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Abstract. In this paper we study Brill-Noether loci for rank-two, (semi)stable vector bundles on a general

curve C. Our aim is to describe the general member F of some of its components just in terms of extensions of
line bundles with suitable minimality properties, providing information both on families of irreducible, unisecant

curves of the ruled surface P(F) and on the birational geometry of the component of the Brill-Noether locus to

which F belongs.
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Introduction

Let C be a smooth, irreducible projective curve of genus g and UC(d) be the moduli space of (semi)stable,
degree d, rank-two vector bundles on C. In this paper we will be mainly concerned with C of general moduli.

Our aim is to study the Brill-Noether loci BkC(d) ⊂ UC(d) parametrizing (classes of) vector bundles
[F] ∈ UC(d) having h0(C,F) > k, with k a non-negative integer.

The classical Brill-Noether theory for line bundles on a general curve is very important and well established
(cf., e.g., [1]). Brill-Noether theory for higher-rank vector bundles is a very active research area (see References,
for some results in the subject), but several basic questions concerning Brill–Noether loci, like non-emptiness,
dimension, irreducibility, local structure, etc., are still open in general. Contrary to the rank-one case, the
Brill-Noether loci for C general do not always behave as expected (cf. e.g. [7] and § 7.1).
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Apart from its intrinsic interest, Brill-Noether theory is important in view of applications to other areas, like
birational geometry to mention just one (cf. e.g. [4, 6, 7, 22, 33]).

The most general existence result in the rank-two case is the following:

Theorem 0.1. (see [53]) Let C be a curve with general moduli of genus g > 1. Let k > 2 and i := k+2g−2−d >
2 be integers. Let ρkd := 4g − 3− ik and assume

ρkd > 1 when d odd, ρkd > 5 when d even.

Then BkC(d) is not empty and it contains a component B of the expected dimension ρkd.

This previous result is proved with a quite delicate degeneration argument (cf. also [13]); in some particular
cases, one has improvements of it (cf., e.g., [45, 27, 50, 51, 47, 15, 52, 26]).

The degeneration technique used in [53], though powerful, does not provide a geometric description of the
(isomorphism classes of) bundles F in BkC(d), in particular of the general one in a component. By “geometric
description” we mean a description of families of curves on the ruled surface P(F), in particular of unisecant
curves to its fibres. This translates in turn to exhibiting F as an extension of line bundles

(∗) 0→ N → F → L→ 0

(cf. (2.2)), which we call a presentation of F. Of particular interest is a presentation (∗) with suitable minimality
properties on the quotient line bundle L, which translate into minimality properties for families of irreducible
unisecant curves on the surface P(F) (cf. § 2 below).

This approach provides basic information about the vector bundle F, which can be useful in a field in which
so little is known and which has not been given so far: indeed, the description of such a minimal presentation
is not known in general and, in particular, has not been provided in Theorem 0.1.

One of the main objective of this paper is to shed some light on this subject. As a consequence of our
analysis, we provide explicit parametric representations (and so information about the birational geometry) of
some components of BkC(d) (cf. §’s 6, 7).

Viewing rank two vector bundles as extensions of line bundles is very classical: by suitably interpreting the
classical language, this goes back to C. Segre [42]. In recent times, it has been exploited, e.g., in [7, § 2,3],
[33, § 8], where the case of canonical determinant and g 6 12 has been treated. As noted in [7], this approach
“works well enough in low genera.... but seems difficult to implement in general ”. However, we tried to follow
this route, with no upper-bounds on the genus but, as we will see, by bounding the speciality i := h1(C,F).

Our approach is as follows. We construct (semi)stable vector bundles F in Brill-Noether loci, as extensions of
line bundles L and N : the Brill–Noether loci we hit in this way depend on the cohomology of L and N and on

the behaviour of the coboundary map H0(C,L)
∂−→ H1(C,N) associated to (∗), cf. §’s 4, 5; we exhibit explicit

constructions of such vector bundles in Theorems 5.1, 5.4, 5.10, 5.13. These theorems provide existence results
for BkC(d) which are comparable to, though slightly worse but easier to prove than, Theorem 0.1 (cf. Remark. 5.5–

(3)). At the same time, they imply non–emptiness for fibres of the determinant map BkC(d)→ Picd(C), i.e. for
Brill–Noether loci with fixed determinant det(F) := L ⊗ N , for any possible L and N as in the assumptions
therein; this is in the same spirit of [25], where however only the case with fixed determinant of odd degree has
been considered.

In any event, as we said, the main purpose of this paper is not the one of constructing new components of
Brill-Noether loci, but of providing a minimal presentation for the general element of components of BkC(d), for
C with general moduli. To do this, we take line bundles L and N with assumptions as in Theorems 5.1–5.13
and let them vary in their own Brill-Noether loci of their Picard schemes. Accordingly, we let the constructed
bundles F vary in suitable degeneracy loci Λ ⊆ Ext1(L,N), defined in such a way that F ∈ Λ general has the
desired speciality i (cf. § 6). In this way we obtain irreducible varieties parametrizing triples (L,N,F), i.e.
any such variety is endowed with a morphism π to UC(d), whose image is contained in a component B of a
Brill-Noether locus. To find a minimal presentation (∗) for a general member F of B, we are reduced to find
conditions on L, N and on the coboundary map ∂ ensuring the morphism π to be dominant onto B. We achieve
this goal by using results in § 2, which deal with the study of some families of irreducible unisecants of given
speciality on the ruled surface P(F) (cf. Lemmas 6.2, 6.8, Corollaries 6.5, 6.7, 6.9, 6.12 and Remarks 6.16, 6.17).

As is clear from the foregoing description, to find a presentation of F general in a component of a Brill-Noether
locus is a difficult problem in general. We are able to solve it here for i 6 3.

Our main results for Brill–Noether loci BkC(d) are Theorems 7.1, 7.5, 7.11, which respectively deal with cases
i = 1, 2, 3 and k = d− 2g + 2 + i. A first fact we prove therein is that (a component of) BkC(d) is filled-up by
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vector bundles F having a minimal special presentation as

0→ N → F → ωC(−Di−1)→ 0,

where Di−1 ∈ Symi−1(C), N ∈ Picd−2g+1−i and F ∈ Λi−1 are general, where Λi−1 is a good component of the
degeneracy locus{

F ∈ Ext1(ωC(−Di−1), N) | dim Coker
(
H0(C,L)

∂−→ H1(C,N)
)
> i− 1

}
⊆ Ext1(ωC(−Di−1), N)

(cf. Def. 2.10, for precise definitions of special presentation and minimality, Rem. 5.7 and Defs. 5.12, 6.13, for
goodness, and Thms. 5.8, 5.17, for existence of good components). The case i = 1 was already treated in [3]
with different methods (cf. Remark 7.2); in cases i = 2, 3 our results are new.

Statements of our main results, to which the reader is referred, contain even more. Indeed they also describe
families of special, irreducible unisecants of P(F) which are of minimal degree with respect to its tautological
line bundle. Apart from its intrinsic interest, this description plays a fundamental role when one tries to
construct components of the Hilbert scheme parametrizing linearly normal, genus g and degree d special scrolls
in projective spaces and whose general point parametrizes a stable scroll (cf. e.g. [14]).

Finally, the proofs of Theorems 7.1, 7.5, 7.11 show in particular that the map π from the parameter space
of triples (L,N,F) to (the dominated component of) BkC(d) is generically finite, sometimes even birational (cf.
Rmk. 7.2–(3)), giving therefore information about the birational geometry of the Brill–Noether locus.

Other main results of the paper are given by Theorems 7.3, 7.10, 7.19 which deal with the canonical deter-
minant case.

In principle, there is no obstruction in pushing further the ideas in this paper, to treat higher speciality
cases. However, this is increasingly complicated and therefore we limited ourselves to expose at the end of the
paper a few suggestions on how to proceed in general and propose a conjecture (see § 7.5).

The paper is organized as follows. Section 2 is devoted to preliminaries about families of special, irreducible
unisecants on ruled surfaces P(F) and the corresponding special presentation of the bundle F. Sections 3 and
4 are devoted to recalling basic facts on (semi)stable, rank–two vector bundles of degree d, extensions of line
bundles, and useful results of Lange–Narashiman and Maruyama (cf. Proposition 4.4 and Lemma 4.5). Section
5 is the technical one, which contains our constructions of vector bundles in Brill-Noether loci as extensions
of line bundles L and N . Section 6 is where we deal with parameter spaces of triples and maps from them to
UC(d), landing in Brill-Noether loci. The general machinery developed in the previous sections is then used in
§ 7, in order to prove our main results mentioned above.

1. Notation and terminology

In this paper we work over C. All schemes will be endowed with the Zariski topology. We will interchangeably
use the terms rank-r vector bundle on a scheme X and rank-r locally free sheaf.

We denote by ∼ the linear equivalence of divisors, by ∼alg their algebraic equivalence and by ≡ their
numerical equivalence. We may abuse notation and identify divisor classes with the corresponding line bundles,
interchangeably using additive and multiplicative notation.

If P is the parameter space of a flat family of subschemes of X and if Y is an element of the family, we denote
by Y ∈ P the point corresponding to Y . If M is a moduli space, parametrizing geometric objects modulo a
given equivalence relation, we denote by [Z] ∈M the moduli point corresponding to the equivalence class of Z.

Let
• C be a smooth, irreducible, projective curve of genus g, and
• F be a rank-two vector bundle on C.

Then, F := P(F)
ρ→ C will denote the (geometrically) ruled surface (or the scroll) associated to (F, C); f will

denote the general ρ-fibre and OF (1) the tautological line bundle. A divisor in |OF (1)| will be usually denoted

by H. If Γ̃ is a divisor on F , we will set deg(Γ̃) := Γ̃H.
We will use the notation

d := deg(F) = deg(det(F)) = H2 = deg(H);

i(F) := h1(F) is called the speciality of F and will be denoted by i, if there is no danger of confusion. F (and
F ) is non-special if i = 0, special otherwise.

As customary, W r
a (C) will denote the Brill-Noether locus, parametrizing line bundles A ∈ Pica(C) such that

h0(A) > r + 1,
ρ(g, r, a) := g − (r + 1)(r + g − a)
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the Brill-Noether number and

µ0(A) : H0(C,A)⊗H0(ωC ⊗A∨)→ H0(C,ωC) (1.1)

the Petri map. As for the rest, we will use standard terminology and notation as in e.g. [1], [21], etc.

2. Scrolls unisecants

We recall some basic facts on unisecant curves of the scroll F (cf. [17, 19] and [21, V-2]).
One has Pic(F ) ∼= Z[OF (1)] ⊕ ρ∗(Pic(C)) (cf. [21, § 5, Prop. 2.3]). Let DivF be the scheme (not of finite

type) of effective divisors on F , which is a sub-monoid of Div(F ). For any k ∈ N, let DivkF be the subscheme

(not of finite type) of DivF formed by all divisors Γ̃ such that OF (Γ̃) ∼= OF (k)⊗ ρ∗(N∨), for some N ∈ Pic(C)
(this N is uniquely determined); then one has a natural morphism

Ψk : DivkF → Pic(C), Γ̃
Ψk−→ N.

If D ∈ Div(C), then ρ∗(D) will be denoted by fD. Then Γ̃ ∈ DivkF if and only if Γ̃ ∼ kH − fD, for some

D ∈ Div(C), and deg(Γ̃) = k deg(F)− deg(D).
The curves in Div1

F are called unisecants of F . Irreducible unisecants are isomorphic to C and called sections
of F . For any positive integer δ, we consider (cf. [19, § 5])

Div1,δ
F := {Γ̃ ∈ Div1

F | deg(Γ̃) = δ},
which is the Hilbert scheme of unisecants of degree δ of F (w.r.t. H).

Remark 2.1. Let Γ̃ = Γ + fA be a unisecant, with Γ a section and A effective. Equivalently, we have an exact
sequence

0→ N(−A)→ F → L⊕ OA → 0 (2.1)

(cf. [10, 12]); in particular if A = 0, i.e. Γ̃ = Γ is a section, F fits in the exact sequence

0→ N → F → L→ 0 (2.2)

and
NΓ/F

∼= L⊗N∨, so Γ2 = deg(L)− deg(N) = 2δ − d, (2.3)

(cf. [21, § V, Prop. 2.6, 2.9]). Accordingly Ψ1,δ : Div1,δ
F → Picd−δ(C), the restriction of Ψ1, endows Div1,δ

F

with a structure of Quot scheme: with notation as in [43, § 4.4], one has

Φ1,δ : Div1,δ
F

∼=−→ QuotCF,δ+t−g+1

Γ̃ −→ {F →→ L⊕ OA} .
(2.4)

From standard results (cf. e.g. [43, § 4.4]), (2.4) gives identifications between tangent and obstruction spaces:

H0(NΓ̃/F ) ∼= T[Γ̃](Div1,δ
F ) ∼= Hom(N(−A), L⊕ OA) and H1(NΓ̃/F ) ∼= Ext1(N(−A), L⊕ OA) (2.5)

Finally, if Γ̃ ∼ H − fD, then one easily checks that

|OF (Γ̃)| ∼= P(H0(F(−D))). (2.6)

Definition 2.2. Γ̃ ∈ Div1,δ
F is said to be:

(a) linearly isolated (li) if dim(|OF (Γ̃)|) = 0,

(b) algebraically isolated (ai) if dim(Div1,δ
F ) = 0.

Remark 2.3. (1) If Γ̃ is ai, then it is also li but the converse is false (c.f. e.g. Example 2.9, Corollary 6.12).

(2) When Div1,δ
F is of pure dimension, a sufficient condition for Γ̃ to be ai is h0(NΓ̃/F ) = 0 (cf. e.g. Theorem

5.4, Corollary 6.7 and § 7.1 below).

2.1. The Segre-invariant.

Definition 2.4. The Segre invariant of F is defined as

s(F) := deg(F)− 2(max {deg(N)}),
where the maximum is taken among all sub-line bundles N of F (cf. e.g. [24]). The bundle F is stable [resp.
semi–stable], if s(F) > 0 [resp. if s(F) > 0].

Equivalently F is stable [resp. semistable] if for every sub-line bundle N ⊂ F one has µ(N) < µ(F) [resp.
µ(N) ≤ µ(F)], where µ(E) = deg(E)/rk(E) is the slope of a vector bundle E.
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Note that, for any A ∈ Pic(C), one has
s(F) = s(F ⊗A). (2.7)

Remark 2.5. From (2.3), s(F) coincides with the minimum self-intersection of sections of F . In particular, if

Γ ∈ Div1,δ
F is a section s.t. Γ2 = s(F), then s(F) = 2δ− d and Γ is a section of minimal degree of F , i.e. for any

section Γ′ ⊂ F one has deg(Γ′) > deg(Γ).

We recall the following fundamental result.

Proposition 2.6. Let C be of genus g > 1 and let F be indecomposable. Then, 2− 2g 6 s(F) 6 g.

Proof. The lower-bound follows from F being indecomposable (see e.g. [21, V, Thm. 2.12(b)]). The upper-
bound is Nagata’s Theorem (see [34]). �

2.2. Special scrolls unisecants. In the paper we will be mainly concerned about the speciality of unisecants
of a (necessarily special) scroll F .

Definition 2.7. For Γ̃ ∈ DivF , we set OΓ̃(1) := OF (1) ⊗ OΓ̃. The speciality of Γ̃ is i(Γ̃) := h1(OΓ̃(1)). Γ̃ is

special if i(Γ̃) > 0.

If Γ̃ is given by (2.1), then by (2.6) one has Γ̃ ∈ |OF (1)⊗ ρ∗(N∨(A))|. Applying ρ∗ to the exact sequence

0→ OF (1)⊗ OF (−Γ̃)→ OF (1)→ OΓ̃(1)→ 0

and using ρ∗(OF (1)⊗ OF (−Γ̃)) ∼= N(−A), R1ρ∗(OF (ρ∗(N(−A))) = 0, we get

i(Γ̃) = h1(L⊕ OA) = h1(L) = i(Γ), (2.8)

where Γ the unique section in Γ̃.
The following examples show that, in general, speciality is not constant either in linear systems or in algebraic

families.

Example 2.8. Take g = 3, i = 1 and d = 9 = 4g−3. There are smooth, linearly normal, special scrolls S ⊂ P5

of degree 9, speciality 1, sectional genus 3 with general moduli containing a unique special section Γ which is
a genus 3 canonical curve (cf. [11, Thm. 6.1]). Moreover, Γ is the unique section of minimal degree 4 (cf. also

[42]). There are lines f1, . . . , f5 of the ruling, such that Γ̃ := Γ + f1 + . . .+ f5 ∈ |H|, where H the hyperplane

section of S. These curves Γ̃ vary in a sub-linear system of dimension 2 contained in |H|, whose movable part

is the complete linear system |f1 + · · ·+ f5|. The curves as Γ̃ are the only special unisecants in |H|.

