Keywords
Caching, Information Centric Networks, Digital signatures,
Performance Modeling

1. INTRODUCTION
In-network caching is nowadays central in the “Internet

of Content”, founded on emerging Information Centric Net-
working (ICN) frameworks [2]. The distinguishing feature
of ICN is the ability to deliver a named block of data (a
whole object or a chunk within a larger content item), irre-
spective of where (i.e., on which specific server) such data
block is specifically stored. In ICNs, content-oriented data
chunks1 are atomic units explicitly addressed by-name [23,

1Hereafter, we use the terms “objects”, “items”, and
“chunks” as synonyms; in other words we do not differen-
tiate between independent data items versus segments of a

21], and caching is carried out systematically and on-the-fly,
without the need to deploy cumbersome processing tasks
such as HTTP header parsing. Moreover, ICN caching has
a universal nature[20]: not only a subset of paying content
providers (as in Content Distribution Networks [28]), but all
Internet users, irrespective of size or status (companies or
individuals) may have their content cached. This openness
of caches brings about severe security concerns [12, 33, 32,
26]. Among the various threats, a crucial issue in ICN is re-
silience to denial of service attacks performed via injection
of corrupted or poisoned content in network caches [18]. In
principle, a digital signature associated to every chunk [21,
30] would easily permit each ICN node to verify content in-
tegrity and provenance, and hence would permit network
caches to store only valid objects. In practice, even neglect-
ing the non trivial issue [19, 5] of how to gather and handle a
trusted public key for verification (see section 2.1 for further
details), signature verification at wire-speed appears hardly
at reach.

Indeed, stretching existing state of the art signatures (and
their computationally expensive cryptographic primitives,
such as modular exponentiations or elliptic curve point mul-
tiplications) so as to perform wire-speed verification over
line-rates in the order of 10 or 100 Gbps is hard, to say the
least. Even with significant optimizations, [24] could not
attain more than 3k RSA-1024 decrypts per second over a
3 GHz Intel i7 processor. [18] was bounded to a throughput
of ∼150 Mbps for verifying 1500 bytes signed packets with
an Intel Core 2 Duo 2.53 GHz CPU, despite using the most
convenient RSA public exponent - namely 3. And Identity-
based signatures, which bring about the notable advantage
of avoiding the delivery of public key certificates along with
the data chunk [34], incur in a verification speed consistently
slower than RSA, even considering more recent lightweight
approaches [17] based on Schnorr-like constructions (rather
than on much more expensive pairing schemes).

True, Internet appliances exploiting extensive hardware
acceleration may significantly raise the performance bar.
Tilera’s 100 cores single chip processor with public key ac-
celerator enables up to 50,000 RSA handshakes per second2,
and high end security processors such as Nitrox III3 may

streamed content, as long as such segments can be indepen-
dently addressed (such as in emerging ICN systems, or in
existing streaming solutions such as the proprietary Apple’s
HTTP live streaming or the MPEG-DASH standard).
2http://www.tilera.com/about tilera/press-releases/tilera-
announces-worlds-first-100-core-processor
3http://www.cavium.com/pdfFiles/NITROX-
III PB Rev1.0.pdf?x=3
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reach a trailblazing figure of up to 200k RSA ops/s.
Still, HW acceleration brings about significant extra costs,

and deployment of dedicated hardware devices may clash
with the emerging trend of virtualizing network functions
[13], namely delivering software-based network functions run-
ning on commodity hardware.

Contribution
This paper revolves around a foundational question: what
do we lose if we cannot afford signature verification at line
speed? Apparently, we either lose in security, by accepting to
cache unverified content, or in performance, by caching only
the fraction of data which can be processed for signature
check (and successfully verified). Goal of this paper is to
show that such latter “lossy caching” operation may not
necessarily be a shortcoming!

