
October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

STATISTICAL ANALYSIS OF

RANDOM NUMBER GENERATORS

LUIGI ACCARDI

Università di Roma Tor Vergata, Centro Interdipartimentale Vito Volterra, Via
Columbia 2, 00133 Roma, Italy, E-Mail: accardi@volterra.uniroma2.it

MARKUS GÄBLER

Brandenburg Technical University Cottbus, Department of Mathematics, PO box
101344, 03013 Cottbus, Germany, E-Mail: gaebler@math.tu-cottbus.de

In many applications, for example cryptography and Monte Carlo simulation, there
is need for random numbers. Any procedure, algorithm or device which is intended
to produce such is called a random number generator (RNG). What makes a good
RNG? This paper gives an overview on empirical testing of the statistical properties
of the sequences produced by RNGs and special software packages designed for that
purpose. We also present the results of applying a particular test suite—TestU01—
to a family of RNGs currently being developed at the Centro Interdipartimentale
Vito Volterra (CIVV), Roma, Italy.

1. Introduction

Assume X1, . . . , XN is a random binary sequence, i.e. for all 1 ≤ k ≤ N

Xk is a Bernoulli random variable with P (Xk = 1) = pk ∈ (0, 1). Such

a sequence is called purely random, if X1, . . . , XN are independent and

identically distributed (i.i.d.) with pk = p = 1/2.

In many applications, for example cryptography and Monte Carlo sim-

ulation, there is need for random numbers. Using binary expansion and

transformation methods any such random numbers can be constructed

from purely random binary sequences to an arbitrary precision, ignoring

numerical difficulties for the moment. So many ways have been invented

to produce, or at least simulate, realizations x1, . . . , xN of such sequences.

Repeated flipping of a “fair” coin and recording “0” for “heads” and “1”

for “tails” would be one way, but surely too timeconsuming, if you needed,

say, 1018 exponential random numbers for some extensive stochastic simu-

lation. Using randomness in physical quantities like noise in an electrical

1



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

2

circuit or the timing of strokes at a user keyboard would be another. Or

even manipulation of a definitely deterministic process (like a small com-

puter programm) in a way that the outcomes appear to be purely random

might serve just as well. Any such procedure, algorithm or device which

is intended to produce realizations of random sequences, we call a random

number generator (RNG). Deterministic RNGs are also sometimes called

pseudo-random number generators (PRNG) or algorithmic RNGs. But no

matter what the nature of a particular RNG is, the question arises whether

the sequences it produces can be distinguished from the ones coming from

the purely random theoretical ideal.

This paper only deals with the statistical properties of binary se-

quences (viewed as realizations of random binary sequences). But while

good statistical properties are necessary, there are, of course, other impor-

tant quality criteria, including:

Efficiency with respect to time and memory.

Sufficiently large period: The internal state of a deterministic RNG

runs over a finite set and is therefore periodic, so running through a signif-

icant portion of the whole cycle should be beyond reach in practice.

Repeatability: the ability to reproduce the same sequence as many times

as needed. Non-deterministic RNGs are not repeatable.

Portability: independence from software and hardware environment.

Unpredictability: The next output bit of an RNG is not to be predicted

from knowing preceding ones any better than by “tossing a fair coin”. For

a deterministic RNG this means that it should not be possible to find the

internal state and/or the transition law from knowing the output sequence,

at least not in reasonable time employing a reasonable amount of resources.

The importance of these criteria mostly depends on the application the

RNG is intended for. So while for some uses in cryptography nothing less

than an unpredictable RNG will do, for simulational purposes the main

emphasis might be on high efficiency and repeatability.

Not all RNGs are designed to produce binary (bit) sequences. Besides

bit generators, i.i.d. Uniform{0, . . . , 2m − 1} and i.i.d. Uniform[0, 1) gen-

erators are also very common. The former produce m-bit-integers, where

31 and 32 bits are used quite frequently, the latter approximate reals, also

only up to a certain precision (float, double, etc.), of course. These different

outcomes can be transformed one into the other quite easily, though. Di-



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

3

viding a bit sequence into m-bit-blocks yields the binary representation of a

sequence of m-bit-integers. An m-bit-integer divided by 2m is a [0, 1) real.