Example 2.9. Let C be a non-hyperelliptic curve of genus g > 3, d = 3g− 4 and N ∈ Picg−2(C) general. N is
non-effective with h1(N) = 1. Consider Ext1(ωC , N). It has dimension 2g−1 and its general point gives rise to
a rank-two vector bundle F of degree d, fitting in an exact sequence like (2.2), with L = ωC . By generality, the
coboundary map ∂ : H0(ωC) → H1(N) ∼= C is surjective (cf. Corollary 5.9 below); therefore i(Fu) = 1. Since
F is of rank-two with det(F) = ωC ⊗N , by Riemann-Roch one has h0(F⊗N∨) = 1. From (2.6), the canonical
section Γ ⊂ F , corresponding to F →→ ωC , is li. From (2.3), NΓ/F

∼= ωC ⊗ N∨ hence hi(NΓ/F ) = 1 − i,
for i = 0, 1. Let D be the irreducible, one-dimensional component of the Hilbert scheme containing the point
corresponding to Γ (which is smooth for the Hilbert scheme). Therefore D is an algebraic (non-linear) family
whose general member is a li section. As a consequence of Proposition 2.12 below, Γ is the only special section
in D. In particular, if all curves in D are irreducible, then Γ is the only special curve in D (see Lemma 2.11).

Note that F is indecomposable. Indeed, assume F = A⊕B, with A, B line bundles. Since h0(F⊗N∨) = 1,
we may assume h0(A−N) = 1 and h0(B−N) = 0. By the genericity of N , A−N and B−N are both general
of their degrees. Therefore deg(A − N) = g, hence deg(A) = 2g − 2 and deg(B) = g − 2. The image of A in
the surjection F →→ ωC is zero, otherwise A = ωC hence B = N which is impossible, because h0(B −N) = 0.
Then we would have an injection A ↪→ N which is impossible by degree reasons.

Since Div1,δ
F is a Quot-scheme, there is the universal quotient Q1,δ → Div1,δ

F . Taking Proj(Q1,δ)
p→ Div1,δ

F ,
we can consider

S
1,δ
F := {Γ̃ ∈ Div1,δ

F | R1p∗(OP(Q1,δ)(1))Γ̃ 6= 0} and aF (δ) := dim(S1,δ
F ), (2.9)

i.e. S
1,δ
F is the support of R1p∗(OP(Q1,δ)(1)). It parametrizes degree δ, special unisecants of F .

Definition 2.10. Let Γ̃ be a special unisecant of F . Assume Γ̃ ∈ F, where F ⊆ Div1,δ
F is a subscheme.

• We will say that Γ̃ is:

(i) specially unique (su) in F, if Γ̃ is the only special unisecant in F, or
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(ii) specially isolated (si) in F, if dimΓ̃

(
S

1,δ
F ∩ F

)
= 0.

• In particular:

(a) when F = |OF (Γ̃)|, Γ̃ is said to be linearly specially unique (lsu) in case (i) and linearly specially isolated
(lsi) in case (ii);

(b) when F = Div1,δ
F , Γ̃ is said to be algebraically specially unique (asu) in case (i) and algebraically specially

isolated (asi) in case (ii).
• When a section Γ ⊂ F is asi, we will say that F is rigidly specially presented (rsp) as F →→ L or by the
sequence (2.2) corresponding to Γ. When Γ is ai (cf. Def. 2.2), we will say that F is rigidly presented (rp) via
F →→ L or (2.2).

For examples, c.f. e.g. § 7 below.

Lemma 2.11. Let Γ ⊂ F be a section corresponding to a sequence as in (2.2). A section Γ′, corresponding to
F →→ L′, is s.t. Γ ∼ Γ′ if and only if L ∼= L′. In particular
(a) i(Γ) = i(Γ′);
(b) Γ is lsu if and only if it is lsi if and only if it is li.

Proof. The first assertion follows from (2.6). Then, (a) and (b) are both clear. �

Proposition 2.12. Let F be indecomposable and let Γ ∈ F ⊆ S
1,δ
F be a section, where F is an irreducible,

projective scheme of dimension k. Assume:
(a) k > 1, if F is a linear system;
(b) either k > 2, or k = 1 and F with base points, if F is not linear.

Then, F contains reducible unisecants Γ̃ with

i(Γ̃) > i(Γ). (2.10)

Proof. If k > 2, let t be the unique integer such that 0 6 k′ := k − 2t 6 1. Let f1, . . . , ft be t general ρ-fibres
of F . Since k′ > 0, by imposing to the curves in F to contain fixed general pairs of points on f1, . . . , ft, we see
that

F′ := F

(
−

t∑
i=1

fi

)
⊂ F

is non-empty, all components of it have dimension k′, and they all parametrize unisecants Γ′ ∼alg Γ−
∑t
i=1 fi.

Then F contains reducible elements Γ̃, and they verify (2.10) by upper-semicontinuity. This proves the assertion
when k > 2.

So we are left with the case k = 1. Assume first that F is a linear pencil. Since F ⊆ |OF (Γ)|, from the exact
sequence 0→ OF → OF (Γ)→ OΓ(Γ)→ 0, the line bundle OΓ(Γ) is effective so Γ2 > 0. Let Bs(F) be the base
locus of F. If Γ2 > 0, take p ∈ Bs(F). We can clearly split off the fibre through p with one condition, thus
proving the result.

If Γ2 = 0, F is a base-point-free pencil. So F contains two disjoint sections and this implies that F is
decomposable, a contradiction.

Finally, if F is non-linear, then Bs(F) 6= ∅ and we can argue as in the linear case with Γ2 > 0. �

3. Brill-Noether loci

As usual, UC(d) denotes the moduli space of (semi)stable, degree d, rank-two vector bundles on C. The
subset UsC(d) ⊆ UC(d) parametrizing (isomorphism classes of) stable bundles, is an open subset. The points in
UC

ss(d) := UC(d)\UsC(d) correspond to (S-equivalence classes of) strictly semistable bundles (cf. e.g. [41, 44]).

Proposition 3.1. Let C be a smooth curve of genus g > 1 and let d be an integer.
(i) If d > 4g − 3, then for any [F] ∈ UC(d), one has i(F) = 0.
(ii) If g > 2 and d > 2g − 2, for [F] ∈ UC(d) general, one has i(F) = 0.

Proof. For (i), see [36, Lemma 5.2]; for (ii) see [27, p. 100] or [2, Rem. 3]. �

Thus, from Proposition 3.1, Serre duality and invariance of stability under operations like tensoring with a
line bundle or passing to the dual bundle, for g > 2 it makes sense to consider the proper sub-loci of UC(d)
parametrizing classes [F] such that i(F) > 0 for

2g − 2 6 d 6 4g − 4. (3.1)
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Definition 3.2. Given non-negative integers d, g and i, we set

ki = d− 2g + 2 + i. (3.2)

Given a curve C of genus g, we define

BkiC (d) :=
{

[F] ∈ UC(d) |h0(F) > ki
}

=
{

[F] ∈ UC(d) |h1(F) > i
}

which we call the kthi –Brill-Noether locus.

Remark 3.3. The Brill-Noether loci BkiC (d) have a natural structure of closed subschemes of UC(d):
(a) When d is odd, UC(d) = UsC(d), then UC(d) is a fine moduli space and the existence of a universal bundle

on C × UC(d) allows one to construct BkiC (d) as the degeneracy locus of a morphism between suitable vector

bundles on UC(d) (see, e.g. [20, 30]). Accordingly, the expected dimension of BkiC (d) is max{−1, ρkid }, where

ρkid := 4g − 3− iki (3.3)

is the Brill-Noether number. If ∅ 6= BkiC (d) 6= UC(d), then Bki+1
C (d) ⊆ Sing(BkiC (d)). Since any [F] ∈ BkiC (d)

is stable, it is a smooth point of UC(d) and T[F](UC(d)) can be identified with H0(ωC ⊗ F ⊗ F∨)∨. If [F] ∈
BkiC (d) \Bki+1

C (d), the tangent space to BkiC (d) at [F] is the annihilator of the image of the cup–product, Petri
map of F (see, e.g. [51])

PF : H0(C,F)⊗H0(C,ωC ⊗ F∨) −→ H0(C,ωC ⊗ F ⊗ F∨). (3.4)

If [F] ∈ BkiC (d) \Bki+1
C (d), then

ρkid = h1(C,F ⊗ F∨)− h0(C,F)h1(C,F)

and BkiC (d) is non–singular, of the expected dimension at [F] if and only if PF is injective.
(b) When d is even, UC(d) is not a fine moduli space (because UssC (d) 6= ∅). There is a suitable open, non-empty
subscheme Qss ⊂ Q of a certain Quot scheme Q defining UC(d) via the GIT-quotient sequence

0→ PGL(q)→ Qss
π−→ UC(d)→ 0

(cf. e.g. [46] for details); one can define BkiC (d) as the image via π of the degeneracy locus of a morphism between
suitable vector bundles on Qss. The fibres of π over strictly semistable bundle classes are not isomorphic to
PGL(q). It may happen for a component B of a Brill–Noether locus to be totally contained in UssC (d); in this

case the lower bound ρkid for the expected dimension of B is no longer valid (cf. Corollary 6.9 below and [8,

Remark 7.4]). The lower bound ρkid is still valid if B ∩ UsC(d) 6= ∅.

Definition 3.4. Assume BkiC (d) 6= ∅. A component B ⊆ BkiC (d) such that B∩UsC(d) 6= ∅ will be called regular,

if dim(B) = ρkid , superabundant, if dim(B) > ρkid .

4. (Semi)stable vector bundles and extensions

In this section we discuss how to easily produce special, (semi)stable vector bundles F as extensions of line
bundles L and N as in (2.2). This is the same as considering vector bundles F, with a sub-line bundle N s.t.
F ⊗N∨ has a nowhere vanishing section.

If g = 2, in the range (3.1) one has bundles F with slope 1 6 µ(F) 6 2 on a hyperelliptic curve, which have
been studied in [8, 9, 29, 31]. Thus, we will assume C non-hyperelliptic of genus g > 3, with d as in (3.1).

4.1. Extensions and a result of Lange-Narashiman. Let δ 6 d be a positive integer. Consider L ∈ Picδ(C)

and N ∈ Picd−δ(C); Ext1(L,N) parametrizes (strong) isomorphism classes of extensions (cf. [16, p. 31]). Any
u ∈ Ext1(L,N) gives rise to a degree d, rank-two vector bundle F = Fu as in (2.2). In order to get Fu
(semi)stable, a necessary condition is (cf. Remark 2.5)

2δ − d > 0. (4.1)

Therefore, by Riemann-Roch theorem, we have

m := dim(Ext1(L,N)) =

{
2δ − d+ g − 1 if L |∼= N
g if L ∼= N.

(4.2)

Lemma 4.1. Let F be a (semi)stable, special, rank-two vector bundle on C of degree d > 2g−2. Then F = Fu,
for a special, effective line bundle L on C, N = det(F)⊗ L∨ as in (2.2) and u ∈ Ext1(L,N).

Proof. By Serre duality, i(F) > 0 gives a non-zero morphism F
σ∨→ ωC . The line bundle L := Im(σ∨) ⊆ ωC is

special. Set δ = deg(L). Since F is (semi)stable, then (4.1) holds hence δ > d
2 > g − 1, therefore χ(L) > 0, so

L is effective. �



8 CIRO CILIBERTO AND FLAMINIO FLAMINI

Remark 4.2. In the setting of Lemma 4.1, consider the scroll F = P(F) and let Γ ⊂ F be the section corre-

sponding to L, with L ∈ Picδ(C) a special, effective quotient of minimal degree of F. Suppose F indecomposable.
From Proposition 2.12, one has

Γ ⊂ F is li with aF (δ) 6 1, (4.3)

where aF (δ) as in (2.9). Then F is rsp via L if aF (δ) = 0, and even rp if Γ is ai.

Fix L special, effective of degree δ and N of degree d − δ, where d satisfies (3.1) and (4.1) (so deg(L) >
deg(N) > 0). We fix once and for all the following notation:

j := h1(L) > 0, ` := h0(L) = δ − g + 1 + j > 0,
r := h1(N) > 0, n := h0(N) = d− δ − g + 1 + r > 0.

(4.4)

Any u ∈ Ext1(L,N) gives rise to the following diagram

(u) : 0→ N → Fu → L → 0
deg d− δ d δ
h0 n `
h1 r j

(4.5)

Let
∂u : H0(L)→ H1(N)

be the coboundary map (simply denoted by ∂ if there is no danger of confusion) and let cork(∂u) := dim(Coker(∂u)).
Then

i(Fu) = j + cork(∂u).

As for (semi)stability of Fu, information can be obtained by using [24, Prop. 1.1] (see Proposition 4.4 below)
and the projection technique from [14] (see Theorem 5.4 below).

For the reader’s convenience, we recall [24, Prop. 1.1] (cf. also [6, §’s 3, 4], [7, § 3]). Take u ∈ Ext1(L,N).
Tensor by N∨ and consider Ee := Fu ⊗N∨, which is an extension

(e) : 0→ OC → Ee → L⊗N∨ → 0,

where e ∈ Ext1(L⊗N∨,OC). Then deg(Ee) = 2δ− d. From (2.7), one has s(Fu) = s(Ee) and, by Serre duality,
u and e define the same point in

P := P(H0(KC + L−N)∨). (4.6)

Remark 4.3. If deg(L − N) = 2δ − d > 2, then dim(P) > g > 3 and the map ϕ := ϕ|KC+L−N | : C → P is

a morphism. Set X := ϕ(C) ⊂ P. For any positive integer h denote by Sech(X) the hth-secant variety of X,
defined as the closure of the union of all linear subspaces 〈ϕ(D)〉 ⊂ P, for all effective general divisors of degree
h. One has

dim(Sech(X)) = min{dim(P), 2h− 1}. (4.7)

Proposition 4.4. (see [24, Prop. 1.1]) Let 2δ − d > 2. For any integer

σ ≡ 2δ − d (mod 2) and 4 + d− 2δ 6 σ 6 2δ − d,
one has

s(Ee) > σ ⇔ e ∈| Sec 1
2 (2δ−d+σ−2)(X).

To end this section, we remark that later on we will need the following technical result.

Lemma 4.5. Let L and N be as in (4.5) and such that h0(N − L) = 0. Take u, u′ ∈ Ext1(L,N) such that:
(i) the corresponding rank-two vector bundles Fu and Fu′ are stable, and
(ii) there exists an isomorphism ϕ

0→ N
ι1−→ Fu′ → L → 0

↓ϕ
0→ N

ι2−→ Fu → L → 0

such that ϕ ◦ ι1 = λι2, for some λ ∈ C∗.
Then Fu = Fu′ , i.e. u, u′ are proportional vectors in Ext1(L,N).

Proof. The proof is similar to that in [28, Lemma 1] so it can be left to the reader. �

5. Stable bundles as extensions of line bundles

In this section we start with line bundles L and N on C as in § 4, and consider rank–two vector bundles F

on C arising as extensions as in (2.2). We give conditions under which F is stable, with a given speciality, and
L is a quotient with suitable minimality properties.
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5.1. The case N non-special. Here we focus on the case N non-special. Notation as in (4.4), (4.5), with
therefore r = 0 (by the non-speciality assumption).

Theorem 5.1. Let j > 1 and g > 3 be integers. Let C be of genus g with general moduli. Let δ and d be
integers such that

δ 6 g − 1 +
g

j
− j, (5.1)

δ + g − 1 6 d 6 2δ − 2. (5.2)

Let N ∈ Picd−δ(C) be general and L ∈W δ−g+j
δ (C) be a smooth point (i.e. L of speciality j and so h0(L) = ` as

in (4.4)). Then, for u ∈ Ext1(L,N) general, the corresponding rank-two vector bundles Fu is indecomposable
with:
(i) s(Fu) = 2δ − d. In particular 2 6 s(Fu) 6 g

j − j, hence Fu is also stable;

(ii) i(Fu) = j;
(iii) L is a quotient of minimal degree of Fu.

Remark 5.2. (1) Inequality in (5.1) is equivalent to ρ(g, `− 1, δ) > 0, where ρ(g, `− 1, δ) is the Brill-Noether

number as in §1 for line bundles L ∈ Picδ(C) of speciality j; this is a necessary and sufficient condition for C of
genus g with general moduli to admit such a line bundle L (cf. [1]). For what concerns (5.2), the upper-bound
on d reads 2δ − d > 2, which is required to apply Proposition 4.4, whereas the lower-bound is equivalent to
deg(N) = d− δ > g − 1, hence the general N ∈ Picd−δ(C), for C general, is non-special.
(2) Notice that (5.2) implies δ > g + 1. Thus, together with (5.1), one has g > j2 + 2j i.e. 1 6 j 6

√
g + 1− 1.

Proof of Theorem 5.1. By Remark 5.2-(1) N is non-special, so (ii) holds. Moreover, always by Remark 5.2-(1),
we can use Proposition 4.4 with σ := 2δ − d. One has dim(P) = 2δ − d+ g − 2. From (4.7), we have

dim
(

Sec 1
2 (2(2δ−d)−2)(X)

)
= min{dim(P), 2(2δ − d)− 3} = 2(2δ − d)− 3,

since (5.1) and (5.2) yield 2δ − d 6 g
j − j which implies 2(2δ − d) − 3 < 2δ − d + g − 2. In particular,

dim
(

Sec 1
2 (2(2δ−d)−2)(X)

)
< dim(P). From Proposition 4.4, u ∈ Ext1(L,N) general is such that s(Fu) > 2δ−d.