More specifically, we refer to the case of a Least Recently
Used (LRU) cache not storing every object being retrieved
(as normally expected), but only a potentially small subset
of (randomly sampled) items that an overloaded signature
verification engine is able to process. In this framework, our
contribution is twofold:

First, we devise a new analytical model based on (very)
elementary renewal arguments which permits us to capture
(also) the above “lossy” caching scenario, under quite gen-
eral assumptions on the distribution of the inter-arrival time
among consecutive requests for a same item. We remark
that the analysis of ordinary (non “lossy”) LRU caches is a
special case of our proposed framework, and thus we con-
tribute in improving the state of the art also in this area.
Indeed, we extend the approach first proposed in [9], and
recently revisited in [16, 3], to handle a quite general arrival
model suited to account for the presence of temporal locality
in the request stream [4, 15], and hence beyond the Indepen-
dent Reference Model used in several related works [9, 16,
31, 22, 11].

Second, our numerical investigation, comprising analyt-
ical results, simulation, and real trace analyses, appear to
suggest that the inability to cache all the possible con-
tent has only mild implications on performance. Ac-
tually, in some specific (but practical) conditions, we show
that the need to restrict caching to a subset of traffic may
even turn out as an advantage.

Finally, we are of course not the first to address “prob-
abilistic” caching: randomized LRU extensions are widely
discussed since at least [31, 22]. Rather, our work distin-
guishes in terms of modeling assumptions (we do not restrict
to the Independent Reference Model), as well as scope and
motivation: the probabilistic operation and the inability to
cache all possible content comes as a non controllable aspect
(slow content integrity verification), rather than as a tunable
feature related to content size or other content access costs
[31, 22], or as a feature leveraged (eventually with additional
per-object information) in multi-level caching systems [25,
29, 8].

2. SYSTEM MODEL

2.1 Scenario
The scenario addressed in this paper is highlighted in Fig.

1. We assume that the cache is managed with the Least
Recently Used (LRU) replacement policy, being it widely
exploited in practical scenarios. We recall that LRU is a sim-

Figure 1: Scenario - content verification not inte-
grated in the cache, nor uses any content statistics

ple and scalable policy, which assumes that every cacheable
content is stored, irrespective of any measured statistics (e.g.
unlike other more sophisticated strategies). We further as-
sume that the cache is entitled to store only “valid” objects,
where validity is checked by verifying a digital signature field
in the data chunk. We further assume that content objects
are self-contained for what concerns verification needs, i.e.
that the (certified) public key needed to verify the signa-
ture is either transmitted along with the data chunk (effi-
cient low-overhead schemes do indeed exist, e.g. an ECDSA-
P192/SHA-1 signature plus its ECQV “implicit” certificate
[1] requires in total only 104 bytes, 90% smaller than RSA),
or Identity Based signatures are employed [17, 34], such that
the object name itself acts as public key for verification pur-
poses.

As illustrated in Fig. 1 we assume, on purpose, that the
signature verification task is decoupled from the cache op-
eration, and specifically that content information gathered
from the wire is sent to a front-end verification module,
whose output (if the verification is successful) is then pro-
vided to the cache. Thus, deployment can occur also on
legacy caching systems. Specifically, we take the worst-case
assumption that no specific criterion (e.g. based on content
types, provenance, statistics, etc) is used in selecting which
content items shall be captured by the link for verification
purposes. Rather, we assume that a content item is oppor-
tunistically captured by the link whenever a (small, e.g. just
for the purpose of reconstructing a data item) buffer space
becomes available in the verification module, i.e. right after
the termination of a verification task.

It readily follows that only a subset of content chunks will
be actually delivered to the cache; for example, an (opti-
mistic) 0.1 ms signature verification time necessarily tops
at 10 Kchunk/s, whereas an half loaded 10 Gbps core net-
work link may deliver more than 15 times such traffic, even
considering relatively large 4 KB chunks; in other words,
in such example settings, only approximately 1 out of 15
chunks could be actually verified before being cached.

