
DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2014.19.2313
DYNAMICAL SYSTEMS SERIES B
Volume 19, Number 7, September 2014 pp. 2313–2333

THERMOMECHANICS OF HYDROGEN STORAGE IN

METALLIC HYDRIDES: MODELING AND ANALYSIS
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Abstract. A thermodynamically consistent mathematical model for hydrogen

adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model
accounts for phase transformation accompanied by hysteresis, swelling, tem-

perature and heat transfer, strain, and stress. We prove existence of solutions

of the ensuing system of partial differential equations by a carefully-designed,
semi-implicit approximation scheme. A generalization for a drift-diffusion of

multi-component ionized “gas” is outlined, too.

1. Introduction. Hydrogen can be produced from a variety of renewable resources
or in modern 4th-generation nuclear reactors operating at high temperatures where
hydrogen production by water hydrolysis advantageously serves also to their cool-
ing during periods when electricity cannot be produced. Then it is utilized in
high-efficiency power generation systems with no emission of pollutants based on
thermo-chemistry (burning directly hydrogen) or electro-chemistry (using fuel cells,
cf. Section 5 for little more details). Hydrogen contains more energy per unit mass
than any other available fuel. However, being the lightest element of the Periodic
Table, it is highly volatile. Thus, in order to be compactly stored, standardly it
is compressed in heavy high-pressure tanks or liquefied with recourse to expensive
cryogenic systems. The lack of an efficient and economical way to store hydrogen
is the major barrier to the massive commercial implementation of hydrogen-based
technologies, especially in the automotive sector [11]. A promising alternative to
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the CENTEM project no. CZ.1.05/21.00/03.0088 (cofounded from ERDF within the OP RDI
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cryogenic and high-pressure hydrogen storage option is provided by solid-state stor-
age, a technology which exploits the property of certain metals and alloys to accom-
modate hydrogen atoms in their interstitial sites [18]. We propose a mathematical
model for hydrogen adsorption in metals. Beside diffusion, the model accounts for
phase transformation, temperature, strain, and hysteresis, cf. e.g. [10]. Thus, our
model, based on a conventional rational mechanics (cf. Remark 2 below), extends
those proposed and analyzed in [2, 3, 5],

Since the modeling is entirely new, a detailed derivation is presented in the next
Section 2 where also the model is a bit reformulated to facilitate mathematical
analysis; of course, various simplifications had to been adopted, cf. Remark 1 be-
low. Mathematical results as far as existence of weak solutions are summarized in
Section 3 while their proof by a carefully designed semi-implicit discretisation in
time is done in Section 4. Eventually, in Section 5, we briefly sketch the augmenta-
tion of the model for a multicomponent, charged (i.e. ionized) chemically reacting
medium instead of mere single-component electro-neutral hydrogen, having in mind
e.g. application to the mentioned fuel cells or to elastic semiconductors.

2. Model derivation. We consider a solid body, which we identify with a do-
main Ω of the three-dimensional space. We regard Ω as a platform for several
mutually interacting processes and phenomena affecting the kinetics of hydrogen
adsorption/desorption [17, 18]:

• Phase transformation: at a low concentration, hydrogen atoms form a dilute
interstitial solid-solution (α-phase). Increasing the hydrogen concentration
causes parts of the solid solution to precipitate into a β-phase of larger in-
terstitial concentration and lower density. Further addition of hydrogen takes
place at constant pressure, until the metal is entirely converted into hydride.

• Temperature variation: hydrogenation is exothermic and reversible: when
the metal is exposed to hydrogen, heat is generated; conversely, heating the
hydride drives the reaction in the reverse direction.

• Strain and stress: hydrogenation is accompanied by large expansion of the unit
cell volume of the crystal. Within this “swelling”, volume changes between
the two phases can vary from 8% to 30% and it may cause large stresses.

• Spatial distribution and transport : in addition, an important feature is distri-
buted-parameter character of such storage devices. In particular, the motion
of H atoms after dissociation of the H2 molecule on the surface is diffusion
driven by gradient of chemical potential, and heat transfer and force equilib-
rium must be properly counted.

In order to describe the above-mentioned processes we introduce the following time-
dependent fields on Ω, which we refer to as primary fields:

• u, the displacement field;
• χ, the microstructural phase field;
• c, the concentration of moles of hydrogen per unit volume;
• ϑ, the temperature field;

The microstructural field is a collection of scalar variables which contains informa-
tion concerning phase transformation and damage.
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We now derive a system of partial differential equations ruling the evolution of
the primary fields. We do this in two steps.

Step 1. Balance laws. We invoke certain well-accepted thermomechanical prin-
ciples, whose statement requires the introduction of some auxiliary fields:

σ stress,
f bulk force,
fs surface force,
s internal microforce,
S microstress,
g bulk microforce,
gs external surface microforce,
e internal energy,

ε(u) = 1
2

(
∇u +∇u>

)
small-strain tensor,

ψ free energy,
µ chemical potential,
h hydrogen flux,
h bulk hydrogen supply,
hs surface hydrogen supply,
q heat flux,
q bulk heat supply.

Each particular specification of space-time evolution of primary and auxiliary fields
constitutes a dynamical process. We require that every dynamical process comply
with the following balance equations:

%
..
u − divσ = f, (1a)

s− divS = g, (1b)
.
c + divh = h, (1c)
.
e + divq = q + σ:ε(

.
u) + s· .χ+ S:∇ .χ+

.
cµ− h·∇µ, (1d)

where the dot denotes the time derivative. The statements contained in (1) are, in
the order: the standard-force balance, the microforce balance, the balance of mass for
hydrogen, and the balance of internal energy. The corresponding natural conditions
on ∂Ω are:

σn = fs, (2a)

Sn = gs, (2b)

h · n = hs, (2c)

q · n = qs. (2d)

Although the number of balance equations equals that of primary fields, the
system (1) and (2) is under-determined. Such indeterminacy reflects the fact that
these laws are common to a wide spectrum of thermomechanical systems. Thus,
they cannot single out the particular mathematical model that best fits the system
under investigation. One needs indeed additional conditions which can distinguish
one particular material from another. These are called constitutive prescriptions.

Step 2. Second law. A constitutive prescription is typically expressed as a
relation between the instantaneous value of a secondary field at a given point and
that of a so-called constitutive list, a list of quantities obtained by taking the values
of primary and secondary fields, or their space/time derivatives. A basic principle
that guides the formulation of constitutive prescriptions is the requirement that
every conceivable dynamical process be consistent with the entropy inequality :

.
s ≥ div

(q

ϑ

)
+
q

ϑ
, (3)

irrespectively of the practical difficulties involved in realizing such a process. Thus,
unlike the balance laws (1), the imbalance (3) is not explicitly stated in the mathe-
matical model, but it is implicitly enforced through a suitable choice of constitutive
prescriptions.
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The entropy inequality is best exploited by replacing, in the list of fields to be
specified constitutively, the internal energy with the free energy :

ψ = e− sϑ. (4)

Rewriting (1d) in terms of ψ and s, and substituting it into (3), one arrives at:

.
ψ + s

.
ϑ− µ.c ≤ σ :

.
ε+ s · .χ+ S : ∇ .χ− h · ∇µ− 1

ϑ
q · ∇ϑ,

where we have used the shorthand notation ε = ε(u). A standard argument due
to Coleman and Noll [6] allows us to conclude that the free energy may depend at
most on (ε, χ,∇χ, c, ϑ):

ψ = ϕ(ε, χ,∇χ, c, ϑ).

Moreover, if one assumes that entropy and chemical potential depend on the same
list, one obtains

s = −∂ϑϕ, µ = ∂cϕ.

The dissipation inequality can further be written in a more compact form by intro-
ducing the splitting:

σ = ∂εϕ+ σd, (5)

s = ∂χϕ+ sd, (6)

S = ∂∇χϕ+ Sd. (7)

With that splitting, one indeed obtains:

0 ≤ σd :
.
ε+ sd · .χ+ Sd : ∇ .χ− h · ∇µ− 1

ϑ
q · ∇ϑ. (8)

Step 3. Constitutive equations. To facilitate mathematical analysis but still
capturing desired features, we restrict our attention to the following special consti-
tutive ansatz:

ϕ(ε, χ,∇χ, c, ϑ) = ϕ1(χ, c) + ϕ2(ε, χ) + ϕ3(χ, ϑ) + ϑϕ4(χ, ε) +
λ

2
|∇χ|2, (9)

where λ > 0 is a length-scale parameter. This ansatz ensures, e.g., the heat capacity
independent of the variables whose gradient is not directly controlled, i.e. ε and c,
and also the chemical potential independent of ε and ϑ.

