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GENERA OF CURVES ON A VERY GENERAL SURFACE IN P
3

C. CILIBERTO, F. FLAMINI, M. ZAIDENBERG

Abstract. In this paper we consider the question of determining the geometric genera of irreducible curves

lying on a very general surface S of degree d > 5 in P
3 (the cases d 6 4 are well known). For all d > 4 we

introduce the set Gaps(d) of all non–negative integers which are not realized as geometric genera of irreducible

curves on a very general surface of degree d in P
3. We prove that Gaps(d) is finite and, in particular, that

Gaps(5) = {0, 1, 2}. The set Gaps(d) is the union of finitely many disjoint and separated integer intervals.

The first of them, according to a theorem of Xu, is Gaps0(d) :=
[

0, d(d−3)
2

− 3
]

. We show that the next one

is Gaps1(d) :=
[

d2−3d+4
2

, d2 − 2d− 9
]

for all d > 6.
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Introduction

In this paper we consider the following question: what are the geometric genera of irreducible curves lying

on a sufficiently general surface S of degree d in P
3?

The answer is trivial for d 6 3: in this case S is rational and carries curves of any genera (see Proposition

1.2 for a more precise result).

For d > 4, the Noether–Lefschetz theorem says that if S is a very general surface of degree d in P
3, then

all curves on S are complete intersections with another surface in P
3 (see §1 below). So, in investigating our

question, we will suppose S very general in the Noether–Lefschetz sense.

It is well known that on a very general quartic surface in P
3 there are curves of all genera (see Corollary

2.2 below). Thus our question starts becoming interesting only for d > 5.

In §1 we introduce, for all d > 4, the set Gaps(d), i.e., the set of all non–negative integers which are not

realized as geometric genera of irreducible curves on a very general surface of degree d in P
3.
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By a theorem of Xu (see [27, Thm. 1]), for any d > 5 the integer interval Gaps0(d) :=
[
0, d(d−3)

2 − 3
]

is contained in Gaps(d). By contrast, the length 4 interval J0(d) :=
[
d(d−3)

2 − 2, d(d−3)
2 + 1

]
has empty

intersection with Gaps(d): indeed, it consists of genera of plane sections of S, which can have at most 3

nodes if S is general (cf. Proposition 3.3). Similarly, the length 10 interval J1(d) := [d2 − 2d− 8, d2 − 2d+1]

has empty intersection with Gaps(d): it consists of genera of quadric sections of S, which can have at most

9 nodes if S is general (cf. again Proposition 3.3).

In §2 we prove that Gaps(d) is finite and, in particular, that Gaps(5) = Gaps0(5) (see Theorem 2.4 and

Corollary 2.6). We do not exhibit the minimum Gd such that Gaps(d) ⊆ [0, Gd]; so finding Gd remains an

open problem. However, we provide in Remark 2.5 an asymptotic bound for Gd.

The proof of the finiteness of Gaps(d) relies on a result by Chiantini and the first author (see [5, Thm.

3.1]) that extends the above discussion on the intervals J0(d) and J1(d). Let gd,n be the arithmetic genus of

complete intersections of a surface S of degree d with a surface of degree n, and let ℓd,n be the dimension of

the linear system of these complete intersections on S. Then [5, Thm. 3.1] asserts that for all non–negative

integers, the interval Jn(d) := [gd,n − ℓd,n, gd,n] is covered by genera of complete intersections of S with

surfaces of degree n with δ ∈ [0, ℓd,n] nodes, lying in reduced components of the Severi variety of nodal

curves on S. The finiteness of Gaps(d) follows from the fact that the intervals Jn(d) overlap as soon as

n > d. In fact this argument proves more, since the curves we find are nodal and lie in reduced components

of the Severi variety.

The set Gaps(d) is the union of finitely many disjoint and separated integer intervals, as in (7). De-

termining all of them is a quite tricky and widely open problem. The proof of the finiteness of Gaps(d)

might suggest that these intervals could contain the integer intervals In(d) := [gd,n + 1, gd,n+1 − ℓd,n+1 − 1],

whenever gd,n 6 gd,n+1 − ℓd,n+1 − 2, which, as we know already, happens only for finitely many n > 1.

This is not true in general as shown in [5, Examples 1.1 and 1.2]. However, we prove that this is the case

for d > 6 and n = 1 (see Theorem 4.1). Namely, we show that I1(d) =
[
d2−3d+4

2 , d2 − 2d− 9
]
is the gap

interval Gaps1(d) next to Gaps0(d). The proof is not difficult for d > 9 (see Proposition 3.4). It is based on

a result by Clemens-Xu-Chiantini-Lopez (see Theorem 3.2), which bounds from below the geometric genus

of a complete intersection of a general surface S of degree d in P
3 with a surface of degree n. When d > 9,

this bound forces a curve with geometric genus g 6 d2 − 2d − 9 on S to lie on a surface of degree n 6 2,

and the aforementioned Proposition 3.3 forces g to lie in J0(d) ∪ J1(d), which is exactly complementary to

I1(d). This argument falls short for 6 6 d 6 8, which requires a more delicate analysis performed in §4.
A reduction step in §4.1 reduces these cases to verify non–existence of certain curves on irreducible, but

eventually singular surfaces of degree n = 3, 4. This requires in turn a quite subtle case by case analysis

which relies on the classification of irreducible cubics and quartics in P
3 (see [2, 3, 16, 23, 24, 25]).

The present paper leaves several open problems. The main one, which we mentioned already, would be to

have a better comprehension of Gaps(d), of its subdivision (7) into disjoint intervals (how many are there?),

and of the constant Gd introduced above.

Of course, one might ask similar (and more difficult) questions for general hypersurfaces in higher dimen-

sional projective space, and for complete intersections. Concerning this, it is worthwhile mentioning the

result of Chiantini–Lopez–Ran in [7], which implies that the minimal geometric genus of a subvariety on a

very general hypersurface of degree d in P
N goes to infinity with d, for any given N ≥ 2.

Notation and conventions. We work over the field of complex numbers. For notation and terminology

we refer to [15]. In particular, for X a reduced, irreducible, projective variety, we denote by ωX its dualizing

sheaf: when X is Gorenstein, ωX is invertible. For divisors on a smooth variety X, we use the symbols ∼
and ≡ to denote linear and numerical equivalence, respectively. We will sometimes abuse notation and use

the same symbol to denote a divisor D on X and its class in Pic(X). Thus KX will denote a canonical

divisor or the canonical sheaf ωX .

Recall that an isolated singular point of a surface S is called a Du Val or irrelevant or simple singularity

if its fundamental cycle in a minimal desingularization has dual graph of type An,Dn, E6, E7, E8.
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1. Preliminaries

Let d be a positive integer. For Ld := |OP3(d)| we set

Nd := dim (Ld) =

(
d+ 3

3

)
− 1 . (1)

We will denote by Ud the dense open subset of Ld whose points correspond to smooth surfaces.

Recall that, by Noether–Lefschetz theorem (see, e.g., [13]), the Picard group of a very general surface

X ∈ Ud with d > 4 is generated by OX(1). Very general means that the property holds off the union Nd

of countably many proper Zariski closed subsets of Ud. The set Nd is called the Noether–Lefschetz locus in

degree d.

Given X ∈ Ud and a non–negative integer n, we let LX,n := |OX(n)|, and we denote by ℓd,n its dimension.

One has

ℓd,n =

{
Nn = n(n2+6n+11)

6 if n < d

Nn −Nn−d − 1 =
d
(
3n2−3n(d−4)+(d2−6d+11)

)
6 − 1 if n > d,

(2)

and

gd,n =
dn(d+ n− 4)

2
+ 1 (3)

is the arithmetic genus of the curves in LX,n.

