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These data are relevant in light of the fact that GC7 is consid-
ered a potent and selective inhibitor of DHS and is a poten-
tial candidate drug for cancer, diabetes and HIV therapy.
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Introduction

Spermidine is a natural polyamine ubiquitously highly pre-
sent in all living organisms; it has been implicated in many 
pathophysiological processes including cellular prolifera-
tion, transformation, differentiation, apoptosis, ageing and 
tumorigenesis (Gerner and Meyskens 2004; Pegg 2009; 
Igarashi and Kashiwagi 2010; Mandal et al. 2013). The 
exogenous administration of spermidine promotes longev-
ity in many model organisms including yeast, nematodes 
and flies, and significantly reduces age-related oxidative 
protein damage in mice (Eisenberg et al. 2009; Madeo et al. 
2010; Morselli et al. 2011; Tirupathi et al. 2011). It has been 
postulated that the anti-age activity of spermidine could be 
related to this molecule’s ability to modulate the autophagic 
process (Eisenberg et al. 2009). Of note, spermidine plays 
a pivotal role in the post-translational modification of the 
eukaryotic initiation factor 5A (eIF5A), consisting in protein 
hypusination (Huang et al. 2007). eIF5A is a small (17 kDa) 
acidic protein carrying a unique polyamine-derived amino 
acid, hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] (Cara-
glia et al. 2013; Shiba et al. 1971; Cooper et al. 1982). 

Abstract The exogenous administration of spermidine 
promotes longevity in many model organisms. It has been 
proposed that this anti-age activity of spermidine is related 
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Hypusine is synthesized from the polyamine spermidine in 
two sequential enzymatic steps: in the first step deoxyhy-
pusine synthase (DHS) catalyzes the transfer of the amin-
obutyl moiety from spermidine to a specific lysine residue 
(Lys50 in human eIF5A) to form the deoxyhypusine inter-
mediate, [Nε-(4-aminobutyl)-lysine] residue; the intermedi-
ate is subsequently hydroxylated by deoxyhypusine hydrox-
ylase (DOHH) to produce active hypusinated eIF5A (Park 
2006) (Fig. 1). Two isoforms of eIF5A sharing 84 % homol-
ogy exist in humans although showing distinct biological 
functions (Caraglia et al. 2013). eIF5A-1 is ubiquitously 
expressed and its level is particularly high in proliferating 
cells; by contrast, eIF5A-2 has a more restricted expres-
sion (Jenkins et al. 2001; Guan et al. 2004). There are a lot 
of evidences to indicate that eIF5A is a key protein in the 
pathogenicity of different diseases, such as diabetes, several 
human cancers, malaria and HIV-1 infection (Kaiser 2012).

Although the physiological role of eIF5A-1 has not yet 
been fully elucidated, it has been found to function: (a) as a 
translation elongation factor during protein synthesis (Saini 
et al. 2009), (b) as a cytoplasmic shuttling protein regulat-
ing mRNA transport (Liu et al. 1997; Maier et al. 2010) 
and (c) as a cellular cofactor of HIV-1 REV (Benne and 
Hershey 1978). It has also been implicated in the regula-
tion of mRNA turnover (Zuk and Jacobson 1998), cell pro-
liferation (Park et al. 1993, 2010), differentiation (Schnier 
et al. 1991; Park et al. 2010), inflammation, (Moore et al. 
2008) and apoptosis (Taylor et al. 2013). Interestingly, the 
pro-apoptotic function of eIF5A-1 appears to be the only 
eIF5A activity which is independent from hypusine modifi-
cation (Taylor et al. 2007, 2012; Sun et al. 2010). Growing 
evidence indicates that apoptosis induction is often associ-
ated with decreased autophagy, underlying the existence of 
an interplay between these two important cellular events 
(Fimia and Piacentini 2010).

Autophagy is an intracellular degradation system which 
delivers cytoplasmic constituents to the lysosome (Xie 
and Klionsky 2007). This is a highly conserved process in 
eukaryotes and has two main physiological functions: it 
removes unwanted/aged/damaged constituents and recycles 
cytoplasmic materials to maintain macromolecular synthesis 
and energy homeostasis during stressful conditions includ-
ing nutrient deprivation, hypoxia and low energy status.