2.2 Model assumptions, notation, background
It is well known from traditional (e.g., NetFlow) traffic

sampling, that under mild assumptions (large amount of
flows, packets sufficiently interleaved, sampling rate small,
see a rigorous analysis in [7]), deterministic sampling is prac-
tically equivalent to probabilistic sampling. Moreover, as
we will discuss below, our model is built from the point of
view of each single stream of requests for a same item, and
thus it appears reasonable to summarize with a given ac-
ceptance probability p the probability that a content item,
not included in the cache and forwarded by the node, is se-
lected for signature verification and subsequently inserted in
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Figure 2: Example arrival patterns: Exponential
and Lognormal distribution with coefficients of vari-
ation CV=1,3,6 (CV = σ/m), and mean inter-arrival
time m = 1.

the cache (generalization to different acceptance probabili-
ties per item being trivial). The special case p = 1, i.e., all
items cached, corresponds to the ordinary LRU operation.

Concerning the cache system, we assume, for modeling
convenience, that the storage capacity C is expressed as
number of objects that may be stored therein. This as-
sumption is practical in case of in-network caching, where
the cache capacity may be bounded by the size of lookup
table used to index the stored items. Otherwise, this as-
sumption implies items of same size; extensions to uneven
sizes can be addressed, e.g. as discussed in [9, 16].

We assume that objects are drawn from an universe size of
(large) cardinality N . Objects are conveniently named using
the index x, with x ∈ {1, 2, ..., N}. Each object is charac-
terized by an associated average arrival rate λx. We assume
stationary arrivals (non stationary arrivals have been very
recently considered in [3] under the assumption of Cox ar-
rivals), and consequent long-term content popularity distri-

bution qx = λx/
∑N
i=1 λi which, unless otherwise specified,

we quantify with a Zipf (non restrictive, as our model does
not require to specify such distribution).

In terms of traffic arrivals, we do not rely on the Inde-
pendent Reference Model, frequently assumed in related an-
alytical works [9, 16, 31, 22, 11]. Rather, we model the sys-
tem under more general conditions, by assuming that the
inter-arrival times between two consecutive requests for a
same item are independent and identically distributed ran-
dom variables with general probability distribution function
Fx(t). Even if the extension to semi-Markov processes is
work in progress, the i.i.d case appears already sufficiently
descriptive to capture a wide range of temporal locality con-
ditions and practical bursty-like traffic patterns (see illus-
trative example in Fig. 2).

Che’s approximation [9]
Our model extends and casts to a more general setting a
clever approximation originally introduced in [9] by Che et
al. Let us focus on an object x. In most generality, the time
elapsing between the instant of time the object is inserted
(refreshed) in the cache, and the instant of time the object
is evicted from the cache (under the assumption than no
other requests for the same object arrive to the cache in the
mean time), is a random variable with non trivial (and a
priori unknown) distribution. [9] suggests that, for practi-
cal (reasonably large) cache sizes and population of objects
(so that the request rate for each given object becomes a
small percentage of the overall traffic), this random variable
can be approximated with a constant, further independent of
the specific object x considered. Despite its simplicity, such
an approximation is shown in the original work [9] to yield
an impressive accuracy. A closer look to the reasons and

Figure 3: Request arrivals for object x; underlying
renewal structure; examples for both the discrete-
time process Rx(.) = {INS,HIT,X,X, INS,HIT, INS}
and the continuous-time process Ix(t).

explanations behind such a remarkable accuracy has been
recently made in [16]. We will refer to this constant cache
eviction time as tc. Note that this constant is not known in
advance, hence it is up to the performance model to (fur-
ther) determine its actual value.