For an irreducible X ∈ Ld and a non–negative integer g, Vn,g(X) will denote the locally closed subset of

LX,n formed by irreducible curves of geometric genus g. If the general member of a component of Vn,g(X)

is nodal with δ nodes, then gd,n = g + δ.

Definition 1.1. Consider the Zariski closure Vn,d,g in Ud of the locus of all X ∈ Ud − Nd such that

Vn,g(X) 6= ∅. Let Vd,g = ∪n∈NVn,d,g. A non-negative integer g is said to be a d–gap if Vd,g 6= Ud. Roughly

speaking, g is a d–gap if and only if, for a very general surface X ∈ Ld, one has Vn,g(X) = ∅ for all n > 1.

We will denote by Gaps(d) the set of d-gaps. A non–negative integer g 6∈ Gaps(d) will be called a d–non–gap.

In studying Gaps(d) we may and will assume d > 4, since:

Proposition 1.2. Gaps(d) = ∅ for 1 6 d 6 3.

Proof. This is well known in the plane case (see [14, Thm. (1.49)]). For quadrics and cubics the proof is the

same. Indeed, Vn,0(X) is nonempty for X ∈ Ud, with d 6 3 (see, e.g., [22]). Then a well known deformation

argument shows that Vn,g(X) is nonempty for all g 6 gd,n (see, e.g., [18]). �

We will abuse notation and, for integers k, l with k 6 l, we will write [k, l] for the integer interval [k, l]∩Z,

and we call it simply interval.

By [27, Thm. 1], every g 6 gd,1 − ℓd,1 − 1 = gd,1 − 4 = d(d−3)
2 − 3 is a d–gap, i.e.

Gaps0(d) :=

[
0,

d(d− 3)

2
− 3

]
⊆ Gaps(d). (4)

Gaps0(d) will be called the initial gap interval (see Remark 2.3 below).

2. The range with no gaps

In this section we will show the finiteness of Gaps(d) for any d > 4. To do this, we first recall:

Theorem 2.1. ([5, Thm. 3.1]) Let X ∈ Ld be a general surface of degree d > 4 in P
3. For all integers

n > 1 and g ∈ Jn(d) := [gd,n − ℓd,n, gd,n] there is a reduced, irreducible component V of Vn,g(X) whose

general element is nodal with δ = gd,n − g nodes and dim(V) = ℓd,n − δ. In particular Jn(d)∩Gaps(d) = ∅.

Theorem 2.1 is stated in [5] under the assumption n > d, but the same (actually easier) argument works

for n < d.

The following consequence is well known:
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Corollary 2.2. One has Gaps(4) = ∅.

Proof. This follows from Theorem 2.1, since g4,n = ℓ4,n for all positive integers n. �

Remark 2.3. Since ℓd,1 = 3, from Theorem 2.1 one has V1,g(X) 6= ∅ for g ∈ J1(d) = [gd,1 − 3, gd,1], i.e.,

any such g is a d–non–gap.

As a consequence of Theorem 2.1, we obtain:

Theorem 2.4. For integers n > d > 4, and for any g > gd,n−1 − ℓd,n−1, there is an irreducible nodal

curve of geometric genus g on the general surface of degree d in P
3. In particular, one has Gaps(d) ⊂

[0, gd,d−1 − ℓd,d−1 − 1] =
[
0, d(d−1)(5d−19)

6 − 1
]
.

Proof. By Theorem 2.1, we need to show that for n > d, the union Jn−1(d) ∪ Jn(d) is an integer interval,

i.e.,

ℓd,n > gd,n − gd,n−1 − 1 =
d(2n + d− 5)

2
− 1. (5)

By (2), (5) reads

3n(n − d+ 2) + (d2 − 9d+ 26) > 0,

which holds for n > d. �

Remark 2.5. It is possible to give a better estimate for the minimal integer Gd such that Gaps(d) ⊂ [0, Gd].

Indeed, if n < d, then (5) reads

n3 + 6n2 + n(11− 6d) − 3(d2 − 5d− 2) > 0. (6)

For this to hold, it suffices that

n3 + 6n2 − 6nd− 3d2 > 0 i.e. d 6

√
n3 + 9n2

3
− n.

The latter inequality is fulfilled, e.g., if d > n >
3
√
12d2. For any such n, we have Gd ≤ gd,n−1 − ℓd,n−1 − 1.

Corollary 2.6. For any integer g > 3 there is an irreducible nodal curve of geometric genus g on a general

surface of degree 5 in P
3, i.e., Gaps(5) = Gaps0(5) = {0, 1, 2}.

Proof. We know that (5) holds for any n > 5 = d. When 2 6 n 6 4, (6) also holds. ThusG5 ≤ g5,1−ℓ5,1−1 =

2 (see Remarks 2.3 and 2.5), and so Gaps(5) ⊆ {0, 1, 2}. On the other hand, Gaps0(5) = {0, 1, 2} by Xu’s

theorem cited above. �

3. Gaps

By Proposition 1.2 and Corollaries 2.2 and 2.6, we can focus on d > 6. By Theorem 2.4, Gaps(d) is finite.

Hence there exists an integer nd > 0 such that

Gaps(d) =

nd⋃

j=0

Gapsj(d), with Gapsj(d) := [aj , bj], (7)

where

a0 = 0 < b0 =
d(d− 3)

2
− 3 and bj−1 + 1 < aj 6 bj for all j > 0.

The disjoint and separated intervals Gapsj(d) are called the gap intervals. The initial gap interval Gaps0(d)

is as in (4). Our aim is to determine the next gap interval Gaps1(d), see Theorem 4.1 below.

Remark 3.1. By Theorem 2.4 we have

Gaps(d) ⊂ N ∪ {0} \
⋃

n≥1

Jn(d). (8)

Looking at the proof of this theorem, one might guess that there are d–gaps g with

gd,n−1 + 1 6 g 6 gd,n − ℓd,n − 1 (9)
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for any n > 2, any time (5) does not hold, namely that

In−1(d) := [gd,n−1 + 1, gd,n − ℓd,n − 1] ⊆ Gaps(d) (10)

if n > 2, d > 6 and (5) does not hold. However, this is not true in general, as [5, Examples 1.1 and 1.2]

show. For instance, I2(20) 6⊆ Gaps(20), by [5, Example 1.1]. Nonetheless, I1(d) ⊆ Gaps(d), see Theorem

4.1 below.

Determining all d–gaps for d > 6 is a tricky problem. In this section we show that there are d–gaps other

than the ones in Gaps0(d), i.e. nd > 0 for d > 6. Recall first the following results.

Theorem 3.2. ([6, Thm. (1.2)], [10], [27, Thm. 2.1]) Let X be a general surface of degree d > 5 in P
3, and

let C ∈ LX,n be an irreducible curve of geometric genus g. Then

g >
nd(d− 5)

2
+ 1.

Proposition 3.3. ([9, Cor. 2.9]) Let X be a general surface of degree d > 3 in P
3. If g > 0 and n ∈ {1, 2}

are such that Vn,g is non–empty, then

gd,1 − 3 6 g 6 gd,1 if n = 1 and gd,2 − 9 6 g 6 gd,2 if n = 2 . (11)

As a consequence, recalling (10), we have:

Proposition 3.4. If d > 9 then

Gaps1(d) = I1(d) =

[
d2 − 3d+ 4

2
, d2 − 2d− 9

]
. (12)

Furthermore, for d = 7, 8 we have

[g7,1 + 1, g7,1 + 7] ⊆ Gaps1(7) and [g8,1 + 1, g8,1 + 16] ⊆ Gaps1(8). (13)

Proof. Let X be a very general surface of degree d > 9 in P
3. Let C ∈ LX,n be an irreducible curve with

geometric genus g 6 gd,2 − ℓd,2 − 1 = d(d − 2)− 9. By Theorem 3.2, we have

d(d− 2)− 9 > g >
nd(d− 5)

2
+ 1, i.e., n <

2(d2 − 2d− 10)

d(d− 5)
. (14)

Suppose that n > 3. Then (14) yields d2 − 11d+ 20 < 0, which implies d 6 8, a contradiction. Thus n 6 2

and by Proposition 3.3 one has I1(d) ⊆ Gaps1(d). Since ℓd,2 = 9, by Theorem 2.1 we have V2,gd,2−9(X) 6= ∅,

i.e., gd,2 − 9 is a d–non–gap. Since gd,1 is also a d–non–gap, the equality in (12) follows.