Although Patel et al. (2009) have hypothesized that the 
Drosophila deoxyhypusine hydroxylase homologue Nero 
and its target eIF5A are involved in autophagy regula-
tion, no direct evidence shows eIF5A’s involvement in the 
autophagic process, at least until now. On the other end, 
what has been recently demonstrated is spermidine’s abil-
ity to stimulate autophagy in yeast, nematodes and flies, 
increasing the overall lifespan (Morselli et al. 2011), albeit 
the molecular mechanism is still unclear.

Therefore, since spermidine is directly required for 
eIF5A modification by hypusination, we asked whether 
mature eIF5A may represent the link between spermidine 
and autophagy. To test this hypothesis, we inhibited the 
conversion of native eIF5A by both pharmacological and 
genetic approaches and evaluated the impact on autophagy. 
Here we show that GC7 has an off-target effect, since its 
administration results in cell basal autophagy induction, 
independently of eIF5A activity.

Materials and methods

Materials

Mouse Anti-eIF-5a (BD 611976; dilution 1:10,000) was 
from BD Biosciences; rabbit anti-DHS (sc-67161; dilu-
tion 1:1,000) and mouse anti-Gapdh (sc-47724; dilution 

Fig. 1  Schematic representa-
tion of eIF5A post-translational 
modification. Deoxyhypusine 
synthase (DHS) catalyzes the 
transfer of the aminobutyl 
moiety from spermidine to a 
specific lysine residue (Lys50 
in human eIF5A) to form the 
deoxyhypusine intermediate, 
[Nε-(4-aminobutyl)-lysine] 
residue; the intermediate is 
subsequently hydroxylated by 
deoxyhypusine hydroxylase 
(DOHH) to produce active 
hypusinated eIF5A
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1:1,000) were from Santa Cruz Biotechnology; rabbit anti-
LC3 (NB100-2331; dilution 1:500) and Rat anti-FLAG 
(dilution 1:500) were from Novus Biologicals.

The anti-mouse or anti-rabbit secondary antibodies 
HRP-conjugated (dilution 1:5,000) and the ECL detection 
system (Immun-StarTM WesternTM Kit) were from Bio-
Rad. Earle’s balanced salt solution (EBSS), Bafilomycin 
A1, chloroquine, E64D and Pepstatin A were obtained 
from Sigma. N1-Guanyl-1,7-diaminoheptane (GC7) was 
from Biosearch Technologies; D-MEM and FBS were from 
Invitrogen Life Technologies.

Cell culture and treatments

Human fibrosarcoma 2fTGH cells (2F) were cultured in Dul-
becco’s modified Eagle’s medium (D-MEM) supplemented 
with 10 % foetal bovine serum, 2 mM l-glutamine, 100 mg/

ml streptomycin and 100 units/ml penicillin. Cells were grown 
in a humidified atmosphere containing 5 % CO2 at 37 °C.

2 × 105 cells were treated with 200 µM GC7 (dissolved 
in 10 mM of acetic acid), 10 nM Bafilomycin A1 (BafA), 
10 µg/ml of both E64d and Pepstatin A, as indicated. All 
compounds were dissolved in DMSO except GC7 that was 
dissolved in 10 mM acetic acid.