The converse works just as well. In addition, a random binary sequence

is purely random if and only if the corresponding m-bit-integer sequence

is i.i.d. Uniform{0, . . . , 2m − 1}. Thus, even though some tests need bit

sequences and others, say, 32-bit-integers as input, they can be applied to

any RNG, as long as the output of the RNG is transformed to the right

format.

Section 2 deals with statistical tests and special software packages de-

signed for testing RNGs. Then, in section 3, the results of applying a

particular test suite — TestU01 — to a family of RNGs currently being

developed at the Centro Interdipartimentale Vito Volterra (CIVV) at the

Università degli studi di Roma Tor Vergata, Italy, are presented.

2. Statistical Testing of RNGs

Bad RNGs are those that fail simple tests, whereas good RNGs fail

only complicated tests that are hard to find and run.

P. L’Ecuyer

2.1. Historical Development

Over the years many statistical tests for testing random number genera-

tors have been proposed. One of the first collections was found in earlier

editions of Knuth [1]. These tests, plus a few others designed for test-

ing parallel generators, were implemented in SPRNG: a scalable library for

pseudorandom number generation by Mascagni and Srinivasan [2].

New and more stringenta tests, compared to the ones from the just

mentioned Knuth [1], were introduced by Marsaglia in 1985 [3]. Most of

these tests were later implemented in DIEHARD: A Battery of Tests of

Randomness by Marsaglia in 1995 [4], probably the best-known software

package for RNG testing. Because of its very unflexible setup its usefulness

has become rather limited, though, by now. First of all, the sample sizes

(as well as other parameters) are fixed in the package and not very large

by modern standards, which makes the test results unreliable for many of

todays applications. Second the sequence must be provided to the package

aA test T1 is considered more stringent than another test T2, if a generator passing T1

is also likely to pass T2.



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

4

in the form of 32-bit-integers in a binary file, rather than just passing the

RNG function to the package, which then in turn produces the numbers

“on demand”. This also makes any generator having an accuracy less than

32 bits fail DIEHARD.

The National Institute of Standards and Technology (NIST), USA, de-

veloped the NIST Statistical Test Suite by Rukhin et. al. [5] for the evalu-

ation of the Advanced Encryption Standard (AES) candidate algorithms.

The state-of-the-art library for testing RNGs today is TestU01: A C

Library for Empirical Testing of Random Number Generators introduced

in 2007 by L’Ecuyer and Simard [6]. It implements: 1) a large variety of

different RNGs proposed in the literature and/or used in software packages

or operating systems, 2) most of the statistical tests from DIEHARD, the

NIST package, the Knuth collection, other tests found in the literature and

some original ones, 3) predefined test batteries and 4) tools for investigating

dependence of the period length of a generator within a whole family of

RNGs and the length of a sequence when this generator begins to fail a

given test systematically.

Many of the statistical tests proposed for testing random numbers are

easily passed while other tests seem to be quite difficult to pass. So what

makes a good test? In the last years some efforts have been undertaken

which, eventually, might lead to something like a “hierarchy of tests”. For

example, Tsang et. al. [7] define the so-called “Stringency level” of a test,

in order to optimize the choice of parameters for the Collision Test. The

results of testing a wide range of generators against some difficult-to-pass

tests of randomness by Marsaglia and Tsang [8] as well as against other

test suits, including DIEHARD, NIST and Knuth’s collection are found in

[9]. According to their results, applying these three difficult-to-pass tests

seems to “reduce the volume and concentrate the essence” of many of the

statistical tests in use today. However, through empirical investigations on

our part, we have found generators, that do pass these three tests, but fail

others quite badly. More details on these results are reported in section 3.

2.2. General Setup of a Statistical Test

What is the basic setup of a statistical test? Let x1, . . . , xN be a sequence

of real numbers considered as realisations of random variables X1, . . . , XN

over a common probability space (Ω,F , P ) where P is unknown. Denot-

ing with P0 the set of all probability measures fulfilling certain given re-

quirements about the common distribution of X1, . . . , XN , the statement



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

5

H0 : P ∈ P0 is called null hypothesis. Whether H0 holds or not is un-

known and the object of a test is to gather information from the sequence

x1, . . . , xN in order to either reject H0 or not.

For the testing of binary sequences the null hypothesis throughout this

paper will be given by P0 = {P : X1, . . . , XN is a truly random binary

sequence}, i.e.
H0 : X1, . . . , XN i.i.d., P (Xk = 1) = P (Xk = 0) = 1/2, k = 1, . . . , N.