For d = 7, 8 the argument is similar; we leave the details to the reader. �

4. The second gap interval

In this section we extend Proposition 3.4, proving the following theorem.

Theorem 4.1. For all d ≥ 6 one has

Gaps1(d) = I1(d) =

[
d2 − 3d+ 4

2
, d2 − 2d− 9

]
.

By Proposition 3.4, we may assume in the sequel that 6 6 d 6 8. The proof consists in a case by case

analysis, which we will perform in the rest of this section.
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4.1. A reduction step. The following lemma reduces the analysis to finitely many cases:

Lemma 4.2. Assume 6 6 d 6 8. To prove that I1(d) = Gaps1(d), it suffices to show that for X ∈ Ld

general, one has Vn,g(X) = ∅ if

d = 6, n = 3, g ∈ [11, 15]

d = 6, n = 4, g ∈ [14, 15]

d = 7, n = 3, g ∈ [23, 26] (15)

d = 8, n = 3, g ∈ [38, 39].

Proof. For d = 6, 7, 8, from (8) we derive the inclusions Gaps1(d) ⊂ I1(d), where I1(6) = [11, 15], I1(7) =

[16, 26], and I1(8) = [22, 39], see (10). To show the inverse inclusions, we have to check that every g ∈ I1(d)

is a d-gap for d = 6, 7, 8.

Suppose Vn,g(X) 6= ∅ for X ∈ Ld general. Since the intervals in (11) do not meet I1(d), from Proposition

3.3 and d > 6 it suffices to restrict to n > 3. On the other hand, if n > 5, (14) gives 5 6 n <
2(d2−2d−10)

d(d−5) ,

i.e., 3d2 − 21d + 20 < 0, which contradicts d > 6. Thus it is enough to consider n ∈ {3, 4}. The remaining

possibilities are as follows.

• (d, n) = (6, 3) and g ∈ I1(6) as in the first line of (15);

• (d, n) = (7, 3); then by (13), [16, 22] ⊆ Gaps1(7). Hence it remains to eliminate the values of g as in the

third line of (15);

• (d, n) = (8, 3); using again (12) and (13), one reduces to the last line of (15);

• if n = 4, (14) yields 2d2 − 16d + 20 < 0. So the only possibility is d = 6. From Theorem 3.2 we deduce

g > 13, which leaves the range of g as in the second line of (15). �

4.2. Strategy of the proof. By Lemma 4.2 we need to show that Vn,g(X) = ∅ for X ∈ Ld general and d,

n and g as in (15). A basic ingredient will be the following result.

Proposition 4.3. (see [9, Prop. 2.8]) Let S be a smooth projective surface, H the Hilbert scheme of curves

on S, and Vg the locally closed subset of H formed by irreducible curves of geometric genus g. For any

component V ⊆ Vg we set

v := dim(V) and κ := KS · Γ,
where Γ corresponds to a general point in V. Then v 6 v0 := max{g, g − 1− κ}.

Let d, n and g be as in (15). Let F ⊆ Ln be an irreducible closed subset, which is the parameter space for

a flat family of surfaces in P
3 of degree n. We assume that its general point corresponds to an irreducible

surface Σ.

Consider the incidence relation I ⊆ Ud × F , consisting of all pairs (X,Σ) such that X and Σ intersect

along a reduced, irreducible curve Γ of geometric genus g. Then I is locally closed with the projections

p : I → Ud and q : I → F .

If I ′ is an irreducible component of I which dominates F via q, then

dim(I ′) = dim(F) + dim(q−1(Σ) ∩ I ′). (16)

The main point in our strategy is to estimate dim(q−1(Σ) ∩ I ′). If (X,Σ) ∈ I ′ and C is the intersection of

X and Σ, one has a linear system of dimension Nd−n + 1 of surfaces of degree d containing C. Thus we get

a (Nd−n + 1)–dimensional set of pairs (X,Σ) ∈ I ′ such that the intersection of X and Σ is C.

Let Vd,g(Σ) be the locally closed subset of LΣ,d := |OΣ(d)| formed by irreducible curves of geometric

genus g, and let V ⊆ Vd,g(Σ) be any of its irreducible component. Applying Proposition 4.3 to the minimal

desingularization

π : S → Σ ⊂ P
3 (17)

of Σ, we obtain the bound

dim(V) 6 v0. (18)
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Therefore, for Σ ∈ F general,

dim(q−1(Σ) ∩ I ′) 6 v0 +Nd−n + 1. (19)

Hence by (16),

dim(I ′) 6 dim(F) + v0 +Nd−n + 1. (20)

To prove that Vn,g(X) = ∅ for X ∈ Ud general, one needs to prove that p|I′ is not dominant onto Ud, i.e.,

dim(I ′) < Nd (21)

for any I ′ as above. Thus (20) yields the following sufficient condition for (21) to hold:

dim(F) + v0 < Φ(n, d) := Nd −Nd−n − 1 =





3
2d(d+ 1) if n = 3

2d2 + 1 if n = 4

(22)

for all pairs (d, n) as in (15).

The proof of Theorem 4.1 reduces to check (22) for all possible parameter spaces F of cubics (resp., of

quartics) in P
3, whose general element Σ is irreducible.

4.3. The cubic case. Classification of irreducible cubic surfaces in P
3 started a century and a half ago by

Schläfli in [20] and Cayley in [4], see e.g., [12] for a historical account and references. About one hundred

years later, Bruce and Wall (see [2, 3]) reconsidered this classification via the modern theory of singularities.

Description 4.4. Let Σ ⊂ P
3 be an irreducible cubic surface. Then:

(i) either Σ has at most Du Val singularities, or

(ii) it is a cone over a plane cubic, or

(iii) it is a scroll which is not a cone.

Case (i) occurs for a general Σ ∈ L3; recall that N3 = dim(L3) = 19, see (1).

In case (ii) we will denote by C the irreducible closed subvariety of L3, whose general point corresponds

to a cone over a smooth, plane cubic. Clearly dim(C) = 12.

In case (iii) we will denote by R the irreducible closed subvariety of L3, whose general point corresponds

to an irreducible scroll Σ which is not a cone. Such a scroll Σ appears as the general projection in P
3 of

a smooth rational normal scroll S of degree 3 in P
4, and Sing(Σ) is a double line (see e.g., [3]). An easy

parameter count, which can be left to the reader, shows that dim(R) = 13.

We keep the notation of § 4.2. To prove that V3,g(X) = ∅ for X ∈ Ld general and d and g for all cases

with n = 3, i.e., as in the first, third and fourth line of (15), we will show that (22) holds. One has to

analyse cases (i)—(iii) of Description 4.4 occurring for Σ corresponding to the general point of F .

We will denote by H the hyperplane section class of Σ. By abuse of notation we will also denote by H

its total transform on the minimal desingularization S of Σ as in (17).

4.3.1. Case (i). We have ωΣ
∼= OΣ(−H) and KS = π∗(KΣ) = −H (see, e.g., [1, Lemma 1.2.2]).

Let V ⊆ Vd,g(Σ) be an irreducible component, let C be the curve corresponding to its general point, and

let Γ be the proper transform of C on S. Then Γ ∼ dH −D, where D > 0 is a π–exceptional divisor, which

takes into account if C passes through some of the singularities of Σ. Since every irreducible component of

D is a (−2)-curve, D ·KS = 0. Hence κ = KS · Γ = −3d.

