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Abstract

We present a formal algebraic language to deal with quantum deformations of Lie-Rinehart
algebras — or Lie algebroids, in a geometrical setting. In particular, extending the ice-breaking
ideas introduced by Xu in [34], we provide suitable notions of “quantum groupoids”. For
these objects, we detail somewhat in depth the formalism of linear duality; this yields several
fundamental antiequivalences among (the categories of) the two basic kinds of “quantum
groupoids”. On the other hand, we develop a suitable version of a “quantum duality principle”
for quantum groupoids, which extends the one for quantum groups — dealing with Hopf
algebras — originally introduced by Drinfeld (cf. [8], §7) and later detailed in [12]. ! 2
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1 Introduction

The classical theory of Lie groups, or of algebraic groups, has a quantum counterpart in the
theory of “quantum groups”. In Drinfeld’s language, quantum groups are suitable topological Hopf
algebras which are formal deformations either of the algebra of functions on a formal group, or of
the universal enveloping algebras of a Lie algebra. These deformations add further structure on
the classical object: the formal group inherits a structure of Poisson formal group, and the Lie
algebra a structure of Lie bialgebra. Linear duality for topological Hopf algebras reasonably adapts
to quantum groups, lifting the analogous duality for their semiclassical limits. On the other hand,
Drinfeld revealed a more surprising feature of quantum groups, later named “quantum duality”,
which somehow lifts the Poisson duality among Poisson (formal) groups. Namely, there exists
an equivalence of categories between quantized enveloping algebras and quantized formal groups,
which shifts from a quantization of a given Lie bialgebra L to one of the dual Lie bialgebra L*.

Another extension of Lie group theory is that of Lie-Rinehart algebras (sometimes loosely called
“Lie algebroids”), developed by Rinehart, Huebschmann and others. The notion of Lie-Rinehart
algebra (L, [, ] ,w) over a commutative ring A lies inbetween A-Lie algebras and k—Lie algebras
of derivations of the form Der (A). Well-known examples come from geometry, such as the global
sections of a Lie algebroid, for example the 1-forms over a Poisson manifold (cf. [7], [15], [10]).

The natural algebraic gadgets attached with a Lie-Rinehart algebra are its universal enveloping
algebra V¥(L) and its algebra of jets J"(L), which are in linear duality with each other. Any
Lie-Rinehart algebra L can also be seen as a right Lie-Rinehart algebra: thus one can also consider
its right enveloping algebra, call it V" (L), anti-isomorphic to V*(L), and its dual J¢(L).

All these algebraic objects — V*(L), V"(L), J"(L) and J*(L) — are (topological) bialgebroid
— left ones when a superscript “¢” occurs, and right when “r” does. Indeed, they also have
an additional property, about their Hopf-Galois map, such that these left/right bialgebroids are
actually left or right Hopf left/right bialgebroids — an important generalization of Hopf algebras.

Linear duality for (left/right) bialgebroids is twofold: any (left/right) bialgebroid U is naturally
a left A—module and a right A-module, thus one may consider its left dual U, as well as its right
dual U* . Under mild conditions, U* and U, are naturally (right/left) bialgebroids (see [17]). The
(VL) ,J"(L)) is tied together by such a linear duality, and similarly for (V"(L),J*(L)).

When looking for quantizations of Lie-Rinehart algebras, one should consider formal deforma-
tions of either V*/7(L) or J"/*(L), among left/right (topological) bialgebroids: these deformations
automatically inherit from their semiclassical limits the additional property of being left/right Hopf
left /right bialgebroids. We shall loosely call such deformations “quantum groupoids”.

The first step in this direction was made by Ping Xu (cf. [34]): he introduced a notion of
quantization of V*(L), called quantum universal enveloping algebroid (LQUEAA in short). Then
he noticed that any such quantization endows L with a richer structure of Lie-Rinehart bialgebra.
This is a direct extension of the notion of Lie bialgebra, in particular, it is a self-dual notion, so if
L is a Lie-Rinehart bialgebra then its dual L* is a Lie-Rinehart bialgebra as well (see [20]). Finally,
Xu also provided an example of construction of a non-trivial LQUEAd Dx|[[h]]”, by “twisting”
the trivial deformation Dx[[h]] of Dx := % (F(TX)) , where X is a Poisson manifold.

The purpose of this paper is to move some further steps in the theory of “quantum groupoids”.

After recalling some basics of the theory of Lie-Rinehart algebras and bialgebras (Sec. 2), we
introduce also some basics of the theory of bialgebroids (Sec. 3): in particular, we dwell on the
relevant examples, i.e. universal enveloping algebras and jet spaces for Lie-Rinehart algebras.

Then we introduce “quantum groupoids” (Sec. 4). Besides Xu’s original notion of LQUEAJ, we
introduce its right counterpart (in short RQUEAJ): a topological right bialgebroid which is a formal
deformation of some V" (L) . Similarly, we introduce quantizations of jet spaces; a topological right
bialgebroid which is a formal deformation of some J"(L) will be called a right quantum formal
series algebroid (RQFSAJ in short); similarly, the left-handed version of this notion gives rise to
the definition of left quantum formal series algebroid (LQFSAd in short). Altogether, this gives



us four kinds of quantum groupoids; each one of these induces a Lie-Rinehart bialgebra structures
on the original Lie-Rinehart algebra one deals with, extending what happens with LQUEAd’s.

As a next step, we discuss linear duality for quantum groupoids (Sec. 5). The natural language
is that of linear duality for bialgebroids, with some precisions. First, by infinite rank reasons we
are lead to consider topological duals. Second, both left and right duals are available, thus taking
duals might cause a proliferation of objects. Nevertheless, we can keep this phenomenon under
control, so eventually we can bound ourselves to deal with only a handful of duality functors.

In the end, our main result on the subject claims the following: our duality functors provide
(well-defined) anti-equivalences between the category of all LQUEAd’s and the category of all
RQFSAd’s (on a same, fixed ring Aj), and similarly also anti-equivalences between the category
of all RQUEAd’s and the category of all LQFSAd’s (on A again). In addition, if one starts
with a given quantum groupoid, which induces a specific (Lie-Rinehart) bialgebra structure on
the underlying Lie-Rinehart algebra, then the dual quantization yields the same or the coopposite
Lie-Rinehart bialgebra structure — see Theorems 5.1.5 and 5.2.2 for further precisions.

Finally (Sec. 6), we develop a suitable “Quantum Duality Principle” for quantum groupoids.
Indeed, we introduce functors “a la Drinfeld”, denoted by ( )" and (), which turns (L/R)QFSAd’s
into (L/R)QUEAJ’s and viceversa, so to provide an equivalence between the category of LQFSAd’s
and that of LQUEAd’s, and a similar equivalence between RQFSAd’s and RQUEAd’s. In addition,
if one starts with a quantization of some Lie-Rinehart bialgebra L , then the (appropriate) Drinfeld’s
functor gets out of it a quantization of the dual Lie-Rinehart bialgebra L*.

For the functor ( )", Drinfeld’s original definition for quantum groups can be easily extended to
quantum groupoids. Instead, this is not the case for the functor ( )’: therefore we have resort to a
different characterization (for quantum groups) of it, and adopt that as a definition (for quantum
groupoids): this requires linear duality, which sets a strong link with the first part of the paper.

It is worth remarking that linear duality for quantum groupoids interchanges “left” and “right”;
instead, quantum duality takes either one to itself: at the end of the day, this means that if one
aims to have both linear duality and quantum duality then he/she is forced to deal with all four
types of quantum groupoids that we introduced — none of them can be left apart.

At the end (Sec. 7) we present an example, just to illustrate some of our main results on a
single — and simple, yet significant enough — toy model.
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2 Lie-Rinehart algebras and bialgebras

Throughout this paper, k will be a field and A will be a unital, associative k—algebra; we assume
k to have characteristic zero (though for most definitions and constructions this is not necessary).
Moreover, for all objects defined in this section we assume in addition that A is also commutative.

2.1 Lie-Rinehart algebras

To begin with, we introduce the notion of (left) Lie-Rinehart algebra ( or “Lie algebroid”).

Definition 2.1.1. A (left) Lie-Rinehart algebra (see [30]) is a triple (A, L,w) where: L is a k—Lie
algebra, L is an A-module, and w is an A-linear morphism of Lie k—algebras from L to Der(A),
called anchor (map), such that the following compatibility relation holds:

VDD ecL, VfeA, [D,fD'] = w(D)(f)D' + f[D,D']

In particular, if L is finitely generated projective as an A-module, then (A, L,w) will be called a
finite projective Lie-Rinehart algebra.

Notation: when there is no ambiguity, the Lie-Rinehart algebra (A, L,w) will be written L .



Examples 2.1.2. Any Lie algebra over A is a Lie-Rinehart algebra whose anchor map w is 0 (and
conversely). On the other hand, (A,Der(A), id) is a Lie-Rinehart algebra too. Another example
is the A—module D4 of Kéhler differentials on any Poisson algebra A (see [15]).

In the setup of differential geometry, natural examples of Lie-Rinehart algebras arise as spaces
of global sections of Lie algebroids; for instance, such an example (of Lie algebroid) is given by the
vector bundle Q1 of differential forms of degree 1 on a Poisson manifold P (see, e.g., [7]).

2.1.3. Differentials for Lie-Rinehart algebras. Given a finite projective Lie-Rinehart algebra
(A,L,w), it is known that A, L* = @, A’} L* admits a differential dj, that makes it into a

differential algebra. Here dp : A’y L* — A" L* is defined as follows: for all A € A" L* and
for all (X1, Xs,...,X,11) € L™ one has

(AN (X1, - Xogn) = T ()™M (X)) (AKX, Xy X)) +
+ Y (CD)TINX X)L X X, X Xg)

In the case where L = T X , the differential d;, coincides with the de Rham differential.

Definition 2.1.4. Let (A, L,w) be a (left) Lie-Rinehart algebra. The (left) universal enveloping
algebra of L is the k—algebra V*(L) :=T}" (AEBL)/I where T;F (A® L) is the positive part of the
tensor k—algebra over A@ L and I is the two-sided ideal in T,:' (A® L) generated by the elements

a’®bfab7 a®£7a€a §®77777®£7[€777]3 §®a70’®£7w(£)(a) Va,beA,faUGL

Remarks 2.1.5. (a) Note that V(L) is a filtered ring, its (increasing) filtration {Vf(L)}neN
being defined by V(L) := A, V! (L) :=V L)+ VE(L)-L (ne€N). We denote by Gr(V*(L))
the associated graded algebra. It is known (cf. [30]) that if L is projective as an A-module, then
Gr(VY(L)) = Sa(L) . Moreover, ta: A— V¥L) and ¢, : L — V¥(L) are monomorphisms.

(b) The Lie-Rinehart algebras L = (L, A,[, |,w) and L° := (L, A,—[, ], —w) are isomorphic
via the isomorphims F' defined by F(D):= —D forall D € L and F(a):=a forall a€ A .

(c) If X is a (smooth) manifold and A = C*°(X), then V*(Der(A4)) for the Lie-Rinehart
algebra (A, Der(A), id) is the k—algebra of global differential operators on X .

2.1.6. From a finite projective Lie-Rinehart algebra to a free Lie-Rinehart algebra.
Most of the time, we will work with finite projective Lie-Rinehart algebras. This is a reasonable
hypothesis as Lie-Rinehart algebras coming from the geometry are finite projective. Several times
in this article, we will prove results for (finite) free Lie-Rinehart algebra and then extend them to
finite projective Lie-Rinehart algebras. We now explain the key step for this.

Let L be a finite projective Lie-Rinehart algebra. There exist a finite projective A—module
Q@ such that FF = L @ @ is a finite rank free A—module. We can endow F with the following
Lie-Rinehart algebra structure: for all D,D,,Dy € L, E,E1,E; € Q, we set

wF(D—l—E) = U.}L(D) , [D1+E1,D2+E2} = [Dl,DQ]

that is, the structure of L is extended trivially to F = L@® Q. Then V¥(F) = V(L) ®4 S(Q).

The Amodule Lo =L@ QOPLOQD - -=FOFOF®- - is a free A-module. Define
R=QO®LBPQODL®---;then R is a free A-module such that Lg = L ® R is a free A-module
(cf. [14]). We set on L¢ the Lie-Rinehart algebra structure (for all D, Dy,Ds € L, B,B1,Bs € R)

wLQ(D—i—B) = wL(D) 5 [D1+Bl7D2+BQ} = [Dl,DQ]
in other words, the Lie-Rinehart algebra structure of L is extended trivially to Lo =L ® R.

Definition 2.1.7. Let an A-basis {b1,...,b,} of F be given. Then one can construct a basis
{vitier of R and an A-basis {e:},c of Lq both indeved by T :=Nx{1,...,n}. Any such basis
for Lg will be called a good basis. For later use, if i = (i1,i2) € T we set w(e;) =11 .



We set YV = @ kb, and Z = @erkvy Y PY @Y -+ so that FF = A®,Y and
R=A®; Z. We have then V*(Lg) = V(L)@ S(Z) .

2.1.8. Right Lie-Rinehart algebras. For the sake of completeness, we have to mention that
one can also, in a symmetric way, consider the notion of right Lie-Rinehart algebra, as follows:

Definition 2.1.9. A right Lie-Rinehart algebra is a triple (A, L,w) where L is a k—Lie algebra, L
is a right A—module, and w is an A-linear morphism of Lie k—algebras from L to Der(A), called
anchor (map), such that the following compatibility relation holds:

VDD cL, VfcA, [D,D' - f] = D" -w(D)(f)+ [D,D']-f

Remark 2.1.10. As A is commutative, a Lie-Rinehart algebra can be considered as a right Lie-
Rinehart algebra and viceversa. However, the enveloping algebra defined by the notion of right
Lie-Rinehart algebra is different from that defined by a (left) Lie-Rinehart algebra.

Definition 2.1.11. Let (A4, L,w) be a right Lie-Rinehart algebra. The (right) universal enveloping
algebra of L is the k—algebra V(L) =T, (A® L)/I where T, (A® L) is the positive part of the
tensor k—algebra over A® L and I is the two-sided ideal in T,j(A @ L) generated by the elements

a®b_ab7 §®a_§'aa §®77—77®§—[§777]a €®a_a®€_w(£)(a) V@abeAaEWGL

Next result clarifies the link between left and right enveloping algebras of a single Lie-Rinehart
algebra L. Hereafter, L°P denotes the “opposite” Lie-Rinehart algebra to L — cf. Remarks 2.1.5
— while 24°? denotes the opposite of any (associative) algebra 2.

Proposition 2.1.12. For any Lie-Rinehart algebra L, the algebras V7 (L)°P and V*(L°P) are
equal, and there is an algebra isomorphism = : VY(L) ——V"(L)°?, a+s a, D+ —D (for all
ac€A,DelL).

2.2 Lie-Rinehart bialgebras
We are now ready to introduce the notion of Lie-Rinehart bialgebra (cf. [26], [20], [16]).

Definition 2.2.1. A Lie-Rinehart bialgebra is a pair (Ll,Lg) of finitely generated projective
A-modules in duality — that is, L1 = Ly and Ly = L{ — each of them being endowed with Lie-
Rinehart algebra structures such that the differential di on \ L1 arising from the Lie-Rinehart
structure on Lo = LY is a derivation of the Lie bracket of Ly, that is

dl([X,Y]) = [dl(X)7Y] + [X,dl(Y)] fOT all X,Y S L1 .

In general, if L is a finitely generated projective A—module, then its linear dual L* (as an A-
module) is finitely generated projective as well: in this case, in the following we shall say that “L
1s a Lie-Rinehart bialgebra” to mean that (L,L*) has a structure of Lie-Rinehart bialgebra, and
we shall denote the differential of A\ 4L mentioned above by dr- or dp .

Remarks 2.2.2.
(a) The conditions of Definition 2.2.1 do not change if one switches Ly and Lo (cf. [20]).

(b) Tt follows from the definition that the differential 6y, of L in a Lie-Rinehart bialgebra (L, L*)
is uniquely determined by its restriction to A and L — the degree 0 and degree 1 pieces of A ,L .
(c) If (L,L*) is a Lie-Rinehart bialgebra, we can read off the explicit relation between the

Lie-Rinehart structure of L* — its anchor map wr~ and its Lie bracket [ , ],. — and the differ-
ential 0, of L as follows: if D*, E* € L*, X € L, a € A, then wr«(D*)(a) = (é.(a),D*) ,



(X,[D*E*];.) + (6(X), D*NE*) = wr-(D*)((X,E*)) — wr+(E*)((X,D*)) , where
( , ) denotes the natural pairing between L and L*. Indeed, one can use these formulas either to
deduce wr+ and | , |,. from éz, or to deduce the latter from wz- and [ , ];.

(d) Let (L,L*) be a Lie-Rinehart bialgebra. Denote by d the differential on A ,L* arising
from the Lie-Rinehart structure on L and d. (= ¢r,) the differential on A 4L coming from the Lie-
Rinehart structure on L* . Then A inherits a Poisson algebra structure by {f,g} := < df, d, g> for
all f,g€ A. (see [20], [33]); moreover, one has [df,dg] = d{f,g} and d.{f,g} = —[d.f,d.g].

(e) If (L,L*) is a Lie-Rinehart bialgebra, then (L°P,L*), (L, (L*)°") and (L°P,(L*)") are
Lie-Rinehart bialgebras too. Identifying any Lie-Rinehart bialgebra, as a pair, with the left-hand
of the pair, say L = (L,L*), we write L°P = (LDP,L*) — the “opposite” to L — Leoop =
(L,(L*)°") — the “coopposite” — and L%, = (L°P,(L*)°") — the “opposite-coopposite”.

coop —
(f) By means of the so called r—matrices one can introduce the class of coboundary Lie-Rinehart
bialgebras, and among them the triangular ones: we refer the interested readers to [34].

3 Left and right bialgebroids

Let again k be a field, and A a unital, associative k—algebra. We define A€ := A ®; A°P .

3.1 A-rings, A—corings

We begin this section introducing the notions of A-ring and A—coring, which are direct gener-
alizations of the notions of algebra and coalgebra over a commutative ring.

Definition 3.1.1. Let A be a k-algebra as above. An A-ring is a triple (H,mp,t) where H is an
A¢—module, myg: H®aH — H and 1: A— H are A°—module morphisms such that

mHo(mH®idH) = mHo(jdH®mH) R mHO(L®idH) = idy = mHO(jdH(X)L)
where in the second set of identities we make the identifications H Q4 A= H and A9, H = H .

It is well known (see [4]) that A-rings H correspond bijectively to k—algebra homomorphisms
t: A — H . With this characterization, the A°—module structure on H can be expressed as
follows: a-h-b = t(a)he(b) for a,b€ A, h € H. The dual notion (“A-coring”) is the following:

Definition 3.1.2. An A-coring is a triple (C, A, €) where C is an A°~module (with left action L 4
and right action Ra), A:C — C®4C and €:C — A are A°~module morphisms such that

(A®ide)oA = (ide @ A)o A | Lyo(e®ide)oA = ide = Rao(idoc®€)o A
As usual, we adopt Sweedler’s ¥—notation A(c) = cqy ® ¢y or Alc) = AV@c? for ceC.

Let A be as above, and consider now A° as base k—algebra. An A°~ring H can be described by
a k-algebra morphism ¢ : A° — H . Let us consider its restrictions s’ := «(-®,1,): A — H ,
t! == (1, ®, ) : A — H, which are called respectively source and target maps. Thus an
A°—ring H carries two (left) A—module structures and two (right) A°”—module structures: for all
a,a’ € A, he€ H, we write

avhaa = s'(a)t'(@h aw» h<4a = ht'(a) s*(a)
As usual, the tensor product of H with itself (as an A-bimodule, i.e. an A°~module) is defined as

HQ%DH = H®k H/{(U <16L) ®ul_u®(a[> u/)}aeA,u,u’GH

Now we define the left Takeuchi product (of the A°—ring H with itself) H, ﬁ oH C Hy % o H

HQEDH = {Ziui@)u;qu%DH‘Zi(abui)@mu;:ziui@(u; <a), VaeA}



By construction, Hy X ,H has a natural structure of A°-module, induced by that of Ho @, H .
A A
Even more, Hy X, H is an A°-ring, via factorwise multiplication, with unit element 1, ®1,, and
A

with tp, «,n(a®a) = s*(a) @ t*(@) . Note that this instead is not the case for Ho®,H .
A A

3.2 Left bialgebroids

We introduce now the notion of left bialgebroid, as well as some related items (see [32], [25], [34],
[4] and [22], Chapter 2, for a detailed history of this notion). We begin with the very definition:

Definition 3.2.1. A left A-bialgebroid is a k—module H that carries simultaneously a structure of
an A®-ring (H, s*,t*) and of an A—coring (H, Ay, €) subject to the following compatibility relations:

(i) The A°—module structure on the A-coring (H, Ay, €) is that of wHq, namely (for all a,a €
A, heH) avh<a = s'(a)t(a)h .

(ii) The coproduct map A® is a unital k—algebra morphism taking values in HqxyH .
A

1i) The (left) counit map € has the following property: for a,a € A, u,u’ € H, one has
g Y

e(s(a)t'(@)u) = ae(u)a |, c(ur) = e(us’(e(w)) = e(ut'(e())) e(1)=1

Remarks 3.2.2. A left bialgebroid H over A has the following properties (for a € A, u € H):

(a) Aglavu<a) = (abup)) @ (wo<a) Ag(awuaa) = (uq) €4d) @ (a» upz)
(using X-notation A(u) = u() ® u(z) as usual, cf. Definition 3.1.2)

(b) H acts on A on the left (cf. [22]) by w.a := e(us(a)) = e(ut‘(a)) ; we shall also use the
notation u(a) :=wu.a , and call this the left anchor of the left bialgebroid H (cf. [34]).

