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Abstract

We derive a thermodynamically consistent general continuum-mechanical
model describing mutually coupled martensitic and ferro/paramagnetic phase trans-
formations in electrically-conductive magnetostrictive materials such as NiMnGa.
We use small-strain and eddy-current approximations, yet large velocities and
electric current injected through the boundary are allowed. Fully nonlinear cou-
pling of magneto-mechanical and thermal effects is considered. The existence
of energy-preserving weak solutions is proved by showing convergence of time-
discrete approximations constructed by a carefully designed semi-implicit regular-
ized scheme.

1. Introduction

Shape-memory alloys are intermetallic compounds characterized by two phases
with different crystallographic configurations, typically a high-symmetry austenitic
phase and a low-symmetry martensitic phase that manifests itself in number of
variants, see [4]. In these materials, large strains are attained by variant rearrange-
ment. In ferromagnetic shape-memory alloys, variant rearrangement can be induced
through an external magnetic field [23,27,45,46]. This makes ferromagnetic shape-
memory alloys potential candidates for smart materials, but also renders their math-
ematical modeling a non-trivial task, because of the complex interplay between
martensitic and ferromagnetic microstructures.

In this paper we develop a general, rational, thermodynamically consis-
tent continuum-mechanical model that is complex enough to take into account

This work was supported by the Italian INDJAM-GNFM, and also in part by the
grants 201/09/0917, 201/10/0357, and 201/12/0671 (GA CR), LC 06052 (MSMT CR),
by the institutional support RVO: 61388998 (CR), as well as the CENTEM project no.
CZ.1.05/21.00/03.0088 (within OP RDI) at New technologies research centre (ZCU, Plzer).



2 TomAS ROUBICEK & GIUSEPPE TOMASSETTI

martensitic and ferromagnetic phase transformations, and yet simple enough to be
amenable to a rigorous mathematical analysis.

For the magnetic part of the modeling, we use the theory of micromagnet-
ics [11], suitably extended to non-isothermal settings. Micromagnetics has been
proven a very powerful tool for analytically deriving the macroscopic properties
of magnetic samples, by establishing a connection between microstructure and
macroscopic behavior both in the bulk [13] and in lower-dimensional structures,
such as thin films [14]. One of the assumptions of standard micromagnetics is
that the magnetization vector has a constant magnitude equal to the so-called sat-
uration magnetisation. This assumption, also known as Heisenberg’s constraint is,
indeed, one of the features that makes the model interesting from the mathemat-
ical point of view. However, this constraint is relevant primarily in temperatures
well below the Curie point (or better, even close to absolute zero) and must be
dropped at temperatures around or above the Curie point, that is, in particular, if the
ferro/para-magnetic transformation is considered, see [5]. Basic to our derivation
of the evolution equations for the magnetization is the introduction of a system of
microforces, which expend power over time variations of the magnetization. This
approach, which opens the way to generalizations of standard micromagnetics [6],
has been used in [15] to model magnetoelastic interactions in saturated ferromag-
netic solids. A similar approach was followed in [25] to model microstructural
evolution in ferromagnetic-shape memory alloys in the isothermal setting. In the
non-isothermal setting, a thermodynamically-consistent model capable of describ-
ing the ferro/paramagnetic transition was derived in [35], accompanied by a proof
of existence of weak solutions using the technical framework set forth in [41].

Several experiments have been reported [42,50] in which Ni MnGa samples are
subject to mechanical vibrations up to frequencies of 10MHz. These mechanical
vibrations are expected to trigger fast magnetization oscillations, which in turn
can produce eddy currents. As a result, phase transformation may be affected not
only through magneto-mechanical coupling, but also through the produced Joule
heat. This effect is also complicated because conductivity in shape-memory alloys
depends not only on temperature, but mainly on the symmetry of the lattice [16,
21,48,51]. For instance, variation of electric resistivity by tens of percents within
the transformation of austenite to martensite or to R-phase has been experimentally
documented [19,28]. For the above-mentioned reasons, we also include in our
model the effects of eddy currents generated by the magnetization, as done in
[40]. Altogether, these materials exhibit a very complex response that also includes
mechanical-magnetical mutual interaction, see also [22,43], for example, which is
only very schematically depicted in Fig. 1.