The constitutive equations for entropy and chemical potential are

s = −∂ϑϕ3(χ, ϑ)− ϕ4(ε, χ), (10a)

µ = ∂cϕ1(χ, c). (10b)

On defining ω := ϕ− ϑ∂ϑϕ, in view of (9) we have

ω(χ, ϑ) = ϕ3(χ, ϑ)− ϑ∂ϑϕ3(χ, ϑ), (11)

the constitutive equation for internal energy e = ψ + sϑ, cf. (4), is

e = ϕ1(χ, c) + ϕ2(ε, χ) + ω(χ, ϑ) +
λ

2
|∇χ|2.

As constitutive prescriptions for the dissipative parts of the auxiliary fields we choose
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σd = Dε(.u), (12a)

sd ∈ α .χ+ ∂ζ(
.
χ), (12b)

Sd = 0, (12c)

q = −K(ε, χ, c, ϑ)∇ϑ, (12d)

h = −M(ε, χ, c, ϑ)∇µ. (12e)

Here D is a 2nd-order positive-definite viscosity-moduli tensor, α > 0 counts for rate
effects in evolution of χ, ζ is a convex function homogeneous of degree one; note
that ζ is typically nonsmooth at 0, which counts for activation of evolution of χ.
Moreover, K and M are respectively 2nd-order positive-definite heat-conductivity
and hydrogen-diffusivity tensors. We also eventually set h = 0 and g = 0. We
therefore arrive at the following system:

%
..
u − div

(
∂εϕ2(ε(u), χ) + ϑ∂εϕ4(ε(u), χ) + Dε(.u)

)
= f, (13a)

α
.
χ− λ∆χ+ ∂χϕ1(χ, c) + ∂χϕ2(ε(u), χ)

+ ∂χϕ3(χ, ϑ) + ϑ∂χϕ4(ε(u), χ) + ∂ζ(χ̇) 3 0, (13b)
.
c − div

(
M(ε(u), χ, c, ϑ)∇µ

)
= 0, (13c)

.
w − div

(
K(ε(u), χ, c, ϑ)∇ϑ

)
=
(
Dε(.u) + ϑ∂εϕ4(ε(u), χ)

)
:ε(
.
u)

+
(
α
.
χ+ ∂χϕ3(χ, ϑ) + ϑ∂χϕ4(ε(u), χ)

)
· .χ

+ ζ(
.
χ) + M(ε(u),m, c, ϑ)∇µ·∇µ+ q, (13d)

µ = ∂cϕ1(χ, c), (13e)

w = ω(χ, ϑ), (13f)

where ω is from (11). We make the following natural assumption which, in fact,
says positivity of the heat capacity:

∂ϑω = −ϑ∂2
ϑϑϕ = −ϑ∂2

ϑϑϕ3 > 0. (14)

Then, the inverse to ω(χ, ·) does exist and we can express ϑ as

ϑ = [ω(χ, ·)]−1(w) =:θ(χ,w),

which allows us to eliminate temperature ϑ from the system (13). The symbol 3
appearing in formula (13b) (and in formulas (18b), (28b), and (38b) below) means
that the right-hand side is an element of the left-hand side which is a set because
ζ and ϕ2 are non-smooth (see also (16b) below) and thus both ∂cζ and ∂cϕ2 are
set-valued.

Moreover, we will be a bit more specific in (9). A typical contribution to the free
energy is

1

2
C(ε−Eχ−ϑα):(ε−Eχ−ϑα) +

k

2

∣∣χ−a(c)
∣∣2 + φ1(c) + φ3(ϑ) + δK(χ) (15)

where C is a 4th-order elastic-moduli tensor, E is a 2nd-order tensor which in-
corporates the effect of dilation due to the microstructural parameter χ within
metal/hydride phase transformation, α is a tensor accounting for thermal dilation,
φ1 and φ3 are the simplest variant of the contribution to the chemical potential
and the heat capacity, respectively, and δK is an indicator function of a convex set
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K ⊂ RN from which the phase-field χ is assumed to range. Assuming χ is scalar-
valued, E the unit matrix, and k large, we get essentially an isotropic swelling
controlled nonlinearly by the hydrogen concentration by χ ∼ a(c) while allowing
still ϕ1(χ, ·) to be uniformly convex, as needed later in (45). Obviously, in view of
(9), the specific choice (15) leads to

ϕ1(χ, c) =
k

2

∣∣χ−a(c)
∣∣2 + φ1(c), (16a)

ϕ2(ε, χ) =
1

2
C(ε−Eχ):(ε−Eχ) + δK(χ), (16b)

ϕ3(χ, ϑ) =
1

2
ϑ2Cα:α+ ϑCα:Eχ+ φ3(ϑ), (16c)

ϕ4(ε, χ) = −Cα:ε. (16d)

Note that, in (16c), ∂3
ϑϑχϕ3 ≡ 0, which makes the heat capacity independent of

χ, but we can consider more generally the contribution φ3 dependent also on χ
to reflect different heat capacity of metal and of hydride, and therefore we do not
restrict ourselves to a particular form of ϕ3 in (9) but make only certain technical
assumptions below, cf. (23k). Similarly, we keep the treatment of ϕ1 in a nonspeci-
fied way. In fact, the specific form (16b) is a simplified linearization of the so-called
St.Venant-Kirchhoff potential but, when derived from the St.Venant-Kirchhoff form
by linearizing the stress response, it results still in some other terms, cf. [9, Sect. 5.4],
which here was neglected rather for notational simplicity.

Thus, on setting

σa(χ,w) := −θ(χ,w)Cα, (17a)

sa(χ,w) := ∂χϕ3(χ, θ(χ,w)), (17b)

K(ε, χ, c, w) := K(ε, χ, c, θ(χ,w)), (17c)

L(ε, χ, c, w) := K(ε, χ, c, θ(χ,w))⊗ ∂χθ(χ,w), (17d)

M(ε, χ, c, w) := M(ε, χ, c, θ(χ,w)), (17e)

the original system (13) is transformed into

%
..
u − div

(
C(ε(u)−Eχ) + σa(χ,w) + Dε(.u)

)
= f, (18a)

α
.
χ+ ∂ζ(

.
χ)− λ∆χ+ ∂χϕ1(χ, c)+E>C(Eχ−ε(u))+sa(χ,w)+NK(χ) 3 0, (18b)

.
c − div

(
M(ε(u), χ, c, w)∇µ

)
= 0, (18c)

.
w − div

(
K(ε(u), χ, c, w)∇w+L(ε(u), χ, c, w)∇χ

)
=
(
σa(χ,w)+Dε(.u)

)
:ε(
.
u)

+
(
sa(χ,w) + α

.
χ
)
· .χ+ ζ(

.
χ) + M(ε(u),m, c, w)∇µ·∇µ+ q, (18d)

µ = ∂cϕ1(χ, c), (18e)

where NK = ∂δK denotes standardly the normal cone to the convex set K. The
boundary conditions (2) now take the form:(

C(ε(u)−Eχ) + σa(χ,w) + Dε(.u)
)
n = fs, (19a)

∇χ · n = 0, (19b)

M(ε(u), χ, c, w)∇µ · n = hs, (19c)(
K(ε(u), χ, c, w)∇w + L(ε(u), χ, c, w)∇χ

)
· n = qs. (19d)

Using the convention like u(·, t) =: u(t), we complete the system by the initial con-
ditions:
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u(0) = u0,
.
u(0) = v0, χ(0) = χ0, c(0) = c0, w(0) = w0, (19e)

where we have set w0 = ω(χ0, ϑ0). We henceforth shall use the abbreviation for the
so-called stored energy, i.e. the temperature independent part of the free energy:

ϕ12(ε, χ, c) := ϕ1(χ, c) + ϕ2(ε, χ) (20)

By testing (18a,b,c,d) respectively with
.
u,

.
χ, µ, and by a constant ν, integrating by

parts in time, using Green’s formula with the boundary conditions (19), and taking
into account (18e) so that

.
cµ =

∂

∂t
ϕ1(χ, c)− ∂χϕ1(χ, c)