Western blotting

Cells were rinsed in ice-cold phosphate-buffered saline 
(PBS) and collected in lysis buffer (20 mM Tris–HCl pH 7.4, 
150 mM NaCl, 1 % Triton X-100) plus protease and phos-
phatase inhibitors (protease inhibitor cocktail, 1 mM sodium 
fluoride, 1 mM sodium orthovanadate, Sigma). Samples 
were centrifuged 15 min at 9,000×g and, total protein con-
centration was evaluated by the DC protein Kit (Bio-Rad).
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Fig. 2  Autophagy induction by GC7, an eIF5A inhibitor. a 2F cells 
stably expressing a p62-GFP recombinant protein were grown in the 
presence or absence of 200 µM GC7 (18 h) and treated or untreated 
with 10 nM Bafilomycin A1 (6 h) in normal or EBSS medium. p62 
degradation was evaluated by flow cytometry as the mean of fluo-
rescence ± SD of three independent experiments (*,#p < 0.05). b 2F 
cells were treated for 24, 48, 72 h with 200 µM GC7 and in the pres-
ence or absence of 10 µg/ml E64D/Pepstatin A (the last 6 h). LC3 
conversion was determined by Western blotting analysis. Gapdh was 

used as a loading control. c 2F cells stably expressing a p62-GFP 
recombinant protein were treated or untreated with GC7, as indicated, 
in the presence or absence of Bafilomycin A1, and p62 degradation 
was evaluated by flow cytometry as the mean of fluorescence ± SD 
of three independent experiments (*,#,§p < 0.05). d Representative flu-
orescent micrographs of 2F cells stably expressing a p62-GFP recom-
binant protein treated or untreated 24 h with GC7 and/or Bafilomycin 
A1. Bar 10 µm
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Proteins were resolved by a 12 % SDS-PAGE and 
transferred onto a nitrocellulose membrane. Membranes 
incubated 1 h with 5 % nonfat dry milk in T-PBS contain-
ing 0.05 % Tween 20 (1 h) and then incubated overnight 
with indicated antibodies, at 4 °C. After three washes with 
T-PBS, membranes were incubated 1 h with HRP-conju-
gated secondary antibody, at rt. Membranes were rinsed 
three times with T-PBS, and the signal was detected by 
enhanced ECL Immunostar detection system from BioRad.

Retroviral expression of GFP-p62 and mRFP-GFP-LC3

Fifteen microgram of retroviral vectors (GFP-p62 or RFP-
GFP-LC3) was co-transfected with 5 μg of an expression plas-
mid for the vesicular stomatitis virus G protein into 293 gp/bsr 
cells using the calcium phosphate method. After 48 h, the 
supernatant containing the retroviral particles was recovered 
and supplemented with polybrene (4 mg/mL). 2F cells were 
infected by incubation with retroviral-containing supernatant 
for 6–8 h, as previously described (Pagliarini et al. 2012).

Autophagy analysis

For confocal microscopy analysis, 2 × 105 cells were grown 
on glass cover slips, fixed using 4 % paraformaldehyde, and 
fluorescence analyzed by a Leica TCS SPII laser-scanning 
confocal microscope, as previously reported (Hill et al. 2009).

p62-GFP flow cytometric analysis was performed by 
monitoring the green-fluorescence intensity of p62 protein. 
Briefly, 2fp62GFP cells were fixed by 4 % paraformalde-
hyde, 20,000 events were acquired by a FACScan cytome-
ter (Becton–Dickinson) and data analyzed using CellQuest 
software (Pagliarini et al. 2012).

RNA interference

RNAi was performed using the following oligonucleotides 
from Ambion:

Oligos a-1 or b-1 were eIF5A Silencer Selected Pre-
designed siRNA # 4392420 or Custom Selected siRNA 
#4390827 for eIF5A-1; siRNA #4390824 for DHS and 
#12935-300 as a negative control (siCtrl).

5 × 105 cells/well were transfected with 100 pmol 
siRNA in a six-well plates using lipofectamine RNAimax 
(Invitrogen), as indicated by the supplier. Transfection was 
blocked after 24 h and cells treated as indicated.

qRT-PCR

RNA was extracted using Trizol reagent (Invitrogen) as indi-
cated by the supplier. cDNA synthesis was generated using a 
reverse-transcription kit (Promega, Madison, WI, USA) accord-
ing to the manufacturer’s recommendations. Quantitative PCRs 

were performed with the Rotor-Gene 6000 (Corbett Research 
Ltd) thermocycler. Primer sets for all amplicons were designed 
using the Primer-Express 1.0 software system (Roche):

L34 forward: 5′-GTCCCGAACCCCTGGTAATAGA-3′
L34 reverse: 5′-GGCCCTGCTGACATGTTTCTT-3′
DHS forward: 5′-GTGTAAAGTGGACGCCTTCTA-3′;
DHS reverse: 5′-ACACAGGGATGTGGTTCTTC-3′;

L34 mRNA level was used as an internal control and 
results were expressed as previously described (Pagliarini 
et al. 2012).