If Γ is the section corresponding to Fu →→ L, one has Γ2 = 2δ − d as in (2.3) so s(Fu) = 2δ − d, hence (i) and
(iii) are also proved. �

Corollary 5.3. Assumptions as in Theorem 5.1. Let Γ be the section of Fu = P(Fu) corresponding to Fu →→ L.

Then Γ is of minimal degree. In particular, Γ is li and 0 6 dim(Div1,δ
Fu

) 6 1.

Proof. The fact that Γ is of minimal degree follows from (i) of Theorem 5.1. The rest is a consequence of
minimality and Proposition 2.12. �

Theorem 5.4. Let j > 1 and g > 3 be integers. Let C be of genus g with general moduli. Let δ and d be
integers such that (5.1) holds and moreover

δ + g + 3 6 d 6 2δ. (5.3)

Let N ∈ Picd−δ(C) and L ∈ W δ−g+j
δ (C) be general points. Then, for any u ∈ Ext1(L,N), the corresponding

rank-two vector bundle Fu is very-ample, with i(Fu) = j. Moreover, for u ∈ Ext1(L,N) general
(i) L is the quotient of minimal degree of Fu, thus

0 6 s(Fu) = 2δ − d 6 g − 4j − j2

j
,

so Fu is stable when 2δ − d > 0, strictly semistable when d = 2δ;

(ii) if Γ is the section of Fu = P(Fu) corresponding to Fu →→ L, then Div1,δ
Fu

= {Γ} and Fu is rp via L.

Proof. The proof is as in [14, Theorem 2.1], and it works also in the case d = 2δ, not considered there. �

Remark 5.5. (1) The lower-bound in (5.3) reads deg(N) = d − δ > g + 3, hence N ∈ Picd−δ(C) general is
non-special and δ > g + 3.
(2) From (5.1) and δ > g + 3, one has g > j2 + 4j i.e. 1 6 j 6

√
g + 4− 2.

(3) The bounds on d in (5.2) and (5.3) are in general slightly worse than those in Theorem 0.1 (cf. [14, Remark
1.7]). For j close to the upper-bound (see Remark 5.2-(2), respectively (2) above), the difference is of the order
of
√
g. However our approach gives the additional information of the description of vector bundles in irreducible

components of B
kj
C (d) (see also § 7) simply as line bundle extensions, with no use of either limit linear series or

degeneration techniques.
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5.2. The case N special. In this section N ∈ Picd−δ(C) is assumed to be special. Hence, in (4.4), we have
`, j, r > 0 whereas n > 0 (according to the fact that N is either effective or not). For any integer t > 0, consider

Wt :=
{
u ∈ Ext1(L,N) | cork(∂u) > t

}
⊆ Ext1(L,N), (5.4)

which has a natural structure of determinantal scheme; as such, Wt has expected codimension

c(l, r, t) := t(`− r + t) (5.5)

As in (4.2), put m = dim(Ext1(L,N)). Thus, if m > 0 and Wt 6= ∅, then any irreducible component Λt ⊆ Wt

is such that
dim(Λt) > min {m,m− c(`, r, t)} , (5.6)

where the right-hand-side is the expected dimension of Wt. These loci have been considered also in [7, § 2, 3],
[33, § 6, 8] for low genus and for vector bundles with canonical determinant.

Remark 5.6. One has dim(Ker(∂u)) = 1 + dim(〈Γ〉), where Γ is the section corresponding to the quotient
F →→ L. Note that dim(〈Γ〉) = −1 if and only if dim(Ker(∂u)) = 0, i.e. H0(F) = H0(N). This happens if
and only if Γ is a fixed component of |OF (1)|, i.e. if and only if the image of the map Φ|OF (1)| has dimension
smaller than 2. If d > 2g − 2 and this happens, then one must have n > i > j > 1, where i = i(F).

Remark 5.7. The coboundary map ∂u can be interpreted in terms of multiplication maps among global sections
of suitable line bundles on C. Indeed, consider r > t and ` > max{1, r − t}. Denote by

∪ : H0(L)⊗H1(N − L) −→ H1(N),

the cup-product: for any u ∈ H1(N − L) ∼= Ext1(L,N), one has ∂u(−) = − ∪ u. By Serre duality, the
consideration of ∪ is equivalent to the one of the multiplication map

µ := µL,KC−N : H0(L)⊗H0(KC −N)→ H0(KC + L−N) (5.7)

(when N = L, µ coincides with µ0(L) as in (1.1)). For any subspace W ⊆ H0(KC −N), we set

µW := µ|W : H0(L)⊗W → H0(KC + L−N). (5.8)

Imposing cork(∂u) > t is equivalent to

Vt := Im(∂u)⊥ ⊂ H0(KC −N)

having dimension at least t. Therefore

Wt =
{
u ∈ H0(KC + L−N)∨ | ∃Vt ⊆ H0(KC −N), s.t. dim(Vt) > t and Im(µVt) ⊆ {u = 0}

}
,

where {u = 0} ⊂ H0(K + L−N) is the hyperplane defined by u ∈ H0(KC + L−N)∨.

Theorem 5.8. Let C be a smooth curve of genus g > 3. Let

r > 1, ` > max{1, r − 1}, m > `+ 1

be integers as in (4.2), (4.4). Then (cf. (5.4),(5.5)):
(i) c(`, r, 1) = `− r + 1 > 0;
(ii) W1 is irreducible of the expected dimension dim(W1) = m− c(`, r, 1) > r. In particular W1 = Ext1(L,N)
if and only if ` = r − 1.

Proof. Part (i) and m − c(`, r, 1) > r are obvious. Let us prove (ii). Since `, r > 1, both L and KC − N are
effective. One has an inclusion

0→ L→ KC + L−N
obtained by tensoring by L the injection OC ↪→ KC −N given by a given non–zero section of KC −N . Thus,
for any V1 ∈ P(H0(KC −N)), µV1

as in (5.8) is injective. Since m > `+ 1, one has dim(Im(µV1
)) = ` 6 m− 1,

i.e. Im(µV1
) is contained in some hyperplane of H0(KC + L−N). Let

Σ :=
{
σ := H0(L)⊗ V σ1 ⊆ H0(L)⊗H0(KC −N) | V σ1 ∈ P(H0(KC −N))

}
.

Thus Σ ∼= P(H0(KC −N)), so it is irreducible of dimension r− 1. Since P(H0(KC +L−N)∨) = P as in (4.6),
we can define the incidence variety

J :=
{

(σ, π) ∈ Σ× P | µV σ1 (σ) ⊆ π
}
⊂ Σ× P.

Let
Σ

pr1←− J
pr2−→ P

be the two projections. As we saw, pr1 is surjective. In particular J 6= ∅ and, for any σ ∈ Σ,

pr−1
1 (σ) =

{
π ∈ P |µV σ1 (σ) ⊆ π

} ∼= |Iσ̂|P∨(1)|,
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where σ̂ := P(µV σ1 (σ)). Since dim(σ̂) = `− 1, then dim(pr−1
1 (σ)) = m− 1− ` > 0.

This shows that J is irreducible and dim(J) = m − 1 − c(`, r, 1) 6 m − 1. Then, Ŵ1 := P(W1) = pr2(J).
Recalling (5.6), W1 6= ∅ is irreducible, of the expected dimension m− c(`, r, 1). �

Corollary 5.9. Assumptions as in Theorem 5.8. If ` > r, then W1  Ext1(L,N) and
(i) for u ∈ Ext1(L,N) general, ∂u is surjective, in which case the corresponding bundle Fu is special with
i(Fu) = h1(L) = j;
(ii) for v ∈W1 general, cork(∂v) = 1, hence the corresponding bundle Fv is special with i(Fv) = j + 1.

5.2.1. Surjective coboundary. Take 0 6= u ∈ Ext1(L,N) and assume ∂u is surjective (from Corollary 5.9,
this happens e.g. when ` > r, m > `+ 1 and u general).

Theorem 5.10. Let j > 1 and g > 3 be integers. Let C be of genus g with general moduli. Let δ and d be
integers such that (5.1) holds and moreover

2g − 2 6 d 6 2δ − g. (5.9)

Let L ∈W δ−g+j
δ (C) be a smooth point and N ∈ Picd−δ(C) be any point. Then, for u ∈ Ext1(L,N) general, the

corresponding bundle Fu is indecomposable with
(i) speciality i(Fu) = j = h1(L).
(ii) s(Fu) = g − ε, ε ∈ {0, 1} such that ε ≡ d+ g (mod 2). In particular, Fu is stable.

(iii) The minimal degree of a quotient of Fu is d+g−ε
2 and 1− ε 6 dim

(
Div

1, d+g−ε2

Fu

)
6 1;

(iv) L is a minimal degree quotient of Fu if and only if ε = 0 and d = 2δ − g.

Remark 5.11. (1) From (5.9) we get δ > 3
2g − 1 hence from (5.1), j 6

√
g2+16g−g

4 .
(2) Since L is special, then δ 6 2g − 2. Therefore, the upper-bound in (5.9) implies d− δ 6 δ − g 6 g − 2, i.e.,

any N ∈ Picd−δ(C) is special too.
(3) The inequalities (5.1), (5.9) imply ` > r, m > `+ 1 as in the assumptions of Corollary 5.9. Indeed:
• ` > r reads

δ > g − 1 + r − j. (5.10)

Since r = δ− d+ g− 1 +n, then (5.10) is equivalent to d > 2g− 2− j+n. Thus (5.10) holds by (5.9), if n 6 1.
If n > 2, C with general moduli implies r 6 g

n 6
g
2 so g − 1 + r − j 6 3

2g − 1 − j and (5.10) holds because

δ > 3
2g − 1.

• We have d − δ 6 δ − g < δ by (5.9). So from (4.2) we have m = 2δ − d + g − 1. Thus m > ` + 1 reads
d 6 δ + 2g − 3 − j. By (5.9), to prove this it suffices to prove 2δ − g 6 δ + 2g − 3 − j. This in turn is a
consequence of (5.1).
(4) Notice that, under hypotheses of Theorem 5.10, when ε = 1 L is not of minimal degree: from (iii), one
would have d = 2δ − g + 1 which is out of range in (5.9). Indeed, if d = 2δ − g + 1 and e.g. δ = 2g − 2, then
d = 3g − 3, deg(N) = d − δ = g − 1, thus if N is general, it is non-special, which is a case already considered
in Theorem 5.1. From (1) above, to allow minimality for L also for ε = 1, one should replace (5.1), (5.9) in the
statement of Theorem 5.10 with the more annoying conditions δ 6 min{g−1+ g

j − j, 2g−3} and d 6 2δ−g+ ε,

respectively.

Proof of Theorem 5.10. By Remark 5.11-(2), N is special. Moreover, by Remark 5.11-(3) and Corollary 5.9,
for u ∈ Ext1(L,N) general, ∂u is surjective. Hence (i) holds.

From the upper-bound in (5.9) and g > 3, we can apply Proposition 4.4 with the choice σ := g − ε, i.e., the
maximum for which σ ≡ 2δ − d (mod 2), σ 6 2δ − d and one has a strict inclusion

Sec 1
2 (2δ−d+g−ε−2)(X) ⊂ P,

from (4.2) and (4.7).
If ε = 0, (ii) follows from Propositions 2.6, 4.4. Let Γ ⊂ Fu be a section of minimal degree, which we denote

by m0. Then, Γ2 = 2m0 − d = g (cf. (2.3) and Remark 2.5). In particular, m0 = d+g
2 and

1 = Γ2 − g + 1 6 χ(NΓ/Fu) 6 dim

(
Div

1, d+g2
Fu

)
6 1,

where the upper-bound holds by the minimality condition (cf. proof of Proposition 2.12). This proves (iii) in
this case.

When ε = 1, by Propositions 2.6, 4.4, one has g − 1 6 s(Fu) 6 g and, by parity, the leftmost equality holds.
As above, part (iii) holds also for ε = 1.
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Finally, L is a minimal degree quotient if and only if 2δ = d+ g− ε which by (5.9) is only possible for ε = 0,
proving (iv) (cf. Remark 5.11-(4)). �

5.2.2. Non-surjective coboundary. From Corollary 5.9, when ` > r and m > `+1, for v ∈W1 ( Ext1(L,N)
general, one has cork(∂v) = 1.

Definition 5.12. Take ` > r > t > 1 integers. Assume
(1) there exists an irreducible component Λt ⊆Wt with the expected dimension dim(Λt) = m− c(`, r, t);
(2) for v ∈ Λt general, cork(∂v) = t.
Any such Λt is called a good component of Wt.

By Theorem 5.8, Λ1 = W1 is good. In § 5.3 we shall give sufficient conditions for goodness when t > 2.
With notation as in (4.6), for any t > 1 and any good component Λt, we set

Λ̂t := P(Λt) ⊂ P (5.11)

(cf. notation as in the proof of Theorem 5.8 for Ŵ1).

Theorem 5.13. Let g > 3, d > 2g − 2, j > 1, ` > r > t > 1 be integers. Take ε ∈ {0, 1} such that

d+ g − c(`, r, t) ≡ ε (mod 2).

Take δ = `+ g − 1− j and assume

g > c(`, r, t) + ε, (5.12)

g + r − j − 1 6 δ 6 g − 1 +
g

j
− j, (5.13)

2δ − d > max{2, g − c(`, r, t)− ε}. (5.14)

Let C be a curve of genus g with general moduli. Let L ∈ W `−1
δ (C) be a smooth point, N ∈ Picd−δ(C) of

speciality r. Then, for any good component Λt and for v ∈ Λt general, the corresponding bundle Fv is
(i) special with i(Fv) = j + t = h1(L) + t;
(ii) s(Fv) > g − c(`, r, t)− ε > 0; in particular, when g − c(`, r, t) > 0, Fv is stable, hence indecomposable.
(iii) If 2δ = d+ g − c(`, r, t)− ε, then L is a quotient of minimal degree of Fv.

Remark 5.14. (1) As before, the upper-bound on δ in (5.13) is equivalent to ρ(g, ` − 1, δ) > 0 whereas the
lower bound to ` > r.
(2) Condition 2δ− d > 2 in (5.14) is as in Proposition 4.4; the other condition in (5.14) will be clear by reading
the proof of Theorem 5.13.
(3) Arguing as in Remark 5.11-(3), one shows that m > `+ 1.

Proof of Theorem 5.13. By (5.14) we may apply Proposition 4.4 choosing σ := g − c(`, r, t) − ε, which is non-
negative by (5.12). This is the maximum integer such that σ 6 2δ − d, σ ≡ 2δ − d (mod 2) and such that

dim(Λ̂t) > dim(Sec 1
2 (2δ−d+σ−2)(X)), as it follows from (5.14). Then, if v ∈ Λ̂t general, the assertions hold. �

Remark 5.15. When N of degree d − δ is non-effective of speciality r, by Riemann-Roch r = δ − d + g − 1.
Thus, by (3.2), one simply has c(`, r, t) = t (d−2g+2+ j+ t), i.e. c(`, r, t) = t kj+t, and conditions in Theorem
5.13 can be replaced by more explicit numerical conditions on d and δ

δ 6 g − 1 +
g

j
− j and d 6 g − 1− t+ min

{
δ, g − 1− j +

g − ε
t

}
,

where ε ∈ {0, 1} such that d+ g − tkt+j ≡ ε (mod 2), and

2δ − d > max{2, g − tkt+j − ε}.

Remark 5.16. When otherwise N , of degree d − δ, is effective and of speciality r one gets d > δ + g − r.
Moreover, since its Brill-Noether number ρ(g, n− 1, d− δ) has to be non negative (by the generality of C), one
gets d 6 δ + g − 1 + g

r − r. Thus, conditions in Theorem 5.13 can be replaced by numerical conditions

g − 1− j + r 6 δ 6 g − 1− j + min

{
g

j
,
g − ε
t

+ r − t− 1

}
,

g + δ − r 6 d 6 δ + g − 1 +
g

r
− r and 2δ − d > max{2, g − c(`, r, t)− ε},

with ε and c(`, r, t) as in Theorem 5.13.
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5.3. Existence of good components. Recalling what defined in (4.2), (4.4), (5.4), (5.5) and in Remark 5.7,
one has

Theorem 5.17. Let C be a smooth curve of genus g > 3. Take integers m, `, r and t and assume ` > r > t > 2.
Take any integer η such that

0 6 η 6 min{t(r − t), `(t− 1)} and m > `t+ 1− η. (5.15)

Suppose, in addition, that the subvariety Ση ⊆ G(t,H0(KC −N)) := G, parametrizing Vt ∈ G s.t.

dim(Ker(µVt)) > η, (5.16)

has pure codimension η in G and that, for the general point Vt in any irreducible component of Ση, equality
holds in (5.16). Then:
(i) c(`, r, t) > 0;
(ii) ∅ 6= Wt ⊂W1 ⊂ Ext1(L,N), where all the inclusions are strict;
(iii) there exists a good component Λt of Wt.