(1)

Definition 1. The random number Y := t(X1, . . . , XN ), where t is a real-

valued measurable map, is called statistic. A statistic T taking only the

values 0 and 1 is called a test. Thereby, the events {T = 1} and {T = 0}
are interpreted as “reject H0” and “do not reject H0”, respectively. If the

probability of rejecting H0, even though it was true, is less than α ∈ (0, 1),

i.e. P0(T = 1) ≤ α for all P0 ∈ P0, the test is called significance test at

level α.

Remark 2. Let T = t(X1, . . . , XN ) be a significance test at level α.

(1) For a given realization x1, . . . , xN H0 is rejected, if t(x1, . . . , xN ) =

1.

(2) Common choices for α are 0.05, 0.01 or 0.001.

(3) Rejecting H0 at level, say, α = 0.001, does not mean that it is not

true. It just means that it is very unlikely to be true, because if it

was true, H0 would only be rejected less than once in a thousand

test runs, on average. It does happen nonetheless. On the other

hand, not rejecting H0 does not mean it is true. The sequence was

just “not bad enough” to be rejected.

Now consider a statistic Y where the distribution under H0 is known

to have a distribution function FY (y) := P0(Y ≤ y). Then U := FY (Y ) is

called p-value of the statistic Y. If FY is continuous, U has a Uniform[0, 1]

distribtion (under H0). In this sense, p-values can be seen as standardized

statistics. Moreover

P0

(
α/2 ≤ U ≤ 1− α/2

)
= α

(
α ∈ (0, 1), P0 ∈ P0

)
, (2)

i.e.

T :=

{
0 α/2 ≤ U ≤ 1− α/2

1 otherwise
(3)



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

6

defines a significance test at level α. Thus, H0 is rejected if the p-value U

is close to 0 or 1. For general FY define a left and a right p-value of Y by

UL := U = FY (Y ) and UR := FR
Y (Y ) (4)

respectively, where FR
Y (y) := P0(Y ≥ y) = 1 − FY (y) + P0(Y = y). Then

reject H0, if any of the left or right p-value is close to 0 (see L’Ecuyer and

Simard [6]).

Example: The χ2-goodness-of-fit test

Let X1, . . . , XN be a sequence of i.i.d. copies of a random variable X and

H0 : P = P0 the null hypothesis to be tested.

For 1 ≤ k ≤ K define pk := P0(X ∈ Ak), where A1, . . . , AK is a finite

partition of R and let

Ck :=

N∑
n=1

1{Xn∈Ak} (1 ≤ k ≤ K) (5)

be the number of times the Xn fall into Ak, where 1B represents the in-

dicator function of the event B. Then, under H0, Ck follows a binomial

distribution B(N, pk) and

Y :=

K∑

k=1

(Ck − ECk)
2

ECk
=

K∑

k=1

(Ck −Npk)
2

Npk
(6)

is approximately χ2-distributed with K−1 degrees of freedom (as N → ∞).

Thus H0 is rejected, if the p-value U := Fχ2(K−1)(Y ) is really close to 0

or 1, where Fχ2(r) denotes the (continuous) distribution function of the

χ2-distribution with r degrees of freedom.

2.3. Specialties for Testing of RNGs

As seen in the previous subsection, any statistic Y , whose distribution

under H0 is known, at least approximately, can be used to define a test.

Hence it will be called as a test statistic. In fact, for the testing of RNGs,

a test can still be defined, even though the distribution of Y might not be

(approximately) known. A number of generators may be used to estimate

the distribution. And if these estimates are consistent across a variety of

different and “presumably good” generators, the estimate may serve as H0

target distribution.

In essence, statistical testing of RNGs is nothing but a particular kind of

Monte Carlo simulation. Conversely, when testing an RNG for suitability



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

7

with respect to a particular Monte Carlo problem, running the simulation

with a related but simplified model, that is, one where the distribution of

the result can be attained theoretically, may serve as a test. Even if the

distribution is not known, the results of the designated RNG can still be

compared to the ones produced by a few other “good” generators of quite

different designs.