By (18) and Proposition 4.3 we have dim(V) 6 v0 = 3d+ g− 1. Since dim(F) 6 19, a sufficient condition

for (22) to hold is

3d2 − 3d− 36 > 2g. (23)

Then (23) holds for all the (d, g) in (15) which correspond to n = 3. Hence the same is true for (22).

4.3.2. Case (ii). One has

dim(F) 6 dim(C) = 12. (24)

Let Y ⊂ P
2 be the plane cubic which is the base of the cone Σ. There are the following possibilities: (a) Y

is smooth; (b) Y is nodal; (c) Y is cuspidal. We will discuss cases (a) and (b) only, since (c) is similar to

(b) and can be left to the reader.
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4.3.3. Case (ii,a). The minimal desingularization of Σ is S = PY (OY ⊕OY (1)), which is a ruled surface with

base Y . We denote by F the numerical equivalence class of a fibre of the structure morphism σ : S → Y

and by E the section with E2 = −3 which is contracted to the vertex v of Σ. One has H ≡ E + 3F and

KS ≡ −E −H. With the usual notation, let Γ be the proper transform of C ∈ Vd,g(Σ) on S.

(†) If C does not pass through v, then Γ ≡ dH, κ = KS ·Γ = −3d, and by Proposition 4.3 we find the upper

bound v0 = 3d+ g− 1 in (18). Then the discussion proceeds as in case (i) above, with the same conclusion.

(‡) If C passes through v, then one has Γ ≡ dH − E. Indeed, a priori one has Γ ≡ dH − mE. On the

other hand, since X is smooth at v, the general ruling of the cone intersects X at d− 1 points off v; hence

Γ · F = d− 1, which proves m = 1 (the same holds in all cases below, dealing with cones).

Thus κ = KS · Γ = −3d − 3. By Proposition 4.3, we find v0 = g + 3d+ 2. Taking into account (24) and

proceeding as in case (i), one sees that (22) holds in all cases of (15) with n = 3.

4.3.4. Case (ii,b). As before, (24) holds. The minimal desingularization S of Σ is the Hirzebruch surface

F3 = P(OP1 ⊕ OP1(−3)). We denote again by F the numerical equivalence class of a fibre of the structure

morphism σ : S → P
1 and by E the section with E2 = −3 which is contracted to the vertex v of Σ. One

has H ≡ E + 3F and KS ≡ −2H + F .

Let Γ and C be as usual. Two cases have to be analyzed.

(†) If C does not pass through v, then Γ ≡ dH. One has κ = KS · Γ = −5d and v0 = 5d+ g − 1. By (24),

to prove that (22) holds, it suffices to show that 3d2 − 7d − 22 > 2g for all d and g in (15) with n = 3. A

direct computation confirms that this is the case.

(‡) C passes through v. As in case (ii,a)–(‡), one has Γ ≡ dH −E. Thus, κ = KS ·Γ = −5d− 1 and similar

computations as in the previous case show that (22) holds.

4.3.5. Case (iii). One has

dim(F) 6 dim(R) = 13. (25)

The minimal desingularization S of Σ is isomorphic to F1, with the structure map σ : S → P
1. We denote

by E the section of S with E2 = −1 and with F a fibre. Then H ≡ E + 2F and KS ≡ −2E − 3F . Since

Γ ≡ dH, we get κ = KS ·Γ = −5d, hence we find v0 = 5d+ g− 1 as in case (ii,b)–(†). By (25), to prove that

(22) holds it suffices to verify that 3d2 − 7d − 24 > 2g, for all d and g in (15) with n = 3. A direct check

shows that this is the case.

In conclusion, the above analysis shows that, for X ∈ Ud general, one has Vn,g(X) = ∅ for d, n, g as in

(15) with n = 3.

4.4. The quartic case. The only case left from (15) is d = 6, n = 4, g ∈ [14, 15]. To finish the proof of

Theorem 4.1 we have to verify that for X ∈ U6 general, one has V4,g(X) = ∅ for g ∈ {14, 15}.
We will keep the notation as in §4.2. From (22), one has Φ(4, 6) = 73 and dim(F) 6 34 = dim(L4).

Therefore, for (22) to hold, it suffices to prove the upper bound

v0 6 39. (26)

This is what we will do for all cases discussed below, except the last one, where the argument is different.

4.4.1. Classification of quartic surfaces. The classification of irreducible quartic surfaces in P
3 is as old as

that of cubics, see e.g., [12]. Similarly as for cubics, we will use a modern version elaborated in [16, 23, 24, 25],

which we shortly recall here. For any such quartic Σ one has ωΣ
∼= OΣ. As usual, we let π : S → Σ be the

minimal desingularization, and we keep the notation as in the cubic case.

First we treat the case Σ normal (see [23, 24]). If p ∈ Sing(Σ), the geometric genus of p is defined to be

pg(p) = dimC((R
1π∗OS)p)

(see [26] or [23, Def. 1])). We set

Irrat(Σ) := {p ∈ Sing(Σ) | pg(p) > 0},
which is the set of irrational singularities of Σ.
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Proposition 4.5. (cf. [23, Propositions 5,7,8, Theorem 1]) Let Σ ⊂ P
3 be a normal, irreducible quartic

surface. One has:

(a) if p ∈ Sing(Σ) and pg(p) = 0, then p is a Du Val singularity;

(b) there exists a unique effective divisor E on S such that OS(E) ∼= ω∨
S .

Moreover:

(i) if Irrat(Σ) = ∅, then S is a K3 surface, i.e., E = 0;

(ii) if Irrat(Σ) 6= ∅, then S is birationally equivalent to a ruled surface, E > 0 and its connected components

bijectively correspond via π to singularities in Irrat(Σ).

Furthermore, if q := h1(OS), then:

(ii-1) if q 6= 1, then Irrat(Σ) consists of a single point p such that pg(p) = q + 1;

(ii-2) if q = 1, then Irrat(Σ) consists either of one point p, with pg(p) = 2, or of two points pi, for i = 1, 2,

with pg(pi) = 1, that are both simple elliptic, i.e., π−1(pi) is a smooth, irreducible elliptic curve.

In case (ii) of Proposition 4.5, i.e., when Σ is a normal quartic surface in P
3 with irrational singular points,

there is a detailed classification in [16], which we will need to go through later. It can be briefly summarized

as follows.

Proposition 4.6. Let Σ ⊂ P
3 be a normal, irreducible quartic surface such that Irrat(Σ) 6= ∅. Then either

(i) q = 0 and Σ is rational, or

(ii) q = 1 and Σ is birational to an elliptic ruled surface or

(iii) q = 3 and Σ is a cone over a smooth plane quartic curve.

As for the non–normal case, we have:

Proposition 4.7. (cf. [25, Lemma 2.3]) Let Σ ⊂ P
3 be a non–normal, irreducible quartic surface. Then S

is either a scroll over a smooth curve of genus 2, or an elliptic scroll or a rational surface.

We will examine the various cases, first treating the normal, then the non–normal ones. Remember that

to accomplish the proof of Theorem 4.1 it suffices to establish inequality (26).

4.4.2. The K3 case. This is case (i) in Proposition 4.5. Then v0 = g 6 15 (cf. Proposition 4.3). So (26)

holds.

4.4.3. Normal quartic surfaces with an irrational singularity. Next we turn to case (ii) in Proposition 4.5,

which, according to Proposition 4.6, gives rise to various subcases. We refer to [16] for details. To make

the reading more accessible, let us first overview the terminology and the main classification principle in

[16]. The latter uses the triplets (X,B,G) consisting in a smooth, projective surface X, a smooth non-

hyperelliptic curve B of genus 3 on X, and an effective anticanonical divisor G ∈ | − KX |, where G 6= 0.