Proof. By (5.15) one has m > ` + 1; moreover ` > r by assumption. Thus, from Corollary 5.9, ∅ 6= W1 ⊂
Ext1(L,N) and the inclusion is strict. By definition Wt ⊂ W1, where the inclusion is strict by Corollary 5.9.
A similar argument as in the proof of Theorem 5.8 applies. �

Corollary 5.18. Let C be of genus g > 3 with general moduli. Let j > 1, ` > r > t > 2 and m > `t + 1 be

integers. Let L ∈W δ−g+j
δ (C) be a smooth point.

If j > t, N ∈ Picd−δ(C) is general and ` 6 2δ− d, then for Vt ∈ G(t,H0(KC −N)) general, µVt is injective.
In particular, there exists a good component ∅ 6= Λt ⊆Wt.

Proof. Set h := 2δ − d and let N0 := L−D ∈ Picd−δ(C), with D =
∑h
i=1 pi ∈ C(h) general. Since 0 < ` 6 h,

we have h0(N0) = 0. Thus, N ∈ Picd−δ(C) general is also non-effective, so h1(N) = h1(N0).
Let µ be as in (5.7). To prove injectivity of µVt as in (5.8) for N and Vt general, it suffices to prove a similar

condition for
µ0 : H0(L)⊗H0 (KC − L+D)→ H0 (KC +D) .

Consider
W := H0(KC − L) ⊂ H0 (KC − L+D) .

One has dim(W ) = j. We have the diagram

H0(L)⊗W ∼= H0(L)⊗H0(KC − L)
µ0
W−→ H0 (KC +D)

↘µ0(L) ↗ι

H0(KC)

where µ0
W = µ0|H0(L)⊗W , µ0(L) is as in (1.1) and ι is the obvious inclusion.

By Gieseker–Petri theorem µ0(L) is injective. By composition with ι, µ0
W is also injective. Since by as-

sumptions t 6 j, then for any Ṽt ∈ G(t,W ), µ0
Ṽt

is also injective. By semicontinuity, for N ∈ Picd−δ(C) and

Vt ∈ G(t,H0(KC −N)) general, µVt is injective. Then, one can conclude by using Theorem 5.17. �

6. Parameter spaces

Let C be a projective curve of genus g with general moduli. Given a sequence as in (4.5), for brevity we set

ρ(L) := ρ(g, `− 1, δ) and ρ(N) := ρ(g, n− 1, d− δ),

WL :=

{
W `−1
δ (C) if ρ(L) > 0
{L} if ρ(L) = 0

and WN :=

{
Wn−1
d−δ (C) if ρ(N) > 0
{N} if ρ(N) = 0

.

Both WL and WN are irreducible, generically smooth, of dimensions ρ(L) and ρ(N) (cf. [1, p. 214]). Let

N→ C × Picd−δ(C) and L→ C × Picδ(C)

be Poincaré line-bundles. With an abuse of notation, we will denote by L (resp., by N) also the restriction of
Poincaré line-bundle to the Brill-Noether locus. Set

Y := Picd−δ(C)×WL and Z := WN ×WL ⊂ Y.

They are both irreducible, of dimensions

dim(Y) = g + ρ(L) and dim(Z) = ρ(N) + ρ(L). (6.1)
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Consider the natural projections

C × Picd−δ(C)
pr1,2←− C × Y

pr2,3−→ Y

↓pr1,3
C ×WL .

As in [1, p. 164-179]), we define

Eδ := R1(pr2,3)∗
(
pr∗1,2(N)⊗ pr∗1,3(L∨)

)
,

depending on the choices of d and δ. By (4.2), when 2δ−d > 1, Eδ is a vector bundle of rank m = 2δ−d+g−1 on
Y whereas, when d = 2δ, Eδ is a vector bundle of rank g−1 on Y\∆Y, where ∆Y = {(M,M) |M ∈WL} ∼= WL.
We set

U :=

{
Y if 2δ − d > 1

Y \∆Y if d = 2δ
and P(Eδ)

γ−→ U, (6.2)

where γ the projective bundle morphism: the γ-fibre of y = (N,L) ∈ U is P(Ext1(L,N)) = P, as in (4.6).
From (4.2) and (6.1), one has

dim(P(Eδ)) = g + ρ(L) +m− 1 and dim(P(Eδ)|Z) = ρ(N) + ρ(L) +m− 1. (6.3)

Since (semi)stability is an open condition (cf. e.g. [44, Prop. 6-c, p. 17]), for any choice of integers g, d and
δ satisfying numerical conditions as in the theorems and corollaries proved in §’s 5.1 and 5.2, there is an open,
dense subset P(Eδ)

0 ⊆ P(Eδ) and a morphism

πd,δ : P(Eδ)
0 → UC(d). (6.4)

We set
V
δ,j
d := Im(πd,δ) and νδ,jd = dim(Vδ,jd ). (6.5)

6.1. Non-special N . We will put ourselves in the hypotheses either of Theorem 5.1 or of Theorem 5.4. In

either case, d − δ > g − 1 so N can be taken general in Picd−δ(C) and V
δ,j
d ⊆ B

kj
C (d), by what proved about

(semi)stability.

6.1.1. Case 2δ − d > 1. In this case, by what proved in Theorems 5.1, 5.4, one has V
δ,j
d ⊆ B

kj
C (d) ∩ UsC(d).

Therefore any irreducible component of B
kj
C (d) intersected by V

δ,j
d has at least dimension ρ

kj
d (cf. Remark 3.3

and Definition 3.4).

Proposition 6.1. Assumptions as in Theorem 5.4, with 2δ − d > 1. Then, for any integers j, δ, d therein,

there exists an irreducible component B ⊆ BkjC (d) such that:

(i) V
δ,j
d ⊆ B;

(ii) B is regular and generically smooth;
(iii) for [E] ∈ B general, E is stable, with s(E) > 2δ − d and i(E) = j.

Proof. Parts (i) and (iii) follow from Theorem 5.4 (note that the Segre invariant is lower-semicontinuous; cf.

also [24, § 3]). Assertion (ii) follows from the fact that, for [F] ∈ V
δ,j
d general, the Petri map PF is injective (cf.

Remark 3.3 and [14, Lemma2.1]). �

Lemma 6.2. In the hypotheses of Theorem 5.4, with 2δ − d > 1, the morphism πd,δ is generically injective.

Proof. Let [F] ∈ V
δ,j
d be general; then F = Fu, for u ∈ Ext1(L,N) and y = (N,L) ∈ U general. Then

π−1
d,δ([Fu]) =

{
(N ′, L′, u′) ∈ P(E)0 | Fu′ ∼= Fu

}
.

Assume by contradiction there exists (N ′, L′, u′) 6= (N,L, u) in π−1
d,δ([Fu]). Then N ⊗ L ∼= N ′ ⊗ L′.

(1) If L ∼= L′ ∈ WL then N ∼= N ′ ∈ Picd−δ(C). Thus, u, u′ ∈ P. Let ϕ : Fu′→Fu be the isomorphism between
the two bundles. Since Fu is stable, then u 6= u′ ∈ P (notation as in (4.6)) and we have the diagram

0→ N
ι1−→ Fu′ → L → 0

↓ϕ
0→ N

ι2−→ Fu → L → 0.

The maps ϕ ◦ ι1 and ι2 determine two non-zero sections s1 6= s2 ∈ H0(Fu ⊗N∨). They are linearly dependent,
otherwise the section Γ ⊂ Fu, corresponding to Fu →→ L, would not be li (cf. (2.6) and Theorem 5.4-(ii)). So
s1 = λs2. But then Lemma 4.5 implies u = u′, a contradiction.
(2) If L ∼=| L′ ∈ WL (in particular, ρ(L) > 0), sections Γ 6= Γ′, corresponding respectively to Fu →→ L and
Fu →→ L′, would be such that Γ ∼alg Γ′ on Fu, contradicting Theorem 5.4-(ii). �
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Example 6.3. One can have loci Vδ,jd of the same dimension for different values of δ. For instance, let j = 2,
g > 18 and d = 2g + 9 in Theorem 5.4. Then g + 5 6 δ 6 g + 6 are admissible values in (5.1) and for both of
them one has 2δ− d > 0. Now ρ(g, 7, g+ 5) = g− 16 > g− 18 = ρ(g, 8, g+ 6); by (6.5) and Lemma 6.2 one has

νg+5,2
2g+9 = νg+6,2

2g+9 = 3g − 17.

Remark 6.4. From (3.3), (6.5) and Lemma 6.2, for varieties Vδ,jd as in Proposition 6.1 (i.e. defined by integers
d, δ and j as in Theorems 5.1, 5.4, with 2δ − d > 1) one has

νδ,jd − ρ
kj
d = d(j − 1)− δ(j − 2)− (g − 1)(j + 1). (6.6)

(1) For j = 1, νδ,1d − ρ
k1
d = δ − 2g + 2 6 0, since L special, and equality holds if and only if δ reaches the

upper-bound in (5.1).
(2) Otherwise, for j > 2, using the upper-bound in (5.1) and the fact d < 2δ, from (6.6) one gets

νδ,jd − ρ
kj
d < δj − gj − g + j + 1 6 1− j2 < 0.

Thus, Vδ,jd can never be dense in a regular component of B
kj
C (d) unless j = 1 and δ = 2g − 2.

Corollary 6.5. Let C be of genus g > 5 with general moduli. For any integer d s.t. 3g + 1 6 d 6 4g − 5, the
variety V

2g−2,1
d is dense in a regular, generically smooth component B ⊆ Bk1C (d). Moreover:

(i) [Fu] ∈ V
2g−2,1
d general is stable and comes from u ∈ Ext1(ωC , N) general, with N ∈ Picd−2g+2(C) general.

In particular, i(Fu) = 1.
(ii) The minimal degree quotient of Fu is ωC , so s(Fu) = 4g − 4− d > 0.

(iii) Div1,2g−2
Fu

= {Γ}, where Γ is the section of Fu = P(Fu) corresponding to Fu →→ ωC (i.e. Fu is rp via ωC).

Proof. It follows from Theorem 5.4, with 2δ− d > 1 and j = 1, from Proposition 6.1 and from Remark 6.4. �

Remark 6.6. Using Theorem 5.1 and Corollary 5.3, one can prove results similar to Proposition 6.1 and

Corollary 6.5 with slightly different numerical bounds. As in Remark 6.4, Vδ,jd can never be dense in a regular

component of B
kj
C (d), unless δ = 2g − 2 and j = 1. The numerical bounds in this case are 3g − 3 6 d 6 4g − 6

with g > 3, hence the cases not already covered by Corollary 6.5 are 3g − 3 6 d 6 min{3g, 4g − 6}.
Corollary 6.7. Let C be of genus g > 6 with general moduli. For any integer d s.t. 3g − 3 6 d 6 3g, the
variety V

2g−2,1
d is dense in a regular, generically smooth component B ⊆ Bk1C (d). Moreover:

(i) [Fu] ∈ V
2g−2,1
d general is stable and comes from u ∈ Ext1(ωC , N) general, with N ∈ Picd−2g+2(C) general

(so non-special). In particular, i(Fu) = 1.
(ii) The minimal degree quotient of Fu is ωC , thus s(Fu) = 4g − 4− d > g − 4.

(iii) Div1,2g−2
Fu

= {Γ}, where Γ the section of Fu = P(Fu) corresponding to Fu →→ ωC (i.e. Fu is rp via ωC).

Proof. We need to prove that πd,2g−2 is generically injective. The proof of Lemma 6.2 shows that, for [Fu] ∈
V

2g−2,1
d general, one has dim(π−1

d,2g−2([Fu])) 6 dim(Div1,2g−2
Fu

). By construction of V2g−2,1
d and by (2.3), NΓ/Fu

∼=
KC −N . Since N is general of degree d− 2g+ 2, one has h1(N) = 0. From Remark 2.3 we conclude. To prove
the injectivity of PFu one can argue as in [14, Lemma2.1] (we leave the easy details to the reader). �

6.1.2. Case d = 2δ. Fom what proved in Theorem 5.4, for any integers j > 1, g and δ as in (5.1) and in Remark
5.5, we have

V
δ,j
2δ ⊆ B

kj
C (2δ) ∩ UssC (2δ).

Lemma 6.8. The morphism P(Eδ)
0 π2δ,δ−→ UC(d) contracts the γ-fibres, with γ as in (6.2). Thus, νδ,j2δ 6 g+ρ(L).

Proof. For any y = (N,L) ∈ U, γ−1(y) ∼= P as in (4.6). For any u ∈ P, one has gr(Fu) = L ⊕ N , where
gr(Fu) is the graded object associated to Fu (cf. [44, Thm. 4]). Therefore, all elements in a γ-fibre determine
S-equivalent bundles (cf. e.g. [30, 46]). This implies that πd,δ contracts any γ-fibre. �

Corollary 6.9. Let C be of genus g > 5 with general moduli. One has

Bk1C (4g − 4) = V
2g−2,1
4g−4 .

Thus:
(i) Bk1C (4g − 4) is irreducible, of dimension g < ρk14g−4 = 2g − 2. In particular, it is birational to Pic2g−2(C),

with Bk2C (4g − 4) = {[ωC ⊕ ωC ]};
(ii) [Fu] ∈ Bk1C (4g − 4) general comes from u ∈ Ext1(ωC , N) general, with N ∈ Pic2g−2(C) general. Hence,
i(Fu) = 1.
(iii) The minimal degree quotient of Fu is ωC , thus s(Fu) = 0 and Fu is strictly semistable.

(iv) Div1,2g−2
Fu

= {Γ}, where Γ the section of Fu = P(Fu) corresponding to Fu →→ ωC (i.e. Fu is rp via ωC).
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Proof. From Theorem 5.4, the only case for d = 4g − 4 is j = 1 and δ = 2g − 2. Since d = 2δ, from (6.2) we
have U ∼= Pic2g−2(C) \ {ωC} and E is a vector bundle of rank g − 1 on U. From Lemma 6.8, the moduli map

πd,2g−2 factors through a map from U to Bk1C (4g − 4), which is injective by Chern class reasons.

Next we prove that Bk1C (4g − 4) is irreducible. Consider [F] general in a component of Bk1C (4g − 4); it can
be presented via an exact sequence as in (2.2), with L special and effective (cf. Lemma 4.1). Since s(F) = 0,

then deg(L) = 2g − 2, i.e. L ∼= ωC . Thus, we are in the image of U to Bk1C (4g − 4).
The remaining assertions are easy to check and can be left to the reader. �

Corollary 6.9 has been proved already in [8, Theorems 7.2, 7.3 and Remark 7.4], via different techniques.
Our proof is completely independent.

6.2. Special N . Under the numerical assumptions of Theorem 5.10, any N ∈ Picd−δ(C) is special (cf. Remark
5.11-(2)) and, for u ∈ Ext1(L,N) general, ∂u is surjective (cf. Remark 5.11-(3)). Hence i(Fu) = h1(L) = j. We
have:

Proposition 6.10. Assumptions as in Theorem 5.10. For any integers j, δ and d therein, there exists an

irreducible component B ⊆ BkjC (d) such that:

(i) V
δ,j
d ⊆ B;

(ii) B ∩ UsC(d) 6= ∅;
(iii) For [E] ∈ B general, E is stable, with s(E) > g− ε and ε as in Theorem 5.10. The minimal degree quotients
of E as well as the minimal degree sections of P(E) are as in (iii) and (iv) of Theorem 5.10. In particular, L is
of minimal degree if and only if d = 2δ − g.
(iv) If moreover d > δ + g − 3 (so δ > 2g − 3), then B is also regular and generically smooth.

Proof. Assertions (i), (ii) and (iii) follow from Theorem 5.10, the map (6.4) and the fact that the Segre invariant
is lower-semicontinuous (cf. e.g. [24, § 3]).

To prove (iv), we argue as in [14, Lemma 2.1]. Take F0 = L⊕N , with N ∈ Picd−δ(C) general. Then, N is
non-effective and 1 6 h1(N) 6 2. The Petri map PF0

decomposes as µ0(L)⊕ µ, where µ0(L) is the Petri map
of L as in (1.1) and µ is as in (5.7). Since C has general moduli, µ0(L) is injective (cf. [1, (1.7), p. 215]). The
injectivity of µ is immediate when h1(N) = 1 (cf. the proof of Theorem 5.8). When h1(N) = 2, the generality
of N implies that |KC − N | is a base-point-free pencil so the injectivity of µ follows from the base-point-free
pencil trick, since h0(N − (KC −L)) = 0 (because KC −L is effective and N non-effective). By semicontinuity

on the elements of Ext1(L,N) and the fact that V
δ,j
d ⊆ B, the Petri map PE is injective. One concludes by

Remark 3.3. �

Remark 6.11. Computing dim(P(Eδ)) − ρ
kj
d one finds the right-hand-side of (6.6). Since d < 2δ (see (5.9)),

as in Remark 6.4-(2) one sees that dim(P(Eδ)) − ρ
kj
d < 0, unless j = 1 and δ = 2g − 2, in which case

dim(P(Eδ))− ρ
kj
d = 0. As in Lemma 6.2, we see that πd,2g−2 is generically injective. Thus, with notation as in

(6.5), one has νδ,jd > ρ
kj
d only if j = 1, δ = 2g − 2 and N ∈ Picd−δ(C) is general, in which case ν2g−2,1

d = ρk1d .