.
χ, (21)

we obtain the following identity:∫
Ω

%

2

∣∣.u(t)
∣∣2 + ϕ12(ε(t), χ(t), c(t)) +

λ

2
|∇χ(t)|2 + νw(t) dx

+ (1−ν)

∫ t

0

∫
Ω

Dε(.u):ε(
.
u) + α

∣∣ .χ∣∣2+ζ
( .
χ
)

+ M(ε(u), χ, c, w)∇µ·∇µdxdt

= (1−ν)

∫ t

0

∫
Ω

σa(χ,w):ε(
.
u) + sa(χ,w)· .χdxdt

+ ν

∫ t

0

∫
Ω

q dxdt+

∫ t

0

(∫
Ω

f·.udx+

∫
Γ

fs·
.
u + hs·µ+ νqs dS

)
dt

+ ν

∫
Ω

w0 dx+

∫
Ω

%

2
|v0|2 + ϕ12(ε(u0), χ0, c0) +

λ

2
|∇χ0|2 dx. (22)

For ν = 0, the identity (22) represents the mechanical energy balance. For 0 <
ν < 1, both the internal energy and dissipative terms are seen; henceforth, a dis-
crete version of this estimate will be used in the proof of Lemma 4.2 for ν = 1/2.
Eventually, for ν = 1, we recover the standard total-energy balance; note that the
dissipative terms (and also adiabatic terms) then vanish.

Remark 1. Of course, the above model adopted a lot of simplifications of the ac-
tual situations in hydride storage. In particular the concept of small strains may be
questionable at some situations, possible damage is essentially neglected, although
formally it can be involved in a general form of ϕ2 in (9) below but a lot of an-
alytical considerations seem to be difficult to be straightforwardly adapted. Also
temperature dependence of the chemical potential of hydrogen is neglected, i.e. φ1

in (9) does not depend of θ. Further, the chemical reaction in the multi-component
system metal/hydrid/hydrogen is basically neglected and hydride is modeled as a
mixture of metal and hydrogen with essentially the possibility to obtain the same
thermomechanical response of the phase transformation as the corresponding chem-
ical reaction (and, in addition, we can easily model the activated hysteretic response
related with this phase transformation).

Remark 2. The thermodynamics of our model follows essentially a classical ap-
proach based on rational mechanics and Clausius-Duhem inequality, cf. e.g. [4].
There are some variants of this general scenario [7, 14, 15, 20] which are to some
extent equivalent under some simplifications like those in Remark 1 above.
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3. Weak solutions and their existence. Let us summarize the qualification on
the data on which we will rely during the analysis of the initial-boundary-value
problem (18). We confine ourselves to the (physically relevant) three-dimensional
case. We consider a fixed time horizon T and abbreviate Q := Ω×(0, T ) and
Σ := Γ×(0, T ), with Γ a boundary of the domain Ω ⊂ R3 assumed Lipschitz. In
the following, we shall use some classical notation for function spaces, in particular
the Lebesgue spaces Lp, the Sobolev spaces W k,p and, in particular, Hk = W k,2,
and vector-valued functions. We suppose that

C, D, ∂2
ccϕ1(χ, c), M(ε, χ, c, w), K(ε, χ, c, w)

are (uniformly) positive definite, (23a)

max
(
|ϕ1(χ, c)|, |∂χϕ1(χ, c)|

)
≤ C

(
1 + |c|3

)
, (23b)

|M(ε, χ, c, w)∂2
ccϕ1(χ, c)| ≤ C(1 + |c|6−ε), (23c)

ϕ1 ∈ C2(K×R+;R), ∂2
χχϕ1(χ, c) is bounded from below, (23d)

∂2
χcϕ1(χ, c) is bounded, and ∂2

χcϕ1(χ, c) = 0 for c = 0, (23e)

M(ε, χ, c, w) is bounded, (23f)

∃ε > 0 : ϕ1(χ, c) ≥ ε|c|2, ϕ1(χ, ·) convex, (23g)

ζ : RN → R convex 1-homogeneous. (23h)

K ⊂ RN bounded, convex, closed, (23i)

σa ∈ C(K×R+;RN ), |σa(χ,w)| ≤ C
√

1 + ϕ1(χ, c) + w, (23j)

sa ∈ C(K×R+;R3×3), |sa(χ,w)| ≤ C
√

1 + ϕ1(χ, c) + w, (23k)

|L(ε, χ, c, w)| ≤ C
√

1 + w. (23l)

Moreover, we need the qualification of the right-hand sides and the initial data:

f∈L2(I;L6/5(Ω;R3)), fs∈L2(I;L4/3(Γ;R3)), q∈L1(Ω), qs∈L1(Γ), (23m)

u0∈H1(Ω;R3), v0∈L2(Ω;R3), χ0∈H1(Ω;RN ), χ0∈K a.e. on Ω, (23n)

c0∈H1(Ω), c0 ≥ 0, w0∈L1(Ω), w0 ≥ 0. (23o)

We note that (23l) will be used in the derivation of the estimate on ∇w, see (40f)
below. Also note that (23a,d,e) is not in conflict with the example (16a) where
∂2
χcϕ1(χ, c) = −ka′(c) and ∂2

ccϕ1(χ, c) = k(a(c)−χ)a′′(c) + φ′′1(c) + ka′(c)2, while

∂2
χχϕ1(χ, c) = k so that (23a) needs k(a(c)−χ)a′′(c)+φ′′1(c)+ka′(c)2 ≥ ε > 0, (23e)

needs a′ bounded with a′(0) = 0 while (23d) is here satisfied automatically.

Definition 3.1 (Weak solutions). We say that the six-tuple (u, χ, c, w, µ, ξ) with

u ∈ H1(I;H1(Ω;R3)), (24a)

χ ∈ L∞(I;H1(Ω;RN )) ∩H1(I;L2(Ω;RN )), (24b)

c ∈ L∞(I;L2(Ω)), (24c)

w ∈ L∞(I;L1(Ω)) ∩ L1(I;W 1,1(Ω)), (24d)

µ ∈ L∞(I;H1(Ω)), (24e)

ξ ∈ L2(Q;RN ), ξ ∈ NK(χ) a.e. on Q, (24f)
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is a weak solution to the initial-boundary-value problem (18)–(19) if∫
Q

(
C(ε(u)−Eχ) + σa(χ,w) + Dε(.u)

)
:ε(z)− %.u·.z dxdt

=

∫
Q

f·z dxdt+

∫
Σ

fs·z dSdt+

∫
Ω

v0·z(0) dx (25a)

for any z ∈ C1(Q;R3) such that z(T ) = 0,∫
Q

ζ(v) +
(
α
.
χ+ ∂χϕ1(χ, c) + E>C(Eχ−ε(u)) + sa(χ, c) + ξ

)
·(v− .χ)

+ λ∇χ:∇v dxdt+

∫
Ω

λ

2
|∇χ0|2 dx ≥

∫
Q

ζ(
.
χ) dxdt+

∫
Ω

λ

2
|∇χ(T )|2 dx (25b)

for any v ∈ C1(Q;RN ),∫
Q

M(ε(u), χ, c, w)∇µ·∇v − c
.
v dxdt =

∫
Σ

hsv dSdt+

∫
Ω

c0v dx (25c)

for all v ∈ C1(Q) with v(T ) = 0,∫
Q

(
K(ε(u), χ, c, w)∇w + L(ε(u), χ, c, w)∇χ

)
· ∇w − wv̇ dxdt

=

∫
Ω

w0v(0) dx+

∫
Σ

qsv dSdt+

∫
Q

(
q +

(
σa(χ,w) + Dε(u̇)

)
:ε(u̇)

+
(
sa(χ,w) + αχ̇

)
·χ̇+ ζ(χ̇) + M(ε(u), χ, c, w)∇µ·∇µ

)
v dxdt (25d)

for all v ∈ C1(Q) such that v(T ) = 0, and eventually

µ = ∂cϕ1(c, χ) a.e. in Q. (25e)

The above definition obviously arises from (18)–(19) by using standard concept.
The inequality (25b) arises by using additionally the identity∫

Q

∆χ· .χdxdt =
1

2

∫
Ω

∣∣∇χ(0)
∣∣2 − ∣∣∇χ(T )

∣∣2 dx, (26)

which can rigorously be justified if ∆χ ∈ L2(Q;RN ), cf. [21, Formula (3.69)]. At
this occasion, let us emphasize that ∇ .

χ is not well defined as a function on Q so
that we avoid using

∫
Q
∇χ:∇(v− .χ) dxdt.