(c) tg(e(x)) ®1= tf(e(x(l))) ® s* (e(z2)) = 1® se(e(x)) forall z € H.

(d) as a matter of notation, if (H,A,s",t,A,¢) is a left bialgebroid, we set HT := Ker(e) .

Definition 3.2.3. Let H = (H, A, st A, e) and H = (FAI,A, 5ttt A,é) be two left bialgebroids.
A morphism of left bialgebroids from H to His a pair (f, F) where f: A — A isa morphism of
algebras, F : H — H is a morphism of rings and of corings, and Fos® = §tof , Fot! = tlof .

We denote by (LBialg) the category of left bialgebroids, whose objects are left bialgebroids and
morphisms are defined as above. Inside it, (LBialg,) is the subcategory whose objects are all the left
bialgebroids over A, and whose morphisms are all the morphisms in (LBialg) of the form (id, F) .

3.2.4. Twistors of left bialgebroids. Let H be a left bialgebroid. Given F = ZZ T ®yY; €
H<,§>,>H (with @;, y; € H ), define s%: A — H by s%(a) =, s"(zi(a))y; and t%: A — H

by th(a) =, t*(yi(a)) z; . Moreover, for any a,b € A set axzb:=s%(a)(b) =3 ,zi(a) y;(b) .

Proposition 3.2.5. (¢f. [34]) Assume that F € H%H satisfies the following conditions:

(i)  (A®id)(F) Fiz = ([d®A)(F)-Fo  inside H®,H®,H
(i) m((e@id)(F)) =1, , m((id®e)F) = 1,
where Fi1p = F®1l, € H®, H®, H and Fo3 =1, F € H®, H®,H .
Then one has F - (t%(a) ® 1, — 1, ® s%(a)) = 0 inside H®, H (for all a € A).
Moreover, if F satisfies (i) and (ii) above, then
(a) (A,xx) is an associative algebra, denoted Ax, and axrl = a = lxra forall a€ A;
(b) sff : Ar — H is an algebra morphism and té}- : Ar — H is an algebra antimorphism.



Now let M be a module over H (as an algebra): then M has also a natural A°*~module structure.
If F is a twistor of H, then M has also a natural A%-module structure. Consequently, if M; and
M are two H—modules, the tensor products M ®,Ms and M;, ® Mo are well defined.
A Ar

Corollary 3.2.6. (cf. [34]) Let My and Ms be two left H-modules. Then there exists a well

defined k—linear map F#* : Miq® s My — My s, My given by my @ mg +— F - (my @ ma) .
Az A

We say that F is invertible if F# is a k—vector space isomorphism for any choice of M; and M, .
In this case, taking M; = My = H we get a k-linear isomorphism F# : H ®A;H — H®,H .

Definition 3.2.7. An element F € H® H s called a twistor (of H) if it satisfies equations (i)
A

and (#) in Proposition 3.2.5 and it is invertible (in the just explained sense).

Let now F be a twistor of H. Then we may define a new coproduct Ar: H — H® AFH of
H by the formula Ar(z) := (]—'#)71 (A(z) - F) . The key result is then the following (see [34]):

Theorem 3.2.8. Let (H,A,sé 8 m LA e) be a left bialgebroid. Then (H, Ax, sé}-, té—,m,A}-, 6)
1s a left bialgebroid as well.

3.2.9. Left bialgebroid structures on universal enveloping algebras V/(L). Given a Lie-
Rinehart algebra L, there is a standard left bialgebroid structure on V*(L).

Source and target maps are equal and given by 14 : A — V*(L). Then the A°-module
structure ,V*(L)4 is given by a>u<é@ := aawu . The coproduct Ay : V(L) — VZ(L)Q%DVIZ(L)

and the counit map e: V/(L) — A are determined by
Agla) =a®l, AyX)=X®1+10X, efa) =a, €X)=0 Vace A, XelL

Note that the anchor map w endows A with an obvious left V*(L)-module structure, given by
u.a == w(u)(a) for ue V¥(L), a€ A, that coincides with the anchor of the left bialgebroid V*(L);
cf. Remarks 3.2.2(b).

More in general, left V¢(L)-module structures on A correspond to left bialgebroid structures
on V¥(L) over A (see [22]). Finally, one can recover the anchor of L from the left bialgebroid
structure of V(L) as follows: wr(X)(a) = €y¢,, (X a) forall X € L, a€ A.

Remark 3.2.10. Let (A, L) and (A4’, L) be two Lie-Rinehart algebras. Endow V(L) and V¢(L')
with their standard left bialgebroid structure. A Lie-Rinehart algebra morphism from (A, L) to
(A, L") as it was defined in [15] — see also “morphisms of Lie pseudo-algebras” as they are defined
in [13] — gives rise to a left bialgebroid morphism from V*(L) to V*(L').

Our next theorem is a suitable version for left bialgebroids of the well-known Cartier-Milnor-
Moore theorem (for Hopf algebras). A similar result is given in [28], yet in this paper we do need
(later on) that kind of result exactly as stated here below.

Theorem 3.2.11. Assume that A is a unital commutative algebra over the field k .
(a) Let (U, A, s t5 Ay €) be a left bialgebroid such that s* =t*. Set
PU) = {ueU|Au)=uel+10u}

(the set of “left primitive elements” of U ). Then the pair (A,PE(U)) is a Lie-Rinehart algebra.

(b) Assume in addition that P*(U) is projective as an A-module, and that P*(U) and s°(A)
generate U as an algebra. Then U is isomorphic to V* (PK(U)) as a left bialgebroid.



Proof. (a) On PY(U) we set the following A-module structure: a- D := s‘(a)D for all a € A,
D € PY(U). Moreover, if D,D’ € PY(U) then [D,D'] := D-D'—D'-D € P‘U), by direct
check: this defines a Lie bracket on P*(U).

)

Finally, we define w : P{(U7) — Der(A) by D — (b -1 (D s(b))) .
It is proved in [22] (Proposition 4.2.1) that (A, P*(U),w) is a Lie-Rinehart algebra.

(b) By assumption, the natural algebra morphism from T (A & P*(U)) to U is surjective
and it induces a surjective algebra morphism f : V(PY(U)) — U. As PY(U) and s°(A) generates
V#(PY(U)) as an algebra, this map is also a morphism of corings. By the same argument as in [27],
Lemma 5.3.3, one shows that f is also injective because f | PV is injective (which is obvious). [

3.3 Right bialgebroids

Just like for left bialgebroids, one can consider the notion of right bialgebroids (cf. [17] and [4]).
We will need a second type of “Takeuchi product”. In order to distinguish it from the previous one,
we shall now denote the base k—algebra by B instead of A. Hereafter, B is a (unital, associative)
k—algebra, and we use notations as in § 3.1. Let H be a B®-ring given by a k-algebra morphism
n" : B¢ — H , a source map s" :=n"(-® 1) and a target map t" :=17n"(1®-) . We consider
now the right B~module structure on H given by h-(b®b) :=h-5"(b®b) , for bbe B, he H.
Then the tensor product of H with itself (as a B-bimodule, i.e. a B°~module) is defined as

H<%>H = H @y H/{(u<b)®ul_u®(b>u/)}beB,u,u’eH

Now we define the right Takeuchi product (of the Bé—ring H with itself) HqX p H C H®p H
B B

B
HexypH = {Zzul@)u; €H4®,H’ Zi(a>u1)®u§:2iui®(u§4a)}
B

Definition 3.3.1. A right B—bialgebroid is a k—module H that carries simultaneously a structure
of a B¢—ring (H, s",t") and of a B—coring (H, A,.,9) subject to the following compatibility relations:

(i) The B®-module structure on the B-coring (H,s",1") is that of »Haq, namely (for all
bbe B, hec H,) b» h4b:= hs"(b)t"(b) = hn(bx?D) .

B
(ii) The coproduct map A, is a unital k—algebra morphism taking values in H Xy H .

(iii) The (right) counit map O has the following property: for all b,b € B, u,u’ € H, one has
A(us"(b)t" (b)) = bO(uw)b , A(uv) = I(s"(O(w) ) = O(t"(O(w)v) , 9(1) =1

Remarks 3.3.2.

(a) The definition of a right bialgebroid is obtained from the definition of a left bialgebroid
by exchanging the role of black triangles (», «€) and white triangles (>, <). Consequently, the
properties of a right bialgebroid are obtained from those of a left bialgebroid — see Remarks 3.2.2)
— by exchanging the roles of black triangles and white triangles.

(b) (ctf. [22]) The “opposite” of a left bialgebroid U = (U,A,Sz,te,Ag,G) is defined as U°P :=
(U"p7A, th st Ay, e) : this can be shown to be a right bialgebroid. The “coopposite” is given by
Ucoop 1= (U, A%, t%, s*, AP €) with AP : U — U ®@am Uq, u +— ugz) ® u(yy ; this is still a
left bialgebroid. As a consequence, U2  is a right bialgebroid.

coop

The definition of a right bialgebroid morphism is analogous to that of a left bialgebroid mor-
phism. We denote by (RBialg) the category of right bialgebroids, whose objects are right bialge-
broids and morphisms are defined mimicking Definition 3.2.3. Inside it, (RBialg) , is the subcat-
egory whose objects are all the right bialgebroids over A and whose morphisms are all those in
(RBialg) of the form (id, F).



3.3.3. Right bialgebroid structures on universal enveloping algebras V"(L). Given a
Lie-Rinehart algebra L, now considered as a right one, its right universal enveloping algebra
V7(L) bears a natural structure of right bialgebroid over A obtained by pulling-back the left
bialgebroid structure of V(L) via the isomorphism V(L) = V*(L)*”. More explicitly, the A°—
module structure , V" (L)4 is given by a » u €4 @ := uaa ; the coproduct A, : V(L) —
V(L) 4 %) » V"(L) and the counit 0:V"(L) — A are determined by

Ar(a) =a®l, AX)=X®1+10X, da) =a, OX)=0 VacA, XelL

Finally, one can recover the anchor map of L from the right bialgebroid structure of V" (L) as
wr(X)(a) = =0vry(aX) forall X e L, ac A.

We also have an analogue for right bialgebroids of Theorem 3.2.11 (with similar proof):

Theorem 3.3.4. Assume that A is a unital commutative algebra over the field k .
(a) Let (W, A, s",t", A, ) be a right bialgebroid such that s" =1t". Set
PrW) = {weW|A(w)=wel+low}
(the set of “right primitive elements” of W ). Then the pair (A, PT(W)) is a right Lie-Rinehart
algebra for the following right action and anchor map
w.a = ws"(a) , w(D)(a) = -8(s"(a)D) , VweW, VDeP (W), VaeA

(b) Assume in addition that P"(W) is projective as an A—module, and that P"(W) and s"(A)
generate W as an algebra. Then W is isomorphic to V" (PT(W)) as a right bialgebroid.

Remark 3.3.5. The previous result improves a bit as follows. Let (VV7 A st A, 8) be a right
bialgebroid for which A is commutative and s” = ¢". Let @ C P"(U) be a right Lie-Rinehart
subalgebra of P"(W) such that (i) @ is a projective A—module and (i) @ and A generate W
as an algebra. Then W is isomorphic to V" (Q) as a right bialgebroid, and @ = P"(W) .

An entirely similar remark also applies to Theorem 3.2.11.

3.4 Duals of bialgebroids

We shall now consider left and right dual of (left and right) bialgebroids, and investigate their
main properties. We begin with dual of left bialgebroids, then we pass on to dual of right ones.

Definition 3.4.1.

(a) Let U be a left A-bialgebroid, with structure maps as before. The left dual and the right
dual of U respectively are the spaces

Uo = {0:U — Alg(u/ +u") = o(u') + 6(u"), d(s'(a)u) =ad(u) } = Homa(sU, 44)
U = {¢:U— Alg(u +u") = ¢(u) + d(u”), ¢(t'(a)u) = $(u)a} = Homa(Us,An)

(b) Let W be a right A-bialgebroid, with structure maps as before. The left dual and the right
dual of W respectively are the spaces

o= { g W— Al p(w +0") = (') +o ("), Y(wit'(a)) = ap(w) } = Homa(pW,4A)
Woim {4 W A (! +u) = )+ p(w"), $(ws (@) = (w)a} = Homa(Wa,A4)

3.4.2. Bialgebroid structures on dual spaces. Let U be a left A-bialgebroid as above. We
shall now introduce on its dual spaces U, and U* a structure of right A-bialgebroid; most of
the structure is well-defined in general, but for the coproduct we need an additional assumption,
namely U as an A-module (on the left, or the right, see below) has to be projective.
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Product structure: First we recall (see [17], and also [22]) that U, and U* can be equipped with
a product, for which the counit map € is a two-sided unit. For ¢, ¢’ € U, , ¥, € U*, u € U, set

(66)(w) = mu. (69 ¢)(w) = ¢/ (mu(id® ("0 9) (Ar(w) ) = ¢'(¢(Sucz)) - u))
() () = mo- (V@) () = ' (mo(( o) @ id) (An(w)) ) = v (s" (b)) - )

A-module structures: For the left dual space U, , the left dual source map s, : A — U, and
the right dual target map t}, : A — U, are defined as follows:

(si(a))(u) == e(tz(a) u) = e(u)a , (th(a)) (u) = e(ute(a)) VacA, uelU.

Then one has, in the usual way, two left and two right actions of A on U, , given by

(av@)(u) = (si(a)9)(u) = ¢(t(a)u) ,  (¢<a)(u) = (ti(a)¢)(u) = d(ut’(a))
(a» )(u) = (¢ti(a)(u) = d(us’(a)) , (¢ <a)(u) == (¢si(a))(u) = d(u)a
Similarly, for the right dual U* the source s} : A — U* and the target t:: A — U* are
(si(a))(u) == e(us’(a)) , (ti(a))(u) = e(s’(a)u) = ae(u) Vae A, uelU.

T ™

Then one has, like before, two left and two right A—actions on U*, given by

(a>¥)(u) = (si(@)¥)(w) = ¥(us'(a)) ,  (V<a)(u) = (t;(a)¥)(w) = ¥(s"(a) u)
(a»9)(u) = (Vi) (w) = av(u) . (@ €a)(u) = (¥s;(a)(w) = ¥(ut'(a))

Coproduct structure: Now assume that .U as an A—module be projective. Then we now endow

the left dual U, with a coproduct A, which, eventually, makes it into a right bialgebroid.
Consider the injective map x : Uy ® p U — Hom(A,_)(D(U<® U ), AA) given by

b0 = x(@ed) (v o x(o0d) (wed) = ¢ (us'(6W)))

Now, if U is finite projective (as an A—module) then the previous map is even an isomorphism.
If instead U is projective but not finite, one can endow U, (® » U, with a suitable topology
(typically, the “weak” one), and denote by U, ® U, the corresponding completion: then the
above map extends — by continuity, using the notion of basis for a projective module (cf. [2]) —
to an isomorphism from U, (®»U, to Hom(A7_)(,>(U<® U ), AA) . This allows us to define a
coproduct A, on U, as the transpose of the multiplication on U , namely

U:a@pUs . ¢ = A(0) (ueu — ¢(un))

AU —— HOIH(A_’,)(D(U;@ DU) , AA) gl
-
This coproduct makes U, into a (topological) A—coring, with counit 7, : Ux — A, n.(¢) := ¢(1) .
Similarly, if U, as an A—module is projective, then for its right dual U* a coproduct is defined
as follows. Consider the injective map ¥ : Uq® pU* — Hom(_ 4)((Us®,U),, Aa) given by
peu = 9wey)(ued » Iper)(we) = b W)

Again, if U is finite projective (as an A-module) then this map is an isomorphism. If instead U
is projective but not finite, one can endow U*q® »U* with a suitable topology (like the weak
one), and denote by U*® »U* the corresponding completion: then the above map extends —
by continuity — to an isomorphism ¥ from U@ U* to Hom(_ 4 ( Ua®,U ), AA) . Thus we
can define a coproduct A, on U* as the transpose of the opposite multiplication on U , namely

Ap U —— Hom_ 4)((Uq®,U),, Ax) = U@pU*, ¢ = A1) (u@u — (v u))
J-1

This makes U* into a (topological) A—coring, with counit 0, : U* — A given by 0, (v) := ¢(1) .

Conclusion: If U is any left bialgebroid over A, projective as an A-module, then U, and U*
with the structures introduced above are both (topological) right bialgebroids over A.
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Similarly, we consider the case of a right A-bialgebroid W, and we introduce canonical struc-
tures of (topological) left A—bialgebroids on its left and right dual spaces W and *W : indeed,

everything is strictly similar to what occurs in the previous case for U, so we skip details.

Notation: in the following, if v is an element of some (left or right) A-module, and ¢ is an
element of the (left or right) dual of that module, we shall write (¢, v) := ¢(v) or (v, ¢) :=¢(v) .

Remark 3.4.3. If U is a left bialgebroid which is projective of finite type as an A—module, then

it is isomorphic to *(U,) and to .(U*) — as a left bialgebroid. This follows from the equalities
VacA,ueU,pcU,,peU*

(u,¢s5(a)) = (u, ¢)a , (u,¥ti(a)) = alu, )

We introduce now the natural vocabulary of “pairings”, which we shall use in computations.

Definition 3.4.4. (a) Let (U, se,tg) and (W, sr,tr) be two A°—modules. An A°-left pairing is a
k-bilinear map < , > U X W — A such that, for any ue U, w e W and a € A, one has

(u,avw) = (u,s"(@)w) = (tela)u,w) = (uda,w)
(u,waa) = (u,t"(@)w) = {(utya),w) = (aPu,w)
(u,avw) = (u,wt™(a)) = (usela),w) = (u-da,w)

<u7w<a> = <u,ws"(a)> = <u,w>a
(avu,w) = (s‘(a)u,w) = alu,w)

Then there exist natural morphisms of A°—modules W — U, and U — *W . The pairing is
non degenerate if the left and right kernels of this pairing are trivial, that is to say
u=0, <u,w>:0,Vu€U = w=0

<u,w>:07 VweW —
In other words, the pairing is non degenerate if and only if the above maps W — U, and

U — *W (which are morphisms of A°—modules) are injective.
(b) Let (U, se,té) and (VV7 Spyt ) be two A®—modules. An A°—right pairing is a k—bilinear map

<, >:U><W—>A such that, for any w € U, w € W and a € A, one has

(u,waa) = (u,ty(@)w) = (s(a)u,w) = (avu,w)
(u,apw) = (u,s.(a)w) = (us(a),w) = (uda,w)
(w0 4a) = (u,ws@)) = (ut(a),w) = (au,w)
<u,a>w> = <u,th(a)> = a<u,w>
= (u,w)a

(uda,w) = (t'(a)u,w) =

Then there exist natural morphisms of A°—modules W — U* and U — W . The pairing is

non degenerate if the left and right kernels of this pairing are trivial, that is to say
<u,w>:O, Vuel — w=0

<u,w>=0, VweW — u=0,
In other words, the pairing is non degenerate if and only if the above maps W — U* and

U — W (which are morphisms of A°—modules) are injective.

Definition 3.4.5.
(a) Let (U, Sg,tz,A,E) be a left A-bialgebroid and (W, s"7t",A,n) be a right A-bialgebroid. A
bialgebroid left pairing is a non degenerate A°-left pairing < , > :UXxW — A such that

(ue w) = (uswe (v way) = (us((vw)) s we)
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(w,ww') = (¢ ((uy, w))ugy, @' ) = (uay, se({ue, w)w' ) (u,1) = ew)

for any u, v € U and any w, w' € W. In other words, the natural maps W —— U, and
U ——*W are (injective) morphisms of right and left bialgebroids respectively.

(b) Let (U7 sé,tz,A,e) be a left A-bialgebroid and (W, Sr7tr,A,7]) be a right A-bialgebroid. A
bialgebroid right pairing is a non degenerate A®—right pairing < , > :UXxW — A such that

(ud',w) = <Ute(<U',W<2>>)7W(1>> - <“’W<1>Sr(<u5w<2>>)> ;o (1, w) = n(w)
(u,ww') = <S£(<U(1>’W>)U(2)W’> = <U(2>’tr(<u<1>vw>)W'> ;o (u 1) = e(u)

for any u, v € U and any w, w' € W . In other words, the natural maps W —— U* and
U —— W are (injective) morphisms of right and left bialgebroids respectively.

Remarks 3.4.6.

(a) I U is a left bialgebroid, then the couple (U U *) bears a bialgebroid right pairing, whereas
(U, U*) bears a bialgebroid left pairing.

(b) Let U be a left bialgebroid. Then the left bialgebroids (U*)2%,, and .(UZ%,,) are isomorphic:

indeed, the right A®-pairings between U and U* and between ., (U gg;p) and UZL,, give rise to the

same formulas. Similarly, the left bialgebroids (U*)zfop and *(U, C"g';p) are isomorphic.