Corollary 6.12. Let C be of genus g > 3 with general moduli. For any integer d such that 2g−2 6 d 6 3g−4,
one has ν2g−2,1

d = ρk1d = 6g − 6− d. Moreover:

(i) [Fu] ∈ V
2g−2,1
d general is stable and comes from u ∈ Ext1(ωC , N) general, with N ∈ Picd−2g+2(C) general

(hence special, non-effective). In particular, i(Fu) = 1.

(ii) If 3g − 5 6 d 6 3g − 4, then V
2g−2,1
d is dense in a regular, generically smooth component of Bk1C (d).

(iii) s(Fu) = g − ε, with ε as in Theorem 5.10. Quotients of minimal degree of Fu (equivalently sections of
minimal degree on Fu = P(Fu)) are those described in Theorem 5.10-(111) and (iv). In particular, they are li
sections.
(iv) The canonical section Γ ⊂ Fu is the only special section; it is lsu and asu but not ai. Moreover, it is of
minimal degree only when d = 3g − 4.
(v) Fu is rsp but not rp via ωC .

Proof. (i), (ii) and (iii) follow from Theorem 5.10, Proposition 6.10 and Remarks 3.3, 6.11. Sections of minimal
degree are li (see the proof of Proposition 2.12).

As for (iv) and (v), from Serre duality and the fact that Fu is of rank-two with det(Fu) = ωC ⊗N , one has

h0(Fu ⊗N∨) = h1(F∨u ⊗ ωC ⊗N) = h1(Fu). (6.7)

Since i(Fu) = 1, from (2.6) Γ is li. Since N is special and non-effective, from (2.3), Div1,2g−g
Fu

is smooth, of

dimension 3g − 3 − d > 1 at Γ. Thus, Γ is not ai but, since W g−1
2g−2(C) = {ωC}, it is asu (see the proof of

Proposition 2.12 and Remark 6.11). For the same reason, from Theorem 5.10-(iv), the only possibility for ωC
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to be a minimal quotient is d = 3g − 4. Finally, the fact that Γ ⊂ Fu is the only special section follows from
Remark 6.11. �

Recall that, when N ∈ Picd−δ(C) is special and L ∈ W δ−g+j
δ (C) is a smooth point, assumptions as in

Theorem 5.8 imply that ∂u is surjective for u ∈ Ext1(L,N) general (cf. Corollary 5.9), and so i(Fu) = j.
Therefore, to have i(Fu) > j, we are forced to use degeneracy loci described in (5.4). To do this let y = (N,L)

be general in U, respectively in Z, when N is non-effective, respectively when it is effective (recall notation as
in (6.2)). Set P(y) := γ−1(y) ∼= P. Take numerical assumptions as in Remark 5.15, respectively in Remark
5.16, according to N is respectively non-effective or effective.

With notation as in (5.11), for any good component Λ̂t(y) ⊆ Ŵt(y) ⊂ P(y) we have

∅ 6= ŴTot
t ⊂ P(Eδ),

where a point in ŴTot
t corresponds to the datum of a pair (y, u), with y = (N,L) and u ∈ Ŵt(y). Any

irreducible component of ŴTot
t has dimension at least dim(P(Eδ)) − c(`, r, t) (where c(`, r, t) as in (5.5) and

where dim(P(Eδ)) as in (6.3)). From the generality of y, for any good component Λ̂t(y), we have an irreducible
component

Λ̂Tot
t ⊆ ŴTot

t ⊂ P(Eδ)

such that

(i) Λ̂Tot
t dominates U (resp., Z);

(ii) dim(Λ̂Tot
t ) = dim(P(Eδ))− c(`, r, t);

(iii) for (y, u) ∈ Λ̂Tot
t general, cork(∂u) = t;

(iv) if λ := γ|Λ̂Tot
t

, for y general one has λ−1(y) = Λ̂t(y).

Definition 6.13. Any component Λ̂Tot
t satisfying (i)-(iv) above will be called a (total) good component of ŴTot

t .

We set

V
δ,j,t
d := Im

(
πd,δ|Λ̂Tot

t

)
⊆ Bkj+tC (d) and νδ,j,td := dim(Vδ,j,td ). (6.8)

Two cases have to be discussed, according to the effectivity of N .

6.2.1. N non-effective. With assumptions as in Remark 5.15, N can be taken general in Picd−δ(C); the

general bundle in V
δ,j,t
d is stable (by Theorem 5.13 and by the open nature of stability). For brevity sake, set

ϕ0(δ, j, t) := dim(Λ̂Tot
t )− ρkj+td = d(j − 1)− δ(j − 2)− (g − 1)(j + 1) + jt, (6.9)

which therefore takes into account the expected dimension of the general fibre of πd,δ|Λ̂Tot
t

and the codimension

of its image in a regular component of B
kj+t
C (d)).

One has ϕ0(δ, j, t) > νδ,j,td − ρ
kj+t
d with equality if and only if πd,δ|Λ̂Tot

t
is generically finite. Thus, from

Remark 3.3, it is clear that V
δ,j,t
d cannot fill up a dense subset of a component of B

kj+t
C (d) if ϕ0(δ, j, t) < 0; in

other words, the negativity of ϕ0(δ, j, t) gives numerical obstruction to describe the general point of a (regular)

component of B
kj+t
C (d).

• For j = 1, one has
ϕ0(δ, 1, t) = δ − 2g + 2 + t. (6.10)

• When j > 2, from Remark 5.15 and arguing as in Remark 6.4, one gets

ϕ0(δ, j, t) 6 j(t− j). (6.11)

Thus, Vδ,j,td never fills up a dense subset of a component of B
kj+t
C (d) as soon as j > t > 1.

6.2.2. N effective. With assumptions as in Remark 5.16, N is general in Wρ(N). From the second equality in
(6.3), for any n > 1, one puts

ϕn(δ, j, t) := dim(Λ̂Tot
t )− ρkj+td = ϕ0(δ, j, t)− n(r − t), (6.12)

where ϕ0(δ, j, t) as in (6.9) above.

Remark 6.14. For a total good component Λ̂Tot
t and for (L,N, u) ∈ Λ̂Tot

t general, one has n(r − t) =
h0(N) rk(∂u). Hence, n(r − t) is non-negative and it is zero if and only if r = t, i.e. ∂u is the zero map.

Therefore, ϕn(δ, j, t) 6 ϕ0(δ, j, t) and equality holds if and only if r = t. The possibility for a V
δ,j,t
d to fill up a

dense subset of a component of B
kj+t
C (d) can be discussed as in § 6.2.1.
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By definition of νδ,j,td , it is clear that νδ,j,td −ρkj+td 6 ϕn(δ, j, t), for any n > 0. Thus a necessary condition for

νδ,j,td > ρkj+td , i.e. for V
δ,j,t
d to have at least the dimension of a regular component of B

kj+t
C (d), is ϕn(δ, j, t) > 0.

Next proposition easily follows.

Proposition 6.15. Assumptions as in Theorem 5.13 (more precisely, either as in Remark 5.15, when N is
non-effective, or as in Remark 5.16, when N is effective). Then for any integers j, δ and d therein, there exists

an irreducible component B ⊆ Bkj+tC (d) such that:

(i) V
δ,j,t
d ⊆ B;

(ii) For [E] ∈ B general, s(E) > g − c(`, r, t) − ε > 0, where c(`, r, t) as in (5.5) and ε ∈ {0, 1} such that
d+ g − c(`, r, t) ≡ ε (mod 2);
(iii) B ∩ UsC(d) 6= ∅, if g − c(`, r, t)− ε > 0.

Remark 6.16. In order to estimate νδ,j,td , one has to estimate the dimension of the general fibre of the

map πd,δ restricted to a total good component Λ̂Tot
t . Thus, if for [F] ∈ V

δ,j,t
d general we put for simplicity

fF := dim
(
πd,δ|−1

Λ̂Tott

([F])
)

, a rough estimate is

fF 6 aF (δ), (6.13)

where F = P(F) and aF (δ) the dimension of the scheme of special unisecants of degree δ on F as in (2.9).

Remark 6.17. Assume j = 1 in Proposition 6.15.
(1) When N ∈ Picd−δ(C) is general, assumptions as in Remark 5.15 give δ 6 2g − 2 and N non-effective, for

any t > 1. The only case to consider is therefore ϕ0(δ, 1, t). A necessary condition for V
δ,1,t
d to have dimension

at least ρ
kj+t
d is ϕ0(δ, 1, t) > 0, i.e. δ > 2g − 2− t (cf. (6.10)). Thus:

• when δ = 2g − 2 − t, then L = ωC(−Dt), with Dt ∈ C(t), t < g, imposing independent conditions to
|ωC |. Since ϕ0(δ, 1, t) = 0, for Dt ∈ C(t) general, the estimate (6.13) and a parameter count suggest that for

[F] ∈ V
2g−2−t,1,t
d general one has aF (2g − 2− t) = 0, i.e. F is rsp via ωC(−Dt), and B = V

δ,1,t
d is regular.

• to the opposite, when δ = 2g − 2, then L = ωC . Let [F] ∈ V
2g−2,1,t
d be general, and let Γ ⊂ F = P(F) be

the canonical section corresponding to F →→ ωC . By definition of V2g−2,1,t
d , F = Fv for v ∈ Λt ⊂ Ext1(N,ωC)

general in a good component. By (2.6) and (6.7), one has dim(|OF (Γ)|) = t. Thus, [F] ∈ V
2g−2,1,t
d general is

not rsp via ωC , since the general fibre of πd,2g−2|Λ̂Tot
t

has dimension at least t.

It is therefore natural to expect that the component B in Proposition 6.15 is such that

B = V
2g−2,1,t
d = V

2g−3,1,t
d = · · · = V

2g−2−t,1,t
d ,

where [F] ∈ B general is rsp only when [F] is considered as element in V
2g−2−t,1,t
d .

(2) One may expect something similar when j = 1 and N effective general in Wρ(N). In this case, ϕn(δ, 1, t) > 0
gives δ > 2g − 2 + rn − t(n + 1) whereas, from the first line of bounds on δ in Remark 5.16, we get δ 6

min{2g − 2, g − 2 + r − t+ g−ε
t }. A necessary condition for νδ,j,td > ρkj+td is therefore

rn− t(n+ 1) < 0, (6.14)

otherwise either L would be non special, contradicting Lemma 4.1, or L ∼= ωC , so Fv would be not rsp as in (1)
above. In the next section, we will discuss these questions.

7. Low speciality, canonical determinant

In this section we apply results in §’s 5.1, 5.2 and 6 to describe Brill-Noether loci of vector bundles with
canonical determinant and Brill-Noether loci of vector bundles of fixed degree d and low speciality i 6 3 on
a curve C with general moduli. In particular, the more general analysis discussed in the previous sections
allows us to determine rigidly specially presentation of the general point of irreducible components arising from
constructions in § 6,

From now on, for any integers g > 3, i > 1 and 2g − 2 6 d 6 4g − 4, we will set

B̃kiC (d) :=

{
BkiC (d) if either d odd or d = 4g − 4

BkiC (d) ∩ UsC(d) otherwise
(7.1)
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7.1. Vector bundles with canonical determinant. Given an integer d and any ξ ∈ Picd(C), there exists
the moduli space of (semi)stable, rank-two vector bundles with fixed determinant ξ. Following [32, 33], we denote
it by MC(2, ξ) (sometimes a different notation is used, see e.g. [44, 6, 7, 54, 39, 55, 5, 26]).

The scheme MC(2, ξ) is defined as the fibre over ξ ∈ Picd(C) of the determinantal map

UC(d)
det−→ Picd(C). (7.2)

For any ξ ∈ Picd(C), MC(2, ξ) is smooth, irreducible, of dimension 3g − 3 (cf. [35, 44]).
Brill-Noether loci can be considered in MC(2, ξ). Recent results for arbitrary ξ are given in [39, 40, 25]. A

case which has been particularly studied (for its connections with Fano varieties) is MC(2, ωC). Seminal papers
on the subject are [7, 32]; other important results are contained in [54, 55, 23, 26]. If [F] ∈ MC(2, ωC), Serre
duality gives

i(F) = ki(F) := k. (7.3)

For [F] ∈MC(2, ωC) ⊂ UC(2g − 2), the Petri map PF in (3.4) splits as PF = λF ⊕ µF, where

λF :

2∧
H0(F)→ H0(ωC) and µF : Sym2(H0(F))→ H0(Sym2(F));

the latter is called the symmetric Petri map.
For [F] ∈MC(2, ωC) general, one has k = 0 (cf. [33, § 4], after formula (4.3)). For any k > 1, one sets

Mk
C(2, ωC) := {[F] ∈MC(2, ωC) | h0(F) = h1(F) > k}

which is called the kth-Brill-Noether locus in MC(2, ωC). In analogy with (7.1), we set

M̃k
C(2, ωC) := Mk

C(2, ωC) ∩ UsC(2g − 2).

By [33, Prop. 1.4], [7, § 2] and (7.3), one has

expcodimMC(2,ωC)(M̃
k
C(2, ωC)) =

k(k + 1)

2
6 k2 = i(F)ki(F).

Similarly to B̃kiC (d), if [F] ∈ M̃k
C(2, ωC), then M̃k

C(2, ωC) is smooth and regular (i.e. of the expected dimension)
at [F] if and only if µF is injective (see [7, 32, 33]).

Several basic questions on M̃k
C(2, ωC), like non-emptiness, irreducibility, etc., are still open. A description

of these bundles in terms of extensions (as we do here) is available only for some k on C general of genus
g 6 12 (cf. [33, § 4], [7]). Further existence results are contained in [52, 26]. On the other hand, if one assumes
[F] ∈Mk

C(2, ωC), injectivity of µF on C general of genus g > 1 has been proved in [54] (cf. [5] for k < 6 with a
different approach).

7.2. Case i = 1. In this case ρk1d = 6g − 6− d. Using notation and results as in § 6, we get:

Theorem 7.1. Let C be of genus g > 5, with general moduli. For any integer d s.t. 2g − 2 6 d 6 4g − 4,

B̃k1C (d) = V
2g−2,1
d ,

as in Corollaries 6.5, 6.7, 6.9 and 6.12. In particular,

(i) B̃k1C (d) is non-empty, irreducible. For 2g − 2 6 d 6 4g − 5 it is regular, whereas dim(B̃k1C (4g − 4)) = g <

ρk14g−4 = 2g − 2.

(ii) For 3g − 5 6 d 6 4g − 4, B̃k1C (d) is generically smooth.

(iii) [F] ∈ B̃k1C (d) general is stable for 2g − 2 6 d 6 4g − 5, and strictly semistable for d = 4g − 4, fitting in a
(unique) sequence

0→ N → F → ωC → 0,

where N ∈ Picd−2g+2(C) is general, the coboundary map is surjective and i(F) = 1.

(iv) For 3g−4 6 d 6 4g−4 and [F] ∈ B̃k1C (d) general, one has s(F) = 4g−4−d, the quotient of minimal degree
being ωC . The section Γ ⊂ F = P(F) corresponding to F →→ ωC is the only special section of F . Moreover:

• for d > 3g − 3, Γ is ai,
• for d = 3g − 4, Γ is lsu and asu but not ai.

(v) For 2g− 2 6 d 6 3g− 5 and [F] ∈ B̃k1C (d) general, one has s(F) = g− ε, with ε ∈ {0, 1} such that d+ g ≡ ε
(mod 2). The section Γ ⊂ F is the only special section; it is asu but not ai. Moreover, Γ is not of minimal
degree; indeed:

• when d+ g is even, minimal degree sections of F are li sections of degree d+g
2 s.t. dim(Div

1, d+g2
F ) = 1;
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• when d+ g is odd, minimal degree sections are li of degree d+g−1
2 and dim(Div

1, d+g−1
2

F ) 6 1.

(vi) In particular, for 2g − 2 6 d 6 4g − 4, [F] ∈ B̃k1C (d) general is rp via ωC .

Proof. All the assertions, except the irreducibility, follow from Corollaries 6.5, 6.7, 6.9 and 6.12. For d = 4g− 4
irreducibility has been proved in Corollary 6.9. Thus, we focus on cases 2g − 2 6 d 6 4g − 5.

Let us consider an irreducible component B ⊆ B̃k1C (d). From Lemma 4.1, [F] ∈ B general is as in (2.2), with

h1(L) = j > 1 and L of minimal degree among special, effective quotient line bundles. Moreover dim(B) > ρk1d
(cf. Remark 3.3). Two cases have to be considered.

(1) If i(F) = 1, then j = 1 (notation as in (4.4), (4.5)) and ∂ : H0(L) → H1(N) is surjective. In particular

` > r. If r = 0 then we are in cases of Corollaries 6.5, 6.7, and B = V
2g−2,1
d . If r > 0, as in Remark 6.11 one

has
0 6 dim(P(Eδ))− dim(B) 6 δ − 2g + 2

(cf. (6.6)). Hence δ = 2g − 2 and B = V
2g−2,1
d as in Corollary 6.12.