Theorem 3.2 (Existence of weak solutions). Let assumptions (23) hold true.
Then (18)–(19) has at least one weak solution (u, χ, c, w, µ) according Definition 3.1.
Moreover,

%
..
u ∈ L2(I;H1(Ω;R3)∗), (27a)
.
w∈L1(I;H3(Ω)∗) and w∈Lr(I;W 1,r(Ω)) for any 1 ≤ r < 5/4, (27b)
.
c ∈ L2(I;H1(Ω)∗), (27c)

∆χ ∈ L2(Q;RN ), (27d)

and this solution is consistent with the energy conservation equation (22) with
ν = 1, as well as with c ≥ 0 and w ≥ 0 on Q. If Ω is smooth, then even
χ ∈ L2(I;H2(Ω;RN )).

We will prove this theorem in Section 4 by a semi-implicit time discretisation
in a more or less constructive manner, except the fixed-point argument behind the
boundary-value sub-problems (28c)–(19c) and (18d)–(29d) and selection of converg-
ing subsequences. The additional properties (27) follow from (40f) and (46). The
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H2-regularity of χ is a standard consequence of (27d). For more detailed modes
of convergence of the mentioned approximate solutions we refer to (49) and (50)
below.

4. Analysis of (18)–(19) by semidiscretisation in time. We will prove exis-
tence of a weak solution to the initial-boundary-value problem (18) by a carefully
constructed semi-implicit discretisation in time which, at the same time, will de-
couple the system to a sequence of convex minimization problems combined with a
diffusion equation, and provide thus a rather efficient conceptual numerical strategy.

In comparison with the fully implicit time discretisation (i.e. the so-called Rothe
method), our discretisation will allow for a simpler (and constructive) proof of
existence of the discrete solutions, weaker assumptions about convexity mode of
the stored energy, but we need to impose a bit stronger growth qualification of the
data than required by the nature of the continuous system (18).

We use an equidistant partition of the time interval I = [0, T ] with a time step τ >

0, assuming T/τ ∈ N, and denote {ukτ}
T/τ
k=0 an approximation of the desired values

u(kτ), and similarly χkτ is to approximate χ(kτ), etc. Further, let us abbreviate

by dkτ the backward difference operator, i.e. e.g. dkτu :=
ukτ−u

k−1
τ

τ , and similarly also

[dkτ ]2u = dkτ [dkτu] =
ukτ−2uk−1

τ +uk−2
τ

τ2 , or dkτχ :=
χkτ−χ

k−1
τ

τ , dkτc :=
ckτ−c

k−1
τ

τ , etc. Then,
using also notation (20), we devise the following semi-implicit discretisation:

%[dkτ ]2u− div
(
C(ε(ukτ )−Eχkτ ) + σa(χk−1

τ , wk−1
τ ) + Dε(dkτu)

)
= fkτ , (28a)

αdkτχ+ ∂ζ
(
dkτχ

)
− λ∆χkτ + ∂χϕ1(χkτ , c

k−1
τ ) + E>C(Eχkτ−ε(ukτ ))

+ sa(χk−1
τ , wk−1

τ ) + ξkτ 3 0 with ξkτ ∈ NK(χkτ ), (28b)

dkτc− div
(
M(ε(ukτ ), χkτ , c

k
τ , w

k−1
τ )∇µkτ

)
= 0, (28c)

dkτw − div
(
K(ε(ukτ ), χkτ , c

k
τ , w

k
τ )∇wkτ + L(ε(ukτ ), χkτ , c

k
τ , w

k
τ )∇χkτ

)
= qkτ +

(
σa(χk−1

τ , wkτ ) +
Dε(dkτu)

)
:ε(dkτu)

1 + τ |ε(dkτu)|2
+
(
sa(χk−1

τ , wkτ ) + αdkτχ
)
· dkτχ

+ ζ(dkτχ) +
M(ε(ukτ ), χkτ , c

k
τ , w

k−1
τ )∇µkτ · ∇µkτ

1 + τ |∇µkτ |2
, (28d)

µkτ = ∂cϕ1(χkτ , c
k
τ ), (28e)

for k = 1, ..., T/τ , together with the boundary conditions(
C(ε(ukτ )−Eχkτ ) + σa(χk−1

τ , wk−1
τ ) + Dε(dkτu)

)
n = fks,τ , (29a)

∂χkτ
∂n

= 0, (29b)

M(ε(ukτ ), χkτ , c
k
τ , w

k−1
τ )∇µkτ · n = hks,τ , (29c)(

K(ε(ukτ ), χkτ , c
k
τ , w

k
τ )∇wkτ + L(ε(ukτ ), χkτ , c

k
τ , w

k
τ )∇χkτ

)
·n = qks,τ , (29d)

starting from k = 1 by using

u0
τ = u0, u−1

τ = u0−τv0, χ0
τ = χ0, c0

τ = c0, w0
τ = ω(m0, ϑ0). (30)

An important feature of the scheme (28) is that it decouples to three boundary-
value problems, which (after a further spatial discretisation) can advantageously
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be used in a numerical treatment and which is advantageously used even to show
existence of approximate solutions:

Lemma 4.1 (Existence of the discrete solution). Let (23) hold and τ > 0
be small enough, cf. (32) below. Then, for any k = 1, ..., T/τ , (28) possesses a
solution ukτ ∈ H1(Ω;R3), χkτ ∈ H1(Ω;RN ), ξkτ ∈ L2(Ω;RN ), ckτ , µ

k
τ , w

k
τ ∈ H1(Ω)

such that ckτ ≥ 0 and wkτ ≥ 0.

Proof. The first boundary-value problem arising by the decoupling is (28a,b) with
(29a,b), and it leads to the minimization of the functional:

(u, χ) 7→
∫

Ω

δK(χ) + ϕ01(ε(u), χ, ck−1
τ ) +

λ

2
|∇χ|2 +

τ2

2
%
∣∣∣u− 2uk−1

τ + uk−2
τ

τ2

∣∣∣2
+
τ

2
Dε
(u−uk−1

τ

τ

)
:ε
(u−uk−1

τ

τ

)
+ α

τ

2

∣∣∣χ−χk−1
τ

τ

∣∣∣2 + τζ
(χ−χk−1

τ

τ

)
+ σa(χk−1

τ , wk−1
τ ):ε(u) + sa(χk−1

τ , wk−1
τ )·χ+ fkτ ·udx+

∫
Γ

fks,τ ·udS. (31)

Due to (16b) and (23d), ϕ12(·, ·, ck−1
τ ) and thus the whole functional (31) are strictly

convex, for τ > 0 sufficiently small, namely for

τ ≤ τ1 :=

min
(
T,

α2

| inf ∂2
χχϕ1|2

)
if inf ∂2

χχϕ1 < 0,

T otherwise.
(32)

Therefore, there exists a unique minimizer (ukτ , χ
k
τ ) ∈H1(Ω;R3)×H1(Ω;RN ). By

standard arguments, cf. e.g. [24, Chap. 2 and 4], this minimizer when completed by
ξkτ ∈NK(χkτ ) is a weak solution to (28a,b)–(29a,b). Moreover, ξkτ ∈L2(Ω;RN ) can
be shown by the same arguments as in the Lemma 4.3 below.