K50A eIF5A mutant

p3XFLAG-CMV-10.1 encoding for human eIF5A-1 was 
kindly provided by Myung Hee Park National Institute of 
Dental and Craniofacial Research “NIDCR” Bethesda, MD 
(Clement et al. 2006). The mutant K50A was obtained in 
our lab using Quick Change Site-Directed Mutagenesis Kit 
(Stratagene). The primers used for mutate of the plasmid 
p3XFLAG-eIF5A-1 in the Lysine50 (p3XFLAG-K50A) were:

eIF5A K50A 5′-CTTCGAAGACTGGCGCGCACGGCC 
ACGCCA–3′

eIF5A K50A antisense 5′-TGGCGTGGCCGTGCGCG 
CCAGTCTTCGAAG–3′

p3XFLAG-eIF5A-1 was used as mutagenesis template.
PCR amplification products were treated with restric-

tion enzyme DpnI (Fermentas). An aliquot of 5 µl above 
PCR product was transformed into DH5a competent cells 
and inoculated on Luria-Beltrani (LB) plate containing 
100 µg/ml ampicillin. A total of ten colonies were selected 
and their plasmids were isolated by mini-prep. The positive 
mutants were selected by DNA sequencing.

The wt and the mutant K50A of eIF5A were transiently 
transfected using lipofectamine LTX as indicated by the 
supplier.

Statistical analysis

All experiments were performed in replicate and repeated 
three times. Results were expressed as mean ± SD of three 
experiments. Data were analyzed by the t Student test and 
differences were considered significant when p < 0.05.

Results

The inhibitor of eIF5A activity, GC7, increases basal 
autophagy

To elucidate the role of eIF5A in the autophagic pathway 
we used the fibrosarcoma cell line 2fTGH (2F) as a model 
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and N1-guanyl-1,7-diamineoheptane (GC7), a spermidine 
analogue that competitively and reversibly inhibits deoxy-
hypusine synthase (DHS; Lee and Folk 1998; Park et al. 
1993; Shi et al. 1996), to inhibit eIF5A hypusination. GC7 
is commonly used to block the first step of hypusination of 
eIF5A, resulting in the accumulation of the native protein 
(Landau et al. 2010). Characteristic features of early and 
late stages of autophagy were used to measure autophagy 
in 2F cells, such as the conversion of unconjugated LC3 
(LC3-I) to the lipidated form (LC3-II), and the degrada-
tion of p62. First, we analyzed the effect of the inhibition of 
eIF5A hypusination on basal or induced autophagy. To this 
end, autophagy was stimulated using EBSS medium (star-
vation, stv) in 2F cells stably expressing a p62-GFP recom-
binant protein (2F-p62GFP cell line); cells were treated or 
untreated 18 h with 200 µM GC7 in the presence or absence 
of 10 nM Bafilomycin A1 (BafA1), and autophagy was 
evaluated by measuring the degradation of p62-GFP pro-
tein, by flow cytometry. As reported in Fig. 2a, we observed 
that the inhibition of eIF5A hypusination leads to a drastic 