(2) Assume i(F) = i > 1. As in Remarks 6.4, 6.6, 6.11 one has L = ωC . Thus i > 1 forces r > cork(∂) = i−1 > 0.
Recalling (4.2) and (4.6), one has dim(P) = 5g − 6 − d. Therefore, B must be regular and F corresponds to

the general point of Ext1(ωC , N), with N ∈ Picd−2g+2(C) general, so non-effective. In particular, one has
2g − 2 6 d 6 3g − 4 and r = 3g − 3− d. On the other hand, since

` = g, 1 6 r 6 g − 1, 2g − 1 6 m = 5g − 5− d 6 3g − 3

we are in the hypotheses of Corollary 5.9, hence cork(∂) = 0, a contradiction. �

Remark 7.2. (1) Theorem 7.1 gives alternative proofs of results in [45, 27, 8] for the rank-two case. It provides

in addition a description of the general point of B̃k1C (d) ∼= B̃1
C(4g−4−d), for any 2g−2 6 d 6 4g−4. The same

description is given in [3], with a different approach, i.e. using general negative elementary transformations as
in [27]. In terms of scrolls of speciality 1, partial classification are given also in [18, Theorem 3.9].
(2) As a consequence of Theorem 7.1, one observes that the Segre invariant s does not stay constant on a

component of the Brill-Noether locus. For example, the general element of B̃k1C (4g − 7) has s = 3 and i = 1;

on the other hand, in Theorem 5.4, we constructed vector bundles in V
2g−3,1
4g−7 ⊂ B̃k1C (4g − 7) with s = i = 1.

The minimal special quotient of the latter vector bundles is the canonical bundle minus a point, whereas for

the general vector bundle in B̃k1C (4g − 7) is the canonical bundle.

(3) From the proof of Theorem 7.1, for d 6 4g − 3, the map πd,2g−2 is birational onto B̃k1C (d) = Bk1C (d), i.e.

Bk1C (d) is uniruled.

Theorem 7.3. Let C be of genus g > 5, with general moduli. Then M̃1
C(2, ωC) 6= ∅. Moreover, there exists an

irreducible component which is

(i) generically smooth
(ii) regular (i.e. of dimension 3g − 4), and
(iii) its general point [Fu] comes from u ∈ P(Ext1(ωC ,OC)) general. In particular, s(Fu) = g − ε, where

ε ∈ {0, 1} such that g ≡ ε (mod 2).

Proof. Take u ∈ P(Ext1(ωC ,OC)) general. With notation as in (4.4), (4.5) one has

` = r = g, and m = 3g − 3 > `+ 1.

Thus, from Corollary 5.9 and from (7.3), h0(Fu) = h1(Fu) = 1. From (4.2), dim(P(Ext1(ωC ,OC)) = 3g − 4.

Thus, Fu stable with s(Fu) = g−ε follows from Proposition 4.4, with σ = g−ε. This shows that M̃1
C(2, ωC) 6= ∅.

Since
∧2

H0(Fu) = (0), µFu is injective if and only if PFu is. On the other hand, one has H0(Fu)⊗H0(ωC ⊗
F∨u ) ∼= C. Therefore, one needs to show that PFu is not the zero-map. This follows by limit of PFu when u
tends to 0, so that F0 = OC ⊕ ωC : then the limit of PFu is the map H0(OC)⊗H0(OC)→ H0(OC).

To get (i)-(iii) at once, one observes that π2g−2,2g−2|P(Ext1(ωC ,OC)) is generically injective, since the exact
sequence

0→ OC → Fu → ωC → 0

is unique: indeed, the surjection Fu →→ ωC is unique and h0(Fu) = 1 (cf. (2.6) and computations as in (6.7)),
moreover, by Lemma 4.5, two general vector bundles in P(Ext1(ωC ,OC)) cannot be isomorphic. �
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Remark 7.4. (1) For a similar description, cf. [7]. Generic smoothness for components of M̃1
C(2, ωC) follows

also from results in [54, 5].

(2) From Theorem 7.1, [F] ∈ B̃k1C (2g − 2) general fits in a sequence 0 → η → F → ωC → 0, with η ∈ Pic0(C)

general. Hence the map d̃ := det|
B̃
k1
C (2g−2)

is dominant. Since Pic2g−2(C) and B̃k1C (2g − 2) are irreducible and

generically smooth, then d̃−1(η) = M̃1
C(2, ωC⊗η) is equidimensional and each component is generically smooth.

Theorem 7.3 yields that in this situation each component of M̃1
C(2, ωC ⊗ η) has dimension 3g− 4 (equal to the

expected dimension). This agrees with [39, Theorem 1.1].

7.3. Case i = 2. In this case, ρk2d = 8g − 11− 2d.

Theorem 7.5. Let C be of genus g > 3, with general moduli. For any integer d s.t. 2g − 2 6 d 6 3g − 6, one

has B̃k2C (d) 6= ∅.
(i) V

2g−3,1,1
d is the unique component of B̃k2C (d), whose general point corresponds to a vector bundle F with

i(F) = 2. Moreover, V2g−3,1,1
d = V

2g−2,1,1
d and it is a regular component of B̃k2C (d).

(ii) For [F] ∈ V
2g−3,1,1
d general, one has s(F) > 3g − 4− d− ε > 0 and F fits in an exact sequence

0→ N → F → ωC(−p)→ 0,

with

• p ∈ C general,
• N ∈ Picd−2g+3(C) general, and
• F = Fv and v is general in the good locus W1 ⊂ Ext1(ωC(−p), N).

(iii) A section Γ ⊂ F , corresponding to a quotient F →→ ωC(−p), is not of minimal degree. However, it is of
minimal degree among special sections and it is asi but not ai (i.e. F is rsp but not rp via ωC(−p)).

(iv) For g > 13 and 2g + 6 6 d 6 3g − 7, V2g−3,1,1
d is generically smooth.

Proof. Once part (i) has been proved, parts (ii)–(iii) follow from Theorem 5.13 and Proposition 6.15, with
δ = 2g − 3, j = t = 1, whereas part (iv) follows from Proposition 6.1-(ii), with j = 2.

The proof of part (i) consists of four steps.

Step 1. In this step, we show that if B is an irreducible component of B̃k2C (d) such that, for [F] ∈ B general,

i(F) = 2, then B comes from a total good component ŴTot
1 ⊆ P(Eδ), for some δ (cf. Thm. 5.8 and Def. 5.12).

Indeed, let (2.2) be a special presentation of F with L a quotient of minimal degree. Then, from Remarks 6.4,
6.6, 6.11, one has h1(L) = j = 1 as B is a component. Hence, with notation as in (4.4), (4.5) and (5.4), one must
have t = 1 and ` > r−1. Moreover, d 6 3g−6, δ > g−1 and j = 1 imply that m = 2δ−d+g−1 > δ−g+3 = `+1
(recall notation as in (4.2)). Therefore, we can apply Theorem 5.8, finishing the proof of this step.

Step 2. In this step we determine which of the constructed loci either Vδ,jd , as in (6.5), or Vδ,j,td , as in (6.8), has

general point [F] such that i(F) = 2 and dimension at least ρk2d = 8g − 11− 2d (hence, it can be conjecturally

dense in a component of B̃k2C (d)). We will prove that this only happens for 2g − 3 6 δ 6 2g − 2 and j = t = 1.
Moreover, we will show that the presentation of F is specially rigid only if δ = 2g − 3.

Let V be any such locus, and let F be its general point which is presented as in (2.2) with special quotient L.

As in Step 1, one finds j = 1 hence N has to be special and t = 1, so V has to be necessarily of the form V
δ,1,1
d

(i.e. loci of the form V
δ,j
d are excluded). We have two cases to consider: (a) N non-effective, (b) N effective.

Case (a). As in Remark 6.17-(1), recall that a necessary condition for dim(Vδ,1,1d ) = νδ,1,1d > ρk2d is ϕ0(δ, 1, 1) >
0, i.e. 2g − 3 6 δ 6 2g − 2.

In case δ = 2g − 2, [F] ∈ V
2g−2,1,1
d general is not rsp via ωC (it follows from the fact that i = 2 and

computation as in (6.7)).
In case δ = 2g − 3, the hypotheses 2g − 2 6 d 6 3g − 6 ensure stability for F (cf. Theorems 5.8, 5.13 and

Proposition 6.15). By definition, V2g−3,1,1
d = Im(πd,2g−3|ŴTot

1
), where ŴTot

1 ⊂ P(E2g−3) is the good locus for

t = 1. To accomplish the proof, we need to show that the fibre of πd,2g−3|ŴTot
1

over [F] ∈ V
2g−3,1,1
d general is

finite. As in (6.13) in Remark 6.16, it suffices to prove the following:

Claim 7.6. aF (2g − 3) = 0.

Proof of the Claim. Assume by contradiction this is not zero. Since F is stable, hence unsplit, from ϕ0(2g −
3, 1, 1) = 0 and Remark 4.2, aF (2g − 3) must be 1 (cf. Proposition 2.12).
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Let F be the corresponding one-dimensional family of sections of F = P(F), which has positive self-
intersection, since F is stable. From Proposition 2.12 and Step 1, the system F cannot be contained in a
linear system, otherwise we would have sections of degree lower than 2g − 3.

Thus, from the proof of Proposition 2.12, there is an open, dense subset C0 ⊂ C such that, for any q ∈ C0,
one has F = Fv with v = vq ∈ Ext1(ωC(−q), Nq)), where {Nq}q∈C0 is a 1-dimensional family of non-isomorphic

line bundles of degree d−2g+3, whose general member is general in Picd−2g+3(C) . Let Γq ⊂ Fv be the section
corresponding to Fv →→ ωC(−q); so the one-dimensional family is F = {Γq}q∈C0 .

We set Γ̃q := Γq +fq, for q ∈ C0. From (2.1), Γ̃q corresponds to Fv →→ ωC(−q)⊕Oq, whose kernel we denote

by N ′q. Then F̃ = {Γ̃q}q∈C0 is a one-dimensional family of unisecants of Fv of degree 2g − 2 and speciality 1

(cf. (2.8)). For h, q ∈ C0, we have

c1(N ′h) = det(Fv)⊗ ω∨C = c1(N ′q).

Therefore, from (2.6), F̃ is contained in a linear system |OFv (Γ)|. By Bertini’s theorem, the general member of
|OFv (Γ)| is a section of degree 2g − 2. In particular, dim(|OFv (Γ)|) > 2.

If LΓ is the corresponding quotient line bundle, since Γ ∼ Γ̃q, then c1(LΓ) = ωC , i.e. Γ is a canonical section.
This is a contradiction: indeed, if MωC is the kernel of the surjection Fv →→ ωC , we have (cf. (6.7))

2 6 dim(|OFv (Γ)|) = h0(Fv ⊗M∨ωC )− 1 = i(Fv)− 1 = 1.

�

Case (b). As in Remark 6.17-(2), a necessary condition for νδ,1,1d > ρk2d is (6.14), i.e. nr − n − 1 < 0. Since
n, r > 1, the only possibility is r = t = 1. Taking into account (6.10), (6.12) and Proposition 6.15, one has
ϕn(δ, 1, 1) = ϕ0(δ, 1, 1) = δ − 2g + 3 > 0. In any case we would have d > 3g − 5, which is out of our range.
Thus, case (b) cannot occur.

Step 3. In this step we prove that V
2g−3,1,1
d is actually a component of B̃k2C (d).

Let B ⊆ B̃k2C (d) be a component containing V
2g−3,1,1
d and let [F] ∈ B general. By semicontinuity, F has

speciality i = 2. It has also a special presentation as in (2.2), with 2g − 3 6 deg(L) = δ 6 2g − 2. Since C has
general moduli, then h1(L) = j = 1 so the corank of the coboundary map is t = 1. If δ = 2g − 3, from Step 2
we are done.

Assume therefore δ = 2g−2, so L = ωC . Notice that:(i) r = h1(N) 6 g; (ii) m = dim(Ext1(N,ωC)) > g+1.
Indeed, (i) is trivial if N is effective. On the other hand, if h0(N) = 0, then h1(N) = 3g − 3 − d < g since
d > 2g − 2. As for (ii), m = 5g − 5 − d (cf. (4.2)), hence (ii) follows since d 6 3g − 6. So we are in position

to apply Theorem 5.8 and Corollary 5.9, which yield that ŴTot
1 ⊆ P(E2g−2) is irreducible and good. Hence

dim(ŴTot
1 ) 6 8g − 10− 2d (equality holds when N is general, i.e. non effective).

On the other hand, B is the image of ŴTot
1 via πd,2g−2 (cf. Step 1) and the general fibre of this map has

dimension at least 1 because h1(F) = 2 (cf. (2.6) and computation as in (6.7)). Thus

8g − 11− 2d > dim(B) > dim(V2g−3,1,1
d ) = 8g − 11− 2d = ρk2d .

This proves that B = V
2g−3,1,1
d is a regular component.

The previous argument also shows that V
2g−3,1,1
d = V

2g−2,1,1
d (cf. Remark 6.17) and that the dimension of

the general fibre of πd,2g−2|ŴTot
1

onto V
2g−2,1,1
d has exactly dimension 1 (actually, it is a P1, cf. Lemma 2.11).

Step 4. Assume we have a component B ⊆ B̃k2C (d), whose general point corresponds to a vector bundle F with
i(F) = 2. From Step 1, [F] ∈ B general can be specially presented as in (2.2), with h1(L) = j = 1, so N is

special. The same discussion as in Steps 2 and 3 shows that B = V
2g−3,1,1
d . �

Remark 7.7. (i) For [F] ∈ V
2g−3,1,1
d general, one has ` = g − 1, r = 3g − 4− d and m = 5g − 7− d (cf. (4.2),

(4.4)). So ` > r + 1 (because d > 2g − 2), moreover m > `+ g (because d 6 3g − 6). Note that the inequality
m > `+ 1 is necessary to ensure ∅ 6= WTot

1 ⊂ P(E2g−2) (see the proof of Theorem 5.8).

(ii) Step 4 of Theorem 7.5 shows that, if B is a component of B̃k2C (d), different from V
2g−3,1,1
d , then B is a

component of B̃kiC (d), for some i > 3, and as such it is not regular. Otherwise, we would have

8g − 11− 2d 6 dim(B) = 4g − 3− i(d− 2g + 2 + i) 6 10− 3d− 16,

i.e d 6 2g − 7 which is out of our range for d.
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Remark 7.8. (1) Take Γ̃p as in the proof of Claim 7.6. Then, NΓ̃p/Fv
is non special on the (reducible) unisecant

Γ̃p. Indeed, ωΓ̃p
⊗N∨

Γ̃p/Fv
|Γ ∼= OΓ(KF ) whereas ωΓ̃p

⊗N∨
Γ̃p/Fv

|fp ∼= OP1(−2). Thus Γ̃p ∈ Div1,2g−2
Fv

is a smooth

point. Moreover, h0(NΓ̃p/Fv
) = 3g − 2 − d > 2 for d 6 3g − 4. From the generality of v in the good locus

W1, (2.6) and from computation as in (6.7), one has that Γ̃p ⊂ Fv is a (reducible) unisecant, moving in a

complete linear pencil of special unisecants whose general member is a canonical section, and Γ̃p is algebraically
equivalent on Fv to non-special sections of degree 2g − 2.

As soon as d 6 3g − 6, there are in Div1,2g−2
Fv

unisecants containing two general fibres (cf. Proposition 2.12)
hence the ruled surface Fv has (non special) sections of degree smaller than 2g − 3.

(2) Take N ∈ Pick(C) general with 0 < k 6 g − 2. Since N is special, non-effective, from Corollary 5.9 and
Remark 5.15, v ∈ Λ1 ⊂ Ext1(ωC , N) general determines F := Fv stable, with i(F) = 2. If Γ denotes the
canonical section corresponding to F → ωC , from (2.6) one has dim(|OF (Γ)|) = 1 and all unisecants in this
linear pencil are special (cf. Lemma 2.11). Since F is indecomposable, |OF (Γ)| has base-points (cf. the proof
of Proposition 2.12, from which we keep the notation). Thus, F is rsp via ωC(−p), for p = ρ(q) and q ∈ F a
base point of the pencil (recall Remark 6.17).

Remark 7.9. In [50, 51] the locus B̃2
C(b) is studied, for g > 2 and 3 6 b 6 2g − 1. It is proved there

with different arguments that, when C has general moduli, then B̃2
C(b) is not empty, irreducible, regular (with

ρ2
b = 2b− 3), generically smooth and [E] ∈ B̃2

C(b) general is stable, with h0(E) = 2, fitting in a sequence

0→ OC → E→ L→ 0. (7.4)

Considering the natural isomorphism B̃2
C(b) ∼= B̃k2C (4g − 4 − b), when d := 4g − 4 − b is as in Theorem 7.5

we recover Teixidor’s results (without irreducibility) via a different approach. Thus, Teixidor’s results and our

analysis imply that, for any 2g − 2 6 d 6 4g − 7, B̃k2C (d) = V
2g−3,1,1
d . Theorem 7.5 provides in addition the

rigidly special presentation of the general element of B̃k2C (d).