Then one can solve (28c)–(29c), which represents a semi-linear diffusion equation.
We observe that we can eliminate µkτ because obviously

∇µkτ = ∂2
cχϕ1(χkτ , c

k
τ )∇χkτ + ∂2

ccϕ1(χkτ , c
k
τ )∇ckτ , (33)

which leads us to abbreviate

M1(ε, χ, c, w) := ∂2
ccϕ1(χ, c)M(ε, χ, c, w), (34a)

M2(ε, χ, c, w) := M(ε, χ, c, w)⊗ ∂2
cχϕ1(χ, c). (34b)

Then (28c)–(29c) transforms to the semi-linear boundary-value problem:

dkτc− div
(
M1(ε(ukτ ), χkτ , c

k
τ , w

k−1
τ )∇ckτ+ M2(ε(ukτ ), χkτ , c

k
τ , w

k−1
τ )∇χkτ

)
= 0 (35a)

on Ω together with the boundary condition on Γ:(
M1(ε(ukτ ), χkτ , c

k
τ , w

k−1
τ )∇ckτ + M2(ε(ukτ ), χkτ , c

k
τ , w

k−1
τ )∇χkτ

)
·n = fks,τ . (35b)

Due to the fully implicit discretisation of ∂cϕ1(χ, c) which is needed for the a-priori
estimates in Lemma 4.2 below, via (34) we inevitably obtain the dependence of
M1,2(ε(ukτ ), χkτ , c

k
τ , w

k−1
τ ) on ckτ so that the problem (35) unfortunately does not

have any potential. Anyhow, thanks to (23a), the 2nd-order tensor M1 is uniformly
positive definite. Also, by (23e) and (23f), M2 is bounded. As a consequence, the
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nonlinear operator A : H1(Ω) 7→ H1(Ω)∗ defined by〈
A(c), v

〉
:=

∫
Ω

1

τ
cv +

(
M1(ε(ukτ ), χkτ , c, w

k−1
τ )∇c

+ M2(ε(ukτ ), χkτ , c, w
k−1
τ )∇χkτ

)
·∇v dx (36)

is coercive. Thanks to Assumption (23c), we have that A is also weakly continuous,
existence of a solution ckτ ∈ H1(Ω) can be obtained using the Galerkin method and
Brouwer fixed-point theorem; of course, the obtained solution needs not be unique.
Testing (35) by [ckτ ]− and using (23e) implies ckτ ≥ 0 provided ck−1

τ ≥ 0, which yields
non-negativity of the hydrogen concentration recursively for any k = 1, ..., T/τ by
using (23o).

Let us also note that from (33) we obtain also ∇µkτ ∈ L2(Ω;R3). In particular,
we have simply both Dε(dkτu):ε(dkτu)/(1+τ |ε(dkτu)|2) ∈ L∞(Ω) and M(ε(ukτ ), χkτ , c

k
τ ,

wk−1
τ )∇µkτ ·∇µkτ/(1+τ |∇µkτ |2) ∈ L∞(Ω), and thus the right-hand side of (28d) is

in L2(Ω). Therefore, eventually, we are to solve (28d)–(29d), which represents a
semilinear heat-transfer equation with the right-hand side in H1(Ω)∗. The only
nonlinearity is due to the w-dependence of L(ε(ukτ ), χkτ , c

k
τ , w), σa(χk−1

τ , w), and
sa(χk−1

τ , w). The later two are needed to guarantee wkτ ≥ 0. Anyhow, since this
nonlinearity is of lower order, we can pass through it by compactness and strong
convergence. Thus, it suffices for us to check coercivity of the underlying operator.
To this aim, we test (28d) by wkτ . The terms on the right-hand side containing
wkτ are estimated standardly by using Hölder’s and Young’s inequalities, and using
the qualifications (23l,m). Having coercivity, we see that there exists at least one
solution. Moreover, this solution satisfies wkτ ≥ 0, which can be seen by testing
(28d) by the negative part of wkτ and using that σa(χ,w) = 0 and sa(χ,w) = 0 for
w ≤ 0. Note that to have such non-negativity it is important to have wkτ in the
K-term on the left-hand side, as well as in the nonlinear terms σa and sa on the
right-hand side. �

Let us define the piecewise affine interpolant uτ by

uτ (t) :=
t− (k−1)τ

τ
ukτ +

kτ − t
τ

uk−1
τ for t ∈ [(k−1)τ, kτ ] (37a)

with k = 1, ..., T/τ . Besides, we define also the backward piecewise constant
interpolant ūτ and uτ by

ūτ (t) := ukτ , for t ∈ ((k−1)τ, kτ ] , k = 0, ..., T/τ , (37b)

uτ (t) := uk−1
τ , for t ∈ [(k−1)τ, kτ) , k = 1, ..., T/τ . (37c)

Similarly, we define also mτ , m̄τ , mτ , ϑ̄τ , ϑτ , ḡτ , f̄b,τ , etc. We will also need

the piecewise affine interpolant of the (piecewise constant) velocity ∂uτ
∂t , which we

denote by
[
∂uτ
∂t

]i
, i.e.

[.
uτ
]i

(t) :=
t−(k−1)τ

τ

ukτ−uk−1
τ

τ
+
kτ−t
τ

uk−1
τ −uk−2

τ

τ
for t ∈ ((k−1)τ, kτ ]. (37d)

Note that
..
ui
τ := ∂

∂t

[ .
uτ
]i

is piecewise constant with the values
ukτ−2uk−1

τ +uk−2
τ

τ2 on the
particular subintervals ((k−1)τ, kτ).
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In terms of these interpolants, we can write the approximate system (28) in a
more “condensed” form closer to the desired continuous system (18), namely:

%
..
u i
τ − div

(
C(ε(ūτ )−Eχ̄τ ) + σa(χ

τ
, wτ ) + Dε(.uτ )

)
= f̄τ , (38a)

α
.
χτ+∂ζ(

.
χτ )−λ∆χ̄τ+∂χϕ1(χ̄τ , cτ )+E>C(Eχ̄τ−ε(ūτ ))

+ sa(χ
τ
, wτ )+ξ̄τ 3 0 with ξ̄τ ∈ NK(χ̄τ ), (38b)

.
cτ − div

(
M(ε(ūτ ), χkτ , c̄τ , wτ )∇µ̄τ

)
= 0 with µ̄τ = ∂cϕ1(χ̄τ , c̄τ ), (38c)

.
wτ − div

(
K(ε(ūτ ), χ̄τ , c̄τ , wτ )∇w̄τ + L(ε(ūτ ), χ̄τ , c̄τ , wτ )∇χ̄τ

)
=
(
σa(χ

τ
, w̄τ ) +

D ε( .uτ ):ε(
.
uτ )

1 + τ |ε( .uτ )|2
+
(
sa(χ

τ
, w̄τ ) + α

.
χτ
)
· .χτ

+ ζ(
.
χτ ) +

M(ε(ūτ ), χ̄τ , c̄τ , wτ )∇µ̄τ ·∇µ̄τ
1 + τ |∇µ̄τ |2

+ q̄τ , (38d)

together with the boundary conditions(
C(ε(ūτ )−Eχ̄τ ) + σa(χ

τ
, wτ ) + Dε(.uτ )

)
n = f̄s,τ , (39a)

∂χ̄τ
∂n

= 0, M(ε(ūτ ), χ̄kτ , cτ , wτ )∇µ̄τ · n = h̄s,τ , (39b)(
K(ε(ūτ ), χ̄τ , c̄τ , wτ )∇w̄τ + L(ε(ūτ ), χ̄τ , c̄τ , wτ )∇χ̄τ

)
·n = q̄s,τ . (39c)

Lemma 4.2 (First estimates). Let again the assumptions of Lemma 4.1 hold.
Then, for some C and Cr independent of τ > 0,∥∥uτ∥∥W 1,∞(I;L2(Ω;R3))∩H1(I;H1(Ω;R3))

≤ C, (40a)∥∥χτ∥∥L∞(I;H1(Ω;RN ))∩H1(I;L2(Ω;RN ))∩L∞(Q;RN )
≤ C, (40b)∥∥c̄τ∥∥L∞(I;H1(Ω))

≤ C, (40c)∥∥µ̄τ∥∥L∞(I;H1(Ω))
≤ C, (40d)∥∥w̄τ∥∥L∞(I;L1(Ω))
≤ C, (40e)∥∥∇w̄τ∥∥Lr(Q;R3)
≤ Cr for any 1 ≤ r < 5/4. (40f)

Proof. The strategy is to test the particular equations in (28) respectively by dkτu,
dkτχ, µkτ , and 1

2 . For (28a,b), we note that a standard convexity argument yields:

%[dkτ ]2u·dkτu + C(ε(ukτ )−Eχkτ )):dkτε+
(
E>C(Eχkτ−ε(ukτ )) + ξkτ

)
·dkτχ+ λ∇χkτ :∇dkτχ

≥ %

2
|dkτu|2 +

1

2
C(ε(ukτ )−Eχkτ ):(ε(ukτ )−Eχkτ ) +

λ

2
|∇χkτ |2 + δK(χkτ )

− %

2
|dk−1
τ u|2− 1

2
C(ε(uk−1

τ )−Eχk−1
τ ):(ε(uk−1

τ )−Eχk−1
τ )− λ

2
|∇χk−1

τ |2− δK(χk−1
τ ).