3.5 The jet space(s) of a Lie-Rinehart algebra

3.5.1. Bialgebroids of jets: the right version. Let (L, A) be a Lie-Rinehart algebra, projective
as an A-module. Consider its enveloping algebra V*(L) endowed with its standard left bialgebroid
structure and define the right jet space of the Lie-Rinehart algebra L as

JT(L) == VYL)" = Hom(_ 4)(V*(L),,As)

As in §3.4.2, a multiplication in J"(L) can be given by (¢¢')(u) = ¢(ug)) ¢’ (uz)) for ¢, ¢’ €
JU(L), u € V¥L). In particular, this multiplication is commutative, and the counit map of V*(L)
is the unit element of J"(L). Also, the map 0 = 0,r, : J'(L) — A, ¢ = 0(¢) := ¢(1ye(y,),
will play the role of counit map of J"(L) ; hereafter, we write J,~, := Ker(9,~.,). Moreover, we
have a structure of A°ring on J"(L), whose source and target maps are given — for all a € A,
u € VH(L) — by the formulas (s"(a))(u) :=e(us‘(a)), (¢"(a))(u) = e(s'(a)u) = ae(u) . Note
that J"(L) is complete for the J,-,-adic topology.

To define a coproduct on J" (L) := V*(L)" we adapt the construction in §3.4.2 (cf. also [22], [24],
[6]). Consider the injective map ¥ : J'(L) (®, J'(L) = VK(L): ®, VAL — (VK(L)<1®>V€(L))*
given (as in §3.4.2) by Y @ ¢ — 19(1/1 ® 1/1’) (u Qu — 19(1/1 ® d)’) (u ® u’) = ¢(u' tz(z//(u)))) .

Consider in J'(L) (®,. J"(L) the Jg-adic filtration, with Jg 1= I, @ J(L) +J(L) @I 7y =
Ker (aﬂ@) ® 8J7~<L)), and the corresponding topology defined by it in J"(L) ( ®, J"(L); then
denote by J"(L) (® ,J"(L) the Jg—adic completion of J"(L) (® , J"(L). The completion of 6,
J J' (L) (&, J"(L) — (VE(L)<]®>VZ(L))* , is an isomorphism. Therefore, we can complete
the procedure explained in §3.4.2 and define a coproduct A : J"(L) — J"(L) (®, J"(L) on
Jr(L) :==VHL)" as A:=0"10V where V:J"(L):= VL) — (V{L), @, VXL))" is given
by V:t¢p—= V@) (u@u — (v u)) foral ¢ € J(L), u,u’ € V{(L). As an outcome, we have

A() =bay @) € J' (D) (@, J7 (L) with ¢ (ut (P () = ¢(uu')

This A makes J(L) into a (topological) A—coring, with counit map 0 = 9, : J (L) — A given
as above by ¢ — 0(¢) := ¢(1,¢,,). All in all, this makes J'(L) into a right bialgebroid over A.
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Remarks 3.5.2. We have to mention some extra features of the right bialgebroid J"(L) :=
V4(L)", namely the following:
(a) as J"(L) is commutative, it is equal to J"(L)°? hence it is also a left bialgebroid;

(b) it is known that J"(L) is a Hopf algebroid (see [22], [6], [29]): in particular, there exists a
standard right bialgebroid isomorphism — called the “antipode” — from J"(L) to J"(L)

coop

3.5.3. Bialgebroids of jets: the left version. Let again L be a Lie-Rinehart algebra over A,
again projective as an A-module. Considering now L as a right A-module, we look at its right
enveloping algebra V" (L), endowed with its natural structure of right bialgebroid (cf. §3.3.3).

We define the left jet space of the Lie-Rinehart algebra L as the left dual space

JYL) = ,V"(L) = Hom(_ 4)(V"(L)(,An)

Again from §3.4.2 we have a multiplication in J*(L) given (for v, ¢’ € J(L), u € V"(L)) by
(1/} z//) (u) = ¢(u(1)) z//(u@)) ; in particular this multiplication is commutative in J*(L), and the
unit element of J*(L) is the counit map of V"(L). Moreover, the map € = €,¢.,, : J*(L) — A,
Y — €(1p) == Y(1yr1,), works as counit map of J*(L) ; in the sequel we write J,¢.,, 1= Ker (e,¢,,) .

Still from §3.4.2 we get a structure of A°-ring on J*(L), with source and target maps given by
(s(a))(u) :=08(au), (t(a))(u):=0(uw)a,—forall ac A, ueV"(L).

Finally, we can also endow J*(L) with a suitable (topological) coproduct, just adapting the
recipe given in §3.4.2. Eventually, all this makes J¢(L) into a (topological) left bialgebroid.

Remark 3.5.4. As J/(L) = JT(LP) oy » it follows from Remarks 3.5.2(b) that our JHL) =
«V7(L) is also a Hopf algebroid: in particular, there exists a standard right bialgebroid isomor-

phism — the “antipode” of J*(L) — from J*(L) to J*(L)

coop

3.5.5. Further jet spaces, and comparison. Besides the jet spaces J"(L) and J*(L), further
possibilities exist. All in all we can consider four different types of “jet bialgebroids”, namely
viL)" = J(L) , V(L) = JYL) , VYL), = "J(L) , V(L) =: “J(L)
One can also establish some relevant links among all these bialgebroids of jets: for instance, we
have already noticed that that JY(L) = J"(L°P)% = = J"(L°?),,,, (cf. also Remark 3.4.6).
We also saw above that V*(L), = (VZ(L)*)COOP = J(L) ppop = " (L) (cf. Remarks 3.5.2) and
V(L) = (V" (L)) = JYL) > JY(L) (cf. Remark 3.5.4). Thus, in the end, jet bialgebroids

of type J"(L) or J*(L) are enough to consider all possible situations, for every possible L .

coop coop

We introduce now suitable “topological duals” for jet bialgebroids J"(L) and J*(L):

Definition 3.5.6. Let K = J"(L) be a right jet bialgebroid, for some Lie-Rinehart algebra L .
Set I := {AxeJ'(L) ‘ (1,A) = 0} = Ker(9,~)) — which is a (two-sided) ideal in J"(L), as

one easily sees. Then we introduce the following subsets of *K and K :
K ={ue*K|u(l")=0Vn>»0} , ,K:={ue,K[u(l")=0Vn>0}
Similarly, if K := J*(L) is a left jet bialgebroid, and I := Ker ((’Le(m) , we define

K* = {UEK*

u(I") =0V n>0} , K,:={ueck,

u(I") =0V n>0}

It should be clear by the very definition that, in the first case, *K , resp. K , is nothing but
the subset of those functions in *K , resp. in K , which are continuous with respect to the I-adic
topology in *K , resp. in K, and the discrete topology in A. Similarly for K* and K, in the
second case. The key reason of interest for these objects lies in the following, well-known result:
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Theorem 3.5.7. Let L be a Lie-Rinehart algebra which, as an A-module, is finite projective.

(a) Consider the right bialgebroid J"(L) := VY(L)". Then ,J"(L), as a left bialgebroid, is
isomorphic to V*(L) : more precisely, the canonical map V*(L) — *(VE(L)*) =, J"(L) given
by evaluation is an isomorphism of left bialgebroids.

Similarly, replacing J"(L) := V(L)" with the right bialgebroid V*(L), one has a corresponding
isomorphism of left bialgebroids V(L) —>*(VZ(L)*) still given by evaluation.

(b) Consider the left bialgebroid J'(L) := ,V"(L) . Then JY(L)", as a right bialgebroid, is
isomorphic to V™(L) : more precisely, the canonical map V™ (L) — (*VT(L))* = JYL)" given
by evaluation is an isomorphism of right bialgebroids.

Similarly, replacing J*(L) := V" (L) with the left bialgebroid “V (L) one has a corresponding
isomorphism of right bialgebroids V" (L) —>(*VT(L))* still given by evaluation.

Remark 3.5.8. The standard isomorphism between J'(L) := V(L)" and (L) coop = VL),

(see Remarks 3.5.2(b)) induces an isomorphism *((VE(L)*) =~ V¢(L) . Similarly, we have also an
analogous isomorphism (,V"(L)), = V"(L) .

Remark 3.5.9. Let L be a finite projective Lie-Rinehart algebra and @ be a (finite projective)
A-module such that L & Q = F is a finite rank free A—-module. We resume notation of §2.1.6: so
we take an A-basis {b1,...,b,} of F,and weset Y =kb; & ---®kb,, sothat F=A®;Y ;
moreover, Lo = L & (AQ®y Z) is a Lie-Rinehart algebra with Z =Y &Y &Y & --- . One
has S(Y)®® := S(Z) = S(Y)®S(Y)®--- (recall that elements of an infinite tensor product
of algebras are sums of tensor products with only finitely many factors different from 1). For
T e{Y,Z}, welet e¢:S(T) — k — the counit map of S(T) — be the unique k-algebra
morphism given by S(t) := 0 for t € T, and we set S(T)" := Ker(e) .

For any n, denote by J}, (Lq) = Vé(LQ);,n the subset of V*(Lg)" whose elements are

all the A € V¥(Lg)" such that Myeyosayenssz s = 0 and set JE(LQ)NE ViLg); =

Unen /7.1 (Lg) - Then one can describe J7, (Lg) as J; ,(Lg) = J"(L) RS(Y*N® R1R1® -,

where S (Y*) denotes the completion of S (Y*) with respect to the weak topology; so we have also
Q) = FoenTjnlla) = Soen (D) EEOT E1515 -

This J}(Lg) is a sub-bialgebroid of J"(Lg) : indeed, its right bialgebroid structure is described by

spiA— Ji(Lg) , a—s(a)®@1, tr 2 A— Ji(Lg) , amrt.(a)®1
(p@s) (' @s") == dd'®ss’ , AlpRs) == (p1y@sq)) @ (b2 @5(2)) , d®s) = A(¢)e(s)
forall a€ A, ¢,¢' € J'(L), 8,8 € X, en SY*)E @1&1& -~ (neN).

Last, let */J¢(Lg) be the subset of all § €*J7(Lq) such that & Tr(L) B S(Y)En & szt = 0 for
n>>0. It is easy to see that */.J;(Lq) is a left sub-bialgebroid of *.J}(Lg) , isomorphic to Vi(Lg).

4 Quantum groupoids

In this section we introduce quantum groupoids — i.e. topological bialgebroids which are
formal deformations of those attached to Lie-Rinehart algebras. Then we show that taking suitable
“(linear) duals” we get an antiequivalence among the categories of objects of these two types.

4.0.10. The h—adic topology. If V is any k[[h]]-module, it is endowed with the following

decreasing filtration: V D hV D h2V D --- D A"V D A"tV D ... D . Then V is also endowed
with the h—adic topology, which is the unique one for which V is a topological k[[h]]-module in
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which { hmV}m N is a basis of neighborhoods of 0. Indeed, V is then a pseudo-metric space, as
the h—adic topology is the one induced by the following pseudo-metric:

d(z,y) == |z —y| =27 with m:=sup{seN|(z—-y)eh’V} Va,yeV

The topological space V is Hausdorff if and only if the pseudo-metric d is a metric: in turn, this

occurs if and only if (), .y 2™V = {0} , which means that each point in V' forms a closed subset.

4.1 Quantum groupoids

In this subsection we introduce the notion of “quantum groupoids”: these are special “quantum
bialgebroids”, namely (topological) bialgebroids which are formal deformations of those of type
VL), V"(L), J"(L) or J*(L). We begin with the ones associated with the first two cases:

Definition 4.1.1. A left quantum universal enveloping algebroid (=LQUFEAd) is a topological
left bialgebroid (Hy , A, sh ,th ,mn, Ay, €) over a topological k[[h]]-algebra Ay such that:

(i) Ay, is isomorphic to A[[h]] as a topological k[[h]|-module, for some k—algebra A, and this
isomorphism induces an algebra isomorphism A/ h A, = A[[h]]/ R A[[R]] = A ;

(i4) Hy, is isomorphic to V*(L)[[h]] as a topological k[[h]]-module where V*(L) is the left bial-
gebroid associated with some Lie-Rinehart A—algebra L, as in §5.2.9;

(iti) Hy/hHy, = VH(L)[[R]]/hV(L)[[A])] is isomorphic to V¥(L) as a left A-bialgebroid via
the isomorphism Ay [ h A, = A[[R]]/ h A[[h]] = A mentioned in (i);

(iv) denote by Hp, 4 % s Hy, the completion of Hp 4 %@h > Hy, with respect to the h—adic topology,

and define the (h—adically completed) Takeuchi product as
thif s Hp = {Zz“z@’“; ethgi) > Hp, Zi(abui)@)ug :Ziui® (u; 4(1)}
h h
then the coproduct Ay, of Hy, takes values in Hy o & o Hy, .
Ap

In this setting, we shall say that H), is a quantization, or a quantum deformation, of V(L) ;
we shall resume it in short using notation V*(L), = Hy, .

In a similar, parallel way, we define the notion of right quantum universal enveloping algebroid
(=RQUEAA) as well, just replacing “left” with “right” and V*(L) with V" (L), cf. §3.8.3.

We define morphisms among left, resp. right, quantum universal enveloping algebroids like in
Definition 3.2.3; moreover, we use notation (LQUEAJ), resp. RQUEAJ, to denote the category of
all left, resp. right, quantum universal enveloping algebroids. If Ay, is a fized ground k[[h]]-algebra,
then we write (LQUEAA) 4, , resp. (RQUEAd),, , to denote the subcategory — in (LQUEAd),
resp. (RQUEAd) — whose objects are all the left, resp. right, quantum universal enveloping alge-
broids over Ay , and whose morphisms are selected as in Definition 3.2.5.

Remarks 4.1.2.
(a) UisaLQUEAd < U2 isa RQUEAd <= U° is a RQUEAd .

coop
(b) If (VK(L)h,Ah L Shth my Ay ,eh) is any LQUEAd, then A; is a deformation of the
algebra A: then, as usual, one can define a Poisson structure on the base algebra A as follows:

{f,g} — [ *ng ;9 xp f

where f/ € A, and ¢’ € Ap, are such that f/ mod h Ay, = f and ¢’ mod h A, = g. The same
observations makes sense if one has to do with a RQUEAd V" (L), .

(¢) The definitions given so far make sense for any Lie-Rinehart algebra L. However, from
now on we shall assume in addition that L, as an A—module, is finitely generated projective.

mod h Ay vV f,ge A

The following theorem is proved in [34] (Theorem 5.16) :
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Theorem 4.1.3. Let (VZ(L)h JAp st omy Ay eh) be a LQUEAd. Define

té N _ A !
d(a) = M mod h V(L), VacA
5(X) = All(x),, —All(x) e v¥r) ® V(L) YV XelL
A(X)-X'®1-10 X' _
with  A(x) = 22 &) h® P2 med h (VL) 8 V(D))
h

where X' € V¥(L), is any lift of X (i.e. X' mod hV*(L), = X ) and o’ € Ay, is any lift of a.

Then §(a) € L and 6(X) € /\ZL; this gives to L the structure of a Lie-Rinehart bialgebra.
Also, the Poisson structure on A induced by this Lie-Rinehart bialgebra (cf. Remarks 2.2.2(c)) co-
incides with the one obtained as the classical limit of the base x—algebra A}, (cf. Remarks 4.1.2(b)).

Remark 4.1.4. In the above statement, we took formulas opposite to those in [34]: indeed, this
allows us to deduce the very last claim.

Example 4.1.5. (cf. [34]) Let P be a smooth manifold, D the algebra of global differential
operators on P and A :=C*(P). Let D[[h]] be the trivial deformation of D. Let

F =1@1+4hBy+--- € (D@ D)[[A] = D[R] &aquyDIh]]

be a formal series of bidifferential operators. It is easy to see that F is a twistor (cf. Definition 3.2.7)
iff the multiplication on A[[h]] defined by fxpg = F(f,g) forall f, g € A[[h]], is associative, with
identity being the constant function 1, i. e. iff %, is a star product on P. The twisted bialgebroid
structure on Djp, := DIJ[h]] can be easily described: Aj; = A[[h]] has the star product defined
above, st : A, — Dy, and t§ : A, — DAh are given by st (f)g = f*ng, ti(f)g= g f, for
f, g € A, the coproduct Ap : Dy — Dp®a, Dy, is Ap(z) := f#_l(A(x) -,7-') for x € Dy, .

In Section 7 later on we shall explicitly provide a specific example of this kind.
Theorem 4.1.3 has a natural counterpart for RQUEAAd’s as follows:

Theorem 4.1.6. Let (VT(L)h VAR, sh L th my Ay eh) be a RQUEAd. Define

5(a) = L}’Lth@ mod hV7(L), VaeA

§(X) = All(x),, - All(x) e v7(1) @ V(L) YV XelL
Ap(X)-X'@l-10X'
h
and  AM(X),; = N X @ Xy i AN) = 3 Xy @ X

with — AN(X) = mod h(V’“(L)h & VT(L)h)
h

where X' € V'(L), is any lift of X (i.e. X' mod hV"(L), = X ) and o' € Ay, is any lift of a.

Then §(a) € L and 6(X) € /\iL; this gives to L the structure of a Lie-Rinehart bialgebra.
Moreover, the Poisson structure induced on A by this Lie-Rinehart bialgebra structure is opposite
to the one obtained as the classical limit of the base x—algebra Ay (cf. Remarks 4.1.2(b)).

Remark 4.1.7. The previous result can be proved just like Theorem 4.1.3 in [34]. Otherwise,
one can deduce Theorem 4.1.6 from Theorem 4.1.3 applied to V¥(L), := V"(L);”, which is a
LQUEAd — cf. Remarks 4.1.2(a). In particular, the Lie-Rinehart bialgebra structure induced on
L by the RQUEAd V" (L), is opposite to that induced by the LQUEAd V*(L), := V"(L),”.

We introduce now a second type of “quantum bialgebroids”, namely quantizations of jets:
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Definition 4.1.8. A right quantum formal series algebroid (=RQFSAd) is a topological right
bialgebroid (Kh VAR sp Lt mp, Ay ,ah) over a topological k[[h]]-algebra Ay, such that:

(i) Ay, is isomorphic to A[[h]] as a topological k[[h]]-module, for some k—algebra A, and this
isomorphism induces an algebra isomorphism A/ h Ay, = A[[h]]/ h A[[R]] = A ;

(i) Ky is isomorphic to J"(L)[[h]] as a topological k[[h]]-module where J"(L) is the right
bialgebroid of jets associated with some finite projective Lie-Rinehart A—algebra L as in §3.5.1;

(iti) K/ hKy = J"(L)[[R]]/ hJ"(L)[[h]] is isomorphic to J"(L) as a right A-bialgebroid via
the isomorphism A/ h A, = A[[R]]/ h A[[h]] = A mentioned in (i);

(iv) letting I = {1 € K;, |0()) € h Ay} — which is easily seen to be a two-sided ideal in
Ky — we have that K}, is complete in the I —adic topology;

(v) denote by K}, 4 %L » K1 the completion of K}, < % » K1, with respect to the topology defined

by the filtration {Zpﬂ:n I'® I}‘LI} . ; also, define the Takeuchi product as
ne
K’“E » K = {Zzul®u; € Kh<§> » K, ’ Silavw)@u; =3 u; ® (ugda)}
h h
then the coproduct Ay of K takes values in Ky 4 X » K .
Ap

In this setting, we shall say that Ky is a quantization, or a quantum deformation, of J"(L) ;
we shall resume it in short using notation J" (L), := K}, .

In a similar, parallel way, we define the notion of left formal series algebroid (=LQFSAd) as
well, just replacing “left” with “right” and J" (L) with J*(L) .

We define morphisms among right, resp. left, quantum formal series algebroids like in Definition
3.2.83; moreover, we use notation (RQFSAA), resp. LQFSAd, to denote the category of all right,
resp. left, quantum formal series algebroids. If Ap is a fized ground (topological) k[[h]]-algebra,
then we write (RQFSAd),, , resp. (LQFSAd),, , to denote the subcategory — in (RQFSAd),
resp. (LQFSAd) — whose objects are all the right, resp. left, quantum formal series algebroids
over Ay, and whose morphisms are selected as in Definition 3.2.3.

Remarks 4.1.9.

(a) From the analysis in §3.5.5 we can argue that one could define a RQFSAd also as a
deformation of the right bialgebroid V¢(L), , and a LQFSAd as a deformation of the left bialgebroid
*V7(L). On the other hand, the very conclusion of §3.5.5 itself also tells us that it is enough to
consider the notions of RQFSAd and LQFSAd introduced in Definition 4.1.8 above.

(b) KjisaLQFSAd < (K,fp)coop is a RQFSAd <= K,* is a RQFSAd .

4.1.10. Further “half Hopf” structures on quantum groupoids. By construction, our
quantum groupoids are just (left or right) bialgebroids, namely deformations of such (left or right)
bialgebroids as V¥/7(L) and J*" (L) . However, V¥/"(L) and J*/"(L) actually bear further structure,
which “automatically inheriteld” by their quantizations too. To explain it, we fix some terminology.

Let ,U? Ug =U® U/Span({ (av»u)@v—u® (vaa) }aEA ) for some left bialgebroid
op k

U over A; then define a “Hopf-Galois” map ,Ugi) U, 2 U4<§,>U , URV > Uy @ up@)v .

u,velU

Similarly, one can consider an analogous tensor product ,U ® U4 and a corresponding “Hopf-
Aop

Galois” map yU® Uq —— Uq®@uU , u®@ v — V(1)U @ vy . On the other hand, for a right
Aep A
bialgebroid W over B one consider suitable tensor products , W® W, and ,W® W and
Bor Bop

Hopf-Galois maps ngwq NN W < <]83> » W and ngV[Q SEIN W < %) » W involving them.
Then U is called a left, resp. a right, Hopf left bialgebroid iff the map «y, resp. a.., is a bijection;
similarly, W is called a left Hopf right bialgebroid, respectively a left, resp. a right, Hopf right
bialgebroid, iff the map S, resp. B, , is a bijection (cf. [4], [22], [24], [23]).