Such a triplet satisfies condition Cr if KX + B is nef and B ·G = r. If r ≥ 1, then blowing up σ : X ′ → X

at a point of B ∩G leads to a Cr−1-triplet (X
′, B′, G′) with B′ = σ∗(B)− F and G′ = σ∗(B)− F , where F

is the exceptional (−1)-curve. After r blowups one has a birational morphism ρ : S → X and one arrives at

a C0-triplet (S,H,E) where

H := ρ∗(B)−∆ and E := ρ∗(G)−∆, (27)

where ∆ is the total ρ–exceptional divisor. This process is called separation ([16, p. 947]) and (S,H,E)

is called the (result of the) separation of (X,B,G). Notice that the divisor E can be reducible and/or

non-reduced, even if G is reduced and irreducible. This may happen if G is singular and r ≥ 1.

One says that a C0-triplet (S,H,E) is a basic triplet (our terminology here slightly differs from the one

in [16]), if H meets every (−1)-curve on S. There exists a classification of all basic triplets into 4 types

A,B,C,D ([16, Theorem 1.7]), together with a list of examples of each type ([16, §2]) obtained via separation,

that we will permanently address below. The main theorem in [16, §3] asserts that this list is exhaustive, and
so describes all the normal quartic surfaces in P

3 with irrational singularities. Together with [16, Prop. 1.4],

this yields the following theorem.
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Theorem 4.8. Any basic triplet (S,H,E) arises as the minimal desingularization π = ϕ|H| : S → Σ of

a normal quartic surface Σ in P
3 with irrational singular points, where H is the pullback of a hyperplane

section of Σ which does not pass through any irrational singular point, and E is an effective π-exceptional

anticanonical divisor on S. Conversely, the minimal desingularization π : S → Σ of a normal quartic surface

Σ in P
3 with an irrational singular point yields a basic triplet (S,H,E), with H and E as before.

Keeping notation as in § 4.2, let C be an irreducible curve on Σ cut out by a smooth sextic surface X in

P
3, and let Γ be its proper transform on S. Then Γ ∼ 6H −D, where D is an effective π-exceptional divisor

on S. We write D = DE+D′, where DE is supported on Supp(E) and is contracted to Irrat(Σ)∩C, whereas

D′ is contracted to the Du Val singularities of Σ situated on C. From C ∼ 6H and E ·H = E ·D′ = 0 we

deduce

− κ = −KS · Γ = E · (6H −D) = −E ·D = −E ·DE , (28)

i.e the presence of Du Val singularities does not affect κ (this will be used in all cases discussed below).

Thus, (26) reads

v0 = max{g, g − κ− 1} = max{g, g − E ·DE − 1} ≤ 39 .

Since g ∈ {14, 15}, (26) follows once
− E ·DE ≤ 25 . (29)

We will check inequality (29) case by case.

4.4.4. The normal cone case. This is case (iii) in Proposition 4.6, i.e., Σ is the cone with vertex v over

a smooth quartic Y ⊂ P
2. Then S = P(OY ⊕ ωY ). If E0 is the section contracted by π to v, then

E2
0 = −4, E = −KS = 2E0, H · E0 = 0, and DE = E0 (remember the argument in §4.3.3, (‡)). Thus

−E ·DE = −2E2
0 = 8 and so (29) holds.

Next we examine case (i) in Proposition 4.6 (see [16] for the cases considered below).

4.4.5. Normal rational quartics: Case (a). This case is described in [16, § 2.2.1].

Let X be a weak (or generalized) del Pezzo surface of degree 2, i.e., −KX is nef and big and K2
X = 2, see

e.g., [12]. Then Bs(| −KX |) = ∅, dim(| −KX |) = 2, and ϕ|−KX | : X → P
2 is generically finite, of degree 2

(see [16, p. 944]). A general member B ∈ | − 2KX | is a smooth, non–hyperelliptic curve of genus 3 (see [16,

Lemma 2.1]). If G ∈ | −KX |, then B ·G = 4. Thus the triplet (X,B,G) satisfies condition C4 and we can

consider its separation (S,H,E) as in (27), which is a basic triplet. One has H2 = 4 and −KS ≡ E, with

E2 = −2. Note that |ρ∗(G)| has dimension 2 and is base point free. Furthermore, H · ρ∗(G) = 4.

According to Theorem 4.8, S is the minimal desingularization of the normal quartic surface Σ := ϕ|H|(S) ⊂
P
3, and π = ϕ|H| contracts E (and no other curve) to a unique irrational singular point p ∈ Σ, with pg(p) = 1

(see Proposition 4.5-(ii-1)).

Let C ∼ 6H be an irreducible curve on Σ of geometric genus g, and let Γ be the proper transform of C on

S. We have Γ ≡ 6H −D, with D = DE +D′ as above. From (27), −κ = E ·Γ = (ρ∗(G)−∆) ·Γ. Since Γ is

irreducible and non-rational, we have ∆ ·Γ > 0. Hence E ·Γ 6 (ρ∗(G)−∆) ·Γ 6 ρ∗(G) ·Γ = ρ∗(G) ·(6H−D).

Since ρ∗(G) is nef, one has ρ∗(G) ·D > 0. Thus −κ = E · Γ = ρ∗(G) · (6H −D) 6 ρ∗(G) · (6H) = 24. This

proves (29).

Remark 4.9. An equivalent description of Σ is gotten by taking the image of P2 via the rational map

determined by a linear system of curves of degree 6 with 7 double and 4 simple base points all on a cubic.

4.4.6. Normal rational quartics: Case (b). This case is described in [16, § 2.2.2].
Let Z be a weak del Pezzo surface of degree 1. Then | −KZ | is a pencil, and Bs(| −KZ |) consists of a

single point b (cf. [16, p. 944]). If L ∈ | − KZ |, then b is a smooth point of L. Let L′ be the irreducible

component of L containing b. One can choose a point q ∈ L′ such that:

(1) q is a smooth point for L, and

(2) OL(b− q), OL(2b− 2q) are not isomorphic to OL.

Then there exists a unique point q1 ∈ L′ satisfying OL(q1) ∼= OL(3b− 2q) and q1 6= b by condition (2).
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Let f : X → Z be the blowup of Z at q with exceptional divisor Ξ, and let G be the proper transform of

L on X. Let b′ = f−1(b) and {q′} = G∩Ξ. The points b′ and q′ are contained in the proper transform G′ of

L′. There is a smooth point q′1 ∈ G such that OG(3b
′−2q′) ∼= OG(q

′
1). Then f(q′1) = q1, {q′1} = Bs(|3G+Ξ|)

and h0(X,OX (3G + Ξ)) = 4.

A general member B ∈ |3G+Ξ| is a smooth, non-hyperelliptic curve of genus 3, and (X,B,G) is a triplet

satisfying condition C1, see [16, Lemma 2.2]. The separation of B and G consists in blowing–up ρ : S → X

at q′1 with exceptional divisor ∆. Letting H, E, and Ξ′ be the proper transforms of B, G and Ξ, respectively,

we get a basic triplet (S,H,E) with H ·E = 0, H2 = 4, KS = −E, and E2 = −1.

We let Λ be the total transform of L on S. Then Λ is nef, |Λ| is a pencil with Λ2 = 1, with a single base

point, Λ ·H = 4, and E = Λ− Ξ′ −∆, where Λ · Ξ′ = Λ ·∆ = 0.

One has Bs(|H|) = ∅, and π = ϕ|H| : S → P
3 is the minimal desingularization of the quartic Σ = π(S),

which contracts E (and only this curve) to an irrational singular point p ∈ Irrat(Σ) with pg(p) = 1.