2.3 Analytical Model
Intuitively, our proposed modeling approach is best un-

derstood by looking at the descriptive example of Fig. 3.
We model the process of arrival of requests to the cache
from the point of view of a specific object x ∈ (1, N). A re-
quest for x arriving to the cache can have one among three
possible outcomes:

• HIT: the request is served by the (cache hit); this
implies that the object x has remained in the cache
since the last arrival;

• INS: the object x is not found in the cache and thus is
downloaded from a remote server; while downloaded,
the object is also inserted in the cache;

• X: the object x is not in the cache, but differently
from INS, it is not stored in the cache while being
downloaded (i.e., verification buffer full).

The first two cases are usual according to the LRU opera-
tion. The third case comes into play when considering that
the signature verification process acts as bottleneck to the
cache insertion operation, and thus an arriving object may
not be included in the cache upon arrival, as the signature
verification buffer is found full. Per our assumption, this oc-
curs with probability 1− p independent at each subsequent
object.

Owing to the LRU policy, whenever an object is either
inserted in the cache or refreshed by a cache hit, its sta-
tus is renewed, e.g. the age since the previous access is
reset. Therefore, under the assumption of i.i.d. request
inter-arrival times, the instants of time marked in the figure
as HIT and INS can be conveniently employed as renewal
points for some convenient processes, formally introduced
below, and describing the evolution of the object x under
consideration. In particular, from Fig. 3 we note that two
different types of cycles may occur: i) cycles 1 and 3 end
up with a cache HIT, and thus are characterized by the
fact that the object x remains in the cache throughout the
whole cycle itself; ii) cycles 2 and 4 instead show that after
some time (number of arrivals of other distinct objects), x is
evicted from the cache; unlike an ordinary LRU scheme it is
not necessarily reinserted at the first next arrival (although
this is clearly possible, see e.g. cycle 4), but reinsertion
may happen after a number of requests (e.g. only the third
request in cycle 2 gets reinserted).
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Cache hit probability
Let us model the arrival of subsequent requests for a same
tagged object x with a discrete-time process Rx(k), which
summarizes into one of the three possible states {HIT, INS,X}
the outcome associated to the k-th request arrival. As dis-
cussed above, the time instants {k|Rx(k) = INS ∨ Rx(k) =
HIT} are renewal points for the process Rx(k).

Let us now define with Hx the (so far still unknown) prob-
ability that object x is not evicted from the cache during a
cycle. From elementary renewal theory, the steady-state hit
probability Phit(x) for the tagged object is computed as

Phit(x) =
E[no. hits per cycle]

E[no. reqs per cycle]
=

Hx
Hx + (1−Hx)/p

. (1)

The numerator is trivial, as we either have no hits in a cycle,
or the cycle ends with an hit event, with probability Hx
by our own definition. To compute the denominator, we
observe that we have only two possible cases: i) if the cycle
ends with an hit (with probability Hx), then it includes
only one request; conversely ii) if the cycle envisions the
eviction from the cache of the object x, which occurs with
probability 1−Hx, then the cycle comprises on average 1/p
requests, being p the (Bernoulli) probability that a related
content is captured by the signature verification module and
hence admitted to the cache4. By averaging over all the
population, the total cache hit probability is given by:

Phit =

∑N
x=1 λxPhit(x)∑N

i=1 λi
=

N∑
x=1

qxPhit(x). (2)

Equation (1) depends on N unknown parameters Hx, a
different one per each object. Che’s approximation [9], dis-
cussed in the previous section, can now be very effectively
exploited to reduce the number of parameters to as little
as a single unknown. Indeed, [9] suggests to approximate
the cache eviction time as seen by any object with the same
constant tc. As shown in [16], this appears reasonable with
large population and cache size. With such approximation,
being Fx(t) the cumulative probability distribution function
of the inter-arrival time between two consecutive requests
for a same object x, we trivially conclude that

Hx = Fx(tc) (3)

as the probability Hx that the object x is not evicted is
equivalent to the probability Fx(tc) that the next arrival oc-
curs after at time interval smaller than tc. We remark that
every object x may have a different request inter-arrival dis-
tribution Fx(.), but those distributions now become given
parameters of the model, whereas the only remaining un-
known is now just tc, derived in the next step.