It is known that V*(L), resp. V"(L), is both a left and right Hopf left, resp. right, bialgebroid.
The same holds for J*(L) and J"(L) too — actually because they have even stronger properties,
namely they are Hopf algebroids, in the sense of B6hm-Szlachanyi (cf. [5], [3], [25], [19], [22]).
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Any quantum groupoid has its own Hopf-Galois maps, whose semiclassical specialization are
the analogous maps for its semiclassical limit: e.g., the Hopf-Galois map oy for any V*(L) 5 yields
by specialization the same name Hopf-Galois map for V*(L). The latter map is bijective (since
V(L) is a left Hopf left bialgebroid) hence, by a standard argument, its deformation — the map
ay for V¥(L), — is bijective too: thus in turn V¢(L), is a left Hopf left bialgebroid as well! With
similar reasonings, looking all types of quantum groupoids we find that any V¢(L), and any J*(L),
are both right and left Hopf left bialgebroids, while any V"(L), and any J"(L), are both left and
right Hopf right bialgebroids.

4.1.11. Liftings in a (R/L)QFSAd. Let L be a Lie-Rinehart algebra which is finite projective

(as an A-module). Set J,r) = Ker (8,~1)) : then J,r) /I2,, = L* as A-modules, by defini-

tions. Given ® € L*, we shall call a lift of ® in J"(L) any ¢ € J,~, such that through the above

isomorphism one has ¢ mod J2.,, = ® . Now let K}, = J"(L), be a RQFSAd, deformation of

J"(L). For any ® € L*, we shall call a lift of ® in J"(L), any element ¢’ € J"(L), such that

¢' mod hJ"(L), is alift of ® in J"(L). In short, this means ® = (¢’ mod hJ"(L),) mod J2.,, .
Also, if a € A we call a lift of a in Ay, any a’ € A such that o' mod hA;, = a.

Changing “right” into “left”, similar remarks and terminology apply for defining “lifts” of
elements of J*(L) in some associated LQFSAd, say J*(L), .

Next result introduces semiclassical structures induced on a Lie-Rinehart algebra L by quanti-
zations of the form J"(L) or J*(L). Indeed, this is the dual counterpart of Theorem 4.1.3.

Theorem 4.1.12. Let J"(L), be a RQFSAd, namely a deformation of J"(L) as above. Then L
inherits from this quantization a structure of Lie-Rinehart bialgebra, namely the unique one such
that the Lie bracket and the anchor map of L* are given (notation as above) by
Pold o A
@ow] = (CULEE wea (), moda,
/ AN AWV / AN AWV
(@) (a) = <¢7Ta) thz)¢ InmthTLLJ modﬁﬂUJa<¢>r@l)h7(a)¢ >InmihAh

for all @,V € L* and a € A, where ¢’ and o' are liftings in J"(L), of ® and ¥ respectively, o’
is a lifting in Ay, of a € A, and finally r(a’) stands for either sy (a') or t}(a') .

Proof. First, it is easy to see that the maps [ , | and w as given in the statement are well-defined,
i.e. they do not depend on the choice of liftings, nor of the choice of either of sj, (a’) or ty (a’)
acting as r(a’) . Moreover, by construction we have [®,W¥] € J,,/J2.,, = L*. Also, again by
construction we have w(®)(a) € J"(L)/J,» ., ; now the latter space identifies with d(J"(L)) = 4,
thus w(®)(a) € A via these identifications, so that w(®) is a k-linear endomorphism of A.

Now, the definition of both [ , | and w is made via a commutator in J"(L),, . As the commutator
— in any associative k—algebra — is a k-bilinear Lie bracket and satisfies the Leibniz identity
(involving the associative product), one can easily argue at once from definitions that L* with the
given bracket and anchor map is indeed a Lie-Rinehart algebra (over A).

What is more demanding is to prove that with this structure the pair (L , L*) of Lie-Rinehart
A-algebras fulfills all constraints to be a Lie-Rinehart bialgebra. Indeed, we shall not provide a
direct proof for that: instead, we have recourse to a duality argument, using the notions and results
of Subsec. 5.1 later on. Indeed, there we shall see that ,J" (L) is a LQUEAd, hence by Theorem
4.1.3 we know that (L , L*) is a Lie-Rinehart bialgebra. O

The analogue of Theorem 4.1.12 for LQFSAd’s (with essentially the same proof) is the following:

Theorem 4.1.13. Let JZ(L)h be a LQFSAd, namely a deformation of J*(L). Then L inherits
from this quantization a structure of Lie-Rinehart bialgebra, namely the unique one for which the
Lie bracket and the anchor map of L* are given (notation as above) by

Y

(@, 0] = <h mod th(L)h) mod 3},
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W((I))(a) — ( ¢/T(a/) ;T(a’) (bl mod hJZ(L)h> mod JJ’“(L)

for all ®,V € L* and a € A, where ¢' and ¢’ are liftings in J*(L), of ® and U respectively, a’
is a lifting in Ay of a € A, and finally T(a') stands for either sh( ’) or tr( )

Remark 4.1.14. The result above can be proved like its analogue for RQFSAd’s, i.e. Theorem
4.1.12. Otherwise, one can get the former from the latter applied to J" (L), := J(L),” , which is a
RQFSAd — cf. Remarks 4.1.9(¢). In particular, the Lie-Rinehart bialgebra structure induced on L
by the LQFSAd J*(L), is opposite-coopposite to that induced by the RQFSAd J" (L), := J*(L),”

4.2 Extending quantizations: from the finite projective to the free case

Let L be a Lie-Rinehart algebra over A which is finite projective as an A—module. With the
procedure presented in §2.1.6, we can find a projective A—module @ (a complement of L in a finite
free A-module F') and use it to build a new Lie-Rinehart algebra Lg := L& (Q@L@Q@L@~ - ) =
L & R, which as an A-module is free. Then we fix an A-basis {b1,...,b,} of F from which we

construct a good basis {e;},., of Lo and a good basis {vi},.p of R. Set YV := @ kb; so that

F=A®yY, T:=Nx{l,....,n}, Z:= ® kv, hence R=A, (YYD --) = A®kZ Moreover,
teT

one has also V¥(Lg) = VY(L) ®; S(Z) with S(Z)=SY)®@S(Y)®

4.2.1. Extending QUEAGd’s. Let L be a finite projective Lie-Rinehart algebra, for which we
consider for it all the objects and constructions mentioned just above.

Let V*(L), € (LQUEAd),, be a (left) quantization of the left bialgebroid V*(L) . Consider
VZ(L)hy := h-adic completion of V¥(L), ®; S(Y) @, S(Y)® --- = VL),&rS(Z)

In order to describe it, for d € TW) we set e := HteT e2® and w(d) = max {w (e | ) # 0}
(cf. Definition 2.1.7);

Proposition 4.2.2. Any element of VK(L)h v can be written in a unique way as

> tf(ag) et = hm > t“(aq) et with hm lag]| =0  (notation of §4.0.10)
deT®™ N nEoo |d|+w=(d)—+oo
ld|+w=(d)<n

Proof. Tt is obvious that any element of the given lies in V(L)py . Conversely, let u € V(L)py
Write w = up + huy + -+ + h™uy, + -+ with w; € V(Lg) for all i. Now, for all ¢ € N, each u;
can be written as u; = > e t¥(uf") € where all but a finite number of the u{"’s are zero. Set

U =Y, h'uf, so u= Do Ua € 5 we show that lim |lual| = 0. Pick ng € N; choosing

||+ () =>+o0

A>max{|a|+w(@)|Fi<no:ui#0}, forany |af +w(e) > A we have [juq]| <27 . O

Now, there exists a unique left bialgebroid structure on V¥(L), y given as follows:

té/ A — VZ(L)}L,Y ,  at»> tg(a) ®1, SZ A, — VZ(L)hﬁy s —> Sy ( )
Ave(r,, (@®s) = (aq) @s0)) @ (a@) @s2)) i Anla) = ey ®ag) , Ag Z>( s) = s >®5 @
en(a®s) := epla)e(s) (a®s)(d ®s) :=ad @ss

where the right-hand side factor map € above is just the standard counit map ¢ : S(Z) — k of
the Hopf k—algebra S(Z), uniquely determined by €(z) = 0 for every z € Z. It is easy to see that

(a) Ve(L)h’Y is a quantization of the left bialgebroid V*(Lg);

(b) my = idyer), Y®ke : VZ(L)h’Y = VL), ®, S(Z) — VL), is an epimorphism of left
bialgebroids.

A similar construction is possible if we take a RQUEAd V" (L), instead of the LQUEAd V¢(L), .
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4.2.3. Extending QFSAd’s. Let L be a finite projective Lie-Rinehart algebra, and adopt again
notations as before. Recall also that in Remark 3.5.9 we have introduced J§(Lq) := ViLg)™ .

Let J"(L), € (RQFSAd),, bea quantization of J"(L). Keeping notation as in §4.2.1, consider
J(L)y = h-adic completion of Y,y J"(L),@x SV " @1@1@1---

where J"(L)héS(Y*)®" ®1®1®--- is the ((S(Y*)®")+® 1®1®1---)-adic completion of
J(L), @ S(Y*)*" ©@1®1®1---. There exists a unique right bialgebroid structure on J" (L)}, y

tr A— J Ly, a—t(a)1, sy Ay — J(L)py, a—s(a)®1
(a®s)(d'®s') == ad®ss , Ala®s) = (aq)@s1)) @ (a@)@82)) »  Oh(a®s) := hla)€(s)
Then one easily sees that
(a) J"(L),y is a quantization of the right bialgebroid J}(Lq);
(b) ™ :=idr ), Ok € J(L), y — J"(L), is an epimorphism of right bialgebroids.

An entirely similar construction is possible if J"(L), is replaced with a LQFSAd J*(L), .

Remark: Let VY(L), € (LQUEAd) 4, be a quantization of VY(L). We have seen in §4.2.1 that
VL), y = VYL), @ S(Z) is a LQUEAd which quantizes V*(Lq). If n € N, let S(Z)" :=
Ker (€ : S(Z) — k) be the kernel of the counit of S(Z), and let Ve(L)h*g}” be the subspace of
VHL),y given by VE(L), 4" = {Xe VL), y | MVHL), @k SV)*" @ S(2)7) =0} . Then
set

V4(L) h*jy := h-adic completion of ZneNVZ(L) :’Y
Then V¢(L) :Q, is a right subbialgebroid of VK(L);Y , which is isomorphic to the right bialgebroid
(V4(L),), - Note also that V*(L),"{" is isomorphic to V(L) ® S(Y*)*" @ 1 @ L@ 1--- .

In a similar way, one can define also the right bialgebroid (VZ(L) 1 Y) : this is a right sub-
s *f

bialgebroid of (VZ(L)h,Y)* isomorphic to the right bialgebroid ((VE(L)h)*)Y .

Parallel “right-handed versions” of the previous constructions and results also make sense if
one starts with some V"(L), € (RQUEAd),, instead of Vi), € (LQUEAA) 4, : in a nutshell,
one still finds that “extension commutes with dualization”. Details are left to the reader.

5 Linear duality for quantum groupoids

In this section we explore the relationship among quantum groupoids ruled by linear dual-
ity (i.e., by taking left or right duals). We shall see that the “(left/right) full dual” and the
“(left /right) continuous dual” altogether provide category antiequivalences between (LQUEAJ) ,,
and (RQFSAd) ,, and between (RQUEAd) 4, and (LQFSAd) ,, .

Essentially, we implement the construction of “dual bialgebroids” presented in Subsection 3.4,
but still we need to make sure that several technical aspects do turn round.

5.1 Linear duality for QUEAd’s

We begin with the construction of duals for (L/R)QUEAD’s. In this case, we consider “full
duals” (versus topological ones, cf. Subsection 5.2 later on. Before giving the main result, we need
a couple of auxiliary, technical lemmas.

Lemma 5.1.1. Let VY(L), € (LQUEAd),, and u € V4(L), .
t € N such that At (u) = do+hdy +h2 8+ +h'=18,_1 +h" 5, (e VZ(L);?“) and, for any

1=0,...,7—1, each homogeneous tensor in an expansion of §; has at least v factors equal to 1.

For any r € N, there exists
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Proof. For any w € V[(L);?S , we denote by W the coset of w modulo h V*(L)

We expand the given v as « = ug+hui+---+h"u.+--- . Then there exists ¢, € N such that
(each homogeneous tensor in) At (ug) contains at least r terms equal to 1. We lift A% (ug) to

®s
-

some &) € VZ(L)f fo containing (i.e., its homogeneous tensors contain) at least r terms equal to 1.
Then A% (u) = 69+ h ) +h2694---+h" 60+ .- for suitable elements 62, ..., 60 € VE(L)gté .

Now we can find ¢} € N such that (1'dt(3_1 ® A*)(89) contains at least r terms equal to 1. We
lift (id ' @ A%)(89) and (ido '@ AR)(80) to elements &, 6% € VE(L)P T which both
contain at least 7 terms equal to 1. Thus we find A%+ (u) = 68 +h6l +h263+---+h" 6 4 -

for suitable 61, ... 6 e V(L ©toth . Iterating finitely many times, we complete the proof. [
2 sy Yp h g y Yy ) % p

Notation 5.1.2. Before next lemma, we need some more notation: given V*(L), € (LQUEAd) 4, ,
consider Kj, := V¥(L), and its subset If, := {x €K ‘ <1Ve(L)h,x> €EhAL}.

Remark 5.1.3. As V¥(L), is a left bialgebroid, by §3.4.2 we know that its right dual K, :=
vt (L) ; has a canonical structure of A°—ring; then, with respect to this structure, one easily sees
that Ik, is a two-sided ideal of K}, . Moreover A(I) C Ik, ® Kp, + Kp, ® Ik, . Indeed, given any
¢ € Ik, , we write A(¢) = ¢(1) @ d2) — a formal series (in X-notation) — convergent in the
I, & K, —adic topology of Kj, ® K, . Writing ¢y and @(g) as
_ 4ts T : +s .
d) = oHy+5"(On(o))) . with o5 == ¢y — 8" (On(e))) € Ik,
Sy = )+t () . with @f == by —t"(0n(92)) € Ik,

we can expand A(¢) = 1) ® ¢(2) as

Ag)= ¢zr15) Qp(ay+s" (O (¢(1)))®¢(+23+8T(3h(¢)) ®1 e (IKhéAhKh-l-Kh @a, I, +hs(Ap) ®a4,1 )
where we took into account the identity s” (8h (¢(1))) ®t" (8h (d)@))) = s" (ah(¢)) ® 1, due to
Remarks 3.3.2, and the fact that Oy (¢) € h Ay, , since ¢ € Ik, by assumption.

Lemma 5.1.4. Given V*(L), € (LQUEAd),, and Kj := VK(L);, consider the two-sided ideal
Ik, = {x € Ky ‘ <1Ve(L)h,x> € hAn} of Ky, as well as its powers I, (n € N). Then, for
every u € VK(L)h and every r € N, there exists t. € N such that <u,]§§h> e h"A; .

The same property holds if one considers the left dual K}, := (VK(L)h)* of V{L), .

Proof. Thanks to the previous lemma, there exists ¢, € N such that

Al (u) = 6o +hdy +h*0g+---+h"1 6,1+ A0,

for some elements dg, ..., 0, € VZ(L)ftr such that dg, ..., d._1 contain at least r terms equal
to 1. From this fact and the properties of the natural pairing < , > between VZ(L)h and its right

dual K} := VZ(L); it is easy to see that <¢, u> € h" Ay, forall ¢ € I;gh , whence the claim. [
We are now ready for our first important result about linear duality of “quantum groupoids”.
In a nutshell, it claims that the left and the right dual of a left, resp. right, quantum universal

enveloping algebroid are both right, resp. left, quantum formal series algebroids.

Theorem 5.1.5.
(a) If VL), € (LQUEAd) 4, , then V4L, ,VYL),, € (RQFSAd) 4, , with semiclassical

limits (cf. §3.5.5)
VL), [RVHD), = VHD) = D) ed VD), [hVAD),, = VL), = (1)

Therefore VX(L), and V*(L), . are quantization of J"(L).
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Moreover, the structure of Lie-Rinehart algebra induced on L* by the quantization VZ(L)h* of
J"(L) — according to Theorem 4.1.12 — is the same as that induced by the quantization V*(L),
of V(L) — according to Theorem 4.1.3; therefore, the structure of Lie-Rinehart bialgebra induced
on L is the same in either case.

On the other hand, the structure of Lie-Rinehart algebra induced on L* by the quantization
VYL), , of VHL), = J"(L) is opposite to that induced by the quantization V*(L), of V*(L).
Thus the structures of Lie-Rinehart bialgebra induced on L in the two cases are coopposite to each
other: VE(L), provides a quantization of the Lie-Rinehart bialgebra L, while V¢(L), , provides a
quantization of the coopposite Lie-Rinehart bialgebra Leoop, — cf. Remarks 2.2.2(e).

(b) If V'(L), € (RQUEAA),, , then V" (L), , *V"(L), € (LQFSAd),, , with semiclassical
limits (cf. §3.5.5)

VL), /h*V’"(L)h >~ V'(L)=JYL) and  *V'(L), /h VL), = *V(L)=JYL)

Therefore V" (L), and *V"(L), are quantizations of J*(L) := V" (L) .

Moreover, the structures of Lie-Rinehart algebra induced on L* by the quantization V" (L), of
JYL) — according to Theorem 4.1.13 — is the same as that induced by the quantization V" (L),
of V"(L) — according to Theorem 4.1.6.

On the other hand, the structure of a Lie-Rinehart algebra induced on L* by the quantization
*V"(L), of *V"(L) = JYL) is opposite to that induced by the quantization V"(L), of V"(L).
Thus the structures of Lie-Rinehart bialgebra induced on L in the two cases are coopposite to each
other: V¥(L), provides a quantization of the Lie-Rinehart bialgebra L, while *V" (L), provides a
quantization of the coopposite Lie-Rinehart bialgebra Leoop — cf. Remarks 2.2.2(e).

Proof. (a) We shall start by proving that if V¢(L), € (LQUEAA) 4, , then VUL), € (RQFSAd) 4, -

As we saw in §5.1.2, the right dual K} := V/(L), of V¥(L), has a canonical structure of
A¢-ring. Moreover, it is endowed with a map 9, : VY(L), — Ay (x — <1V‘(L)h7X>)7 which
has all the properties of a “counit” in a right bialgebroid and defines the two-sided ideal Ik, :=
8,:1 (h Ah) . What we still have to prove is that

o K, :=VYL), iscomplete for the I, adic topology;

e there exists a suitable coproduct Ay, : Kj, := V(L) — Kj, ®a, K = VX(L), ©4,V(L), ,
which makes Kj, := V*(L) ; into a topological right bialgebroid;

o Kh/h Ky, = VZ(L);/h VL), is isomorphic to V¥(L)" as topological right bialgebroid.

We begin by looking for an isomorphism VL](L)h*/h V"(L)h* =~ VY(L)" . For this, we distin-
guish two cases, the free one and the general one.

— Free case: L is a free A—module, of finite type.
In this case, let us fix an A-basis {€1,...,e,} of the A—-module L ; then we lift each €; to some
e; € VX(L), . Then any element of V¢(L), can be written as the h—adic limit of elements of the
form Z(al _____ an)ENT ti(Cay.....an) €1 - - €% in which almost all ¢4, .. 4,’s are zero.

For a given A € V(L)", set @, a0, = et ---ef) € A for all a := (ay,...,a,) € N".

We lift each @, ,... 4, to some ag, .. 4, € Ap, with the assumption that if @,, . ., =0 then we
choose ay,, . 4, =0. Now we set

This defines a map A from the right Aj-submodule of V(L) ,, spanned by all the monomials
et ---e2n to Ap: as the h-adic completion of this submodule is nothing but V¥(L), , this map
uniquely extends (by continuity) to a map A : VL), — Aj, . By construction, we have
A € VHL), , and A is a lifting of A, that is A mod hV¥(L), = A . This guarantees that the

canonical map V*(L), /h VL), — VY(L)", which is obviously injective, is also surjective.
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— General case: L is a projective A—module, of finite type.

As in §2.1.6, we introduce a projective A-module @) such that L & Q = F is a finite free A—
module. Fix an A-basis {b1,...,b,} of F', and set Y =kb; ®kby-- - ®kb,,sothat F = A®,Y .
The basis {b1,...,b,} also defines a good basis {€;};cr._nyxq1, .y Of Lq -

Now let A € V(L)" . We extend A to some X € V(Lg)" by setting )\’|V(L)®S(Z)+ :=0. Now
we can adapt the arguments of the free case to construct a lifting A’ € V(L) y * of X . Then
A= A’|V(L)h € V(L), is a lifting of X as required.

Thus one sees again that the canonical map VZ(L),L* /h VZ(L);k — VY(L)" is a bijection.

1

On V(L) h* we have already considered an algebraic structure of “A°—ring with counit”: the
same structure then is inherited by its quotient VZ(L)};k /h VE(L); . On the other hand, V*(L)"
is a right bialgebroid, hence in particular it is an “A°-ring with counit” as well. The canonical
bijection VZ(L);/h VZ(L)};k — VY(L)" above is clearly compatible with this additional structure.
In particular, this implies that Ker (d,) mod h K = Ker (dve(r)) =: Jvery~ -

Now consider Ik, := 8,?1 (h Ah) , which can be written as Ix, = Ker(0y) + h K}, . As we
know that V(L)" is Jve(ry-—adically complete (cf. §3.5.1), from Ker (0n) mod h K = Jye(py-
and Ix, = Ker(0p) + h K}, we can easily argue that K, := VZ(L)};k is I, —adically complete.