Most statistical tests for RNGs utilize the concept of a p-value. P-values

of single tests should not only be in the proper range (not too close to 0 or

1), but should also be uniformly distributed on [0, 1). Therefore, it might

be useful to run the same test many times independently, i.e. on different

parts of the original sequence. A number of independent first-level p-values

can then be assessed by a second-level uniformity test resulting in an over-

all p-value. For example, while none of the single values of a sequence of

supposedly independent p-values, say 0.24, 0.26, 0.23, 0.21, gives any rea-

son to question H0, the whole sequence does reveal a very non-uniform

and/or non-independent behaviour, though. This second-level test of uni-

formity could be the above-mentioned χ2-goodness-of-fit test but usually

an Anderson-Darling or a Kuiper version of the Kolmogorov-Smirnov test

is applied.

Very often RNGs are tested against whole batteries of tests and therefore

p-values close to 0 or 1 are not too uncommon even for good (including

perfect) generators. Therefore, the choice of α could be somewhat different

from the ones for usual statistical testing mentioned earlier. If the final

(first- or second-level) p-value of a test is really close to 0 or 1, the RNG is

said to fail the test. If the p-value is suspicious, the test is repeated and/or

the sample size is increased and often things will then clarify. Otherwise

the RNG is said to have passed the test. But remember that this does not

mean that the null hypotheses is true. The meaning of really close and

suspicious should be made clear before running the test, of course. Test

batteries usually have some suggested values for that purpose.

For some applications there is the need for assessing much larger se-

quences than feasible due to memory limitations. These can be overcome

by performing the same test many times on different subsequences and

then somehow combining the results. One way is the above mentioned

second-level uniformity test. But there is another useful approach. For

most statistical tests the target (H0-) distribution of the test statistic Y is

either a normal or a χ2- or a Poisson distribution. Thus, instead of calcu-

lating a p-value for each test and then performing a second-level test, all

the single Y ’s could be added, the sum again being normal, χ2 or Poisson,



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

8

respectively. This sum statistic could then, in turn, be used to give the

final p-value, see [10].

Example: The Birthday Spacings Test

This test was introduced by George Marsaglia in 1984 [3] and uses the

fact that (for large n) the number of collisions among the spacings induced

by the order statistics of m independent uniform {0, . . . , n − 1} random

variables is approximately Poisson with mean λ = m3/(4n). The proof of

the corresponding limit theorem (Theorem 3 below) was never published,

though. A different proof was provided by Klykova in 2002 [11].

Let U1, . . . , Um (the birthdays) be independent and uniformly dis-

tributed on {0, . . . , n− 1} (the year),

0 =: U(0) ≤ U(1) ≤ . . . ≤ U(m) ≤ U(m+1) := n− 1 (7)

the corresponding order statistics, S1, . . . , Sm+1 the induced spacings, i.e.

Sk := U(k) − U(k−1) and C the number of collisions among those spacings,

i.e.

C :=

m∑

k=1

1{S(k+1)=S(k)}, (8)

where 1A stands for the indicator function of the event A and

S(1), . . . , S(m+1) are the order statistics of the spacings S1, . . . , Sm+1. The

distribution of C we call birthday spacings collision distribution and we

write C ∼ BSC(m,n).

Theorem 3. If Cn ∼ BSC(mn, n) for all n ∈ N such that m3
n/(4n) −→

n→∞
λ then

P (Cn = k) −→
n→∞

λk

k!
e−λ (k ≥ 0). (9)

¥

How does the test work? In [8] Marsaglia and Tsang suggest the fol-

lowing version of the Birthday Spacings Test. Choose m = 212 = 4096,

n = 232 and therefore λ = 4. Let the RNG generate 4096 32-bit-integers,

sort them and take differences to get the spacings. Then sort the spacings

and count how many times adjacent spacings are equal. This gives the

number of collisions. Repeat this process 5000 times to get a realization of

a sequence of supposedly independent Poisson random variables with mean

λ = 4. Then perform a χ2-goodness-of-fit-test as follows: For k = 0, . . . , 9



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

9

let Nk be the number of times there were k collisions among the 5000 runs

and let N10 be the number of times there were more than 9 collisions.