Cache eviction time
Unfortunately, our more general (non Poisson) traffic as-
sumptions do not permit us to derive the parameter tc as in
[9]. We thus resort (again) to a renewal argument applied
to a tagged object x, but this time we consider a different,
continuous-time, Indicator process Ix(t) which is equal to 1
when the object x is stored in the cache, and 0 otherwise.

Again, Fig. 3 shows that the process Ix(t) exhibits the
same, very convenient, renewal structure identified before

4for our performance analysis purposes, we non restrictively
assume that all the object verifications are successful.

for Rx(k), being renewal points the occurrence of either
cache hits or insertions; the crucial difference is that now
the time scale is continuous, and thus the cycle length is
measured in time units (e.g., seconds). It readily follows,
again from the elementary renewal theorem, that

E[Ix(t)] =
E[time spent in cache per cycle]

E[duration of a cycle]
=

=

∫ tc
0

(1− Fx(t)) dt
1
λx

[Fx(tc) + (1− Fx(tc))/p]
. (4)

The denominator is the length of a renewal cycle measured
now in time, hence the average inter-arrival time 1/λx among
subsequent requests, multiplied by the average number of
requests comprising a cycle (denominator of (1), having al-
ready substituted (3)). The numerator is the expected value
of the random variable defined by min(Tx, tc), where Tx is
the (r.v.) inter-arrival time between requests having the
usual CDF Fx(.), and tc is the constant cache eviction time.
Indeed, the time spent in the cache in a considered cycle is
either the inter-arrival time of the next request for x, if this
comes before the eviction time tc, or it is bounded by tc.

Since, at each time instant, the cache contains exactly C
objects, it follows that

N∑
x=1

Ix(t) = C →
N∑
x=1

E[Ix(t)] = C (5)

where the obvious dependence among the processes Ix(t)
for different objects x is not a concern when taking expecta-
tions. By substituting (4) into (5) we finally obtain an equa-
tion whose numerical solution permits to derive the value tc
to be used in (1) and (2) for computing the relevant cache
hit probabilities.

3. PERFORMANCE ANALYSIS
In this section we discuss the performance implications

that emerge as a consequence of the need to restrict caching
to a fraction p of requests. All analytical results presented
in what follows are backed up by simulation results.

Unless otherwise specified, results are obtained using a
cache size C = 1000 and a total population of 106 content
items. Each item x is characterized by a popularity qx drawn
from a Zipf distribution with slope coefficient α = 0.8. We
remark that our model does not restrict to specific popular-
ity distributions, but takes as input the (general) distribu-
tion of the inter-arrival time between consecutive requests
for a same item. Although in principle request interarrivals
per different items may follow different probability distri-
butions, for convenience we report results only for homoge-
neous distributions with frequency of requests proportional
to the popularity qx. Specifically, we consider Exponential
inter-arrivals, to model the case of a request stream that fol-
lows the independent reference model (IRM) [16], and Log-
normal or Hyperexponential distributions reproducing the
case of a request stream with temporal locality. In these
latter cases, following [14], we change the coefficient of vari-
ation (CV , defined as the ratio between the standard devia-
tion and the mean value) to affect the temporal locality. As
graphically shown in Fig. 2, for a same mean inter-arrival
time, the larger the CV , the burstier the request arrival
process.
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Figure 4: Total cache hit probability vs variation
coefficient with p = 1
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Figure 5: Total cache hit probability vs accep-
tance probability for Exponential, Lognormal and
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Performance of ordinary LRU caches
The analytical model introduced in section 2.3 relies on a
parameter p called acceptance probability. By setting p = 1
we can thus quantify performance also in ordinary LRU
caches, for general distribution of the request inter arrival
time. Ordinary LRU caches have been extensively studied
in the literature, and it is well known (see e.g. [14]) that
an increased temporal locality improves cache performance.
As expected, this finding is confirmed by the results pre-
sented in Fig. 4. Here, results are shown for three differ-
ent distributions of the request interarrival time (Exponen-
tial, Hyper-Exponential, and LogNormal). For the case of
Hyper-Exponential and LogNormal, different coefficients of
variations CV , ranging from 1 to 8, are plotted.