Now we look for a suitable coproduct. To this end, we shall show that the natural “coproduct”
given by the recipe in §3.4.2 does the job. The problem is to prove the existence of an isomorphism
from VY(L), «®» V¥(L), — the completion of V¥(L), ® V¥(L), with respect to the topology

defined by the filtration { ¥, If @ I | 0 Home ) (VL) <20 VAL, An)
ne

Indeed — more precisely — there exists (cf. §3.4.2) a natural map y from V¢(L), ® V(L), to

Hom(_ 4,)(V¥(L), <]®,V£(L)h)<], Ap) ; we now show that this x actually extends to a (continu-

ous) map — which, by abuse of notation, we still denote by x — from V*(L), «®» V*(L), to
Hom_ 4,)((VX(L), «@» V(L)1) > An) -

To begin with, fix u € V¥(L),, . For every r € N, there exists ¢, € N such that A" (u) expands

as Abr(u) =8y +hdy +h?6+---+h"5, asin Lemma 5.1.1: in particular, every &; € VZ(L)ftT

with 0 < ¢ < r —1 contains at least r terms equal to 1. As the canonical evaluation pairing
between V¢(L), and Kj := V*(L), is a bialgebroid right pairing — in the sense of Definition
3.4.5 — the formulas for such pairings imply at once (by induction) that <u, I }(}L > C h" Ay, for
all ¢t >t,. By the same arguments, given v,w € V¥(L), we see that, for every r € N, one has

<v®w,]}éh®1}(/;> C hA,  forall '+t >0 (5.1)

Now let A € VX(L), «®p VY(L), . Then A is the limit of a sequence (An),eny — with A, €
VE(L);<®,VE(L); for all n — for the topology defined by the filtration { > prgen In ® I}f} .
ne

in particular, for each ¢ € N one has

(A —Apr) € S IE @IF for all n’,n" >0 (5.2)
vt =t

By (5.1) and (5.2) together we get that for all » € N one has
(X(An’) — X(Anu))(v ®w) = X(An’ - An//)(’l} ®w) = <v Qw, Ay — Apr > C KA,

for all n’,n” > 0; in other words, {X(An)(v ®w)}n€N is a Cauchy sequence for the h—adic
topology in Ay ; as the latter is h—adically complete (and separated), there exists a unique, well-
defined limit  lim X(An) (v®@w) € Ay, . In the end, we can set x(A) (v@w) = lim x(An) (v@w);

this defines a (continuous) map extending the original one, namely
X 1 VAL), «®» VA(L), — Hom(_ a,)((V(L), <@ V(L)1) . An) (5.3)

To complete our argument, we need a few more steps. In order to ease the notation, we shall
write X|, _ = X/hX for every k[[h]]-module X .

24



First, with the same arguments used to prove that Hom_ a,)(V*(L),, , Ap) ‘h = VE(L)h*
=0

has a canonical bijection with Hom_ 4y (V*(L),A4) =: VY(L)" we can also prove that "
Hom(_ 4,y ((VA(L), « @ V(L)n),, An) ., = Hom( 4 (ViL)o VL), A) (5.4)
Similarly, the same arguments once more can be adapted to prove that
VEL), <« VL), L VL) @ViL)" (= J(L)®J(L), cf. §3.5.1) (5.5)

Finally, by construction the reduction modulo A of the map x in (5.3), call it ¥, is nothing but
the map _

02 J(L) (@, J7(L) = VHL) @&, VYL — (VY(L),®, VL))
considered in §3.5.1. Therefore — since Hom(_ a)(V/(L) ® VY(L), A) = (V¥(L),®, VL)),
and taking into account the isomorphisms in (5.5-5) — as ¥ = U is a k-linear isomorphism we
can deduce that y is an isomorphism as well.

The outcome now is that Kj := Ve(L)h* endowed with the previously constructed structure
— including the coproduct map given by the recipe in §3.4.2 — is a topological right bialgebroid,

complete with respect to the I, ~adic topology. In addition, the bijection V(L) /h VL), —
VZ(L)* found above by construction happens to be a right bialgebroid isomorphism.

Our next task is the following. Denote by (L*,[ , |',’) and (L*,[ , ]”,w”) the structures of
Lie-Rinehart bialgebras induced on L* respectively by Theorem 4.1.12 — for J"(L) := V(L) ,h* —
and by Theorem 4.1.3 — applied to V*(L), . We must prove that ' =w” and [, ]'=[,]". To

this end, recall that, by Remarks 2.2.2(b), w” and [ , | are uniquely determined by the conditions
W(@)(a) = (dr(a), @) , (O,[@,¥]") =" (®)((0,9) — "(¥)((0,®) - (I(O), 22 V)

(for all @, U € L*, ©®© € L, a € A), where dz(a) and 6,(©) are defined by the formula for § in
Theorem 4.1.3. Therefore, it is enough for us to prove that (for all ® , ¥ € L*, O € L, a€ A)

W'(®)(a) = (dufa), @), (6,2, 9]") = "(@)((6,T))-w"(T)(6, ) - (3,(0), 22T) (5.6)

In order to prove (5.6), we choose liftings ¢',¢’ € J"(L), := V!(L), , with the additional
condition that ¢,9" € J,r ), := Ker(d;r(z),) (such a choice is always possible), a lifting 6 €
V¥(L), of © and a lifting o’ € Aj, of a. Now direct computation gives

W'(@)(a) = ((h_1(¢’tT(a’) —tr(a’) ¢’)) mod hJT(L)h) mod J,,, =
— 3J(L)h<¢'tr(a/) —t,(a') ¢/ > mod hA, — <1’ ¢ tr(a') —t,(a') &' > mod hA, —

n h
_ a/<1’¢/>—<1,t’r‘(al)¢/> mOdhAl _ <1,¢’>a’—<1,t7.(a/)¢/> mOdhAh:
h L h
L N — (s a / ‘() — s'(a
_ <t( )7¢> h< ( )’¢> mod h A, = <t()h(),¢’> mod h Ay, = <5L(a)aq)>

where ( , ) denotes the natural evaluation pairing between V*(L), and its right dual V(L) W
we exploited the fact that this pairing is a right bialgebroid pairing (cf. Definitions 3.4.4 and 3.4.5)
and the fact that <1v"~(L>h , ¢’> = dyr (1), (¢>’) = 0 because ¢ € J,r1,, = Ker (ap(L)h) by
assumption. Thus the first identity in (5.6) is verified.

As to the second identity, we write A(0) = (1) @02) as A(0) =0@1+1@0+h D 1 01 @0,
so that (Y5 0 ® Og1) mod R V(L), aX 2VHL), = Al(@) — notation of Definition 4.1.3.

Then by direct computation we find
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(0, [@,v]') = <9, W> mod hA, = h™' (8, ¢'v') ~ (6, 0/'¢')) mod ha, =
= a7 (1, ((8.0)) ) — (1, tT(<9 w/>)¢f>) mod h Aj, +

+E[9}(<9 Oy ¢ )W) — (O, ({0, 0" )) ¢’>) mod h A, =
= w7 (' ((0,6)), ) = (' (0, >» w)mwhAr+
JFZ[9]( (s"((Op) ¢ )) Oy, ') — (S ((Op) .0 )) Opay, & ) mod h A, =

= (1 (5" ((0,0)) ~((0.0)), v > <<< W) =#((0.9')). ¢')) mod h A, +
+ X (b0 »ﬁ%w>—<#«ﬂpw»@%¢w)mwhAh:
:(<“«“W»;<<@W,W>_<S«7W»—WW#”>¢y)mth+

h
+Z[e](< 21, ¢ ) Oy, 9" ) — <9[217¢'><9[1J»1//>) mod h Ap =

= —(6:((©,9)), ¥) + (5((0,¥)), @) + (A(®) - Al(®),, , 20 V) =
= W"(@)(O,¥)) - J"(V)(O,P) - (546), e V)

where we exploited the properties of a right bialgebroid pairing — in particular the identity

<t£(oz), X/> = <17 X/>a — the fact that <17¢/> = 8J"(L)h (d)/) < ¢’> J’(L)h (77[}/) =0,
the fact that s‘(k) = t*(x) mod hV¥(L), and the fact (already proved) that w” = w’. This
proves the second identity in (5.6).

Finally, we have to deal with V*(L),, , . Acting much like for V*(L), , one proves that V*(L), .
is indeed a topological right bialgebroid, whose specialization modulo h is just V*(L), = J*(L),
hence we can claim that V¥(L), , € (RQFSAd), is a quantization of J*(L).

As to the last part of claim (a), concerning the two Lie-Rinehart algebra structures induced
on L*, we can again proceed like for V(L) : : the difference in the outcome — a minus sign —
now is due to the fact that the natural pairing (given by evaluation) among the left bialgebroid
V¥(L), and the right bialgebroid V*(L), , is a left bialgebroid pairing (cf. Definitions 3.4.4 and
3.4.5) — whereas in the case of V/(L), and V¥(L), it is a right bialgebroid pairing. Full detail
computations are left to the reader.

(b) The proof given for claim (a) clearly adapts to claim (b) as well, by the same arguments.
Otherwise, one can deduce claim (b) directly from claim (a) using general isomorphisms such as
L(Ug) = (U)o, and *(UZ,) = (U.) = (see Remark 3.4.6). O

coop coop coop coop

5.2 Linear duality for QFSAd’s

Much like for their classical counterparts, the duals for QFSAD’s have to be meant in topological
sense. Indeed, we introduce now a suitable definition of “continuous” dual of a (R/L)QFSAd:

Definition 5.2.1. Let Kj € (RQFSAd), . Let I := { A€ K, |0h(\) € hdy } .

We denote by K}, the k[[h]]-submodule of K} of all (left Ap—linear) maps from Ky to Ap,
which are continuous for the I —adic topology on K and the h—adic topology on Ay, .

We denote by *Kj, the k[[h]]-submodule of * K}, of all (right Ap~linear) maps from Ky, to Ap,
which are continuous for the I —adic topology on Ky and the h—adic topology on Ay, .

In a similar way, we define also “continuous dual” objects K , (g Kh*) and K (Q K}:‘)
for every Kj € (LQFSAd),,

It is time for our second result about linear duality of “quantum groupoids”. In short, it claims
that the left and the right continuous dual of a left, resp. right, quantum formal series algebroid
are both right, resp. left, quantum universal enveloping algebroids.
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Theorem 5.2.2.

(a) If J"(L), € (RQFSAd),, , then J"(L),,*J"(L), € (LQUEAd),, , with semiclassical
limits (cf. Remark 3.5.8)

*JT(L)h/h*JT(L)h ~ J(L) = VL)  and *JT(L)h/h*JT(L)h ~ *J7(L) = V(L)

Therefore +J"(L), and *J"(L), are quantizations of V*(L) = ,J"(L) .

Moreover, the structure of Lie-Rinehart bialgebra induced on L by the quantization ,J" (L), of
VH(L) — according to Theorem 4.1.3 — is the same as that induced by the quantization J" (L), of
J"(L) — according to Theorem 4.1.12.

On the other hand, the structure of Lie-Rinehart algebra induced on L* by the quantization
*J'(L), of V* (L) is opposite to that induced by the quantization J"(L), of J"(L). Therefore, the
structures of Lie-Rinehart bialgebra induced on L in the two cases are coopposite to each other: in
short, J"(L), provides a quantization of the Lie-Rinehart bialgebra L, while *J"(L), provides a
quantization of the coopposite Lie-Rinehart bialgebra Leoop — cf. Remarks 2.2.2(e).

(b) If JYL), € (LQFSAd), , then JYL), ,JY(L), € (RQUEAd), , with semiclassical
limits (cf. Remark 3.5.8)

JUL), [Ty = D) = VL) and L), [RIND),, = L), = V(D)

Therefore JZ(L)h* and JZ(L)h* are quantizations of V'(L) = JY(L)" .

Moreover, the structure of Lie-Rinehart bialgebra induced on L by the quantization JZ(L)}: of
V"(L) — according to Theorem 4.1.6 — is the same as that induced by the quantization J*(L), of
JY(L) — according to Theorem 4.1.13.

On the other hand, the structure of Lie-Rinehart algebra induced on L* by the quantization
JZ(L)h* of V" (L) is opposite to that induced by the quantization JZ(L)h of J*(L) . Therefore, the
structures of Lie-Rinehart bialgebra induced on L in the two cases are coopposite to each other: in
short, JK(L)h provides a quantization of the Lie-Rinehart bialgebra L , while JZ(L)h* provides a
quantization of the coopposite Lie-Rinehart bialgebra Leoop — cf. Remarks 2.2.2(e).

Proof. (a) To simplify notation set K}, := J"(L), . We begin dealing with , K}, , in several steps.

The main point in the proof is the following. By definition, , K} is contained in ,Kj : by the
recipe in §3.4, the latter is “almost” a left bialgebroid over Ay, as it has a natural structure of
Af-ring with “counit”, and also a “candidate” as coproduct. Then the natural pairing among , K},
and K}, (given by evaluation), hereafter denoted ( , ), is an A¢-right pairing (cf. Definition 3.4.4),
and also a bialgebroid right pairing (cf. Definition 3.4.5) — as far as this makes sense. Basing on
this, we shall presently show that this structure on .Kj; — which makes it an A7-ring and even
“almost a left AS-bialgebroid”, actually does restrict to , K} , making it into a left A;S—bialgebroid.
Also, the evaluation will then provide a natural bialgebroid right pairing between , K} and Kj, .

Along the way, we shall prove also that , Kj, has semiclassical limit V*(L), and finally that the
Lie-Rinehart bialgebra structure on L induced by it is the same as that induced by Kj, := J"(L),, .

(1) First we prove that the source and target maps of K} (as given in §3.4) actually map
into K}, , that is s‘(A,) C K, and t(Ay) € K}, . We shall prove it by showing that, for any
a € Ay, , one has <s£(a) , I;ZL> C h"™Ay, , <t£(a), I}ZL> C h™Ay, , for all n € N.

For t£,if ¢ € I,, then (ti(a), ¢)={(1,¢)a € h A, =h'Ay; thus (ti(a), I} ) C h'A4,.
Now assume by induction that <t£(a)71,{”> Ch™Ap. Let o € I)™ and x € I, ; then
(tia),vx) = (Lwx)a = (s((1,%))1,x)a

thus by the induction hypothesis and the case m =1 we see that <t£ (a) ,¢X> € hmtlA, .
The case of s° — being totally similar — is left to the reader.

(2) Let us show that if w,w’ € K}, then ww' € K . Given n € N, let p,q € N be such
that (w,IF) € h"A, and (W', I} ) € k" Ay . Now take € IF™9. Then the identity

(wo's ) = (Wt (W n2) s 1)) = (W 0y (W 02))))
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taking into account that A( p+q) c Y Iie, IS because A(I) € Kp®, Ih+Ih®A’ Ky,
r+s=p+q '

proves that (ww’, IF™®) € h™Aj, . Thus , K, is a subring of . K — even an Af-subring, by (1).

(8) Let us show that , K}, is topologically free. First we prove that it is complete for the h—adic
topology. Indeed, as K}, is topologically free (for its own h-adic topology), so is Homyi) (Kp , An)
as well. Now let (A,), cy be a Cauchy sequence of elements in , K} ; then this sequence converges
to a unique limit A € Homy ) (Kn , Ap) . Then it is easy to see that A € Homa, (Kp, Ap) .

Now we show that A € K}, . Given n € N, there exists n; € N such that \,, — A takes values
in h"Ay . As \,, € K}, there exists ny € N such that <)\m ,I;Z?> € h"™A; . But then we have
<)\,I;32> € h™A;, and so we conclude that A € K}, .

Finally, as , K}, is complete for the h—adic topology and without torsion, it is topologically free.

(4) Now we show that *Kh/h*Kh = (Kn/hKy) = J7(L) = VX(L).

Let A € 4K}, , so that A as a map from K, (with the I—adic topology) to A (with the h—adic
topology) is continuous. Then A induces (modulo h) a map X :J"(L) — A which is 0 on J"
for n > 0, where J := Ker (aﬂ(m) . We claim that the kernel of the map x : A — Nis h,Kp:
indeed, it is obvious that h,Kj, C Ker(x) , and the inverse inclusion follows from the fact that
Ap, is topologically free. Therefore we have an injective map ¥ : *Kh/h*Kh — *(Kh/hKh) =
«J"(L) = V¥L) induced by x (modulo k), and we are left to show that  is surjective too.

We distinguish two cases:

Finite free case: Assume that L as an A-module is free of finite type. Let {€1,...,€,} be an
A-basis of L. Then {e*:=¢e---e2"|a = (a1,..., a,) € N"} is a basis of VZ( ) by the
Poincaré-Birkhoff-Witt theorem. Define §; € K := J"(L) by (&, ---e2") = [T 00,6

Let & € Kj, be a lifting of £; such that 9;,(&;) = 0. We denote (ordered) monomials in the &;’s
or in the &;’s by gg = Elal . E,‘f” and £*:= £ -0 respectively. Note that £ € Ila‘ , where
la| :=>"7" a;. Let Ae (Ku/hKp) _*JT( ) = V(L) be given: we write aq := (X, £ > cA,
and note that all but finitely many of the a,’s are zero. Let a, € Aj; be any lifting of a, (for all

« € N ), with the condition that whenever @, = 0 we take also aq, = 0. Now we define A € K},

by setting (A,£*) :=aq . As I/" = Y h*£*t.(A), it is easy to check that if n € N then
B lal+s>m

<A,Ihm> C h™Ay for m > 0. Hence A € (K, and by construction (A mod h*Kh) =\, so

that the map  is onto, q.e.d.

General case: By our overall assumption, L as an A—module is projective of finite type. Then
we resume the setup and notation of in §2.1.6: there exists a finitely generated projective A—
module @ such that L ® () = F is a finite free A-module, and we consider the free A-module
Lo :=L®(A®,Z) with Z:=Y @Y ®Y &--- . From an A-basis {b1,..., b,} of Y we get a “good
basis” of elements é; indexed by T :=Nx {1,...,n},le. Lg= & ket . Fixing on T" any total

teT
order, the PBW theorem yields { €2 :=[], . &

a=()er €TM} is an A-basis of V¥(Lg).
Let f be the element of Jf(LQ) deﬁned by <§ > =1if a= (v =06tj)er> <§j , 77> =0

otherwise. If A[[{Xt}teTHf '; U Al[X;, .. ); J]s thenone has Ji(Lg) = H{gt}teT”

- <in
Now consider the quantizatlon Kpy of J{(Lg) — cf. §4.2.3. Recall (cf. §4.2.3) that

Kpy := h-adic completion of ) _y Khé)kS(Y*)@" 111

where K, @, S(Y*)®" ®@1®1--- is the ((S(Y*)®n)+® 1®1---)-adic completion of Kj ®
S(Y*)*" @1 ®1---. By construction, every £, belongs to some K@)kS(Y*)é”i Q1R 1®g---
(n; € N). Let & be any lifting of ¢; in KhékS(Y*)®"i®k1®kl®k~ -- such that (ah®65(z*))(§i) =
0. Given a € Ay, , we denote again by a the element t"(a) € t"(Ar) C Kj . Let also 0: A —— A,
be a section of the natural projection map from A, to A, let Jpy = Ker(dy) = 9, ' ({0}) and
Iny :=0; " (h Ap) : taking into account that ¢"(A) = A% and t"(A;) = A;?, one has

Kny = { Coen " PL(©) | Pa € [(Xihier]]; A7} = { Suenh"Pal&) | Pu € [{Xihier]], 477}
Iny = (h,{&}er) ) Iny = Dierét Kny
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where round braces stand for “two-sided ideal generated by”, and [[{Xt} teT]] f A | respectively

H{Xt}teT”f Ay, , denotes the ring of formal power series with coefficients on the right chosen in
A, respectively in Ay, , each one involving only finitely many indeterminates X .

Now, Lg as an A-module is free but not finite; however, J}'(LQ) and its quantization Kp y
have enough “finiteness” behavior as to let the arguments for the finite free case apply again. In
other words, the analysis we carried on for the finite free case can be applied again in the present,
general context working with Ky . Indeed, let us remark that

- ~ = N\t
Iy = h—adic completion of ( N LoSYH) el + Y K, ® (S(Y*)®’°n) R1R-- )
neN  k ko k neNy ko ok
while on the other hand V*(Lg) = V(L) @ (VX(L) @ S(Z)*) . Now let K := J"(L) and
- 5.+
ANELK. As Ji(Lq) =K ® e, Kk (S(Y*)®™) @k 1®p -, we can extend A to an element
p € «Ji(Lg) by M|ZHEN+K®IC (S e l@p 0 and u|K := X\ . By the arguments used in
the finite free case, u can be lifted to an element M € ., K,y ; then A = M|Kh € . Kj is a lift of
A . So the (injective) map X : «Kp/h K — (Kn/hKy) = J"(L) = V¥(L) is surjective.

(5) Let us now show that A(,K) C K ®Ah*Kh for the “coproduct map” A given by the
transpose map of the multiplication in Kj, .
Let A € 4K . We know that modulo h one has A(A) € ,K ®,,K . Now write A(A) =

Z)\( @ A2 (a finite sum) with AD N e K | and let A;Ll) and A;LQ) in , K}, be liftings of A(V)
and A i.e. AS) = A1 and Af) = \?: then A(A,) — ZAS) ® Af) € h(.Kp @Ah*Kh) , SO
that A1 (A(AR) — 2 AV g Af)) € .Ky @Ah*Kh . In addition, whenever p+ ¢ > 0 one has also
(A(Ag) — ZAS) ® Af) P ® 1) € h? Ay, ; therefore we find that

W (A - Y AV @A) € K@, K
We can carry on this argument and eventually show that A(Ay) € K, @A}*Kh , q.e.d.