Also let Ek := 5000pk be the expected number of Nk (under H0), where

pk := λk

k! e
−λ (k = 0, . . . , 9) is the probability of a Poisson random variable

taking the value k, p10 := 1−∑9
k=0 pk respectively. Then

Y :=

10∑

k=0

(Nk − Ek)
2

Ek
(10)

follows approximately a χ2-distribution with 10 degrees of freedom. There-

fore the test is failed if the p-value U := Fχ2(10)(Y ) is really close to 0

or 1, where Fχ2(r) denotes the (continuous) distribution function of the

χ2-distribution with r degrees of freedom.

Instead of performing a χ2-goodness-of-fit test on those 5000 colli-

sion counts, they could also be added, the sum being Poisson with mean

4∗5000 = 20000. Even though it might not be feasible to calculate the cor-

responding p-value directly, this could be done by a normal approximation.

In [10], L’Ecuyer and Simard design birthday spacings tests for testing

uniformity in d dimensions by dividing the corresponding d-dimensional

hypercube into hyperboxes of equal size and then enumerating them in the

natural order. This kind of tests is implemented in TestU01 [6].

3. Test Results

Good statistical properties of the sequences it produces being not sufficient,

but certainly necessary, any RNG aspiring to be called good has to undergo

some intensive and extensive empirical testing. In this section we present

the results of applying the test batteries from the RNG software package

TestU01 to a family of generators first introduced by Abundo, Accardi and

Auricchi [12] and currently further being developed at the Centro Interdi-

partimentale Vito Volterra (CIVV) in Roma, Italy. They are also compared

to the results of a few other popular generators, namely, theWichmann-Hill-

generator [13] used in Microsoft Excel 2003, CombLec88 - a combination

of two linear congruential generators used in RANLIB, CERNLIB, Boost,

Octave and Scilab proposed by L’Ecuyer [14], KISS99 - a combination of

four different generators designed by Marsaglia [15], the 2002 version of the

Mersenne Twister generator and ISAAC, proposed by Jenkins for use in

cryptography [16]. The MT19937 2002 generator is described in [17], has

good statistical properties and has become quite popular in software for nu-

merical simulation (like MATLAB, for example). It is not unpredictable,



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

10

though, and thus not recommended for cryptographical purposes.

Table 1. Results of the test battery Crush (software package TestU01 1.2.1).
It produces 144 p-values from 96 independent tests, thereby sampling
around 128 GByte of random bits (> 15 double layer DVDs).

Generator Clear failures Suspect (of which failed) Total failed

QPdyn 0 3 (0) 0

QPdyn-s 6 12(8) 14

MSExcel 2003 12 7 (*) 12*

CombLec88 1 5 (1) 2

Kiss99 0 2 (0) 0

MT19937 2002 2 4 (0) 2

ISAAC 0 3 (0) 0

Note: * no follow-up testing done

Table 1 shows the results of applying the test battery Crush from the

RNG software package TestU01 to QPdyn and QPdyn-s. Each test from the

battery results in (at least) one p-value, a number in [0, 1]. It is interpreted

according to table 2.

Table 2. Interpretion of p-values.

p-value Interpretation

0.01 < p < 0.99: Clear passed

p or (1− p) < 10−10: Clear failure

Otherwise: Suspect behaviour, repeat test 3 times indepen-
dently, if test continues to show suspect results,
it is considered as failed, otherwise passed

As mentioned in section 2, Marsaglia and Tsang [8, 9] proposed three

tests, that they consider to be a concentration of DIEHARD and other sta-

tistical tests used today. However, the generator QPdyn-s passes these three

tests, but at the same time fails the test battery Crush quite badly, as can

be seen from table 1. So this might be a starting point for comparing this

Marsaglia-and-Tsang-three-tests-battery with the battery Crush for many

different generators, to decide which is more stringent. Or, more likely,

they will be found to be somewhat complementary in the sense that both

batteries are specialized in finding certain deficiencies, which the other one

does not detect. In this case an appropriate combination of both batteries

should be considered.



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

11

4. Summary and Outlook

The software package TestU01 should be considered THE STANDARD for

testing RNGs. The particular version of QP-Dyn tested in the previous

section passes all of the tests. But this is only the beginning. Eventu-

ally, QP-Dyn is intended to become an algorithm that automatically but

somewhat randomly chooses parameters to generate not random numbers

but random number generators. The idea of using computers to find good

parameters for families of generators is also mentioned in section 3.7 of [18].

In a forthcoming paper we will study how to condense statistical testing

in order to test QP-Dyn considered as a random RNG generator.