Fig. 4 shows that caching performance, measured in terms
of cache hit probability, improve for a greater CV (more
than doubling in the LogNormal case for CV going from
1 to 8). Moreover (as our model further clarifies) perfor-
mance significantly depend on the chosen inter-request dis-
tribution. Indeed, Fig. 4 shows that the Exponential distri-
bution (CV = 1) provides better performance with respect
to those obtained by a Lognormal distribution with CV = 1,
and shows a quite significant difference between Lognormal
and Hyperexponential distributions for a same CV .

Finally, Fig. 4 shows a remarkable agreement between
analytical (solid lines) and simulation results (markers).
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Figure 6: Update rate over request rate vs item rank
for Lognormal inter-arrivals with CV = 4 and p = 0.1

Figure 7: Per-item cache hit probability vs item
rank for Exponential inter-arrivals (IRM)

Impact of acceptance probability p
In this section we explore the impact of the acceptance prob-
ability on the performance of a single cache. Analytical
(solid lines) and simulation (markers) performance for Ex-
ponential inter arrival times, as well as for Longnormal with
different coefficient of variation CV are reported in Fig. 5.
Unlike the case of ordinary LRU caches (p = 1), Fig. 5
shows that performance, measured in terms of the resulting
cache hit probability, do not necessarily increase with an in-
creased temporal locality, quantified through the parameter
CV . Indeed, the reduction of the acceptance probability p
may be either beneficial or detrimental in terms of the re-
sulting cache hit probability, depending on the amount of
temporal locality of the considered request stream.

When the temporal locality is low, for instance in the case
of Exponential inter arrival distribution (Independent Refer-
ence Model), or in the case of LogNormal distribution with
CV = 1, we notice an increase of the hit probability while
reducing p. Conversely, in presence of a strong temporal lo-
cality, e.g. Lognormal with CV = 8, hit probability tends to
decrease. These results suggest that temporal locality plays
a crucial qualitative role in the performance accomplished by
caching only a subset of traffic requests, and specifically that
the practical inability to cryptographically verify all cached
content can even turn into an advantage, when temporal
locality is (relatively) low.
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An explanation
When p is lower than 1, not all requests can be cached, but
only a randomly sampled fraction p of them are. In other
words, a small p yields a reduction of the rate at which items
do update the cache status with respect to the actual request
arrival rate: whereas in an ordinary LRU cache a request for
an item i guarantees that the item will be inserted in the
cache, in our scenario this is conditioned to the probability
p that such a request can be inserted in the signature ver-
ification buffer. Furthermore, and most interesting, such a
reduction is not balanced across items, but strongly depends
on the items’ popularity. This is quantified by Fig. 6, which
plots, for the case p = 0.1, the update ratio (the fraction of
requests for a given item that are either found in the cache
- hence refreshed - or inserted in the cache) versus the item
index.

Indeed, the rate of arrival of requests for an item x that
actually update the cache (HIT or INS) is related to the
arrival rate of requests for the same item by the relation
λux=λx(Phit(x)+(1−Phit(x))p)=λx/ (Fx(tc)+(1−Fx(tc))/p).
It follows that popular items (Fx(tc)→1) will have λux→λx,
whereas for infrequent items (Fx(tc)→ 0), λux → pλx.