(6) Altogether, the steps (1)-(5) above prove that K}, is a LQUEAd (over Ap,), whose semi-
classical limit K}, /h K}, is exactly isomorphic (as a left bialgebroid over A ) to V¥(L). Now we
show that the structure of Lie-Rinehart bialgebra induced on L by the quantization , K}, of V(L)
is the same as that induced by the quantization K} of J"(L). To this end, let [ , ], w’, be the Lie
bracket and the anchor map on L* induced by K}, and [ , ], w”, those induced by Kj, .

"

We proceed like in the proof of Theorem 5.1.5. Our goal is to prove that ' = w” and
[,] =[,]"; thus recall that (cf. Remarks 2.2.2(b)) w’ and [ , |" are uniquely determined by

W' (®)(a) = (0r(a), @) , (O,[2,9]) = (®)((0,T)) — ' (V)((0,2) — (5,(0),x V)
(forall @, 0 € L*, © € L, a € A), where §r(a) and 07(©) are defined by the formula for § in
Theorem 4.1.3. Thus it is enough to prove that (for all &, W € L* © € L, a€ A)

wW'(@)(a) =(0r(a), @), (6,[@,¥]") = "(2)((0, ) —w"(V)((O,2) —(3L(0), 2xT)  (5.7)

To prove (5.7), choose liftings ¢',¢’ € J"(L), =: Kj, with the additional condition that
& € Jorwy, = Ker (8J7~(L)h’) (this is always possible), a lifting § € V(L), := ,J"(L), of ©
and a lifting a’ € A of a. Now direct computation gives

W'(@)(a) = (drfa),®) =
= h~ < (a) —sﬁ(a') ,¢') mod hA;, = h_1<1,¢’sT(a’) —s.(a')¢") mod hA; =

where we exploited the fact that the involved pairing a right bialgebroid pairing (cf. Definitions
3.4.4 and 3.4.5). Thus the first identity in (5.7) is verified.
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As to the rest, we write A(0) = 01) ® 0(3) as A(0) = 0@ 1+1® 60+ ho;) @0y, so that
(0] ® O2)) mod hVZ(L)hqﬁ DVZ(L)h =: Al(©), as in Definition 4.1.3. Moreover, let us set

¢ :=¢' mod hJ"(L),, ¢ :=1¢" mod hJ"(L), , which are lifts of ® and ¥ in J"(L), and actually
belong to J,,. Then direct computation gives

<@,[<I>,\If]”> = (0, {s,y}) = <9W> mod h A,

Now, in the proof of Theorem 5.1.5 — namely, to prove the second part of (5.6) — we saw that

<97 W> mod hd, = o/(@)(0,%) — W'(B)(0,8)) — (5,0), o V)

so that the second identity in (5.7) is proved.

At last, let now cope with the case of *Kj, . Clearly, we can proceed much like for , K} : one
proves that *Kj; = *J"(L), is a topological left bialgebroid, whose specialization modulo h is
*J"(L) 2 VE(L), hence we can claim that *J"(L), € (LQUEAd),, is a quantization of VA(L).

A difference arises about the last part of claim (@), concerning the two Lie-Rinehart algebra
structures induced on L*: indeed, the difference in the outcome — a minus sign — is due to the
fact that the natural pairing (given by evaluation) among the left bialgebroid *J" (L), and the right
bialgebroid J" (L), is now a left bialgebroid pairing (cf. Definitions 3.4.4 and 3.4.5) — while for
«J" (L), and J"(L), it is a right one. Explicit computations are (again) much like those in the
proof of Theorem 5.1.5 (for the very last part of claim (a)), just as it occurs for K = . J" (L), .

(b) The arguments used to prove claim (a) clearly adapt to claim (b) as well. Otherwise, one

can deduce (b) directly from claim (a) using general isomorphisms such as ,(UZZ,,) = (U*)2E,,

and *(U%, ) = (U,)s? = — see Remark 3.4.6. O

coop coop

5.3 Functoriality of linear duality for quantum groupoids

The results in Sections 5.1 and 5.2 about the duality constructions for quantum bialgebroids
can be improved. Indeed, they can be cast in the following, functorial version (cf. Definition 4.1.1
and 4.1.8 for notation), which is the main outcome of this section:

Theorem 5.3.1. Left and right duals yield pairs of well-defined contravariant functors
(LQUEAd)Ah—> (RQFSAd)Ah , Hn— Hy (RQFSAd)Ah—> (LQUEAd)Ah , Ky —  Kp
(LQUEAd) 4, — (RQFSAd) 4, , Hp+— Hp, (RQFSAd) 4, — (LQUEAd) 4, , Kp+— "K,
(RQUEAd) 4, — (LQFSAd) 4, , Hp+— "Hp, (LQFSAd) 4, — (RQUEAd) 4, , K+ Kp,
(RQUEAd) 4, — (LQFSAd) 4, , Hp+ Hp, (LQFSAd) ,, — (RQUEAd) 4, , Kp+— K
which are (pairwise) inverse to each other, hence yield pairs of antiequivalences of categories.
Proof. 1t is clearly enough to present the proof for just one pair of functors, say those in first line.

Let Hy, = VL), € (LQUEAd),, . For any A € Hy and any 1 € Hy, let ev,(A) := A(n),
and consider the map Hp — & (Hh*) given by n — ev,; note that a priori this map takes values
in , (Hh*) , but Lemma 5.1.4 actually proves that every ev, belongs to ,(H*).

Now, this map is an isomorphism in (LQUEAd) 4, because it is an isomorphism modulo h.
The other points can also be proved, by standard arguments, in a similar way. O

6 Drinfeld’s functors and quantum duality

In this section we present the main new contribution in this paper, namely the definition of
Drinfeld’s functors and the equivalences — instead of antiequivalences! — of categories established
via them among (left or right) QUEAd’s and QFSAd’s.
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6.1 The Drinfeld’s functor ()"

Definition 6.1.1. Let K € (RQFSAd)Ah . We set I, := 6,:1(h Ap) and Jp, := Ker(dy,) , where

O, is the counit of Ky, ; then one has I = 3, +h Kj, . We define K, := s"(Ap)+ >, b "I} =
neNy
sT(Ap) + > h"s"(Ap) Iy, which is a k[[h]]-submodule of Kp :=k((h)) ® K}, and we denote
neENy K[[R]]

by K}/ the h—adic completion of the k[[h]]-module K;' .
Moreover, in an entirely similar way we define K, for any K € (LQFSAd)Ah .

Remarks 6.1.2.

(a) Note that Jj is not an (A4, Ap)-subbimodule of K}, , in general. Indeed, if a € A;, and
¥ € Jn, it is clear (from the properties of the counit of a right bialgebroid) that ¥ s, (a), ¥ t.(a) €
Jn ; but we cannot prove in general that s.(a)v and t.(a)t belong to Jp . On the other hand,
one has that I instead is definitely an (Ap , Ap)-subbimodule. For this reason, it is better to
(define and) describe K¢ and K,/ using I, than using Jy, .

(b) Let K be a LQFSAd, respectively a RQFSAd. Then (K,)?" is a RQFSAd, respectively

coop

a LQFSAd. It easily follows from definitions that ((Kj)o" )V = (k)

coop coop *

6.1.3. Description of K, . Directly from its very definition, we can find out a description of K’ .
This is very neat in the case when the Lie-Rinehart algebra L — such that K, is a quantization
of J7(L) or JY(L) — is of finite free type (as an A-module), and can be reduced somehow to that
case when L instead is just of finite projective type. Thus we distinguish these two cases.

(a) Finite free case:  Let us assume that L (as an A-module, of finite type) is free. Then
we can explicitly describe K’ as follows. Fix an A-basis {€;,...,€,} of L, and let & be the
element of Hom(V*(L), A) = VHL)" = J'(L) defined (using standard multiindex notation) by

(&,e%) = (&, e/ e) = ba10°  Oas1 - Oan0 Va=(a,...,a,) €N"

Let &; be an element of K}, lifting & and such that 9;,(&;) =0. If a € Ay, , we shall write again a
to denote the element t"(a) € K}, . We have the following descriptions

Kn = {Xgemn &' - &inag | ag € AP, VdeN"} = A[Xy,..., X,]][[h]]
Ih: (hvflv"'vfn) 3 3h:Z?=1§iKh

where the first line item is a (right) A;”-module of formal power series (convergent in the Ij—adic
topology) and the last isomorphism is one of topological k—modules, while round braces in second
line stand once again for “two-sided ideal generated by”. By this and the very definition it follows
that, writing & := h™1&; , one has (the last isomorphism being one of topological k—modules)

Ky = { Spemmn i €l Eray [y € A Vo b 2 ALK, K (0]
where the sum denotes formal series which are convergent in the h—adic topology, and then also

Iy = kN, = Y & K)Y = right ideal of K} generated by the &’s

(b) Finite projective case: ~ Assume now that L (as an A-module) is just finite projective
(as usual in this work). Like in Subsection 4.2, we fix a finite projective A—module @ such that
L& Q = F is a finite free A—module, we write FF = A®; Y where Y is the k—span of an A-basis
of F', and we construct the (infinite dimensional) Lie-Rinehart algebra Lo = L @ (A @, Z)
with Z=Y®Y @Y @&---. Then, for J°(L), := K}, we can introduce the right bialgebroid
Kpy = J"(L);,y asin §4.2.3: namely (with notation as in §4.2.3), we recall that

Kpy := h-adic completion of ) _y Kh®kS(Y*)®" R1IR1I®1---
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(S(Y*)®n)+ being the kernel of the natural counit map of S(Y*)®" and Kh®kS(Y*)®n ®1---

the ((S(Y*)®")+® 1®1---)-adic completion of K}, ®j S(Y9*" @11
Furthermore, let 0y, be the counit of Kp y, and Iy := 8,:1 (h Ah) . Then we have also

5 +
Iy := h-adic completion of ( 3 Ih®S( NTRI®--- + 3 Kh® (S(¥Y"H®*) ®1®- )
reN seN

Basing upon these remarks, we can define K’y and describe it as above: namely, one has

~ +.5 ~
K}y = h-adic completion of > > AT"I@p((S(YH)®™) ) ®101®--- = K} @, S(Z*)

n,mr4+s=n

where Z5 =Y*aY*aY*®
Let now {et}teT::Nx{l,...,n} be a good basis of the A-module L¢g . From the proof of Theorem
5.2.2 (step (4) for the general case) we can select elements & € Kp y (t € T) such that

Kny = {ZnEN h”Pn({ft}teT) ’ P € H{Xt}teTHfAZP} = A[[{Xt}teTHf[[h]]
Iny = (h,{&}ier) ) Iny = Dper e Kny

where [[{Xi},cr]] f Ay, is the ring of formal power series with coefficients on the right chosen in

Ay, involving only finitely many indeterminates X, . One easily finds, letting & := h~'&, , that

A[{Xt}teT} [[]]

where the sum denotes formal series convergent in the h—adic topology, and [{Xt}teT] AP denotes
the ring of polynomials with coefficients on the right chosen in A;” . We find also

1%

Ky = { Soanh" Pa{&hier) | Pu€ [{€} ] AT, ¥nen)

WMy =03y = Xer& Ky y = right ideal of Ky generated by the &’s &

It is time for the main result of this subsection. In short, it claims that the construction
Kj, — K,' | starting from a quantization of L — of type J"/*(L) — provides a quantization of the
dual Lie-Rinehart bialgebra L* — of type V"/¢(L*) ; moreover, this construction is functorial.

Theorem 6.1.4.

(a) Let J"(L), € (RQFSAA),, , where L is a Lie-Rinehart algebra which, as an A-module, is
projective of finite type. Then:

— (a.1) J7(L), € (RQUEAA) 4, , with semiclassical limit J"(L /h JT(L), = VT(L*).

Moreover, the structure of Lie-Rinehart bialgebra induced on L* by the quantzzatzon JT(L);:/ of
VT(L*) — as in Theorem 4.1.6 — is dual to that induced on L by the quantization J"(L), of
J"(L) — as in Theorem 4.1.12;

— (a.2) the definition of J"(L), — JT( ), extends to morphisms in (RQFSAJ), so that we
have a well defined (covariant) functor ()" : (RQFSAd) — (RQUEAA) .

(b) Let JL), € (LQFSAd) 4, , where L is a Lie-Rinehart algebra which, as an A-module, is
projective of finite type. Then:

— (b.1) JYL )}\L/ € (LQUEAJ),, , with semiclassical limit JHL /h JHL VL) .
Moreover, the structure of Lie-Rinehart bialgebra induced on L* by the quantzzatwn JZ(L)h of
VH(L*) — as in Theorem 4.1.83 — is dual to that induced on L by the quantization J*(L), of
JY(L) — as in Theorem 4.1.183;

— (b.2) the definition of J*(L), Je( )h extends to morphisms in (LQFSAd), so that we
have a well defined (covariant) functor ()" : (LQFSAd) — (LQUEAJ) .
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Proof. (a) In order to ease notation, let us write Kj, := J"(L), .

By definition, K is the unital k[[h]]-subalgebra of (Kp), := k((h)) @k Kn generated by
h=1I, and s"(Ay): thus it is automatically a unital k[[h]]-algebra. It follows that K}’ is a unital
k[[h]]-algebra too, complete in the h—adic topology. Moreover, I}, is an (A, Aj)-subbimodule of
K}, : this implies at once that K, and K,/ are (Ap, Ap)-bimodules too. As (Kh)F is torsionless,
so are K, and its completion K}’ ; also, K/ is separated and complete, so it is topologically free.

Let us now see that the coproduct in K} induces a coproduct — in a suitable, h—adical sense —
for K}/ as well. Given any ¢ € I, we write A(¢) = ¢(1) ® ¢(2) — a formal series (in X-notation)
— convergent in the Iy—adic topology of K. Writing ¢(1) and ¢(2) as

o) = o5+ (On()) . Sy = o)+t (On(d2))

we have seen that A(¢) = qb?'l) ® ¢(2) + 5" (8h (gb(l))) ® (;SZFZ’) + sr(ah(gb)) ® 1 belongs to the space
(In®, Kn+ Kn®, In+hs(Ay) @, 1). All this implies A(h™'¢) € K @4, K}/

In addition, we must observe the following. Every ¢ € I;, expands as an I,—adically convergent
series ¢ =}, oy, ¢n With ¢, € I) for all n € Ny ; but then ¢, € I = R (h~1I,)" for every n
neN, R~ Y (h~'1},)" which is convergent in the h-adic
topology of K}/ . As a byproduct of this analysis, we can apply the same argument to A(h*1¢)
and thus realize that it is actually a well defined element of K’ ® 4, K}, the h-adic completion
of K}/ ®a, K;/. Finally, it is clear that in fact A(h’lgb) even belongs to the Takeuchi product
inside K} ®a4, K, , as the parallel property is true for A(¢) inside K}, @Ah Ky .

As K* is generated — as an algebra — by h™'I}, and s"(Ay), and K’ is its h-adic completion,
we finally conclude that the coproduct of K}, does provide a well defined coproduct for K’ , making
it into a (topological) right bialgebroid over Ay, .

Moreover, by construction K,/ is isomorphic (as a k[[h]]-module) to (K)'/h K)/)[[h]] .

and so h™1¢ expands as a series h™1¢p =

What we are left to prove — for claim (a.1) — is that K,/ = K,Y/h K" be isomorphic to

V7(L') for some Lie-Rinehart bialgebra, and that such L' — with its structure of (Lie-Rinehart)
bialgebra induced by this very quantization — is isomorphic to L* with its structure of Lie-Rinehart
bialgebra dual to that induced on L by the quantization Kj := J"(L), we started from.

We follow the strategy in [12] and [9]. So far we saw that K}/ is a deformation of the right
bialgebroid K)L//h K}/ : then we shall apply Proposition 3.3.4 (and the remarks after it) to show
that the latter is indeed of the form V"(L’), with L' = L*. For computations hereafter we fix some
notation: Jj := Ker(9y,), K = Kh/hKh and J := Ker(9) for 0 := Jk . Also, from Theorem
5.2.2(a) we consider V¥(L), =K, =,J"(L), € (LQUEAd) 4, so that J"(L), = VZ(L)Z .

We proceed in several steps.

— o Forall a € A, we have s,(a) =t,(a) mod h K, .
Indeed, one has (sr(a) — t’"(a)) €Jn C I, = hh™'I;, C h K}, whence the claim.

~— e The set P"(K, ) of (right) primitive elements of K/ := K,\{/h K}/ — cf. Proposition
3.3.4 — has a natural structure of right Lie-Rinehart algebra, induced by specialization from K’ .
Indeed, this is entirely standard. Both the Lie bracket [ , ] and the anchor map w are recovered
as semiclassical limits of commutators from the multiplicative structure and source/target structure
of the “quantum right bialgebroid” K, . Namely, for any z,y € PT(K e ) and a € A, choose any

lifts 2’,y" € K} and o € Aj, of them: then defining

ax = 2 s"(a’) mod hK, |, [z,y] == 2’y —y' 2/ mod h K
w(z)(a) = Op(z's"(a') — s"(a’)2’) mod h A

it is a routine matter to check that PT(Ki,\I/) is made into a Lie-Rinehart algebra over A .

— e Siﬁ}f = h13, (g K,f) and ﬁ :=3J) mod h K} ;then ﬁ is a Lie-Rinehart subalgebra
of P"(K)).
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Indeed, let ¢ € Jp,, and set ¢V := h™'¢ € J). Then acting as in the first part of the proof
(with notation introduced therein) we get

Alg) = ¢@1+109+ 03005 € 61+ 10¢ + Jn®a,dn

thanks to the assumption ¢ € J, (and to several identities holding true in any right bialgebroid)
As Jp=hh7'J, =hJ) C hK) ,weendup with A(¢¥) = ¢"@1+1@¢V + h (KV ®a,K)) .
so that @V := ¢¥ mod h K, is primitive in K)”. This proves that J C PT(KV)

Finally, 3 » is a Lie-Rinehart subalgebra of P" ( K, K ) if and only if 1t is a (right) A-submodule,
closed for the Lie bracket. Now, by definition Jj is a right ideal in K}, and this implies — by
construction — that \jh is a (rlght) A-submodule. As to the Lie bracket, if =,y € \jh we have
by definition [z,y] := 2’y —y' 2’ mod h K,/ for any choice of liftings J:’,y’ € K of z and y.
On the other hand, we can clearly choose z’,y’ € J), so that ' = h='x, v’ = h™'n, for some
X, 1N € Jn; then we have

gy —ya = h 3 (xn—nx) € W2@nNhKy) = b2k, = K713, = 3
since J, is a right ideal and Kj/h Kj, = J"(L) is commutative. It follows that [z,y] € 37, qed.

— o We will now show that JY NhK) = Jn+3/In = hJ) +h (SX)Q

Indeed, the second identity in the claim is a trivial consequence of ‘”Jx = h~13,. As to the
first one, as Kj = J"(L),, , we distinguish two cases: either L is free (as an A-module), or not.

If L is free, then the identity JY (| h K} = Jn +J) Jn is an easy, direct consequence of the
description of J)/ given in §6.1.3 here above in the free case — i.e. part (a).

If instead L is not free, then we proceed as follows. First consider Kj, y and Jj.y , and construct
from them K, y and \jh y - In this case, the description of J Jh y given in §6.1.3, part (b), 1mphes
again easily the 1dent1ty \jh v N hKhY = Jny + JhYC{hy . Now consider the map «*
Kpy — K, , introduced in §4.2.3(b), for J"(L), = K, and J'(L),y = Kp,y : thisis a an
epimorphism of right bialgebroids, thus in particular 7rY(3 h’y) = Jp . Then it follows at once that
w¥ canonically induces another epimorphism of right bialgebroids #¥ : K )LY — K}/ such that
ﬁY(SXy) = J) . But then, using 7* and 7 and the identity Iy N hK}\l/,Y = Jny +3X7Y Iny
we easily deduce the identity J) N h K,' = Jn +J) Jn we were looking for.

~

— o There exists an A-linear isomorphism 1 : 3%/ (h 3}]/ +h (JZ)2) >~ JX — hence hereafter
we shall identify 3 and 3 / (A3} + b (3})?) via v and ¢,

Indeed, the natural projection map K —» K/ := K}/ /h K/, whose kernel is h K}’ , yields
by restriction a similar map J) —» J) := 3’%/( N h K}/) whose kernelis (J)/ NhK)/) . By the
previous step, we have J) (N hK)) = h3) +h ( ) whence we get an A-linear isomorphism.

— o There exists an A-linear isomorphism o : Z ~ JX/(hfjx +h (3%)2> ~ 3/32 = L*
where J = J;r(r) := Ker (0,71)) , given by h=Ty+ o(h~ly) =7 mod J2.