(41)

Owing the our equi-semiconvexity assumption (23d) on ϕ1(·, c), we also have:

∂χϕ1(χkτ , c
k−1
τ )·dkτχ =

(
∂χϕ1(χkτ , c

k−1
τ ) + α

χkτ√
τ

)
·dkτχ− α

χkτ√
τ
·dkτχ

≥ 1

τ

(
ϕ1(χkτ , c

k−1
τ ) + α

(χkτ )2

2
√
τ
− ϕ1(χk−1

τ , ck−1
τ )− α (χk−1

τ )2

2
√
τ

)
− α
√
τ
χkτ
τ
·dkτχ

=
ϕ1(χkτ , c

k−1
τ )− ϕ1(χk−1

τ , ck−1
τ )

τ
− α
√
τ

2

∣∣dkτχ∣∣2 (42)
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provided 0 < τ ≤ τ1 with τ1 from (32). Now, we add the tested equations together.
We then use (41)–(42), and still the convexity (23g) of c 7→ ϕ1(χ, c) to deduce the
estimate∫

Ω

1

2
wkτ +

%

2

∣∣dkτu∣∣2 + ϕ12(εkτ , χ
k
τ , c

k
τ ) +

λ

2
|∇χkτ |2 dx

+ τ

k∑
j=1

∫
Ω

Ddjτε : djτε+
2−
√
τ

2
α
∣∣djτχ∣∣2)+

1

2
M(εjτ , χ

j
τ , c

j−1
τ , wj−1

τ )∇µjτ ·∇µjτdxdt

≤
∫

Ω

1

2
w0 +

%

2
|v0|2 + ϕ12(ε0, χ0, c0) +

λ

2
|∇χ0|2 dx

+ τ

k∑
j=1

∫
Ω

fjτ ·djτu +
1

2
qjτ +

(1

2
σa(χj−1

τ , wjτ )− σa(χj−1
τ , wj−1

τ )
)
· djτε

+
(1

2
sa(χj−1

τ , wjτ )− sa(χj−1
τ , wj−1

τ )
)
·djτχdx+

∫
Γ

fjs,τ ·djτu + hjs,τ ·djτµ+
1

2
qjs,τdS

(43)

where we used the abbreviation ϕ12 from (20) with ϕ2 from (16b).
We remark that our semi-implicit scheme has benefited from the cancellation of

the terms ± 1
τ ϕ1(χkτ , c

k−1
τ ) under this test by time-differences, which is a more gen-

eral phenomenon to be understood as the fractional-step method, here combined
with the semiconvexity, cf. [24, Remarks 8.24-8.25]. Now, by (23j), using Hölder
inequality, and recalling that wkτ ≥ 0, we obtain the estimate:∫

Ω

(1

2
σa(χj−1

τ , wjτ )− σa(χj−1
τ , wj−1

τ )
)

:djτε dx

≤ Cε + Cε

∫
Ω

ϕ1(χj−1
τ , cj−1

τ ) + wjτ + wj−1
τ + |εjτ |2 dx+ ε

∫
Ω

|djτε|2 dx, (44)

where ε is an arbitrarily small number, and Cε depends on ε. A similar estimate
holds also for the terms multiplying djτχ on the right-hand side of (43). We now
can adsorb the discrete time derivatives into the left-hand side, and use a discrete
Gronwall inequality. Thanks to (23a) and (23g), we have ϕ1(χ, c) ≥ εc2 and the
a-priori bound χkτ ∈ K. This gives the estimates (40a-c,e). The estimate (40d)
follows from the relation (cf. also (33)):

∇c̄τ =
[
∂2
ccϕ1(χ̄τ , c̄τ )

]−1(∇µ̄τ − ∂2
cχϕ1(χ̄τ , c̄τ )∇χ̄τ

)
. (45)

Eventually, we observe that the right-hand sides of (38d) and (39c) are bounded
in L1(Q) and L1(Σ), respectively. For this, we need, in particular, assumptions
(23j) and (23k). Then one can use the L1-theory for the heat equation to obtain
the remaining estimate (40f), see [1]. To this goal, like in [12], one is to perform
the test of (28d) by $′(wkτ ), where $(wkτ ) := ((1+wkτ )1−ε− 1)/(ε−1) with ε > 0,
and sum it for k = 1, ..., T/τ . Comparing to standard technique, see for instance
[21, 25, 26], the only non-standard estimates is due to the L-term, as in [27], which
requires assumption (23l), cf. also [24, Sect.12.9]. �

Lemma 4.3 (Further estimates). Under the assumption of Lemma 4.1, for
some constant C independent of τ , it also holds:
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∥∥%..u i
τ

∥∥
L2(I;H1(Ω;R3)∗)

≤ C, (46a)∥∥ .wτ∥∥L1(I;H3(Ω)∗)
≤ C, (46b)∥∥.cτ∥∥L2(I;H1(Ω)∗)
≤ C, (46c)∥∥∆χ̄τ

∥∥
L2(Q;RN )

≤ C, (46d)∥∥ξ̄τ∥∥L2(Q;RN )
≤ C. (46e)

Proof. The “dual” estimates (46a-c) can be obtained routinely as a consequence of
the previously derived ones by using the equations (38a,d,e) with the corresponding
boundary conditions (39a,d,e). As ζ is finite, ∂ζ is bounded, and from (23b) and
(23j) and the already proved estimates (40a-c,e), we have, for some C finite,

∀ r̄τ ∈∂ζ(
.
χτ )+α

.
χτ+∂χϕ1(χ̄τ , cτ )+∂χϕ2(ε(ūτ ), χ̄τ )+sa(χ

τ
, wτ ):

∥∥r̄τ∥∥L2(Q;RN )
≤ C.

We can now prove (46d,e), imitating an abstract procedure like in [19]. We write
(38b) as

λ∆χ̄τ − ξ̄τ = r̄τ with ξ̄τ ∈ NK(χ̄τ ). (47)

We test (47) by ∆χ̄τ and use the monotonicity of the set-valued mapping NK , which
ensures (when written very formally) that∫

Ω

ξ̄τ ·∆χ̄τ dx =

∫
Ω

NK(χ̄τ )·∆χ̄τ dx =

∫
Γ

NK(χ̄τ )
∂χ̄τ
∂n

dS −
∫

Ω

∇NK(χ̄τ ):∇χ̄τ dx

= −
∫

Ω

∂NK(χ̄τ )∇χ̄τ :∇χ̄τ dx = −
∫

Ω

∂2δK(χ̄τ )∇χ̄τ :∇χ̄τ dx ≤ 0. (48)

Of course, the positive-definiteness of the Jacobian ∂2δK of the nonsmooth convex
function δK is indeed very formal and the rigorous proof needs a smoothening argu-
ment. In fact, one can use an exterior penalty δK,ε(χ) := ε−1 minχ̃∈K |χ−χ̃|2 (i.e.

Yosida’s approximation of δK) and consider the Dirichlet boundary-value problem
λ∆χ̄τ,ε−δ′K,ε(χ̄τ,ε) = r̄τ with the boundary condition χ̄τ,ε = χ̄τ on Σ which ensures

δ′K,ε(χ̄τ,ε) = 0 on Σ so that the boundary term arising by the test by ∆χτ,ε disap-

pears, likewise already in (48), and the limit with ε→ 0 is then easy. Therefore, by
this estimate, we obtain λ‖∆χ̄τ‖L2(Q;RN ) ≤ ‖r̄τ‖L2(Q;RN ) so that (46d) is proved,

and thus also the bound (46e) for ξ̄τ = λ∆χ̄τ − r̄τ is proved. �

Proposition 1 (Convergence for τ → 0). Let again the assumption of Lemma
4.1 hold. Then there is a subsequence such that

uτ → u strongly in H1(I;H1(Ω;R3)), (49a)

χτ → χ strongly in H1(I;L2(Ω;RN )), (49b)

c̄τ → c strongly in Lr(Q) with any 1 ≤ r < 6, (49c)

w̄τ → w & wτ → w strongly in Ls(Q) with any 1 ≤ s < 5/3, (49d)

µ̄τ → µ strongly in L2(I;H1(Ω)), (49e)

ξ̄τ → ξ weakly in L2(Q;RN ), (49f)

and any (u, χ, c, w, µ, ξ) obtained in this way is a weak solution to the system (18)–
(19) in accord with Definition 3.1 which also preserves the total energy as well as
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c ≥ 0 and w ≥ 0 as claimed in Theorem 3.2. Moreover, if Ω is smooth, then also

χ̄τ → χ strongly in L2(I;H1(Ω;RN )), (50a)

c̄τ → c strongly in L2(I;H1(Ω)). (50b)

Proof. For lucidity, we divide the proof into nine steps.