degradation of p62 in cells treated with GC7 alone. This 
potent GC7 pro-autophagic effect was also able to poten-
tiate the starvation-induced p62 degradation. The positive 
effect of GC7 on the autophagic flux was also confirmed 
by the accumulation of p62 upon treatment with BafA1. 
To confirm these findings, 2F cells were treated for 24, 48 
or 72 h with 200 µM GC7 in the presence or absence of 
10 µg/ml of both E64D and PepstatinA (PepA), two inhibi-
tors of autolysosome degradation activity, and autophagy 
induction was evaluated by monitoring the LC3 conversion 
by Western blotting analysis. As reported in Fig. 2b, GC7 
treatment increased basal autophagy in a time-dependent 
manner as evidenced by the enhanced accumulation of 
LC3-II in the presence of E64D/PepA. Similar results were 
obtained in 2Fp62GFP cells in the same experimental con-
ditions, by measuring the degradation of p62-GFP, by flow 
cytometric analysis (Fig. 2c). To further support these data 
the p62-GFP degradation was also evaluated by confocal 
analysis in 2Fp62GFP cells treated or untreated with GC7. 
This analysis confirmed that the GC7 administration per 

Fig. 3  GC7 does not affect the 
autophagic flux. Representa-
tive fluorescent micrographs of 
2F cells stably expressing an 
RFP-GFP-LC3 recombinant 
protein. Cells were grown in the 
presence of 200 µM GC7 (24 h), 
vehicle (acetic acid, 24 h), 
EBSS (6 h) or unconditioned 
medium. Yellow dots represent 
immature autophagosomes 
while red dots represent active 
autolysosomes. Bar 10 µm
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se resulted in enhanced p62 degradation as evidenced by: 
(a) decreased GFP fluorescence (p62) compared to control 
(Fig. 2d, upper right panel compared to upper left panel) 
and (b) p62-GFP dots cytosolic accumulation in cells 
treated with GC7 plus BafA1 compared to cells treated 
with BafA1 alone (Fig. 2d, bottom panels).

Finally, to confirm that the GC7 effect resides in 
autophagy induction and not in the inhibition of autophagic 
flux, we used a GFP-RFP-tagged LC3 recombinant protein 
(Hill et al. 2009). To this end, 2F cells stably expressing 
GFP-RFP-LC3 were treated with GC7 or vehicle alone 

(Acetic Acid; 24 h) and autophagy induction was evalu-
ated by confocal analysis. EBSS medium (stv) was used 
as a positive control. Data reported in Fig. 3 clearly show 
a dramatic cytosolic accumulation of red-puncta LC3 dots 
(representing autophagolysosome, mature structures), com-
pared to yellow-puncta ones (representing autophagosome, 
immature structures), in respect to both vehicle- alone or 
EBSS-treated cells, indicating a GC7-dependent enhanced 
complete autophagy induction, but not inhibition of 
autophagic flux.

eIF5A has no functional role in basal cell autophagy

To validate by a genetic approach the consistency of 
our results indicating that eIF5A has a functional role 
in autophagy, we transiently inhibited the expression of 
eIF5A-1 (the isoform expressed in 2F cells), using specific 
siRNA oligos (sieIF5A; Fig. 4a), and cell basal autophagy 
was evaluated by measuring the conversion of LC3, by 
Western blotting analysis, in the presence or absence of 
BafA1 (Fig. 4b).

Although the expression of eIF5A-1 was almost com-
pletely inhibited by siRNA oligos (Fig. 4a), the LC3 con-
version was only marginally affected, compared to control 
(siCtrl; Fig. 4b).

Similar results were obtained in 2Fp62GFP cells in 
the same experimental conditions, by monitoring the 
degradation of p62-GFP in cells in which the expression 
of eIF5A-1 was inhibited by siRNA oligos, compared to 
control (siCtrl; Fig. 4c). These findings suggest that the 
potent pro-autophagic activity displayed by GC7 was 
due to an off-target effect not related to the post-transla-
tional modification of eIF5A. To support this hypothesis, 
we decided to verify that also the eIF5A immature form 
(with no hypusine modification) was also not involved 
in modulating the autophagic process. To this end, we 
inhibited the modification of the native eIF5A protein by 
down-regulating the expression of DHS by the transient 
transfection of specific siRNA oligo into 2Fp62GFP cells. 
The inhibition was evaluated by monitoring both eIF5A 
protein and RNA levels (Fig. 5a). In these cells we ana-
lyzed the basal autophagy in the presence or absence of 
BafA1, by monitoring both the LC3 conversion by West-
ern blotting analysis (Fig. 5b) and p62 degradation by 
flow cytometry (Fig  5c). The inhibition of DHS resulted 
in not statistically significant effects on basal autophagy 
as evidenced by both LC3-II accumulation and p62 degra-
dation (Fig. 5b, c).