Indeed, there exists a natural projection map o” : J;, —» Jh/h Jh=3— 3/32 =: L* , whose
kernel is (hfjh +J,f) . Then o :J) = 1y, — 3/32 =: L* (h’ly — 0'(h’1y) = a”(y))
is a well defined k-linear map, whose kernel is (Gh + ALy ,%) (h JL+h (3 ) ) Therefore o’

canonically induces a k-linear isomorphism o : J) = 3%/(713}{ +h(3)) ) — J/32 = L*

given by h~ly — o(h~ly) :=0”(y) ; also, it is straightforward to check that this is A-linear too.
— e We have K, € (RQUEAJ) 4, » namely KY = vr (L') for the Lie-Rinehart A-algebra

L' :=J) (with the Lie-Rinehart structure mentioned above).
Indeed, what we proved so far shows that L' := i is a Lie-Rinehart subalgebra of PT(Ki,Y) ,

which together with A generates Kix (as an algebra) and is finite projective as an A-module (since
it is isomorphic, as an A-module, to L* | see above). Therefore, all conditions in Remark 3.3.5 are
fulfilled, so it applies and gives K = V"(L') for L' := I = P’”(KV ).
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— o There exists on the Lie-Rinehart algebra L’ a unique structure of Lie-Rinehart bialgebra,
canonically induced from the quantization K,/ of V" (L’ ) .

In fact, this is just a direct consequence of Theorem 4.1.6.

— e The A-linear isomorphism o : ﬂ = 3%/(/13,\{ +h (3,\{)2> o 3/32 =: L* is actually an
isomorphism of Lie-Rinehart bialgebras over A .

In order to prove this, we must show that o preserves the Lie bracket, the anchor map and the
differential § (cf. Definition 2.2.1) on either side.
For the Lie bracket, let z,y € J): given x,n € J;, such that z = h™'x, y = h™'n, we have

[z,y9] = h 2(xn—nx) mod hK) = h™?h¢ mod hK) = h™'¢ mod h K,

for some ¢ € Jj,. But then also ¢ := ¢ mod h K), =: {X,ﬁ} — where @ := a mod h K for all
a € K — by Theorem 4.1.12. Now the Poisson bracket of Kh/h Kh restricted to J, pushes down
to the Lie bracket of fjh/ﬁ,% =: L*; thus setting X := % mod 32,7 = =7 mod 32 (E ‘5/‘5
L*), we have [X,Y] = {Y,ﬁ} mod J2 = Z . Now, by constructlon we have X = o(z), Y =
o(y) , and the previous analysis eventually gives also o([z,y]) = Z = [X,Y] = [o(z),0(y)] .

For the anchor map, let = € ﬁ, X €Jn, X € 3/32 = L* as above, and take ¢ € A and
a’ € Ap, such that o’ mod h A, = a . Then direct computations give

w(z)(a) = I (h 'xs"(a') —s"(a')h™"x) mod h A, =
= 8(/171()( s"(a’) — s"(a') x) mod hKh) = w(X)(a)
which means w(z) = w(X) = w(o(x)) , that is o preserves the anchor, q.e.d.

Finally, in order to compare the two differentials on ﬁ and L* , respectively denoted ¢’ and 8",
recall that in any Lie-Rinehart bialgebra (E , A) — in the present case (L*, A) — the differential
O, is related with the Lie bracket and the anchor map by the identities

<f, 5L(a)> = wes(N)(a), ({@u,dc(x)) = wes(f) ((m,m>) — we+(m) (( f, x>) — <[f,m]m,a:>

forall z € £, f,m e L*, a € A — see Remarks 2.2.2(h). We apply this to (E,A) = (L*A).

For the differential on A, we must prove that ¢(&'(a)) = 6”(a) for all a € A, which amounts
to showing that (f, o(¢8'(a))) = (f, §"(a)) for all a € A and all f € L. For this comparison,
recall that V*(L), :=,J"(L), € (LQUEAd), is a quantization of V*(L), by Theorem 5.2.2(a);
moreover, the natural pairing between V*(L), and J"(L), (given by evaluation) is a right bialge-
broid pairing. Now choose a lifting a’ € A, of a € A and a lifting f' € V¥(L), of f€ L: more
precisely, we choose f’ € Ker (eve( L)h) . Then direct computation gives

(f,0(0'(a))) = h-{f', &) mod hA,= (f',s"(a)—1t"(a')) modhA,,
= (f's'(d)—s"(a) f,1) modhA, = (f's'(a')—t"(a)f,1) modhA,
= (f's'(d), 1) mod hA, = epey(fa) = wp(f)(a) = (f,6"(a))

(cf. §3.2.9 for the last but one identity). This proves that o(6'(a)) = 6" (a) for all a € A.

For the differential on L*, consider z := xV = h~ly € 37 with x € Jp; then we have
o(z) ;=X mod J% =: X € J/J? = L*. Our goal is to prove that (¢ ®0)(¢8'(z)) =" (o(z)).

Write A(x ) =X ® X(Q) as A( )=x®1+1®x+ 2[9] X[1] ® X2 ; then we have A(xV) =
XY®1+1xY +h Z X[1 ® X[g] where XE;] = hilX[i] , for i € {1,2} — so that ¢'(x) :=
— 2[9] T QT2 +Z[9] T @z with ) = XTVl] for i € {1,2}. In all this, ¥V := h~1x is a lifting
of x € L' in V'(L'), := J"(L), , and  is a lifting of X := o(z) in J7(L), ; in addition, we can
assume that Jx(x) = 0. We adopt similar remarks, and notation, for x;, xpj and X := o ()
with i € {1,2}. Now for f,m € L and liftings f’,m’ € V¥(L), of them, direct calculation yields

(feom, 8" (o(2)) = (fom, (X)) = Wi (f)((m,X)) —wf(m)((f,X)) = ([fm]; ., X) =
= epey(F(m, X)) = €pey(m(f, X)) — (fm—mf, X) =
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= (X)) 1) = (m (X)) 1) = ('l = f.x) ) mod h Ay, =
= (£ X)) 1) = (- F0) 1) -
— (U xe)) ) + (' xe) sxa) ) mod kA, =
= (<m"t£(<f"><[2}>)’><[1]>—<f"t£(<m’v><[2]>)v><[1]>) mod hAj =
= (s ((Fox@d) ) = (Foxms” ((m'xgz)))) ) mod hA, =
= (<m/’ Xt (CFxz)) ) = (Fs X[utr((m',X[z]»)) mod hA, =
= ((m" ) (Fox) = (Fxm) (m'xe ) ) mod hAy =

= (m, o(zp)) (f,0(zp)) — (£, o(zy)) (m,o(2)) =
= (f®m, (0®0)(A[1](x)2’1 ~All@)) = (fem, (c@a) (¥ (z))

Here above we used the fact that sr(<f’, X[2]>) — t’”((m’, x[2]>) belongs to J; , so that we have

Xq) (87 (' xi21)) =8 (f" xi21))) € 35 and (' xqy (57 (7 xq2) = ¢ (7 xq21))) ) = 0 mod A Ay
Thus (f®@m, §"(o(z))) = (f@m, (6®0)(8'(z))) for f,me L, so §"(c(x)) = (c®0)(d(x)) .

In the end, all the above eventually completes the proof of claim (a.1).

As to claim (a.2), let (Kp, , Ay, %, ,t%, A, 0k, ) and (I, By, sh, i, ,A,8p,) be two RQF-
SAd’s, and let (f,¢): K; — I, be a morphism between them in (RQFSAd) . The very definition
of morphism in (RQFSAd) imply at once that gb(s}(h(Ah)) C s, (Br) — because ¢osy, = sp, of
— and ¢(Ig,) C I, — because dp,0¢ = dk, — hence also ¢(h~Ig,) C h=' Iy, for the nat-
ural, k((h))-linear extension of ¢ : Kj — I, to ¢* : (Kp)pr — (I'h)p . By construction, this
implies that ¢* defines by restriction a morphism ¢* : K, — I}* , and this in turn extends by
h—adic continuity to a well defined morphism ¢Y : K — I} in the category (RQUEAA).

(b) A direct proof of (b) can be given mimicking that of (a). Otherwise, it can be deduced
from (a) (and, clearly, the roles of the two results in this deduction can be reversed) as follows.
If I, := JY(L), € (LQFSAd), ,then (I})7, € (RQFSAd), ;thus by claim (a) we have that

coop
)% ) e (RQUEAd), . Now, by construction ((I},)°? )" = (I'Y)°” ., hence we deduce
coop Ap coop h ) coop
that I,V € (LQUEAAJ) 4, - All other aspects of the claim also follow from this argument. O

6.2 The Drinfeld’s functor(s) () = 1)

We introduce now a second type of Drinfeld’s functor, denoted H +— H’. Just like for
the functor H — HV , this also is inspired by the similar notion introduced for “quantum” Hopf
algebras (see [12]); nevertheless, in this case we must be more careful, as we shall presently explain.

Let Hj, be a left (or a right) bialgebroid. If s = tf =: £, then we can define H' as in
the “classical” framework of quantum Hopf algebra deformations. Let us shortly recall it. Set
6, = (idy — st 0 €)™ o A", where (idy — s‘o0€)®" is the projection of H®" onto J®" defined
by the decomposition H =J @ sy(A), with J := Ker(e): then we define

H' = {a€H|b(a) EN"H" VneN} C H
If instead s’ and t¢ do not coincide, then the projection of H®™ onto J®" is not defined, because
the (A, ® A;7)-module J, does not have a complement in Hj . Therefore, as s* and t* do not

necessarily coincide, we adopt the following definition:

Definition 6.2.1. As above, we use notation (Hp)p = k((h)) @pny Hn -
(a) If Hy € (LQUEAA),, , we define

Hy = {neHp)p|{(n,(H) )eAn} .  'Hy := {neHn)p|(n,(Hn).)" )€ A}
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(b) If Hy € (RQUEAd),, , we define

By = {ne ()| (. CHY Y e A} . o= {ne Hp| (n.(H)") € A)

Proposition 6.2.2. Let Hj, € (LQUEAd), . Then
(a) H, C H,, 'H, C Hy
Hy = ((H)) = «(H)'),  Hy="((Hy)) = *((Hn),")
Hy = {X: Hp— Ay [ Mu+u') = Mu) + AW'), Mut™(a)) = aX(u), A(If.) S h"A, YV}
'Hy = {X: Hpo— Ap | Mu+d') = M)+ A W), Aus"(a) =Au)a, A(I}, ) Ch"A, Vn}
(b) The analogous results hold if Hy, € (RQUEAA)

Proof. The proof is the same as in [12], hence we do not need to reproduce it. 0

Remark 6.2.3. If H, € (LQUEA), , then ((H)?,) = (‘Ha).., . This follows from the
following three remarks:

— if U is any left bialgebroid, then (U,)%2, = *(UZE ) as left bialgebroids;

coop — coop

— if W is any right bialgebroid, then (*W)?% wer ) as right bialgebroids;

=
coop — coop

— the functor ()" commutes with the functor ( ) ebop -

Similarly, one has '((Hy)? ) = (H, h)coop Finally, in the same way one finds also the parallel

coop
identities ((Hp)oh )/ (‘H)?"  and ((Hn)ohop) = (H}) oo, for every Hj € (RQUEAd),,

coop coop

6.2.4. Explicit description of 'H), . For a given Hj, € (LQUEAd),, , we can describe 'H), quite
explicitly. Write Hj, = Jn @ s¢e(Ar), and let 75 be the projection of Hj, onto Jj,: this is not a
morphism of (Ah ® AP )fmodules. We need another lemma, whose proof is left to the reader:

Lemma 6.2.5. For any v € H, and a € Ay, one has 7, (s*(a) u) = s*(a) m,(u) .
If in addition t“(a)—s*(a) = hj for some j € Jp , then ms(t*(a) u) = s*(a) ms(u)+hms(ju) .

The operator 79" is not defined on Hp, ®a4, Hp @4, -+ @4, Hp. If u1 ® -+ Q@u, € Hp @4,
Hp®a, - ®a, Hp , then ms(u1) ®- ®ﬂ'g(un) depends on the way of writing of u; ®---Qu,, . We
will say that the component of > u; ®---Qu, in Jh is defined up to h”‘®" if > --Qu, =
Y1 ®-- Quy, implies Y we(u1) @ - @ mg(up) — Y ms(v1) @+ @ WS(Un) € h"IP" .

Lemma 6.2.6. Let u € Hy, and n € N, . If the component of A™(u) in J3" is defined up to

RIE™ and belongs to h"JI3™, then the component of A" (u) is defined up to h""‘lfj%(wl) —

hence it makes sense to say that it belongs to h”+1~®(n+1)

Proof. If the component of A™(u) in 33" belongs to h"J7"™, then A™(u) can be written as
A"(u) = Y h"¢1®---® ¢, + other terms

where all the ¢;’s are in J;, and “other terms” stands for a sum of homogeneous tensors containing
(as tensor factors) elements of sy(Ay) which do not occur in the computation of the component of
A" (y) in Pt Assume that A" (u) can be written, for some a € A, as

A" W) = S h"®---® té(a)xi ® Xit1 ® -+ Q Xna+1 + other terms
or

A ) = SR 1@ @ xi @ s5(a) Xig1 @ - @ Xns1 + other terms

and let us compute 75" (A" (u)) in both cases.
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In the second case, g2 (A"t (u)) can be written as

2T (AMT (W) = A" m(x1) @ @ ma(xi) ® se(a) Te(Xit1) ® -+ @ To(Xnt1)

In the first case, if we write t‘(a) —s°(a) = hj (with j € J; ) and use the previous lemma, we get

AP (AM T (W) = S A" (x1) @ - @ th(a) o (Xi) ® Te(Xig1) @ - @ To(Xng1) +

+ W me(x1) @ @Te(Xi1) © h (= jma(Xi) + (4 X)) © Ta(Xig1) -+ @ To(Xnt1)
Taking the difference between the two computations we find

R ms(x1) ® - @ Ts(Xim1) @ h (= jms(Xa) + 7s( Xi)) @ Ts(Xig1) -+ @ Ts(Xnt1)
which does belong to A1 3®M+) = ge.d.

O
Notation: If the component of A”(u) in J©" is defined up to h"J®™ , we shall write it as 67 (u) .

Then the condition §7(u) € h"J®™ perfectly makes sense. Hereafter we shall write 6" (u) € h"J®"
to mean that 67 (u) is well defined — i.e., the component of A™(u) in J®" is well defined — up to
h™3®" and it belongs to A"J®™ . For the rest of the discussion, we introduce the notation

0s(Hp) = {u € Hy, | ov(u) € h”J?" Vne N+}
We need again a couple of technical results:

Proposition 6.2.7. Let u € 65(Hp)

. Then A(u) can be written as

Alu) = u®@1 + >ug) @ upy, with w(y) € 6;(Hp) and  ujy) € W3y
Proof. First case: L is a finite free as an A-module.
Let {61 J €2y ,En} be a basis of the A—module L: we lift each €; to an element e; € Hjy,
such that e(e;) = 0. Let u € 6°(Hjp). We write A(u) as
Alu) = w' @1+ 3 cnn oy Yo ®€*  With \g|li)n—&1-oo |lual| =0
for suitable ', uq € Hy, . The relation my, ((s‘o€) ®id) (A(u)) = u gives v = u . Thus we have
A(u)

u®1 4+ 3 enn o) ta ® €
The relation my, ((s* o €) ®id)(A(u)) = u yields the identity

Saerm (o 8 (€(ua)) e

= u—s"(e(u))

As u € 6,(Hy) , one has u — s(e(u)) € hJy, which implies that s‘(e(uq)) € hHj ; hence

s'(e(ua)) =5i(€e(ua)) =0¢€ Hh/hHh . As 57 is injective, we get €(uy ) =0, i.e. €(uy) € h Ay, .
If n > 1, one has

Fi() = e 00 () @ € WO
which implies 077! (ug ) € A" J®~V and uy € 6,(Hy) . Let g = ms(ua ) = ua — s°(€(uy)) - For
all n > 1, one has 07 (uy) = 6" (us ) € K" 13" . In particular for n =1 we get U, = hw, for
some wq € 65(Hp) . The element u, can be written as uq = h (wa+ s (A e(ua))) € hés(Hp) .
Second case: L is finite projective as an A—module.
Like in Subsection 4.2, we fix a finite projective A—module @ such that L ® Q = F is a finite
free A-module. We fix an A-basis B := {e1,

,én} of F': then we call Y the k—span of B, so
that we can write F'= A®; Y . Moreover, we construct the (infinite dimensional) Lie-Rinehart

algebra Lo = L® (A®,Z), with Z =Y @Y ®Y @- -, which has a good basis {eitier—nx(1,..n}
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defined by B. Like in §4.2.1, we can define Hy, y and 65(Hy,y) . Now given u € §,(Hp, y) , we can
write A(u) as follows:

Alu) = u®l+ deﬂN)\{Q} Ug ® e with lim H“ﬁ H =0

lar|+oo(a)—+oo
Then the same reasoning as above shows that the proposition is true for Hj y in the role of Hy, .
Recall (cf. §4.2.1) that Hyy = Hy, @ (Hy, & S(Z)") where Hj, ®), S(Z)" is the h-adic com-
pletion of Hj ® S(Z)Jr ,with Z=Y @Y @Y &---; the natural projection my : Hpy —» Hp, is
then a morpism of left bialgebroids. Moreover, if J5 y is the kernel of the counit of Hj, y, we have
Jny =Jn @ (Hh Sk S(Z)+) . Now it is easy to see that, if v € 0,(Hp,y), then 7, (v) € 65(Hp).
Now let u € §5(Hp,). By the result for Hp, y , we know that A(u) can be written as

Alu) = u®@1 + > ug) @ ug, with w(,) € 05(Hpy) and u(y € hJny
As my,(u) = u, applying 7y ® 7, to the previous identity we get
Alu) = u®l+ ZWY(“/(U) ® 7TY(“/(z))
with T‘—y(ul(l)) € Ty (5S(Hh,y)) = (53(Hh) and 7Ty(u<2)) € hmy (3h,y)) =hJn, q.ed. O

Lemma 6.2.8. SZ(A}L) . 53(Hh) g (55(th) and tE(Ah) . 53(Hh) g (55(th) .
Proof. Let u € §;(Hp) and a € Ap,. The properties se( )u € 0 (Hh) follows from the following
properties: 7y (s*(a)u) = s°(a) ms(u) and A"(s*(a)) = s*(a)®1®---®1. Let us now show that
67 (t(a)u) € k" 3 for all n € N. Write t‘(a) — s(a ) = h] with j € 3.

For n =1, by Lemma 6.2.5 we have ,(t‘(a)u) = s(a) ms(u) + hms(ju) € hJ.

For n > 1, let us show that 07 (t‘(a)) € k" J®" . Set A(u) = u®1 + Ufyy Uy with uf;) €
0s(Hn) , u(g) € hJn (cf. Proposition 6.2.7). Then A(t(a)u) = u®t(a) + u21)®te(a) u’(Q) , hence
6r(t(a)u) = 627 Hw) @ s (t(a)) + 5271(u'(1)) @ ms(t*(a) u’(2)) , thus 67 (t(a)u) € A" J¥" . O

We are now ready for the first key result of this subsection:

Theorem 6.2.9. With assumptions and notation as above, we have
'Hy, = {ue€Hy|6(u) e h"J3" VneNy} = §,(Hy)

Proof. To begin with, we show that §,(H}) C 'Hy, . To this end, we prove that for any u € §,(H)
we have <u,I(H ). > C h™ Ay, for all n € Ny, using induction on n .

Take n=1. As u € §5(H), note that 6'(u) € hJ), implies u=hj+ s’(e(u)) with j € Jj.
Then one has

<’LL,IH}”> = h<j,IHh*> + 6(U)<1,IHh*> € hA,

Now assume n > 1. For our u € d5(H), set A(u) =u® 1+ uzl) ® u’(2) with “21) € ds(Hyp) and
u22) € hJ; as in Proposition 6.2.7. Let a € I?Ih* be of the form a = oy ap with oy € Iy, and
Qg € IZ;I : then, as the pairing ( , ) between Hj and Hj, is a left bialgebroid pairing, we have

(u,a1as) = <t€(<u’(2) , oq))u'(l) L) + <t€(<17 o ))u, az) € K™ A,
by the induction hypothesis and the case n =1 (also using the two previous lemmas).

Conversely, let us now show that 'Hy C §5(Hy). To this end, we prove (by induction on n)
that for any u € 'Hj, one has 6% (u) € h"J3" for all n € N.

For n=1. As u € 'H), we have (u, IHh*> C h Ay ; on the other hand, 6} (u) = u— s‘(e(u))
by definition. Then we have (d%(u),A) € h A, if X € Iy,, , because

(u—s"(e(w), A) = (u, Ay = (s"(e(u)) , A) = (u,A) —e(w) (1,A) = (u, ) —e(u)d(\) € h4,

On the other hand, clearly &!(u) =u — s*(e(u)) € Jn, hence 6}(u) € JyNhH, = hJ .

Let now n > 1, and assume by induction that 67~ '(u/) € h»~13®(=1 for all «' € 'Hj,. For
our u € 'Hy, , Wl"lte A(u) U(1) & U(2) with U1y, U2) € 'H. As An( ) = A1 (’U,(l)) & U(2) , We
get 07(u) = 677 (u1)) ®6%(u)) € h"J®™ by the induction hypothesis and the case n =1. [
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6.2.10. Explicit description of H;. We shall now give an explicit description of H, : this will
be entirely similar to that for 'Hj, , thus we shall only outline the main steps, without dwelling into
details — which can be easily filled in by the reader.

Write Hp = Jn @ te(Ap), and let m; be the projection of Hy, onto Jp : once again, this is not a
morphism of (A, ® A}¥)-modules. The operator 72" is not defined on Hy®4, Hy®4, -+ @4, H,
indeed, if u1®---@u, € Hy®4, Hy®a4, - ®a, Hy, then m(ui)®-- ~®ﬂ't(un) depends on the way
of writing u1®- - -Qu,, . We say that the component of Y u;®- - -®Qu, inJ J ™ is defined up to h"”®”
Y U@ -Quy = > 010 -Quy, yields > m(u1)Q - - @m(un)—Y, Wt(Ul)(X) -@my(vy) € h”~®" .