Theorem 7.10. Let C be of genus g > 3, with general moduli. Then, M̃2
C(2, ωC) 6= ∅ and irreducible. Moreover,

it is regular (i.e. of dimension 3g − 6), and its general point [Fv] fits into an exact sequence

0→ OC(p)→ Fv → ωC(−p)→ 0,

where

• p ∈ C is general, and
• v ∈ Λ1 = W1 ⊂ Ext1(ωC(−p),OC(p)) is general.

Proof. Irreducibility follows from [40, Thm. 1.3]. With notation as in (4.4), (4.5), one has

` = r = g − 1, m = h1(2p−KC) = 3g − 5 > g = `+ 1;

from Corollary 5.9, W1 is good and v ∈W1 general is such that cork(∂v) = 1. In particular, dim(W1) = 3g− 6.
Stability of Fv, with 1 < s(Fv) = σ < g, follows from Proposition 4.4. Finally one uses the same approach

as in Claim 7.6 to deduce that π2g−2,2g−3|WTot
1

is generically finite (cf. (6.4)), since Fv is rsp via ωC(−p). �

Generic smoothness of the components of M̃2
C(2, ωC) follows from results in [54, 5]. Theorem 7.10 can be

interpreted in the setting of [7] as saying that, for a curve C of general moduli of genus g > 3, P(Ext1(ωC ,OC))
is not contained in the divisor D1 considered in that paper.

7.4. Case i = 3. One has ρk3d = 10g − 18− 3d. We have the following:

Theorem 7.11. Let C be of genus g > 8, with general moduli. For any integer d s.t. 2g − 2 6 d 6 5
2g − 6,

one has B̃k3C (d) 6= ∅. Moreover:

(i) V
2g−4,1,2
d is the unique component of B̃k3C (d) of types either (6.5) or (6.8), whose general point corresponds

to a vector bundle F with i(F) = 3. Furthermore, it is regular and V
2g−4,1,2
d = V

2g−3,1,2
d = V

2g−2,1,2
d .

(ii) For [F] ∈ V
2g−4,1,2
d general, one has s(F) > 5g − 10− 2d− ε > 2− ε and F fits into an exact sequence

0→ N → F → ωC(−D2)→ 0,

where

• D2 ∈ C(2) is general,
• N ∈ Picd−2g+4(C) is general (special, non-effective),
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• F = Fv with v general in a good component Λ2 ⊂ Ext1(N,ωC(−D2)) (cf. Definition 5.12).

(iii) Any section Γ ⊂ F = P(F), corresponding to a quotient F →→ ωC(−D2), is not of minimal degree.
However, it is minimal among special sections of F ; moreover, Γ is asi but not ai (i.e., F is rsp via ωC(−D2)).

Proof. As in Theorem 7.5, once (i) has been proved, parts (ii)-(iii) follow from results proved in previous sections.

Precisely, by definition of V2g−4,1,2
d one has L = ωC(−D2), with D2 ∈ C(2), t = 2 and N ∈ Picd−2g+4(C) of

speciality r > 2. From regularity of the component, Proposition 6.15 and (6.9), (6.10), (6.12) give

0 = ν2g−4,1,2
d − ρk3d 6 dim(Λ̂Tot

2 )− ρk3d = ϕn(2g − 4, 1, 2) = ϕ0(2g − 4, 1, 2)− n(r − 2) = −n(r − 2).

Thus, n(r − 2) = 0. This implies that the general fibre of πd,2g−4|Λ̂Tot
2

is finite, i.e. [Fv] ∈ V
2g−4,1,2
d general is

rsp via ωC(−D2) (correspondingly Γ ⊂ Fv = P(Fv) is asi as in (iii)).
Since n(r − 2) = 0, then either n = 0 or r = 2. The latter case cannot occur otherwise we would have

n = d− 3g + 7 6 − g2 + 1 < 0, by the assumptions on d.
Thus n = 0 and r = 3g−5−d. Moreover, from (4.2), (5.5), one has m = 5g−10−d and c(`, r, 2) = 2d+10−4g,

so a good component Λ2 ⊂ P(Ext1(ωC(−D2), N)) has dimension 9g− 20− 3d. If we add up to this quantity g,
for the parameters of N , we get 10g − 20− 3d. Thus, regularity forces D2 to be general in C(2).

Now, NΓ/Fv
∼= KC −D2 −N (cf. (2.3)) so hi(NΓ/Fv ) = h1−i(N +D2) for 0 6 i 6 1. By the assumptions on

d, deg(N +D2) = d− 2g+ 6 6 g
2 , thus generality of N implies that N +D2 is also general, so h0(N +D2) = 0

and h1(N +D2) = 3g− 7− d > g
2 − 1. This implies that Γ is not ai and not of minimal degree among quotient

line bundles of F.
Numerical conditions of Theorem 5.13 (see also Remark 5.15) are satisfied for j = 1, t = 2 and δ = 2g − 4,

under the assumptions d 6 5
2g − 6.

Finally, the fact that Γ is of minimal degree among special, quotient line bundles of F follows from the proof
of part (i) below, which consists of the following steps.

Step 1. In this step we determine which of the loci of the form V
δ,j
d , as in (6.5), or V

δ,j,t
d , as in (6.8):

(a) has the general point [F] with i(F) = 3,

(b) is the image, via πd,δ, of a parameter space in P(Eδ) of dimension at least ρk3d = 10g − 18− 3d.

Let V be such locus and use notation as in (4.4), (4.5). From Remarks 6.4, 6.6, 6.11, conditions (a) and (b)
are both satisfied only if the presentation of [F] ∈ V general as in (2.2) with L special and effective, is such that

N ∈ Picd−δ(C) is special and the coboundary map ∂ : H0(L)→ H1(N) is not surjective. Possibilities are:
(i) j = 1 and t = cork(∂) = 2;
(ii) j = 2 and t = 1.

In any event, one has ` > r (in particular, we will be in position to apply Theorems 5.8, 5.17; cf. e.g the
proof of Claim 7.13 below). Indeed:
• in case (i), the only possibilities for ` < r are r − 2 6 ` 6 r − 1. Then, dim(P(Ext1(L,N)) = 2δ − d+ g − 2,

ρ(L) = g − (δ − g + 2), ρ(N) = g − rn, so the number of parameters is δ + 4(g − 1) − d − rn < ρk3d since
d 6 5

2g − 6.
• in case (ii), the only possibility for ` < r is ` = r−1. The same argument as above applies, the only difference
is that ρ(L) = g − 2(δ − g + 3).

Since ` > r, we see that case (ii) cannot occur by (6.11) and (6.12). Thus, we focus on V
δ,1,2
d , investigating

for which δ it satisfies (b). We will prove that this only happens for 2g − 4 6 δ 6 2g − 2.
We have two cases: (1) N effective, (2) N non-effective. We will show that only case (2) occurs.

Case (1). When N is effective, from Remark 6.17, a necessary condition for (b) to hold is (6.14), which reads
(r − 2)n− 2 < 0. This gives 2 6 r 6 3, since r > t = 2. We can apply Theorem 5.13 (more precisely, Remark
5.16): the first line of bounds on δ in Remark 5.16 gives δ 6 3g−ε

2 + r − 4. In particular, one must have

δ 6 3g−ε
2 − 1.

On the other hand, another necessary condition for (b) to hold is ϕn(δ, 1, 2) > 0 (cf. Proposition 6.15).
From Remark 6.14, ϕn(δ, 1, 2) 6 ϕ0(δ, 1, 2) = δ − 2g + 4 (cf. (6.10)) and ϕ0(δ, 1, 2) > 0 gives δ > 2g − 4 which
contradicts δ 6 3g−ε

2 − 1, since g > 8.
Case (2). When N is non-effective, we apply Theorem 5.13 (more precisely, Remark 5.15), with j = 1 and
t = 2. By the same argument as in case (1), we see that 2g − 4 6 δ 6 2g − 2.

Step 2. In this step we prove that the loci Vδ,1,2d , with 2g − 4 6 δ 6 2g − 2, are not empty. Precisely, we will

exhibit components V
δ,1,2
d which are the image, via πd,δ, of a total good component Λ̂Tot

2 ⊂ P(Eδ), of dimension

ρk3d + δ − 2g + 4 (cf. Definition 6.13 and (6.8)).

We will treat only the case δ = 2g − 4, i.e. L = ωC(−D2), with D2 ∈ C(2), since the cases L = ωC , ωC(−p)
can be dealt with similar arguments and can be left to the reader.
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Claim 7.12. Let N ∈ Picd−2g+4(C) be general. For V2 ∈ G(2, H0(KC −N)) general, the map µV2 as in (5.8)
is injective.

Proof of Claim 7.12. The general V2 ∈ G(2, H0(KC − N)) determines a base point free linear pencil on C.
Indeed, h0(KC − N) = 3g − 5 − d > 5. Take σ1, σ2 ∈ H0(KC − N) general sections. If p ∈ C is such that
σi(p) = 0, for i = 1, 2, by the generality of the sections we would have p ∈ Bs(|KC − N |) so h0(N + p) = 1.
This is a contradiction because N is general and deg(N) < g − 1. The injectivity of µV2

follows from the
base-point-free pencil trick: indeed, Ker(µV2

) ∼= H0(N(−D2)) which is zero since N is non-effective. �

Claim 7.13. Let N ∈ Picd−2g+4(C) and D2 ∈ C(2) be general. Then, there exists a unique good component
Λ2 ⊂ Ext1(ωC(−D2), N) whose general point v is such that Coker(∂v)

∨ is general in G(2, H0(KC − N)) (cf.
Remark 5.7).

Proof of Claim 7.13. With notation as in (4.2), (4.4), we have ` = g − 2, m = 5g − 9 − d and r = 3g − 5 − d.
Then assumptions on d and g imply

m > 2`+ 1 and ` > r > t = 2 (7.5)

(cf. Step 1 for ` > r). From (7.5) and Claim 7.12, we are in position to apply Theorem 5.17, with η = 0 and
Ση = G(2, H0(KC −N)).

This yields the existence of a good component Λ2 ⊆W2 ⊂ Ext1(ωC(−D2), N). Actually, Λ2 is the only good
component whose general point v gives Coker(∂v)

∨ = V2 general in G(2, H0(KC −N)).
Indeed any component of W2, whose general point v is such dim(Coker(∂v)) = 2, is obtained in the following

way (cf. the proofs of Theorems 5.8, 5.17):
• take any Σ ⊆ G(2, H0(KC −N)) irreducible, of codimension η > 0;
• for V2 general in Σ, consider H0(ωC(−D2))⊗ V2 and the map µV2

as in (5.8);
• let τ := dim(Ker(µV2

)) > 0 and P := P(Ext1(ωC(−D2), N)) = P(H0(2KC −D2 −N)∨) (cf. (4.6));
• consider the incidence variety

JΣ := {(σ, π) ∈ Σ× P | Im(µV2) ⊂ π} .
Since m > 2`+ 1− τ , one has JΣ 6= ∅ (cf. the proofs of Theorems 5.8, 5.17);

• consider the projections Σ
pr1←− JΣ

pr2−→ P;
• the fibre of pr1 over any point V2 in the image is {π ∈ P | Im(µV2

) ⊂ π}, i.e. it is isomorphic to the linear
system of hyperplanes of P passing through the linear subspace P(Im(µV2

)). For V2 ∈ Σ general, this fibre is
irreducible of dimension m− 1− 2`+ τ = 3g− 6− d+ τ . In particular, there exists a unique component J ⊆ JΣ

dominating Σ via pr1;
• since r = 3g − 5− d, one has

dim(J) = 9g − 20− 3d+ τ − η = expdim(Ŵ2) + τ − η,

where Ŵ2 = P(W2) ⊂ P (notation as in the proof of Theorem 5.8). By construction, pr2(J) ⊆ Ŵ2. Moreover,

if ε denotes the dimension of the general fibre of pr2|J, then pr2(J) can fill up a component X of Ŵ2 only if
τ − η − ε > 0: the component X is good when equality holds.

When Σ = G(2, H0(KC −N)), then η = 0 and, by Claim 7.12, also τ = 0. Since J ⊆ JG(2,H0(KC−N)) is the

unique component dominating G(2, H0(KC −N)), then pr2(J) fills up a component Λ̂2 of Ŵ2, i.e. ε = 0. Thus

Λ̂2 is good. �

By the generality of N ∈ Picd−2g+4(C) and of D2 ∈ C(2), Claim 7.13 ensures the existence of a total good

component Λ̂Tot
2 ⊂ P(E2g−4).

For 2g − 4 6 δ 6 2g − 2, we will denote by V δd the total good component we constructed in this step. To

ease notation, we will denote by Vδd its image in B̃k3C (d) via πd,δ, which is a V
δ,1,2
d as in Step 1.

Step 3. In this step, we prove that V
2g−2
d has dimension ρk3d .

From Step 2, one has dim(V 2g−2
d ) = ρk3d + 2 = 10g − 16 − 3d. We want to show that the general fibre of

πd,2g−2|V 2g−2
d

has dimension two. To do this, we use similar arguments as in the proof of Lemma 6.2.

Let [F] ∈ V
2g−2
d be general; by Step 2, F = Fu, for u ∈ Λ̂2 ⊂ P(H0(2KC−N)∨) general andN ∈ Picd−2g+2(C)

general, where Λ̂2 = pr2(J) and J ⊂ G(2, H0(KC −N))×P(H0(2KC −N)∨) the unique component dominating
G(2, H0(KC −N)) (cf. the proof of Claim 7.13). Then

(πd,2g−2|V 2g−2
d

)−1([Fu]) =
{

(N ′, ωC , u
′) ∈ V 2g−2

d | Fu′ ∼= Fu

}
.

In particular, one has N ∼= N ′ so u, u′ ∈ Λ̂2 ⊂ P(H0(2KC −N)∨).



26 CIRO CILIBERTO AND FLAMINIO FLAMINI

Let ϕ : Fu′
∼=→ Fu be the isomorphism between the two bundles and consider the diagram

0→ N
ι1−→ Fu′ → ωC → 0

↓ϕ
0→ N

ι2−→ Fu → ωC → 0.

If u = u′, then ϕ = λ ∈ C∗ (since Fu is simple) and the maps λι1 and ι2 determine two non-zero sections

s1 6= s2 ∈ H0(Fu ⊗N∨). Similar computation as in (6.7) shows that h0(Fu ⊗N∨) = i(Fu) = 3, since u ∈ Λ̂2

general. Therefore, if Γ ⊂ Fu denotes the section corresponding to Fu →→ ωC , (πd,2g−2|V 2g−2
d

)−1([Fu]) contains

a P2 isomorphic to |OFu(Γ)| (cf. (2.6) and Lemma 2.11).
The case u 6= u′ cannot occur. Indeed, for any inclusion ι1 as above, there exist an inclusion ι2 and a

λ = λ(ι1, ι2) ∈ C∗ such that ϕ ◦ ι1 = λι2, otherwise we would have dim(|OFu(Γ)|) > 2, a contradiction. One
concludes by Lemma 4.5.

In conclusion, the general fibre of πd,2g−2|V 2g−2
d

has dimension two (actually, this fibre is a P2).

Step 4. In this step we prove that V
2g−2
d = V

2g−3
d = V

2g−4
d := V. In particular, the presentation of [F] ∈ V

general will be specially rigid only for δ = 2g − 4.
From Step 2 one has dim(V δd ) = ρk3d + δ − 2g + 4, for 2g − 4 6 δ 6 2g − 2. Moreover, the general element

of V δd can be identified with a pair (F,Γ), where F = P(F), Γ ⊂ F a section corresponding to F →→ ωC(−D),

where D ∈ C(2g−2−δ) and, for δ = 2g − 2, one has D = 0 and dim(|OF (Γ)|) = 2.
We will now prove that there exist dominant, rational maps:

(a) r1 : V 2g−2
d × C 99K V 2g−3

d , such that r1((F,Γ), p) = (F,Γp), where Γp ⊂ F is a section corresponding to
F →→ ωC(−p),
(b) r2 : Ṽ 2g−2

d 99K V 2g−4
d , where Ṽ 2g−2

d is a finite cover ϕ : Ṽ 2g−2
d → V 2g−2

d endowed with a rational map

ψ : Ṽ 2g−2
d 99K C(2): if ξ ∈ Ṽ 2g−2

d is general and ϕ(ξ) := (F,Γ), then r2(ξ) = (F,Γ′), with Γ′ a section
corresponding to F →→ ωC(−ψ(ξ)).

The existence of these maps clearly proves that V
2g−2
d = V

2g−3
d = V

2g−4
d .