Step 1. Selection of a converging subsequence. By Banach’s selection prin-
ciple, we select a weakly* converging subsequence with respect to the norms from
the estimates (40) and (46). By Aubin-Lions’ theorem, from (40c) and (46c), one
gets (49c). Moreover, a (generalized) Aubin-Lions theorem, cf. [24, Corollary 7.9],

based on (40f) and (46b) which makes
.
w̄τ bounded as an H3(Ω)∗-valued measure on

[0, T ], interpolated further with the estimate (40e), gives the first strong convergence
(49d). The second one follows analogously.

Further, c ≥ 0 and w ≥ 0 is inherited from cτ ≥ 0 and wτ ≥ 0 proved in
Lemma 4.1. If Ω is smooth, from (46d) one has χ̄τ bounded in L2(I;H2(Ω;RN )),
so by Aubin-Lions’ theorem one gets (50a) and then, from (45), one gets also (50b).

Step 2. Convergence in the semilinear mechanical part. Equation (18a) is
obviously semilinear, and therefore the weak convergence is sufficient to obtain it
in the limit from the corresponding equations (38a). In particular, %

..
u is in duality

with
.
u:

.
u ∈ L2(I;H1(Ω;R3)) and %

..
u ∈ L2(I;H1(Ω;R3)∗). (51)

By Rellich’s theorem we have the continuous and the compact embeddings H1(I;
L2(Ω)) ∩ L∞(I;H1(Ω)) ⊂ H1(Q) b L2(Q) so that χτ → χ strongly in L2(Q;RN )
and then also χ

τ
→ χ strongly in L2(Q;RN ) because ‖χ

τ
−χτ‖L2(Q;RN ) =

3−1/2τ‖ .χτ‖L2(Q;RN ) → 0, cf. [24, Rem. 8.10]. Together with (49d), we can pass

through the nonlinearities σa and sa. Similarly also χ̄τ → χ strongly in L2(Q;RN ),
which we will use later.

Step 3. Strong convergence of ε(uτ ). As the nonlinearities ∂χϕ2, M, K, and
L may depend on ε, we need first to prove strong convergence of ε(uτ ). Using the
equation for the discrete approximation, and the limit equation proved in Step 2,
we can write:∫

Q

Cε(ūτ−u):ε(ūτ−u) dxdt

≤
∫
Q

%
..
u i
τ ·(u−ūτ ) + σa(χ

τ
, cτ ):ε(u−ūτ ) + Cε(u):ε(u−ūτ ) dxdt (52)

where we used the monotonicity of u 7→ Dε( .u) if the initial condition is fixed; cf.
[24] for details about the time discretisation. The goal is to pass the right-hand
side of (52) to 0. We use Aubin-Lions’ Theorem to obtain strong convergence of

.
uτ

in L2(Q;R3), and by the Rellich compactness theorem also strong convergence of
ūτ (T ) in L2(Ω;R3), which allows us to pass to the limit:

lim
τ→0

∫
Q

%
..
u i
τ ·(u−ūτ ) dxdt = lim

τ→0

(∫
Ω

%
.
uτ (0) · ūτ (τ)− %.uτ (T ) · ūτ (T ) dx
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+

∫ T

τ

∫
Ω

%
.
uτ (· − τ)·.uτ dxdt+

∫
Q

%
..
u i
τ ·udxdt

)
=

∫
Ω

%
.
u(0)·u(0)− %.u(T )·u(T ) dx+

∫
Q

%|.uτ |2 + %
..
u ·udxdt = 0;

the former equation is by discrete by-part summation, cf. e.g. [24, Remark 11.37],
while the later equality simply follows by reversing integration by parts; here (51)
is used. By (40c) and (46c), we have cτ → c weakly* in L∞(I;H1(Ω)), and

.
cτ

bounded as an H1(Ω)∗-valued measure on [0, T ], which gives cτ → c strongly in
L2(Q) by a (generalized) Aubin-Lions theorem, cf. [24, Corollary 7.9]. Then the
other terms in (52) clearly converge 0. Altogether, we proved that the right-hand
side of (52) converges to 0, which eventually shows ε̄τ → ε in L2(Q;R3×3).

Step 4. Limit passage in the micromechanical inequality. From (38b), we
have

∀v∈L2(I;H1(Ω;RN )):

∫
Q

(
α
.
χτ + sa(χ

τ
, cτ ) + ∂χϕ12(ε̄τ , χ̄τ , cτ )+ξ̄τ

)
·(v− .χτ )

+ λ∇χ̄τ :(∇v−∇ .χτ ) + ζ(v) dxdt ≥
∫
Q

ζ(
.
χτ ) dxdt (53a)

∀v∈L2(Q;RN ), v∈K a.e. :

∫
Q

ξ̄τ ·(v−χ̄τ ) dxdt ≥ 0. (53b)

The limit passage in (53b) is easy because ξ̄τ → ξ weakly in L2(Q;RN ) and χ̄τ → χ
strongly in L2(Q;RN ) has already been proved in Step 2; thus ξ ∈ NK(χ) is shown.
Now we can make a limit passage in (53a). Here on the left-hand side we have
collected all terms that need to be handled through a continuity or a weak upper
semicontinuity arguments, while the right-hand side is to be treated by weak lower
semicontinuity. We benefit from the strong convergence of χ

τ
(and similarly also of

χ̄τ ) shown in Step 2 and of cτ and ε̄τ proved in Step 3. The only nontrivial limit
passage which, however, leads us directly to (25b) is:

lim sup
τ→0

∫
Q

−λ∇χ̄τ ·∇
.
χτ dxdt ≤

∫
Ω

λ

2

∣∣∇χ0

∣∣2 dx− lim inf
τ→0

∫
Ω

λ

2

∣∣∇χ(T )
∣∣2 dx

≤
∫

Ω

λ

2

∣∣∇χ0

∣∣2 − λ

2

∣∣∇χ(T )
∣∣2 dx. (54)

Eventually, the limit in
∫
Q
ξ̄τ ·

.
χτ dxdt is simple because, for any ξ̄τ ∈ NK(

.
χτ ),

this integral equals
∫

Ω
δK(ξτ (T )) − δK(ξ0) dx = 0 =

∫
Ω
δK(ξ(T )) − δK(ξ0) dx =∫

Q
ξ· .χdxdt since we already know ξ ∈ NK(χ); note that (23n) has been used here.

Thus (25b) is proved.

Step 5. Limit passage in the diffusion equation. Again, all strong conver-
gences we already have proved in Steps 2 and 3 are to be used. Then the limit
passage in the semi-linear equation (28c) is simple.

Step 6. Mechanical/chemical energy preservation. We balance the kinetic
and stored energy integrated over the domain:

E (t) :=

∫
Ω

%

2

∣∣.u(t)
∣∣2 + ϕ12(ε(u(t), χ(t), c(t)) +

λ

2

∣∣∇χ(t)
∣∣2 dx.

as we actually did in (22) with ν = 0, i.e.
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E (T )− E (0) =

∫
Q

f·.u + q dxdt−
∫
Q

(
Dε(.u)+σa(χ,w)

)
:ε(
.
u) +

(
α
.
χ+sa(χ,w)

)
· .χ

+ ζ(
.
χ) + M(ε(u), χ, c, w)∇µ·∇µdxdt+

∫
Σ

fs·
.
u+qs+µhs dSdt. (55)

This is standardly achieved by testing the mechanical-chemical equations (18a,c),
and the inclusion (18b), respectively by

.
u, µ, and

.
χ, and by using the chain rule to

integrate with respect to t. In order for these tests to be legal, we need %
..
u to be in

duality with
.
u, which has already been proved, cf. (51). In particular, we make use of∫ T

0

〈
%
..
u ,
.
u
〉

dt =

∫
Ω

%

2

∣∣.u(T )
∣∣2 − %

2

∣∣.u(0)
∣∣2 dx.