For an irreducible curve C ∼ 6H on Σ of geometric genus g ∈ {14, 15}, we let as before Γ be the proper

transform of C on S. Then Γ ≡ 6H −D, with D = DE +D′ (cf. (28)). Since Γ is non–rational, we have

Ξ′ · Γ > 0 and ∆ · Γ > 0. Furthermore, Λ ·D > 0 since Λ is nef. Hence

−κ = E · Γ = (Λ− Ξ′ −∆) · Γ 6 Λ · Γ = Λ · (6H −D) 6 6Λ ·H = 24 .

Thus again (29) is satisfied.

Remark 4.10. The quartic Σ ⊂ P
3 in this case is the image of P2 under the rational map determined by a

linear system of curves of degree 9 with 8 triple and one double base points, all on a cubic.

4.4.7. Normal rational quartics: Case (c). This case is described in [16, § 2.2.3].
Consider the Hirzebruch surface F1 = P(OP1⊕OP1(1)). Let Ξ be the section with Ξ2 = −1 and F a ruling.

Fix a point x0 ∈ Ξ, and let F0 be the ruling containing x0. There exists a reduced divisor ∆ ∈ |2Ξ + 6F |
such that:

(1) if f : V → F1 is the double covering branched along ∆, then V has only Du Val singularities;

(2) Ξ |⊂ ∆;

(3) x0 ∈ ∆ ∩ Ξ and multx0(∆|Ξ) = 1;

(4) F0 |⊂ ∆ and F0 ∩∆ = {x0}.
Fixing such a ∆, we let λ : Y → V be the minimal desingularization of the double covering V as in (1).

The surface Y is rational, because it carries the pencil of rational curves |λ̃∗(F )|, where λ̃ = f ◦ λ : Y → F1.

One has KY ∼ λ̃∗(KF1 + Ξ + 3F ) ∼ λ̃∗(−Ξ). Letting G := λ̃∗(Ξ), by (2) and (3) above, there exists an

irreducible component G′ ⊂ G such that the induced morphism G′ → Ξ is a double covering, whereas the

other components of G are contracted by λ̃ to points of Ξ. These components are also contracted to singular

points of V , hence by (1), they are rational curves with self-intersection −2.

The morphism λ̃ is finite over an open neighborhood of x0 and λ̃−1(x0) consist of a single point b′ ∈ G′.

One has λ̃∗(F0) = F1 + F2, where F1, F2 are (−1)–curves such that F1 · F2 = 1 and F1 ∩ F2 = {b′}.
Let µ : Y → S be the blowdown of F1. Letting

E := µ∗(G) ∼ −KS , L := µ∗(F2), and b := µ(b′),

we get µ∗(E) = G+ F1 and λ̃∗(F ) ∼ µ∗(L). By [16, Lemma 2.5], |L+ 2E| is base point free and its general

member H is a smooth, non–hyperelliptic curve of genus 3, with H2 = 4. Then π = ϕ|H| maps S to a

normal quartic Σ ⊂ P
3 and contracts E (and only E) to a unique irrational singular point p ∈ Irrat(Σ) with

pg(p) = 1.

Note that E contains a component E′ := µ∗(G
′). The other (possible) components of E are rational curves

with self–intersection −2 and so, these have zero intersection with KS ≡ −E. Hence −1 = E2 = E · E′.

Since L = µ∗(F2), where L2 = 0, the linear system |L| is a base point free pencil of rational curves. One

has L · E = L · E′ = 2 (i.e., L has zero intersection with the components of E different from E′), and so

L ·H = 4.
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For C ∼ 6H on Σ of geometric genus g, we have Γ ≡ 6H−D, with D = DE+D′. Let α be the multiplicity

of E′ in DE. Then, from (28), κ = E ·DE = αE · E′ = −α. On the other hand, 2 6 L · Γ = 24 − 2α, thus

−κ = α 6 11 and so, (29) holds.

4.4.8. Quartic monoids. This case corresponds to quartic surfaces with a triple point (see [16, § 2.4]).
Explicitly, let B be a smooth quartic in P

2 and let G be a cubic in P
2, not necessarily reduced or irreducible.

Performing the separation of (P2, B,G), we have a basic triplet (S,H,E) with E2 = −3 and KS ∼ −E. The

morphism π = ϕ|H| sends S to a normal quartic Σ ⊂ P
3, contracting E to the only irrational (triple) point

p of Σ, with pg(p) = 1.

Letting Λ = H −E ∼ H +KS , we obtain a base point free linear system |Λ| of dimension 2, with Λ2 = 1

and pa(Λ) = 0. The morphism ϕ|Λ| : S → P
2 factors through the (stereographic) projection Σ → P

2 with

center p. In fact, this morphism is nothing but the above separation.

For C ∼ 6H on Σ of geometric genus g we have, as usual, Γ ≡ 6H −D, with D = DE +D′. Since |Λ|
cuts out on Γ a linear series of dimension 2, we have 4 6 Λ ·Γ = (H −E) · (6H −D) = 24+E ·DE. Hence,

from (28), −κ = −E ·DE 6 20 so (29) holds.

Next we turn to case (ii) in Proposition 4.6. In [16, § 2.3] (cf. also [24]) there is a classification, which we

will go through. From Proposition 4.5-(ii), the cardinality of Irrat(Σ) can be either 1 or 2.

4.4.9. Ruled elliptic normal quartics: Case (a). This case is described in [16, § 2.3.2].
Let Y be a smooth, elliptic curve, and let q1, q2 ∈ Y be such that 2q1 |∼ 2q2. Letting E = OY (q1)⊕OY (q2)

and X = P(E), we consider the structure morphism σ : X → Y and the fibres Fi := σ∗(qi), i = 1, 2. Let

further HE be the tautological divisor class on X and F the numerical class of a fibre.

The surface X possesses two sections Ξi ∼ HE −Fi, for i = 1, 2. One has Ξ1∩Ξ2 = ∅ and |−KX | = {G},
where G := Ξ1 + Ξ2. A general member B ∈ |HE − KX | is a smooth, non–hyperelliptic curve of genus 3

which intersects transversally Ξi at a point xi, i = 1, 2.

Let ρ : S → X be the blowup of X at the points xi with exceptional divisors ∆i, for i = 1, 2. Consider

the proper transform Ξ′
i of Ξi for i = 1, 2, the divisor E = Ξ′

1 + Ξ′
2 ≡ −KS , and the proper transform H of

B on S. Then K2
S = −2, H2 = 4, Ξ′2

i = −1, and H · Ξ′
i = 0, for i = 1, 2. We abuse notation and denote by

F the total transform on S of a ruling of X. One has H · F = 3.

Thus we got a separation (S,H,E) of B and G. The linear system |H| on S is base point free of dimension

3, and π = ϕ|H| maps S to a quartic surface Σ in P
3 with Irrat(Σ) = {p1, p2}, where pi = π(Ξ′

i) is a simple

elliptic singularity with pg(pi) = 1, for i = 1, 2. Since H · F = 3, Σ is swept out by an elliptic pencil of

rational normal cubics.

Take C ∼ 6H on Σ of geometric genus g. Then Γ ≡ 6H−D, with DE = α1Ξ
′
1+α2Ξ

′
2, α1, α2 non–negative

integers. From (28), one has −κ = α1 + α2. On the other hand, Γ · F = 18− (α1 + α2) > 2, because g > 1.

Hence −κ 6 16 and so, (29) holds.

4.4.10. Ruled elliptic normal quartics: Case (b). This case is contained in [16, § 2.3.1], to which we refer for

details.