Now, it is very interesting to note that such an uneven
reduction of the cache update rate per item may improve or
worsen the cache hit probability, depending on the amount
of temporal locality.
Low temporal locality - If the temporal locality is low, as for
instance in the Exponential (IRM) inter-arrival case, as also
pointed out in [22], sampling a subset of requests yields per-
formance improvements (see Fig. 5) since it promotes the
caching of more popular items. This behavior is confirmed
by Fig. 7, which shows the per-item cache hit probability in
the case of Exponential inter-arrival times. We observe that
a reduced acceptance probability p = 0.1 amplifies the hit
probability for most popular contents, with respect to the
ordinary LRU case (p = 1). This change of the cache hit
probability distribution compensates the sub-optimality of
the LRU caching policy and makes cache performance closer
to an ideal replacement algorithm called A0, which tends to
store just the most popular items, and which is optimal un-
der the IRM assumption [27, 10].
High temporal locality - The situation completely changes
as temporal locality gets larger, as for instance in the Log-
normal inter-arrival case with CV = 8 (see Fig. 5). Indeed,
a reduction of the update rate, i.e. of p, implies an “iner-
tia” in the refresh of cache contents. The inertia reduces the
ability of LRU to follow the temporary (but harsh) changes
of popularity, that characterize a request stream with strong
temporal locality, and this could cause an overall decrease of
the hit probability. An evidence of the “inertia” is provided
by Fig. 8 that reports the average cache period of a con-
tent object, since the insertion time of the item in the cache
up to its removal time, i.e.

∫ tc
0

(1− Fx(t)) dt/(1 − Fx(tc)).
As expected, higher ranked objects report an higher cache
period and, in addition, we observe that the reduction of
acceptance probability p implies an increase of such period,
i.e. of cache inertia.
Medium temporal locality - In medium conditions, the ben-
efit of promoting caching of popular items tends to balance
the disadvantage due to the increasing cache inertia. Focus-
ing on results of Fig. 5, in case of Lognormal with CV = 4
the balance is fair and we have a rather flat performance
versus p.
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Figure 9: Total cache hit probability vs p for Log-
normal inter-arrivals; cache size: 100 items

Impact of assumptions and parameters
A first natural question is whether the above findings are
confirmed for different cache sizes. In Fig. 9, we have re-run
all results presented in Fig. 5 for the LogNormal case, but
this time using an extremely small cache size of just C = 100
items (i.e. 0.01%, instead of 0.1%, of the entire considered
set of items). Clearly, quantitative results are significantly
different (the cache hit probability is much smaller, as ex-
pected). However, the performance trends varying the pa-
rameters p and CV are confirmed.

A second remark concerns the approximation of the sys-
tem operation through a single (bernoulli) acceptance prob-
ability p. In practice, requests will be queued in a signature
verification buffer. To assess the impact of such an approxi-
mation, Fig. 10 reports simulation results where the system
operation is modelled using a FIFO verification buffer of size
100 items. Via simulation, we measure the actual average
acceptance probability (hence not anymore a bernoulli pro-
cess), and we use this measured average value as x-axis quan-
tity for plotting the simulation results. The figure shows
that such results (markers) still practically lie on the ana-
lytical curve (solid lines), thus implying that the verification
buffer dynamics do not meaningfully affect performance.

4. REAL TRACES AND CACHE NETWORKS
In order to confirm whether our findings hold also in real

world conditions, we have run selected experiments using
real world traces made available by the IRCache project
(www.ircache.net), with specific reference to data gathered
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Figure 10: Total cache hit probability vs acceptance
probability for Lognormal inter-arrivals and a FIFO
verification queue of length 100 items

Table 1: Traces parameters
Date # Obj # Req 1-timers CV α
02/18 854241 3571125 68.30% 3.1439 0.8165
02/19 993711 4121865 68.66% 2.8393 0.8152
02/20 871565 3593373 69.27% 2.2542 0.8138
02/21 811827 3416817 67.61% 2.0523 0.8211

from the SD Network Proxy (the most loaded proxy to which
end-users can connect) in February 2013. A detailed inspec-
tion shows that such traces capture regional traffic, and as
such exhibit significant non stationarities due to daily traf-
fic fluctuations. Therefore, to measure the performance ex-
pected in the busy hour, we considered only traffic traces
taken in 4 hours peak traffic periods. Table 1 reports some
parameters of the trace, including the percentage of one-
timers (requests arriving only once during the trace life-
time), the average5 coefficient of variation CV , and the α
parameter of the best approximating Zipf popularity distri-
bution, computed via the curve-fitting tool from [6].