Finally, to confirm that the accumulation of immature 
eIF5A resulting from inhibition of protein hypusination is 
not involved in autophagy induction/execution, we ectopi-
cally expressed both wild type and K50A mutant eIF5A in 
2F cells by transient transfection. K50A mutant codes for 
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Fig. 4  eIF5A down-regulation does not affect basal autophagy. 2F 
cells stably expressing a p62-GFP recombinant protein were tran-
siently transfected with two different siRNA oligos specific for 
eIF5A-1 or with a scramble siRNA (siCtrl) and incubated 6 h with 
Bafilomycin A1, as indicated. The expression of eIF5A (a) and the 
conversion of LC3 (b) were determined by Western blotting analysis, 
while the degradation of ectopically expressed p62 (c) was evaluated 
by flow cytometry. Each point represents the mean of fluorescence 
of p62-GFP protein ± SD of three different experiments. Gapdh was 
used as a loading control (a, b)
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an eIF5A protein in which the hypusination site (Lys50) 
has been abrogated (replaced with an Ala). As shown 
in Fig. 5d, the over-expression of both the wt and K50A 
eIF5A did not affect the basal autophagy of 2F cells, thus 
confirming the off-target effect of GC7 in the induction of 
autophagy.

Discussion

Spermidine plays an important role in ageing during which 
there is a decline of its levels in different mammalian organs 
(Scalabrino and Ferioli 1984). The exogenous adminis-
tration of spermidine promotes longevity in many model 
organisms including yeast, nematodes and flies, and signifi-
cantly reduces age-related oxidative protein damage in mice 
(Eisenberg et al. 2009; Madeo et al. 2010; Morselli et al. 
2011; Tirupathi et al. 2011). This increase in longevity is 
linked to changes in the acetylation of nuclear histones and 
to a transcriptional increase of different autophagy-related 
genes (Eisenberg et al. 2009). Furthermore, more recent 
studies have shown that spermidine induces autophagy 
through AMPK-dependent pathway which is well known to 
play an anti-ageing role (Morselli et al. 2011).

Spermidine plays a pivotal role in the post-translational 
modification of the eukaryotic initiation factor 5A (eIF5A) 
since it is the essential substrate for the protein hypusina-
tion (Huang et al. 2007). Under physiological conditions 
eIF5A is constitutively hypusinated, but its activity and 
subcellular localization can be conditioned by reversible 
acetylation (Lee et al. 2009; Ishfaq et al. 2012). PCAF is 
the major cellular acetyltransferase of eIF5A, and HDAC6 
and SIRT2 are its major deacetylases (Ishfaq et al. 2012). 
Inhibition of the deacetylases or impaired hypusination 
increased acetylation of eIF5A, leading to its nuclear accu-
mulation (Ishfaq et al. 2012). Considering that the mech-
anism by which spermidine induces autophagy is not yet 
well elucidated, we asked whether hypusinated eIF5A can 
be the link in that process.