Further, we need ∆χ ∈ L2(Q;RN ) to have (26) at our disposal; for this, the as-
sumptions (23b) and (23j) together with the estimates (40a-c,e) are used. Also,.
c ∈ L2(I;H1(Ω)∗) is in duality with µ ∈ L2(I;H1(Ω)) as well as

.
χ ∈ L2(Q;RN )

is in duality with ∂χϕ1(χ, c) ∈ L2(Q;RN ), cf. (46c) with (49e) and (40b) with the
assumption (23b) with χ ∈ L∞(Q;RN ) and c ∈ L∞(I;L6(Ω)), so that we can rig-
orously execute the formula (21) integrated over I, which gives∫ T

0

(
〈.c, µ〉+

∫
Ω

∂χϕ1(χ, c)
.
χdx

)
dt =

∫
Ω

ϕ1(χ(T ), c(T ))− ϕ1(χ0, c0) dx.

Also ξ ∈ L2(Q;RN ) is in duality with
.
χ ∈ L2(Q;RN ) so that

∫
Q
ξ
.
χdxdt has a sense

and simply equals to 0 because ξ ∈ ∂δK(χ) has been proved in Step 4 and because
δK(χ0) = 0 is assumed, cf. (23n).

Step 7. Strong convergence of ε(
.
uτ ),

.
χτ , and ∇µ̄τ . Using the discrete

mechanic-chemical energy imbalance (which is like (43) except that the 1/2 of the
heat equation (38d) is not counted), and eventually the energy equality (55), we
can write

∫
Q

ζ(
.
χ) + Dε(.u):ε(

.
u) + α| .χ|2 + M(ε(u), χ, c, w)∇µ·∇µdxdt

≤ lim inf
τ→0

∫
Q

ζ(
.
χτ ) + Dε(.uτ ):ε(

.
uτ ) + α| .χτ |2 + M(ε(ūτ ), χ̄τ , c̄τ , wτ )∇µ̄τ ·∇µ̄τ

≤ lim sup
τ→0

∫
Q

ζ(
.
χτ ) + Dε(.uτ ):ε(

.
uτ ) +

(
1−
√
τ/2
)
α| .χτ |2

+ M(ε(ūτ ), χ̄τ , c̄τ , wτ )∇µ̄τ ·∇µ̄τ dxdt

≤ lim sup
τ→0

(
E (0)−

∫
Ω

%

2

∣∣.uτ (T )
∣∣2+ ϕ12(ε(uτ (T )), χτ (T ), cτ (T )) +

λ

2

∣∣∇χτ (T )
∣∣2dx

−
∫

Σ

f̄s,τ ·
.
uτ dSdt+

∫
Q

f̄τ ·
.
uτ − σa(χ

τ
, wτ ):ε(

.
uτ )− sa(χ

τ
, wτ )· .χτ dxdt

)
≤ E (0)− E (T )−

∫
Σ

fs·
.
udSdt+

∫
Q

f·.u− σa(χ,w):ε(
.
u)− sa(χ,w)· .χ dxdt

=

∫
Q

ζ(
.
χ) + Dε(.u):ε(

.
u) + α| .χ|2 + M(ε(u), χ, c, w)∇µ·∇µdxdt. (56)

Thus we can write “lim” and “=” everywhere in (56) and, together with the already
proved weak convergence, we obtain the desired strong convergence of ε(

.
uτ ) and

.
χτ
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and ∇µ̄τ in L2(Q)-spaces. For technical details about the term M∇µ·∇µ with the
nonconstant coefficient M = M(ε(u), χ, c, w), we refer to [26, Formula (4.25)].

Step 8. Limit passage in the heat equation (38d). Having proved the strong
convergence in Steps 3 and 7, the right-hand side of (38d) converges strongly in
L1(Q) and this limit passage towards the weak solution to (18d)–(19d) is then easy.

Step 9. Total energy preservation, i.e. (22) with ν = 1. We have
.
w ∈

L1(I;H3(Ω)∗), cf. (46b) and realize the already proved identity (18d), which is in
duality with the constant 1, we can perform rigorously this test and sum it with
mechanical/chemical energy balance obtained already in Step 6. �

5. Generalization of the model for electrolytes and fuel cell modeling.
In a very basic scenario, the above presented model allows for a relatively sim-
ple generalization for a multicomponent, charged (i.e. ionized), chemically reacting
medium undergoing electro-diffusion in elastic medium. When having in mind hy-
drogen fuel cells, the specific situation involves elastic polymeric porous layer with
negatively-charged dopands and undergoing mechanical deformation/stresses e.g.
due to swelling through which water H2O, hydrogen ions H+ (i.e. protons), and hy-
dronium ions H3O+ (or, in general, ions of the type H2n+1O+

n also with n ≥ 0) move
by drift and diffusion; we speak about a polymeric electrolyte membrane (=PEM).
This membrane is surrounded by two thin layers where catalyzed chemical reactions
take place and another electron-conductive layers called an anode and a cathode.
The mentioned reactions are H2 →2H+ + 2e− (on the layer between the anode
and membrane) and O2+4H++4e− →2H2O (on the layer between the cathode and
membrane). There is vast amount of literature about such fuel cells and their model-
ing, cf. e.g. [13, 16, 22] for a survey. Similar scenario applies for methanol or ethanol
fuel cells, except a different chemistry on the anode. All the models seem however
to be focused on electro-chemistry without taking (thermo)mechanical interactions
properly into account, sometimes being rather one-dimensional and mostly not ac-
companied by any mathematical analysis. Of course, the following outlined model
can serve only as an ansatz to which a lot of concrete data is to be supplied.

The generalization of the above presented model to m diffusive constituents con-
sists in taking the concentration c and the (now electro-)chemical potential µ vector
valued. Moreover, we consider a vector of electric charges z of the m constituents;
some components of z can be zero. Further, we consider the vector of chemical-
reactions rate r = r(x, c), electrostatic potential φ of the self-induced electric field,
an electric permittivity ε = ε(x), and d = d(x) concentration of dopands. The
x-dependence allows for distinction of particular layers composing the mentioned
fuel cells. The above outlined chemistry was only an example - some alternative
similar application might be e.g. methanol fuel cells, cf. [8] for a simplified model.

The mass balance (18c) together with (13e) augments to
.
c− div

(
M(ε(u), χ, c, ϑ)∇µ

)
= r(c), (57a)

µ = ∂cϕ1(χ, c) + zφ, (57b)

where φ is to solve the (rest of Maxwell system for) electrostatics balancing the
electrical induction ε∇φ as

− div
(
ε∇φ

)
= z·c + d (57c)

with some (here unspecified) boundary conditions. In (57a), M is now a 4-th order

symmetric tensor and thus [div(M∇µ)]i :=
∑3
k=1

∂
∂xk

∑3
l=1

∑m
j=1 Mijkl

∂µj
∂xl

.
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The essence of this electro-statical augmentation is that the test of (57a) by µ
now relies on the modification of (21) if integrated over Ω as follows:∫

Ω

.
c·µdx =

∫
Ω

.
c·
(
∂cϕ1(χ, c) + zφ

)
dx

=
d

dt

∫
Ω

ϕ1(χ, c) dx−
∫

Ω

∂χϕ1(χ, c)· .µ− φz·.c dx

=
d

dt

∫
Ω

ϕ1(χ, c) dx−
∫

Ω

∂χϕ1(χ, c)· .µ− φdiv
(
ε∇
.
φ
)

dx

=
d

dt

∫
Ω

ϕ1(χ, c) +
ε

2
|∇φ|2 dx−

∫
Ω

∂χϕ1(χ, c)· .µdx (58)

together with (for simplicity unspecified) term arising from boundary conditions
for (57c). The energy balance (22) now involves also the energy of the electrostatic
field 1

2

∫
Ω
ε|∇φ|2 dx. The term r(c)·µ = r(c)·∂cϕ1(χ, c) + r(c)·zφ arising by the

mentioned test of (57a) is to be treated by Gronwall’s inequality under some growth
qualification on the chemical-reaction rates r. The convergence analysis imitates
[23] as far as the electrostatic part concerns. Standard modeling of electro-chemical
devices with sizes substantially larger than the so-called Debye length like fuel cells
however simplifies the model by considering local electroneutrality, arising as an
asymptotics for ε→ 0 in (57c), cf. e.g. [13].

Final note is that, considering m = 2 and forgetting ε, χ, and ϑ, the system (57)
itself represents the classical Roosbroeck’s drift-diffusion model for semiconductors
[28], the components of c being then interpreted as concentrations of electrons and
holes; cf. e.g. [24, Sect. 12.4]. The generalization presented in this section can thus
be also interpreted in its very special case m = 2 as a model for thermodynamics
of elastic semiconductors, especially if the mobility tensor M would be allowed to
depend also on the intensity of the electric field ∇φ.
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