The following lemma is the parallel of Lemma 6.2.6, with similar proof. Note that the statement
is formally the same, but actually the “componentes” to which one refers in the two claims are

defined with respect to different projectors — namely 7" or 7" — in the two cases.

Lemma 6.2.11. Let u € Hy,. If the component of A™(u) in J3" is defined up to h"J3" and
belongs to h"”®" then the component of A"t (u) is defined up to h"“'lﬁf(nﬂ) — hence it makes

sense to say that it belongs to h"+1j§("+1) .

Notation: If the component of A™(u) in J3" is defined up to h"J®™ (in the above sense), we
shall write it as 07" (u). Then the condition §7'(u) € h"J®" perfectly makes sense. Thus we shall
write 07 (u) € h"J®™ to mean that 6 (u) is well defined (i.e., the component of A™(u) in J®", in
the above sense, is well defined) up to h"J®" and it belongs to h"J®". Also, we set

5:(Hy) == {u€ Hy| 67 (u) € h"IF" VneNL}
Arguing like for 'H}, , we can then prove the following, analogous characterization of H} :

Theorem 6.2.12. With assumptions and notation as above, we have

= {u€ H,|6}(u) € A"IF" VneNL} = §(Hp)

Remark 6.2.13. The study of 'H;, and H, we have done for LQUEAJ holds for RQUEAJ as well.
One can check it directly (via the same arguments) or, besides, deducing the results for RQUEAd’s
from those for LQUEAd’s in force of the general identities (H}Z)OP ="((Hn)? ).

coop coop

Thanks to the characterizations in Theorem 6.2.9 and Theorem 6.2.12 we can eventually prove
the following remarkable result:

Theorem 6.2.14. Let Hj, be a LQUEAd or « RQUEAd. Then H] = 'H), .

Proof. We begin with Hj, being an LQUEAd. We show, that for any u € d5(Hp) we have
87 (u) € h"J®™ for all n € N, by induction on n.
For n =1, one has

5i(u) = u—ti(e(u)) = u—se(e(w)) + se(e(u)) — to(e(w))

As s =t =0 mod h, one has s (e(u)) — t'(e(u)) € h Aj, . Moreover, we have also €(s*(e(u)) —
tz( (u ))) =0, so that s ( ) tt (e u)) belongs to I, Nh Ap, = hJ,. Thus 6} (u) € hJn, q.ed.

For n > 1, let us write A(u) =u®1 +u(1) ®u( 5y with u(l) € 0s(Hp) and u’(2) € hJp asin
Proposition 6.2.7. Then one has 67 (u) = &;" " (u (1)) ® 6} (uzz)) , which is an element of h"J®"
thanks to the induction hypothesis.

By the above we have proved the inclusion d05(Hy) C §:(Hy); the reverse 1nclus1on can be
shown in the same way, so to give d5(Hp) = 6:(Hp). By Theorem 6.2.9 — glvmg = §:(Hp)
— and Theorem 6.2.12 — giving H;| = §5(Hj,) — this eventually implies H,/ Hh .

For H; a RQUEAd, we can provide a direct proof by the same arguments used for a LQUEAJ;
otherwise, we can deduce the result for RQUEAd’s from that for LQUEAAJ’s, as follows.
If Hy is a RQUEAJd, then (Hh)coop is a LQUEAJd; then we have the chain of identities

(H)P®  ="((Hn)? )= ((H), ) = (Hn)? ', whence 'Hj, = H] follows too. O

coop coop coop coop
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We are now ready for the main result of this subsection. In short, it claims that the construction
Hy — 'Hy, = H}, starting from a quantization of L — of type V47 (L) — provides a quantization of
the dual Lie-Rinehart bialgebra L* — of type J¢/ "(L*) ; moreover, this construction is functorial.

Theorem 6.2.15. (a) Let V*(L), € (LQUEAA) 4, , where L is a Lie-Rinehart algebra which, as
an A-module, is projective of finite type. Then:

— (a.1) 'V¥L), = VZ(L) € (LQFSAA),, , with semiclassical limit V*(L /h VL), =
JY(L*) . Moreover, the structure of Lie-Rinehart bialgebra induced on L* by the quantzzatzon
VE(L);L of JY(L*) is dual to that on L by the quantization V*(L), of V*(L);

— (a.2) the definition of V*(L), — 'VY(L), = VZ(L),/L extends to morphisms in (LQUEAJ) ,
50 that we have a well defined (covariant) functor '( ) = ()" : (LQUEAd) — (LQFSAJ) .

(b) Let V'(L), € (RQUEAd),, , where L is a Lie-Rinehart algebra which, as an A-module,
18 projective of finite type. Then:

— (b.1) 'V"(L), = V"(L), € (RQFSAA) ,, , with semiclassical limit V" (L /h VT(L), =
JT(L*) . Moreover, the structure of Lie-Rinehart bialgebra induced on L* by the quantization
VT(L), of JT(L*) is dual to that on L by the quantization V" (L), of V" (L);

— (b.2) the definition of V" (L), + 'V"(L), = V"(L), extends to morphisms in (RQUEAJ),
s0 that we have a well defined (covariant) functor '( ) = ()" : (RQUEAd) — (RQFSAJ) .

Proof. (a) Given V*(L), € (LQUEAd),, , we know that J"(L), := VUL), € (RQFSAd) 4, ,
by Theorem 5.1.5(a); then V7(L*), := J"(L),” € (RQUEAd), 4, is a quantization of V" (L"), by
Theorem 6.1.4. By Proposition 6.2.2, (V*(L)j, )/ = . (J(L )}:/) is a quantization of J*(L*), by
Theorem 5.1.5. In all this, L* stands for the A—module dual to L endowed with the Lie-Rinehart

bialgebra structure dual to that defined on L by the quantization V¢(L), — according to Theorem
4.1.3. This completes the proof of (a.1).

As to (a.2), let Hy = VZ(LA)h be a LQUEAd over A, and I}, = V¢ (LB)h a LQUEAJ over
By, and let ¢ := (f,F) be a morphism of left bialgebroids among them. Set J,, := Ker(ey,)
and Jr, := Ker(ep,). Then F(Jy,) € Jr, by the property e, o F [ o€y, of a morphism of
bialgebroids. Similarly, one has F®" o A” = A®" oF and Fos! = sfﬁ ; from this, one easily

sees that 67 (F(u)) = F®"(67(u)) . From all thls we get F(H)) C Fh ,  so the restriction of the
morphism (f, F') between Hj, and I}, provides a morphism in (LQFSAd) between H, and I/ .

(b) A direct proof for claim (b) can be given by the same arguments used for (a). Otherwise,
we can deduce (b) from (a) as follows.

If H, € (RQUEAd), then (H,):2 =€ (LQUEAd) and ((Hy)e ) = (Hp)” | so that

coop coop coop

H) ="H, = (((Hp)? )/) Z:op . From this we can easily deduce claim () from claim (a). O

coop

6.2.16. Description of VZ(L),; when L is a (finite type) free A—module. Let L be a Lie-
Rinehart algebra which, as an A-module, is free of finite type. Let V¢(L), € (LQUEAd), 4, be

a quantization of V(L) ; by the freeness of L, we can provide an explicit description of V(L), , ho
much like that given in [12] for the similar case of quantum universal enveloping algebras.
First of all, consider K} := V¥(L), = J"(L), € (RQFSAd)A , which (cf. Theorem 5.1.5) is a

quantization of J"(L). From Proposition 6.2.2 we have V(L )h ~ . (KY).
Let {€;};c(1, oy beabasis of the free A-module L. Then (by the Poincaré-Birkhoff-Witt the-

5 Qn

orem) the set of ordered monomials {EQ} is an A-basis of V/(L), where €2 :=¢/ ... ¢

aenNn
Let & € Hom (V(L),A) = SA(L*) be defined by (& ,€f) = da;,0°**0as1** Oan,0 -
Then the ordered monomials —,g (with a! := ay! - a,!) is a pseudobasis — i.e., a basis in
topological sense — of the A-module J"(L) dual to the PBW basis {e®} _.. .
Lift {gi}ie{l,_“7n} to a subset {{i}ieqy,  ,y in J'(L), = Kj such that 9,(&) = 0; then

{5 fﬂ}aeNn is a topological pseudo-basis of J"(L), = Kj . Let {99} be the topological

a€eNn
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is a lift of the PBW basis {Eg} of

aEN?

basis of VE(L)h dual to {éfﬁ} e then {Gﬂ}aew

V(L) . Using these tools, a straightforward analysis shows that

VAL, = { Xt (ag)hlel 0, [ ag € A}

where the summation symbol denotes h—adically convergent series.

6.3 Quantum duality for quantum groupoids

We consider now the composition of two Drinfeld’s functors. We shall prove that the functors
()Y and () = /() are actually inverse to each other, so that they establish equivalences of
categories (RQFSAd) = (RQUEAd) and (LQFSAd) = (LQUEAJ) . Our result reads as follows:
Theorem 6.3.1.

(a) If Ky, € (RQFSAd), then (K,Y) =K; = "(K,’

(b) If Kj, € (LQFSAd), then (K\Y) =K, ="(K,

(¢) If Hy € (LQUEAA), then (H})' = H), = (H,

(d) If H, € (RQUEAd), then (H,

(e) The functors ()" : (RQFSAd) — (RQUEAd) and () ='(): (RQUEAd) — (RQFSAd)
are inverse to each other, hence they are equivalences of categories. Similarly for the functors
()Y : (LQFSAd) — (LQUEAd) and () ='(): (LQUEAd) — (LQFSAJ) .

>~

Proof. Clearly, claim (e) is just a consequence of the previous items in the statement. We begin by
focusing on claim (a): we assume that Kj, € (RQFSAd),, and we shall prove that (Khv)/ =Kp .

Let us show that K C (K}y)/.

Given A is in K, consider its n-th iterated coproduct A"™(A) = M) @ --- @ Ay ; if we
write every Ay as Ay = )\’(i) + )\2'1.) with /\’(i) = G — 52(8()\@))) € Jn := Ker (8Kh) and
Ay = sh (0(A\»))) € sh(Ap), then expanding again A™(\) we can write it as a sum A"(\) =
2 AGy ® - @AY, inwhich AP € Jp or A7 € 53 (Ap) forevery i=1,...,n.

Now let o ,..., o0 € I gy = 6:(11(,3) (h Ah) . As every «; belongs to *(K,\l/) , it defines a map

from Jj to hAp. Hence (o;,A;) € h A, and one has {(ai---ay,, A) € h"A;, . Thus, for any
n € N, we have that A defines a map A, : h™" I?K;Y) — Ay, . Clearly all these A,’s match

together to define an element A € ((*(Khv))\/) (KX)/ ; thus we end up with a natural map

K, — (K,X)/ (A A), which is clearly injective. This yields the inclusion Kj C (K,\{)/ .

To prove the converse inclusion Kj D (K M )/ , one proceeds exactly like in [12] — we leave the
details to the reader. Similarly, we leave to the reader the proof of (b), analogous to that of (a).

To prove claim (¢), consider Hj, € (LQUEAd). We have Kj, := H;F € (RQFSAd), and H, =
*((Hh*)v) =,(K,Y) by Proposition 6.2.2(a). Now I} := K,’ € (RQUEAd) by Theorem 6.1.4, and

then T}, = ((*Fh)v )* by Proposition 6.2.2(b), which implies ,(7T},) = *(((*Fh)v)*) = ().
Altogether — also exploiting claim (a) — this gives

(#) = ((E) = (I = o (0) = () = ((6)') = K = () = Hy

This proves (c), and the proof of (d) is entirely similar again. O
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7 An example

In this last section we apply the main construction of the paper — duality functors and
Drinfeld’s functors — to a toy model, namely a simple (yet non trivial!) quantum groupoid.

We consider the two dimensional Lie k—algebra g = ke; @k es with Lie bracket [e1,es] = e1. It
is known that g* is a Poisson manifold: we consider e; and ey as coordinates on g* , denoting them
by 1 and xs respectively. The Poisson structure on g* is determined by {z1,z2} = [e1,e2] = €1 .

Let us introduce the Lie k[[h]]-algebra g, := k[[h]]e1 @ Ek[[h]] e2 with non-zero Lie bracket

[e1,e2]), == hey. The h-adic completion of the enveloping algebra of gj, , namely A := IT(EL) , 18
a quantization of the Poisson algebra of polynomial functions on g*, namely A = S(g).

We write D for the ring of polynomial differential operators on g*, with 9; := , 1 =1,2.

89[:,»
It is the enveloping algebra of the Lie-Rinehart algebra (S(g), Der(S(g)),id). We endow it with
the standard left algebroid stucture and denote by D][h]] the trivial deformation of this structure.

n

h n
Proposition 7.0.2. Fiz notation 01:=x101. Then F:= Z Ton (91@) Oy — D ® 91) s a twistor
— «¢f. Definition 3.2.7 — for D[[h]].
Proof. 1t is a straightforward computation. O

We will now denote by D, the twist of D[[h]] by F. As an algebra, Dy is isomorphic to
(S(g) ® S(g*))[[k]]. The deformation of A = S(g) defined by F is A, = U(gn), the h-adic
completion of the universal enveloping algebra U(g)) of g5 . The source map se}- (an algebra
morphism) is determined by
X1 (92” s Sl}:(ilig) = T2 — h[El 61

sh(an) = >

n=0 T 2n

The target té}- (an algebra antimorphism) the coproduct Az and the counit € are determined by

té (331 io: (_ ) h"

—0 n' 2”
Ar(X) = F#-1 A(X ) 7 6($1 1‘228’618'62) = a2 2851852()

18 R tt (.’172) = 29 + hx1 01

(cf. Theorem 3.2.8). Explicitly, F can be lifted to an element F € (D @k, D)[[h]] defined by

oo (oo -Len)) = £ L (0el - Loa) s

0xo 0xo n—o n! 27 0xo 0xo

this element F is invertible in (D @, D)[[R]] and one has

Fl = exp<_g<01®8a Bl 883:2@01)) € o)A

T2

In turn, the element F~* defines an element G € D[[h]] @4, D[[h]], namely

g = 20(—1)" Qh—;, <91 ® ai@ —~ ai@ ® 91>n € D[[h]] ®a, D[[h]]
Now the map
F# . D[[h]]|®a, D[R] — D[R] @aD[[h]] ,  hi1®@hy = F-(h1 @ hy)
is indeed invertible, its inverse being
F#H D@4 D[R] — D[[A)] @4 DIh]] ,  hi@hs = G- (h1 @ ho)

We will compute now the dual bialgebroids (D), and (Dn)".
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Computation of (Dh)* ¢ We shall use the isomorphism
(Du). — Hom(D, A)[[B]] . A+ (908 = (A, 0107

Let dey,des € (Dh)* be such that <d61 , OF 82b> = 61,400 , <d€2 , OF 62b> = 00,4 01,5 - Sim-
ilarly, let €1,e2 € (Dh)* be such that <€1 R 81“ (92b> = I 607(1 5075 s <€27 61‘1 62b> = X9 50,(1 5O,b .
A direct computation shows that

0 if a>2 or b>2

1 if a=1 and b=1
—% if a=1 and b=0
0 if a=0 and b=1

(dey -, des, 0005 ) =

Similarly
0 if a>2 or b>2
, 1 if a=1 and b=1
des -y d 4 =
(dez 1 dey, Of 0) % if a=1 and b=0
0 if a=0 and b=1
Hence deq -, des — des - dey = —hdey . Set de; := h™'de; . This equality can be written as

Jel ‘h d@g — deg ‘h d€1 = —Jel
Similarly, the following equalities can be established:

dey-pex—ez-dey = —e; , e1-ex—ezxpe; = hep dey-per = e1 - dey
des-nes = ex-pdes , dez-per—er-pdes = e , sh(e) =e , to(e;) = e+ hde
From the properties of the coproduct, one gets A(e;) = 1®e; , Ale; +hde;) = (e +hde;) @1,

from which we deduce A(de;) = de;®@1+1®de; . The coproduct on ((Dh)*)v is now determined.
Let us also point out the counit of ((Dh)*)v : it is given by 9(de;) = 0 and 9(e;) = e; .

Remark 7.0.3. Let us introduce the Lie algebra g; such that g, = g = kde; @ kdes (as a
k-vector space) and [ , ]; ;= —[ , ], . Then g1 acts on g5 = k[[h]]ex ® k[[h]]e2 by derivations, via
- e1— 0 = es — 0
g — Der(gn) , delr—>{ er s —e; d62+—>{ o1 e

We may perform the semi direct product g; X g and ((Dh)*)v is isomorphic to U(91 X gh) as
an algebra but not as a bialgebroid.

Let us now compute 'Dj, . We proceed in several steps.

e Let us show that hdy € 'Dy, .
We shall show that (hd,, def' de?) =0 if (a1,a2) # (0,1) . We have three cases:

First case: a; =0. In this case it is obvious that (s, def*) =0.
: a 0 if ay 7& 0
Second case: ao; = 1. In this case we have <6‘2, de}’ d€2> = { 1 if ay =0
Third case: az > 1. In this case the summands in Ax (82) that might bring a non zero
" (_]_)alz/ ha’?*l

contribution to (82, de{* de3*) are those of the form 9, ® g2tz

—— with ab+adi =
— 2T 02
ablaf! 2e2—1

" 1
1. as o pabtay (Z1)72 B2
a9 1 ; but Z 82 ® 91 a,2' a/2,| 2(12—1

abtai=az—1
e Let us show that hd, € "D;,. We will show that <h81 , del* de3? > € hmtaz 4, |
We start by computing (0;, de{' de3? ) .

= 0, so we find again <h82, deft des? y =0.
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T if a; = 1

0 otherwise

Second case case: as > 1. The summands in Ar (82) that might bring a non zero contri-

apray+1 (1)%2 h2
ahblall 292

First case: as =0. It is easy to check that <91 , (del)“1> =

bution <91 , def* de3? > are those of the form 03% ® 6]

4 / " .
with a5 +af = as ;

(-1 he

! +al/+1
but 5% ® 0727
2, o ! ahblall 292

’ 1" __
z12+012 =az

= 0, hence in the end <91 , (dep)™ (deg)®2 > =0.

I if (al,ag) = (1,0)

In conclusion, we find (61, (de1)™ (dez)® ) = { 0 otherwise

Let us now compute <81 , del* de3? > . Again we have several cases to consider.

. i o . a o 1 if a; = 1
First case: as =0. It is easy to check that <81 , (dep)™ > = { 0 otherwise
Second case: as > 1. In this case one has

al as L h 1 az
0 = (01, (de)™ (de2) ) = (sx(21)0 Z 01 55y 02", (der)™ (de)
as—1 h
= X <81 5 (del)‘“ (deg)“2> — nzl < 91 W 82" s (d61)a1 (deg)“2>

<91 " j 027, (de)” (dez)a2>

For 1 <n <as—1, the unique summands in Az (01 82") that may bring a non zero contribution to

hag—n _1 C2
(6105, (de1)™ (de2) ) are those of the form 95* @0y~ "** (=1)
2a2—n 81! CQ!

az—n 1)¢2 az—1 n
but S 0@ ee Tt h (=)= _ = 0, hence Z < }in' a5, (dep)™ (dez)a2> =0.

- 20271 ¢yl ¢yl
c1+ca=as—n 1-€62:
Finally, we remark that (6; 952, (de1)™ (dez)® ) is zero if a1 # 1. Hence, in any case, we

have <01 61212 # ) (del)al (d€2)a2> S ha1+a2—1Ah
2!

with c1+c = as—n

In conclusion, we find that in all cases one has ({91, (de1)™ (dep)® ) € h*To2=1 4,

de$ deb
Now denote by {ﬁa b} , the topological basis of Dj, dual to the basis G 4% .
b S (a,b)eN al b (@b)eN?

We know that 'Dj, = {E(a)b)eNg % (aap) hTnap ‘ Qb € Ah} - As Wt = RO DY
modulo h'D;, , we have 'D), = {Z(a’b)eNg s%(aa,b) hatt 92 00 ‘ Qg p € Ah} )

Computation of (D;,)": We shall compute (Dj)", using the isomorphism
(Du)* — Hom(D, )[R} . A+ (908 = (\, 0107))
Let d61,d62 S (Dh)* be such that <d61, 8{1 82b> = (51@ 50,5, <d62, 81“ 82b> = 6O,a 51,5 .

Similarly, let ey, e2 € (Dy)" besuch that (ey, 0705 ) = x1080,a 00,0, (€2, 00 ) = 280,400, -
Now set de; := h~tde; for i =1,2. Then the following equalities can be established:

€1 €2 —€2p €1 = —h61 5 d€1 ‘h d€2 — d€2 ‘h d61 = d61
dey -hex —eg-de; = e; dei-per = e1-pdeg
des-p ez = ex-pdey deg-per —er-pdes = —eq
Moreover, source and target are si(x;) = e; + hde;, t:(x;) = e; . From the properties of the

coproduct, one has also A(e;) = e; ®1, A(déi) = de; ® 14+ 1® de; . Finally, the counit of
((Dy)*)" is given by the formulas d(de;) =0, 9(e;) = e; .
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A right bialgebroid isomorphism ((Dh)*)v =~ ((Dn)")

\% .
. From the above analysis, one

sees that there exists a unique isomorphism of right bialgebroids ¢ : ((Dh)*)v — ((Dh)*)v
determined by ¢(e;) = e; + hde; and ¢(déi) = —de; .
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