In this study, we analyzed the influence of eIF5A in 
the process of autophagy induced by starvation using sev-
eral approaches: first, we blocked the conversion of native 
eIF5A into mature hypusinated protein by GC7 (N1-gua-
nyl-1,7-diamineoheptane), or we used siRNA interference 
for knocking down the expression of native eIF5A and 
DHS or we over-expressed the native eIF5A or the mutated 
one in the hypusination site. Surprisingly, our results 
revealed not only that the GC7 alone can deregulate the 
basal autophagy, but also that this action is independent of 
eIF5A activity.
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was used as a control. The levels of both DHS protein (left panel) 
and mRNA (right panel) levels were evaluated by Western blotting 
analysis and qRT-PCR, respectively. b, c LC3 conversion (b) and p62 
degradation (c) were determined by Western blotting analysis and 
flow cytometry, respectively. Gapdh was used as a loading control (a, 
b). Values are means of fluorescence ± SD of three different experi-
ments (c). d 2F cells were transiently transfected with a Flag-tagged 
eIF5A-1 wild type (wt) or a K50A mutant (K50) or with empty vec-
tor (Empty) and eIF5A-1 expression and LC3 conversion were evalu-
ated by Western blotting analysis, in the presence or absence of 
Bafilomycin (6 h), as indicated
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GC7 is usually used to block the first step of hypusina-
tion of eIF5A which leads to the accumulation of the native 
protein (Landau et al. 2010). Interestingly, the treatment 
with GC7 displays an anticancer effect in various tumours 
such as neuroblastoma, erythroleukaemia and melanoma 
(Shi et al. 1996; Chen et al. 1996; Lee et al. 2002; Jasi-
ulionis et al. 2007). Lee et al. (2009) demonstrated that 
GC7 inhibits growth and differentiation in oral cancer and 
immortalized keratinocytes by inducing apoptosis through 
the mitochondrial and the AMPK pathways (Lee et al. 
2009). The results reported in this study are the first evi-
dence that GC7 induces autophagy in 2fTGH cell line.

These findings are interesting considering the complex 
role of autophagy in cancer initiation and progression. We 
expected to find a block in autophagy induction in the pres-
ence of the eIF5A-hypusination inhibitor GC7; surpris-
ingly, by contrast, we revealed an off-target effect of the 
drug. In fact, the ablation of both the eIF5A itself or the 
enzyme mediating its hypusination, DHS, resulted in no 
appreciable change in the autophagic flux, thus confirming 
that the marked pro-autophagic effect of GC7 is not medi-
ated by the hypusine pathway. In line with this conclusion, 
we also demonstrate that the over-expression of both wild 
type or K50A mutant eIF5A, in which the hypusination site 
(Lys50) has been replaced by an alanine, did not affect the 
basal autophagy in 2F cells confirming that the immature 
form of eIF5A (with no hypusine modification) is unrelated 
to the autophagic process.

In contrast to our initial hypothesis, collectively these 
data suggest that mature eIF5A (hypusinated form) is not 
involved in the autophagic pathway and that the inhibitor 
of deoxyhypusine synthase, GC7, has an off-target effect 
resulting in autophagy induction. Future studies should 
clarify by which mechanism GC7 is able to promote 
autophagy. In keeping with this assumption it is interest-
ing to note that hypusine of the eIF-5A chain functions as 
an acyl acceptor substrate for transglutaminases (Beninati 
et al. 1995). Considering the structural similarity between 
hypusine molecule and GC7, it would be interesting to 
study whether this polyamine analogue can act as a sub-
strate of Type 2 transglutaminase transamidating activ-
ity which has been shown to play an important role in the 
recruitment of ubiquitinated proteins into the autophago-
somes (D’Eletto et al. 2009). The GC7 off-target effect we 
demonstrated in this study is particularly relevant consider-
ing that this drug has been proposed as an important candi-
date for the therapy of cancer, diabetes and HIV infection. 
Indeed, eIF5A plays an important role in protein translation 
since disruption of the hypusination process by GC7 has 
been shown to inhibit the growth of many cancer cell types 
as well as endothelial cells (Lee et al. 2009, 2010; Cara-
glia et al. 2003). For example, in hepatocellular carcinoma, 
over-expression of eIF5A2 was reported to be associated 

with tumour features that indicate poor prognosis, such as 
the presence of tumour metastasis and venous infiltration 
(Lee et al. 2010). Furthermore, the clinical drugs ciclopirox 
and deferiprone, by inhibiting eIF5A hypusination, impair 
the transcription of the HIV-1 promoters and decrease 
HIV-1 gene expression (Hoque et al. 2009). Based on the 
considerable therapeutic interest in eIF5A as a selective 
target for drug development through inhibition of hypu-
sination, the GC7 off-target effect described in this study 
acquires particular relevance and should be taken into full 
consideration for the use of GC7 in clinical trials.
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