Acknowledgements

This work was supported by the Centro Interdipartimentale Vito Volterra

at the Università degli studi di Roma Tor Vergata, Italy and the European

Union Research Training Network “Quantum Probability with Applications

to Physics, Information Theory and Biology”.

References

1. Donald E. Knuth. The art of computer programming. Vol. 2: Seminumerical
algorithms. 3rd ed. Bonn: Addison-Wesley. xiii, 762 p. , 1998.

2. Michael Mascagni and Ashok Srinivasan. Algorithm 806: SPRNG: a scalable
library for pseudorandom number generation. ACM Transactions on Mathe-
matical Software, 26(3):436–461, September 2000. See correction 19.

3. George Marsaglia. A current view of random number generators. In L. Bil-
lard, editor, Computational Science and Statistics: The Interface, pages 3–10,
Amsterdam, 1985. Elsevier Press.

4. George Marsaglia. DIEHARD: A battery of tests of randomness, 1996.
5. A. Rukhin et. al. A statistical test suite for random and pseudorandom num-

ber generators for cryptographic applications. NIST Special Publication 800-
22, National Institute of Standards and Technology (NIST), Gaithersburg,
Maryland, USA, 2001.

6. Pierre L’Ecuyer and Richard Simard. TestU01: A C library for empirical
testing of random number generators. ACM Transactions on Mathematical
Software, 2007.

7. W. W. Tsang, L. C. K. Hui, K. P. Chow, C. F. Chong, and C. W. Tso.
Tuning the collision test for power. In ACSC ’04: Proceedings of the 27th
Australasian conference on Computer science, pages 23–30, Darlinghurst,
Australia, Australia, 2004. Australian Computer Society, Inc.

8. George Marsaglia and Wai Wan Tsang. Some difficult-to-pass tests of ran-
domness. Journal of Statistical Software, 7(3):1–8, January 2002.

9. Wai Wan Tsang. Development of cryptographic random number generators.



October 29, 2010 10:23 Proceedings Trim Size: 9in x 6in accardi˙gaebler˙qbic2010˙statan˙rng

12

Technical report, The University of Hong Kong, Department of Computer
Science and Information Systems, August 2003.

10. Pierre L’Ecuyer and Richard Simard. On the performance of birthday spac-
ings tests with certain families of random number generators. Math. Comput.
Simul., 55(1-3):131–137, 2001.

11. N. V. Klykova. Limit distribution of a number of coinciding intervals. Theory
Probab. Appl., 47(1):151–156, 2002.

12. M. Abundo, Luigi Accardi, and A. Auricchio. Hyperbolic automorphisms of
tori and pseudo-random sequences. Calcolo, 29(3-4):213–240, 1992.

13. B. A. Wichmann and I. D. Hill. An efficient and portable pseudo-random
number generator. Applied Statistics, 31:188–190, 1982. See also corrections
and remarks in the same journal by Wichmann and Hill, 33 (1984) 123;
McLeod 34 (1985) 198–200; Zeisel 35 (1986) 89.

14. P. L’Ecuyer. Efficient and portable combined random number generators.
Communications of the ACM, 31(6):742–749 and 774, 1988. See also the
correspondence in the same journal, 32, 8 (1989) 1019–1024.

15. G. Marsaglia. Random numbers for C: The END? Posted to the electronic
billboard sci.crypt.random-numbers, January 20 1999.

16. B. Jenkins. ISAAC. In Dieter Gollmann, editor, Fast Software Encryption,
Proceedings of the Third International Workshop, Cambridge, UK, volume
1039 of Lecture Notes in Computer Science, pages 41–49. Springer-Verlag,
1996. http://burtleburtle.net/bob/rand/isaacafa.html.

17. Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Trans. Model. Comput. Simul., 8(1):3–30, 1998.

18. P. L’Ecuyer. Uniform random number generation. In S. G. Henderson and
B. L. Nelson, editors, Simulation, Handbooks in Operations Research and
Management Science, chapter Chapter 3, pages 55–81. Elsevier, Amsterdam,
The Netherlands, 2006.

19. Michael Mascagni and Ashok Srinivasan. Corrigendum: Algorithm 806:
SPRNG: a scalable library for pseudorandom number generation. ACM
Transactions on Mathematical Software, 26(4):618–619, December 2000. See
2.