Let Y be a smooth, elliptic curve with a line bundle A of degree 2. Letting E = OY ⊕A we consider the

elliptic ruled surface X = P(OY ⊕A) with the structure morphism σ : X → Y . We let Ξ1 denote the unique

section of σ with Ξ2
1 = −2, HE the tautological line bundle, and F the numerical class of a ruling. One has

h0(X,OX(HE )) = 3 and H2
E = 2, HE · Ξ1 = 0. Furthermore −KX ≡ HE + Ξ1. Hence | −KX | has Ξ1 as a

fixed component and |HE | as its movable part. If G ∈ | −KX |, then h0(G,OG) = 2. Letting G = Ξ1 + Ξ2,

we note that either Ξ1 ∩ Ξ2 = ∅, or Ξ2 consists of Ξ1 plus the sum of two fibres with class in |σ∗(A)|.
A general member B ∈ |−KX + σ∗(A)| is a smooth, non–hyperelliptic curve of genus 3 with B2 = 8 and

B ·G = 4. Note that B · Ξ1 = 0, so B ∩ Ξ1 = ∅. Thus (X,B,G) is a C4-triplet.
Performing a separation of (X,B,G), we obtain a basic triplet (S,H,E) with H and E ∼ −KS being the

proper transforms of B and G, respectively. We let Ei denote the proper transforms of Ξi, for i = 1, 2. One

has K2
S = −4, H2 = 4, H ·Ei = 0, and Ei

2 = −2, for i = 1, 2. We abuse notation and let F still denote the

total transform of a ruling F on S. One has H · F = 2.
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The linear system |H| is base point free of dimension 3, and π = ϕ|H| maps S to a normal quartic Σ ⊂ P
3.

Since H · F = 2, the surface Σ is swept out by an elliptic pencil of conics |F |. Furthermore, E = E1 + E2

is contracted to one or two irrational singular points. More precisely, if Ξ1 ∩ Ξ2 = ∅ and so E1 ∩ E2 = ∅,

then pi = π(Ei), i = 1, 2, are two distinct simple elliptic singularities of Σ with pg(pi) = 1. Otherwise

E2 = E1 + F1 + F2, where F1, F2 are two (may be coinciding) (−2)–curves obtained as a result of two

blowups on each of two (may be coinciding) fibres in |σ∗(A)|. In this case Σ has a unique irrational singular

point p with pg(p) = 2 (see Proposition 4.5-(ii-2)).

Take a curve C ∼ 6H on Σ of geometric genus g. According to the cardinality of Irrat(Σ), we consider

the following cases.

(1) If Irrat(Σ) = {p1, p2} with p1 6= p2, then Γ ≡ 6H − D and DE = α1E1 + α2E2 with αi non–negative

integers. One has −κ = 2(α1 + α2). On the other hand F · Γ = 12 − (α1 + α2) > 2 since g > 1 thus, from

(28), −κ 6 20.

(2) If Irrat(Σ) = {p}, then Γ ≡ 6H − D, with DE = αE1 + β1F1 + β2F2 for some non-negative integers

α, β1, β2. One has KS ·F1 = KS ·F2 = 0, thus −κ = 2α. As before, F ·Γ = 12−α > 2, hence again −κ 6 20.

In any case, (29) holds.

4.4.11. Ruled elliptic normal quartics: Case (c). This case is treated in [16, § 2.3.2, Case C2-2].
Let Y be a smooth, irreducible elliptic curve, and let q ∈ Y . Taking 0 6= ξ ∈ Ext1(OY (q),OY (q)) we

consider the corresponding rank two vector bundle E := Eξ on Y . We let X := P(E) and Fq := σ∗(q), where

σ : X → Y is the structure morphism. Let HE be the tautological divisor class on X and F the numerical

class of a fibre.

On X we consider a section Ξ0 ∼ HE − Fq corresponding to E →→ OY (q), so that Ξ2
0 = 0. Notice that

|Ξ0| = {Ξ0}, as it follows from h0(Y, E(−q)) = 1. One has | −KX | = {G}, where G := 2Ξ0.

Since |HE − KX | = |3Ξ0 + Fq|, one finds that Bs(|3Ξ0 + Fq|) consists of the single point b := Ξ0 ∩ Fq.

The general member B ∈ |3Ξ0 + Fq| is a smooth, non–hyperelliptic curve of genus 3 with B · Ξ0 = 1. Thus

(X,B,G) is a C2-triplet. The separation of B and G proceeds in two steps as follows.

On the first step, we let ρ1 : X1 → X be the blowup at b with exceptional divisor ∆1, and let G1 =

ρ∗1(G) − ∆1, B1 = ρ∗1(B) − ∆1, Ξ
′
0 = ρ∗1(Ξ0) − ∆1, and F ′

q = ρ∗1(Fq) − ∆1. Since B1 · G1 = 1, we get a

C1-triplet (X1, B1, G1) and a smooth point b1 on G1 with OG1(B1) ∼= OG1(b1). One has b1 ∈ ∆1, because

G1 = 2Ξ′
0 +∆1 and B1 · Ξ′

0 = 0, and furthermore, b1 ∈ Bs(|B1|) and b1 |∈ F ′
q.

On the second step, we consider the blowup ρ2 : S → X1 of X1 at b1 with exceptional divisor ∆2. In this

way, we arrive at a basic triplet (S,H,E), where

H = B∗
1 −∆2 = 3Ξ′′

0 + F ′′
q + 3∆′

1 + 2∆2 and E = G∗
1 −∆2 = 2Ξ′′

0 +∆′
1 ∼ −KS .

Here Ξ′′
0, F ′′

q , and ∆′
1 are the proper transforms on S of Ξ′

0, F ′
q, and ∆1, respectively. One has Ξ′2 =

−1,∆′
1
2 = −2, and Ξ′ ·∆′

1 = 1. Abusing notation, we still denote by F be total transform on S of a ruling

of X.

The linear system |H| is base point free of dimension 3, with H2 = 4 and H · F = 3. The associated

morphism π = ϕ|H| sends S to a quartic surface Σ in P
3 with a unique irrational singular point p = π(E).

It is swept out by an elliptic pencil |F | of rational normal cubics. One has E2 = −2 and pg(p) = 2.

For C ∼ 6H we have Γ ≡ 6H −D, with DE = αΞ′ + β∆′
1 for some non-negative integers α and β. Thus,

from (28), −κ = α. Since Γ · F = 18 − α > 2, then −κ 6 16. Thus again (29) holds.

This ends the discussion of the normal cases. We turn next to the non–normal cases (see Proposition

4.7).

4.4.12. Non–normal genus 2 scrolls. In this case Σ is a cone over an irreducible plane quartic Y with a node

or a cusp (see [25, Prop. 2.6]). The one–dimensional singular locus of Σ is a double line ℓ passing through

the vertex v of Σ.

The minimal desingularization of Σ is the surface S = P(OG⊕L), where G is the normalization of Y and

L ∈ Pic4(G), L 6∼= ω⊗2
Y . The morphism π : S → Σ ⊂ P

3 is determined by the tautological line bundle OS(1).

Letting H and E, be the sections corresponding to OG ⊕ L →→ L and to OG ⊕ L →→ OG, respectively, we
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obtain H2 = −E2 = 4, OS(1) = OS(H), H ≡ E +4F , and KS ≡ −2E − 2F ≡ −2H + 6F , where F stands,

as usual, for the class of a ruling of S.

Let C ∼ 6H be an irreducible curve of geometric genus g ∈ {14, 15} on Σ, and Γ its proper transform on

S. Since C is cut out on Σ by a smooth surface of degree 6, we have Γ ≡ 6H −αE, where α ∈ {0, 1}. Thus
−κ = −KS · Γ = 12 + 6α ≤ 18, and so (29) holds.

Next we consider the non–normal elliptic scrolls, see Proposition 4.7. There are two types of such scrolls

described in [25, § 1] as cases (II-1) and (II-2).