Results for a single cache are shown in Fig. 5, using as
input data a trace gathered on February 18, 2013. For
p > 0.05, performance slightly improve as p reduces (fol-
lowing a trend somewhat intermediate between the case of
Lognormal with CV = 2 and CV = 4 - we remind that the
trace exhibits a mean CV of the inter arrival time of 3.14).
Below p = 0.05, performance instead slightly reduce.

Of greater practical interest is the understanding of what
can happen in a scenario envisioning a network of caches
(the actual scenario of an Information Centric Network)
rather than just a single cache. Since the extension of the
analysis to such setting is not immediate (currently work in
progress), we preliminary assess the implications of a cache
network using simulations feeded by real traffic traces.

Our interest for cache networks stems from the fact that,
as pointed out in [14], the stream of requests missed by edge
caches exhibits a reduced temporal locality (compared to the
original request streams), which in turns reduces the effec-
tiveness of core network caches. Now, in realistic scenarios,
wire-speed content integrity verification may be feasible in

5The CV value reported in the table is averaged over all
the requests; a closer look to the trace shows that different
items experience different inter arrival distribution (charac-
terization not being straightforward given the small number
of requests for less frequent items).
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Figure 11: Cache hit probability of cache network
vs acceptance prob. p of core cache

edge caches, but it is definitely an hard task in core network
caches where the forwarding rates may easily exceed tens of
Gbps (in other words, the acceptance probability p as de-
fined in this paper will be necessarily small, say in the order
of 10−1 or 10−2). But if, as suggested in [14], temporal lo-
cality in core network caches is smoothed by the “filtering”
effect of edge caches, the inability to verify content on the
fly may actually improve caching performance in the network
core!

To preliminary assess this intuition, we have run a sim-
ulation in an basic cache hierarchy scenario, formed by a
core cache that serves 4 edge caches. The four edge caches
are loaded with real traces of the same four hours of four
consecutive days; i.e. the trace of February 18+i 2013 loads
the i-th edge cache, with i = 0..3. The edge cache size is
100 items and the core cache size is 1000 items (qualitatively
similar results are obtained also for edge caches of size 1000,
not reported).

Fig. 11 shows the overall cache hit probability of the cache
network and the cache hit probability of the core cache,
versus the acceptance probability of the core cache. We
consider two cases of p for the edge caches, namely p = 1
and p = 0.5. We observe that a reduced p in the core cache
yields a benefit in terms of overall cache hit probability, due
to the advantage of promoting the caching of popular items,
as previously discussed. The same behavior occurs for the
single core cache. Moreover, we observe that reducing the
acceptance probability on the edge from 1 up to 0.5 slightly
decreases the performance of the core cache. This occurs
since a greater temporal locality is reported in ingress of the
core cache, so the disadvantage of the cache inertia increases.

5. CONCLUSIONS AND FUTURE WORK
Besides the theoretical contribution of a new analytical

model, the main take-home message in this paper is that
the ability to forward to the cache only a subset of (in-
tegrity verified) incoming items may have either beneficial
or detrimental impact on the resulting cache hit probability,
the ultimate balance depending on the amount of temporal
locality of the considered request stream. What appears in-
teresting is that, in practical scenarios, core network caches
(where integrity verification is significantly slower than line
rates) are expected to be loaded by favorable temporal lo-
cality streams. Work in progress aims at extending our the-
oretical insights to hierarchical caches, so far preliminary
tackled only via real world traces and simulation.
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