(a) Take (F,Γ) general in V 2g−2
d and p ∈ C general. Then, the restriction map

C3 ∼= H0(OF (Γ))→ H0(Ofp(Γ)) ∼= C2

is surjective, because the general member of |OF (Γ)| is irreducible. Hence there is a unique Γp ∈ |OF (Γ− fp)|.
We claim that Γp is irreducible, i.e. it is a section. If not, Γp would be a section plus a number n > 1 of

fibres. As we saw, n 6 1 (cf. Step 1) so n = 1. This determines an automorphism of C and, since C has general
moduli, this automorphism must be the identity. This is impossible because the map ΦΓ : F 99K P2, given by
|OF (Γ)|, is dominant hence it is ramified only in codimension one.

In conclusion, Γp corresponds to F →→ ωC(−p) and (F,Γp) belongs to V 2g−3
d , and this defines r1. The proof

that (F,Γp) belongs to V 2g−3
d is postponed for a moment (cf. Claim 7.14).

(b) Given (F,Γ) general in V 2g−2
d , we can consider the map ΦΓ as in Case (a). Since ΦΓ maps the rulings of F to

lines, it determines a morphism Ψ : C → C ′ ⊂ (P2)∨. From Step 1, no (scheme-theoretical) fibre of Ψ can have
length bigger than two. Therefore, since C has general moduli, Ψ : C → C ′ is birational and moreover, since
g > 8, C ′ has a certain number n of double points, corresponding to curves of type ΓD + fD, with D ∈ C(2)

fibre of Ψ over a double point of C ′.

Then the general point ξ of Ṽ 2g−2
d corresponds to a triple (F,Γ, D) (with D ∈ C(2) as above), the pair

(F,ΓD) belongs to V 2g−4
d (cf. Claim 7.14) and r2(F,Γ, D) = (F,ΓD), ψ(F,Γ, D) = D.

Claim 7.14. With the above notation, (F,Γp) belongs to V 2g−3
d and (F,ΓD) belongs to V 2g−4

d .

Proof of Claim 7.14. We prove the claim for (F,ΓD), since the proof is similar in the other case. Take (F,Γ)

general in V 2g−2
d ; this determines a sequence

0→ N → F → ωC → 0, (7.6)

where N is general of degree d − 2g + 2 and the corresponding extension is general in the unique (good)

component Λ̂2 ⊂ P(Ext1(ωC , N)) dominating G(2, H0(KC − N)) (cf. the proof of Step 2); thus, if ∂ is the
coboundary map, then Coker(∂) is a general two-dimensional quotient of H1(N).

On the other hand, (F,ΓD) determines a sequence

0→ N(D)→ F → ωC(−D)→ 0.

Since deg(N(D)) = d− 2g + 4 6 g
2 − 2 < g − 1 and N(D) is general of its degree, then h0(N(D)) = 0. In view

of
0→ N → N(D)→ OD → 0,
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one has the exact sequence

0→ H0(OD) ∼= C2 → H1(N)
α−→ H1(N(D))→ 0.

The existence of the unisecant ΓD + fD on F gives rise to the sequence

0→ N → F → ωC(−D)⊕ OD → 0 (7.7)

(cf. (2.1)). This sequence corresponds to an element ξ ∈ Ext1(ωC(−D) ⊕ OD, N), which by Serre duality,
is isomorphic to H0(OD)∨ ⊕ Ext1(ωC(−D), N) (cf. [21, Prop. III.6.7, Thm. III.7.6]). So ξ = (σ, η), with
σ ∈ H0(OD)∨and η ∈ Ext1(ωC(−D), N) ∼= H1(N(D)⊗ ω∨C).

We have the following diagram

H0(OD)⊕H0(ωC(−D))
∂0−→ H1(N)

↑ ↓α

H0(ωC(−D))
∂′−→ H1(N(D))

↑ ↓
0 0

where ∂0, ∂′ are the coboundary maps. The action of ξ on {0} ⊕H0(ωC(−D)) coincides with the action of η

on H0(ωC(−D)) via cup-product. This yields an isomorphism Coker(∂′)
∼=−→ Coker(∂0).

Notice that (7.7) can be seen as a limit of (7.6). Since Coker(∂) is a general two-dimensional quotient of
H1(N), then also Coker(∂0) is general. The above argument implies that Coker(∂′) is also general, proving the
assertion (cf. the proof of Claim 7.13). �

Finally, to prove that r1, r2 are dominant, it suffices to prove the following:

Claim 7.15. The general fibre of ri has dimension two, for 1 6 i 6 2.

Proof of Claim 7.15. It suffices to prove that there are fibres of dimension two. For r1, take (F,Γ, p) general

in V 2g−2
d × C. The fibre of r1 containing this triple consists of all triples (F,Γ′, p), with Γ′ ∈ |OF (Γ)| so it has

dimension two since i(F) = 3 (cf. computation as in (6.7)). The same argument works for r2. �

Step 5. In this step we prove that V is an irreducible component of B̃k3C (d).

Claim 7.16. Let (F,ΓD) ∈ V 2g−2−i
d be general, with 1 6 i 6 2 and D ∈ C(i). Then |ΓD + fD| has dimen-

sion two, its general member Γ is smooth and it corresponds to a sequence 0 → N(−D) → F → ωC → 0.
Consequently, the pair (F,ΓD) is in the image of ri.

Proof of Claim 7.16. Given the first part of the statement, the conclusion is clear. To prove the first part, note
that the existence of Γ ⊂ F gives an exact sequence

0→ N → F → ωC(−D)→ 0, (7.8)

hence h0(OF (ΓD + fD)) = h0(F ⊗N∨(D)) = h0(F ⊗ ωC ⊗ det(F)∨) = h1(F) = 3 (cf. (2.6)). This implies the
assertion. �

Let now B ⊆ B̃k3C (d) be a component containing V. From Step 4, [F] ∈ B general has speciality i = 3 and a
special presentation as in (2.2) with L of minimal degree δ. Thus 2g− 4 6 δ 6 2g− 2, since the Segre invariant
is lower semi-continuous (cf. Remark 2.5 and also [24, § 3]).

By Claim 7.16, 2g − 3 6 δ 6 2g − 2 does not occur under the minimality assumption on L. Indeed, in
both cases we have a two-dimensional linear system |Γ|, whose general member is a section, corresponding to
a surjection F →→ ωC and we proved that there would be curves in this linear system containing two rulings.

If δ = 2g − 4, we have an exact sequence as in (7.8). By specializing to a general point of V = V2g−4,1,2,
because of Claim 7.16, we see that in (7.8) one has h0(N) = 0. Hence, h1(N) is constant. Since for the general

element of V, Ker(µV2
) = (0) the same happens for the general element of B i.e., with notation as in the proof

of Claim 7.13, τ is constant equal to zero. Therefore, also η = ε = 0 for the general point of B (see l.c.), which
implies the assertion. �

With our approach, we cannot conclude that V
2g−4,1,2
d in Theorem 7.11 is the unique regular component,

whose general point [F] is such that i(F) = 3, because we do not know if Λ2 ⊂W2 is the only good component

when N ∈ Picd−2g+4(C) and D2 ∈ C(2) general. However, results in [47, 51] imply that B̃k3C (d) is irreducible for
d 6 10

3 g− 7, though they say nothing on rigid special presentation of the general element. Putting all together,
we have:
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Corollary 7.17. Under the assumptions of Theorem 7.11, one has B̃k3C (d) = V
2g−4,1,2
d .

Remark 7.18. (1) Theorem 5.4, for j = 3, shows the existence of elements of B̃k3C (d) with injective Petri map
in the range g > 21, g+ 3 6 δ 6 4

3g− 4, 2g+ 6 6 d 6 8
3g− 9. This gives a proof, alternative to the one in [51],

of generic smoothness of B̃k3C (d) in the above range.

(2) If 5
2g − 5 6 d 6 10

3 g − 7, B̃k3C (d) is, as we saw, irreducible but in general it is no longer true that it is
determined by a (total) good component. To see this, we consider a specific example.

Take B̃k3C (3g−4), which is non-empty, irreducible, generically smooth, of dimension g−6 and [F] ∈ B̃k3C (3g−4)
general is such that i(F) = 3 by [47, 51]. By Lemma 4.1, F can be rigidly presented as in (2.2), where

L ∈W δ−g+j
δ (C) and 1 6 j 6 3.

The cases j = 2, 3 cannot occur: the stability condition (4.1) imposes δ > 3
2g − 2, but if j = 3, ρ(L) > 0

forces δ 6 4
3g − 3 whereas if j = 2, ρ(L) > 0 implies δ 6 3

2g − 3; in both cases we get a contradiction.
The only possible case is therefore j = 1, so the corank of the coboundary map is t = 2, which implies that

N is of speciality r > 2. Since χ(N) = 2g − 3− δ, the case N non-effective would give δ > 2g − 3, i.e. L ∼= ωC .
But in this case, aF (2g − 2) > 2 (usual computations as in (6.7)) against the rigidity assumptions.

Therefore N must be effective, with n = h0(N) = 2g − 3 − δ + r. We want to show that the hypotheses of
Corollary 5.9 hold. Assume by contradiction ` < r; then

δ < g − 2 + r. (7.9)

From stability 3g− 4 < 2δ < 2g− 4 + 2r, i.e. g− 2r < 0. Since C has general moduli, one has ρ(N) > 0, hence
h0(N) = 1. So d− δ = g − r and (7.9) yields d = δ + d− δ < 2g − 2 a contradiction. Thus, ` > r.

Now, from (4.2), m = 2δ − 2g + 3 since N is not isomorphic to L. Thus, m > ` + 1: this is equivalent to
δ > g, which holds by stability.

In conclusion, by Corollary 5.9, WTot
1 is irreducible, of the expected dimension. Assume that ŴTot

1 contains

a total good component Λ̂Tot
2 , whose image via π3g−4,δ is B̃k3C (3g − 4). Thus, r > 2. On the other hand r = 2

cannot occur since

c(`, 2, 2) = 2(δ − g + 2) > 2δ − 2g + 2 = m− 1 = dim(P(Ext1(L,N))),

a contradiction. Therefore, one has r > 3.
From the second equality in (6.3)

dim(P(Eδ)|Z) = (r + 1)δ − (2r − 1)g − r(r − 3)

and the codimension of Λ̂Tot
2 is

c(`, r, 2) = 2(δ − g + 4− r).
Set a := aFv (δ). From Remark 4.2 we can assume a 6 1. Therefore,

dim(Im(πd,δ|Λ̂Tot
2

)) = g − 6

gives (r − 1)δ = 2rg − 2g + r2 − 5r + 2 + a, i.e.

δ = 2g + r − 4 +
a− 2

r − 1
.

This yields a contradiction. Indeed, since 0 6 a 6 1, r > 3 and δ is an integer, the only possibility is r = 3,
a = 0, δ = 2g − 2 which we already saw to contradict the rigidity assumption.

Theorem 7.19. Let C be of genus g > 4, with general moduli. Then, M̃3
C(2, ωC) 6= ∅. Moreover, there exists

an irreducible component which is regular (i.e. of dimension 3g − 9), whose general point [F] fits in a sequence

0→ OC(p+ q)→ F → ωC(−p− q)→ 0, (7.10)

where

• p+ q ∈ C(2) general, and
• F = Fv with v ∈ Λ ⊂ W2 ⊂ Ext1(ωC(−p),OC(p)) general in Λ, which is a component of W2 of

dimension 3g − 10 (hence, not good).

Proof. With notation as in (4.4), (4.5), for F = Fv as in (7.10), we have

` = r = g − 2, t = 2, m = h1(2p+ 2q −KC) = 3g − 7.

Consider the map (notation as in (5.7) and (5.8))

µ : H0(ωC(−p− q))⊗H0(ωC(−p− q))→ H0(ω⊗2
C (−2p− 2q)).



EXTENSIONS OF LINE BUNDLES AND BRILL–NOETHER LOCI 29

For V2 ∈ G(2, H0(ωC(−p − q))) general, µV2 has kernel of dimension 1 (cf. computations as in Claim 7.13).
Arguing as in the proofs of Theorem 5.17 and Claim 7.13, there is a component Λ ⊂ W2 ⊂ Ext1(ωC(−p −
q),OC(p+ q)) (dominating G(2, H0(ωC(−p− q)), hence not good) of dimension 3g − 10.

Stability of F follows from Proposition 4.4. This shows that M̃3
C(2, ωC) 6= ∅. Regularity and generic

smoothness follow from the injectivity of the symmetric Petri map as in [54, 5].
The fact that [F] general has a presentation as in (7.10) follows from an obvious parameter computation. �

By [23, § 4.3], M̃3
C(2, ωC) contains a unique regular component; Theorem 7.19 provides in addition a rigidly

special presentation of its general element.

7.5. A conjecture for i > 4. For any integers i > 4 and d as in Theorems 5.1, 5.4, 5.10, 5.13, one has

B̃kiC (d) 6= ∅. In particular, when d is as in Theorem 5.4, with j = i, one deduces that B̃kiC (d) contains a regular,
generically smooth component. This gives existence results in the same flavour as Theorem 0.1.

One may wish to give a special, rigid presentation of the general point of all components of B̃kiC (d). The
following less ambitious conjecture is inspired by the results in this paper.

Conjecture 7.20. Let i > 4 and g > i2 − i+ 1 be integers. Let C be of genus g, with general moduli. Let d be
an integer such that

2g − 2 6 d < 2g − 2− i+
g − ε
i− 1

,

with ε ∈ {0, 1} such that d + g − (i − 1)ki ≡ ε (mod 2). Then, there exists an irreducible, regular component

B ⊆ B̃kiC (d), s.t.

B = V
2g−1−i,1,i−1
d .

In particular, [F] ∈ B general is stable, with i(F) = i, s(F) > g − (i − 1)ki − ε > 0 and it is rigidly specially
presented as

0→ N → F → ωC(−Di−1)→ 0,

where

• D ∈ C(i−1) is general,
• N ∈ Picd−2g+1+i(C) is general (i.e. special, non-effective),
• F = Fv with v ∈ Λi−1 ⊂ Ext1(N,ωC(−D)) general in a good component;

The bounds on g and d in Conjecture 7.20 ensure the following:

(1) ρkid > 0 which is equivalent to d 6 2g − 2− i+ 4g−3
i (cf. (3.3)).

(2) N ∈ Picd−2g+1+i(C) general is special, non-effective; indeed r = 3g − 2− i− d > 0.
(3) r > i− 1 = cork(∂v), which is equivalent to d 6 3g − 1− 2i.
(4) There are no obstructions for a good component Λi−1 ⊂ Ext1(ωC(−D), N) to exist; indeed, one has

dim(P) = m− 1 = 5g − 4− 2i− d
from (4.2), and from (5.5), Remark 5.15, we have

c(`, r, t) = (i− 1)ki = (i− 1)(d− 2g + 2 + i),

since t = i− 1 and N non-effective. Therefore

dim(Λi−1) = m− 1− c(`, r, t) = 3g − 2− i− i(d− 2g + 2 + i)

is non-negative as soon as d 6 2g − 3− i+ 3g−2
i .

(5) From Remark 5.15, v ∈ Λi−1 general is such that s(Fv) > g − (i − 1)ki − ε, which is positive because
of the upper-bound on d. Thus Fv is stable.

(6) The interval 2g − 2 6 d < 2g − 2− i+ g−ε
i−1 is not empty.

From Remark 4.2 and (6.9), to prove Conjecture 7.20 it would suffice to prove the following two facts:

(a) For i > 4, D ∈ C(i−1) general and L = ωC(−D), there exists a good component

Λi−1 ⊆Wi−1 ⊂ Ext1(ωC(−D), N).

(b) For v ∈ Λi−1 general, Fv is rsp via ωC(−D).



30 CIRO CILIBERTO AND FLAMINIO FLAMINI

Concerning (a), notice that for no Vi−1 ∈ G(i − 1, H0(KC − N)) the map µVi−1 can be injective. Indeed,
d > 2g − 2 and i > 4 imply

dim(H0(KC −D)⊗ Vi−1) = (i− 1)g − (i− 1)2 > 5g − 3− d− 2i = h0(2KC −N −D).

Hence, according to Theorem 5.17, one should find an irreducible subvariety Ση ⊂ G(i − 1, H0(KC − D)) of
codimension η := d+ (i− 6)g + 7− (i− 2)2 such that dim(Ker(µVi−1

)) = η for Vi−1 ∈ Ση general.
Concerning (b), the minimality assumption implies aFv (2g−1− i) 6 1, for v ∈ Λi−1 general and Fv = P(Fv).

To prove rigidity, one has to show that aFv (2g−1−i) = 0. This is equivalent to prove a regularity statement for
a Severi variety of nodal curves on Fv. Indeed, for any section ΓD corresponding to a quotient Fv →→ ωC(−D)
as above, the linear system |ΓD + fD| has dimension i − 1, it is independent on D and its general member
Γ is a section corresponding to a quotient Fv →→ ωC . The curve ΓD + fD belongs to the Severi variety of
(i− 1)-nodal curves in |Γ|. So rigidity is equivalent to show that this Severi variety has the expected dimension
zero. Proving this is equivalent to prove that D, considered as a divisor on ΓD, imposes independent condition
to |Γ|. Unfortunately, the known results on regularity of Severi varieties (see [38, 48, 49]) do not apply in this
situation.
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