4.4.13. Non–normal elliptic scrolls: case (a). Take a smooth, irreducible elliptic curve G. Let N ∈ Pic0(G)

be non-trivial, and let M ∈ Pic2(G). Consider the ruled surface S := P(OG⊕N) together with the structure

morphism σ : S → G. Let D1 and D2 be the sections associated with OG ⊕N →→ OG and OG ⊕N →→ N ,

respectively, and let F be the ruling class. Then KS ≡ −2D1, and the line bundle H := OS(D1) ⊗ σ∗(M)

induces a finite birational morphism π = ϕ|H| : S → P
3 onto an irreducible quartic surface Σ.

The images ℓ1 = π(D1) and ℓ2 = π(D2) are skew double lines of Σ, and Sing(Σ) = ℓ1 ∪ ℓ2. The image

under π of any fibre of S is a line meeting both ℓ1 and ℓ2. The general plane section of Σ has two nodes at

the intersection points with ℓ1 and ℓ2, and its normalizations is G.

Let C ∼ 6H be an irreducible curve of geometric genus g on Σ. Then Γ ∼ 6H ≡ 6D1 + 12F , and so,

−κ = −KS · Γ = 24, proving again (29).

Remark 4.11. The construction of this scroll is classical. Once skew lines ℓ1, ℓ2 in P
3 have been fixed, take

a smooth, irreducible, elliptic curve G and two degree two maps fi : G → ℓi, i = 1, 2. For each x ∈ G, let

ℓx = 〈f1(x), f2(x)〉. Then Σ = ∪x∈Gℓx.

4.4.14. Non–normal elliptic scrolls: case (b). Let G be a smooth, irreducible elliptic curve, and let M ∈
Pic2(G) be a line bundle on G. Let E := Eξ be the rank–two vector bundle on G fitting in the non-split

sequence

0 → OG → E → OG → 0

associated to the choice of a non–zero ξ ∈ Ext1(OG,OG). Let S := P(E), together with the structure

morphism σ : S → G and the fibre class F . Let D1 be the section corresponding to E →→ OG, and let

H := OS(D1)⊗ σ∗(M). As in § 4.4.13, H defines a finite morphism π = ϕ|H| : S → P
3 onto an irreducible

quartic surface Σ. Then π(D1) is a double line ℓ of Σ, and any fibre of S is sent via π to a line of Σ

crossing ℓ. One has Sing(Σ) = ℓ. The general plane section H of Σ has an A3-singularity at H ∩ ℓ, and

its normalizations is G. Since Γ ∼ 6H ≡ 6D1 + 12F and KS ≡ −2D1, the computations go as in § 4.4.13

proving (29).

According to Proposition 4.7, we are left with the rational case. This gives rise to three items (see (III-A),

(III-B), (III-C) in [25, § 1]).
4.4.15. Rational non–normal quartics: case (a), the Segre surface. The Segre surface Σ ⊂ P

3 is the image

of a normal surface Σ̂ ⊂ P
4 of degree 4 with at most Du Val singularities under the linear projection

Πp : P4 99K P
3 with center p 6∈ Σ̂. The surface Σ̂ is the anticanonical image of a weak del Pezzo surface of

degree 4, i.e., the blowup of P2 at 5 points, see [21].

Apart from its one–dimensional singular locus Λ, which is in general a double conic (see Remark in [25, p.

277] for details), Σ can have further isolated Du Val singularities off Λ. We have −κ = −KS ·Γ = 6K2
S = 24,

proving (29).

4.4.16. Rational non–normal quartics: case (b). In this case Σ has a singular line ℓ, and its general plane

section has geometric genus 2, hence it is either nodal or cuspidal. Besides, Σ may have isolated Du Val

singularities off ℓ (cf. [25, Case (III-C), p. 269]).

The surface S is obtained by successively blowing–up P
2 at 9 points. The morphism π : S → Σ ⊂ P

3

is defined by H ∼ 4L − 2E1 − ∑9
i=2Ei, where L is the proper transform of a line in P

2 and Ei, for

i = 1, . . . , 9, are the (total) exceptional divisors of the blowups. In particular, KS = −3L +
∑9

i=1Ei, and

h0(S,OS(−KS)) = 1, i.e., there is only one cubic curve on P
2 passing through the 9 blown–up points,
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corresponding to a unique effective anticanonical divisor D on S. Note that π(D) = ℓ and that Σ is swept

out by a pencil of conics cut out by the planes containing ℓ, with the pullback Λ ∼ L− E1 on S.

The surface Σ can have further singularities along ℓ described in [25, Case (III-C), p. 269]. Consider the

morphisms S
ρ→ Σ̂

ν→ Σ, where ν is the normalization, ρ is the minimal resolution of singularities of Σ̂, and

π = ν ◦ ρ. Then any singular point of Σ̂ which is not Du Val lies on ν−1(ℓ) and is a rational triple point.

The number of such triple points is at most 2, their images on Σ are also triple points for Σ (which in this

case is a monoid). If ∆ is the fundamental cycle of such a triple point, then ∆ < D. Moreover Λ ·∆ = 1.

Let A be an irreducible component of ∆. Since H = Λ−KS and H ·A = 0, we have KS ·A = Λ ·A ∈ {0, 1}.
Since A ∼= P

1, then A2 ∈ {−2,−3}.
For two possible rational triple points of Σ, we let ∆1, ∆2 denote their fundamental cycles on S. If

C ∼ 6H is an irreducible curve of geometric genus g on Σ with the proper transform Γ on S, then Γ ≡
6H −∆′

1 −∆′
2, where the support of ∆′

i is contained in the support of ∆i, for i = 1, 2. If Ai is the unique

component of ∆i such that Λ · Ai = 1, we let αi be the multiplicity of Ai in ∆′
i, for i = 1, 2. Thus,

−κ = −KS · Γ = 12 +KS · (∆′
1 +∆′

2) = 12 + (α1 + α2). On the other hand, since Γ has genus g > 14, we

have 2 6 Γ · Λ = 12− (α1 + α2). Hence −κ 6 22, and so, (29) holds.

4.4.17. Rational non–normal quartics: case (c). In this case Σ is the image of a smooth surface S ⊂ P
5 via

the linear projection Πℓ : P
5 99K P

3 with center a line ℓ ⊂ P
5 disjoint from S (cf. [25, Case (III-A)]). In this

situation, π = Πℓ|S : S → Σ is the minimal desingularization of Σ, and either:

(1) S is the Veronese surface, i.e., S ∼= P
2 embedded in P

5 via the linear system |2L|, where L is a line on

P
2, and Σ is the Steiner’s Roman surface, or

(2) S ∼= F0, and its embedding in P
5 is given by |F1 +2F2|, where F1 and F2 are the two distinct rulings, or

(3) S = F2, and its embedding in P
5 is given by |D + F |, where D is a section with D2 = 2, and F is the

ruling.

Let C ∼ 6H on Σ and Γ on S be as before. Then in all cases −κ = 36, hence (29) does not hold. Therefore

we have to directly check if (22) holds. Since Φ(4, 6) = 73, (22) holds if dim(F) < 23. To see that this is

the case, consider the Rohn exact sequence

0 → OS(1)
⊕2 → NS|P5 → Nπ → 0

(see [8, (2.2)]), where Nπ is the normal sheaf to the map π. Since h1(S,OS(1)) = 0 in the above three cases,

one has

dimF 6 h0(S,Nπ) = h0(S,NS|P5)− 12.

On the other hand, h0(S,NS|P5) is the dimension of the component of Hilbert scheme described by the

surfaces S in the cases (1)–(3). Notice that the surfaces in case (3) are specializations of the ones in case

(2). Finally, we obtain

h0(S,NS|P5) = dim(Aut(P5))− dim(Aut(S)) =





27 in case (1)

29 in case (2).

(we leave the details to the reader; alternatively, see the proof of [8, Lemma (2.3)]). In conclusion, dim(F) 6

17 < 23, which finishes our proof.
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