To make the model accessible to analysis, we work within the setting of small
strains, and we also take into account surface-energy effects by including in the
free energy a term dependent on the gradient of the strain. This is also known as the
concept of so-called second-grade nonsimple materials (see, for example, [33,44]),
alternatively also referred as the concept of hyper- or couple-stresses [34,47]. This
gradient theory for small strains, together with the standard exchange-energy term
for magnetization, enables us to treat nonconvex free energies ¢(-, 0), see (17),
with (72b), a feature that is essential for describing phase transformation. Since this
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Fig. 1. Schematic illustration of very complex mechanical-magnetic-thermo response of a
single-crystal of a magnetic shape-memory alloy like NipMnGa together with complicated
self-accommodation of lower-symmetrical variants casting typically martensitic microstruc-
tures and magnetic fine domain structure. Important magneto-mechanical and dynamical
interactions as well as variation of thermal conductivity K and electrical conductivity S are
not depicted. Martensitic and ferro/para-magnetic transformations may undergo in different
temperatures, depending on variation of stochiometric composition of this intermetalic alloy

capillarity effect may not be completely efficient from the energetic point of view, in
the sense that the storage of energy into capillarity terms is likely to be accompanied
by dissipation, we also introduce a viscous-like dissipation dependent on the time
derivative of the gradient of the small-strain tensor. Consistently with the small-
strain and small-displacement assumption, we identify the reference and current
configuration by assuming small displacements. We do not assume, however, small
velocities, see Remark 1 in the next section, which may be important in certain
applications involving high-frequency vibrations.

2. The Model

As the problem is very complex and involves a lot of mutually interacting
fields, we necessarily must involve many symbols. For readers’ convenience, we
summarize the notation used in Table 1.

Let @ C R? be a bounded Lipschitz domain occupied by the body in its ref-
erence configuration, and let I' = 92 denote its boundary. For the purpose of the
derivation of the model we assume 2 smooth but, in fact, when the domain has
sharp edges, hyperstresses may involve concentrated forces [33]. Dealing with these
issues is beyond the scope of this paper, however. Letting the fixed time interval
of interest I = (0, T') and abbreviating Q := I xQ2 and X := I xI", the unknown
fieldsareu: Q > R m: Q0 >R}, 6:0 >R, h:Q — R ande: Q - R3.
In particular, u (¢, x) and m(¢, x), respectively, deliver the displacement of the mate-
rial point x at time ¢ and the magnetization density per unit referential volume at
the same point and at the same time. The task we carry out throughout the rest of
this section is the derivation of an initial-boundary-value problem, see (30)—(32)
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Table 1. Summary of the basic notation used throughout the paper

u Displacement, Y Free energy,

m Magnetization, ¢ Coupling part of free energy, see (17),
6 Temperature, o) =¢(-,0)

h Magnetic field, s Entropy,

e Electric field, o Vacuum permeability,

E, E(x) Small-strain tensor, K = K(q, 6) Thermal conductivity,

S Stress tensor, S = S(g, 0) Electrical conductivity,

H Hyperstress (3rd-order) tensor, o Mass density,

C Magnetic stress, ¢ = ¢(q, 0) Heat capacity,

k Internal magnetic microforce, y = y(|m]) Effective gyromagnetic ratio,
p External magnetic microforce, Chpr Hyperelasticity tensor,

q = (E(u), m), D Viscosity tensor,

p = (S, k), Dhpr Hyperviscosity tensor,

B =H,C), o Magnetic-dissipation constant,

J Electric current, A Magnetic exchange-energy constant,

q Heat flux, x (q) Phase-transformation indicator,

qp Boundary heat flux, see(12), £(-) 2 0 A degree-one homogeneous function,
Jb Surface current, see (6) and (31e), f Bulk force (inertial and load), see (1),
hp An extension of —vx jy, to €2, g Boundary traction, see (2) with (28b),
¢ Internal energy, g"P’ Boundary hypertraction.

below, governing (u, m, 6, h, e). In particular, we shall obtain the first three partial
differential equations of (30) by combining suitable balance equations, which we
introduce now, with appropriate constitutive prescriptions, which we specify at a
second stage.

To begin with, we introduce a stress S : Q — R3x3

sym >
R3*3%3 "2 bulk-force density f : Q — R3, and a surface-force density g : & :—
R3, and we lay down the force balance:

a hyperstress H: 0 —

div(S — divH) + f =0, (D

which we impose within the body. Since a hyperstress is involved, the force balance
(1) is accompanied by two boundary conditions [34]: a traction condition and a
hypertraction condition, respectively,

(S —divH)n — divi(Hn) =g, H: (n®n) = g"", 2)

where n denotes the outward unit normal. In writing (2), we maintain that the
application of the third-order tensor H to the vector n produces the second-order
tensor with components (Hn);; = H;jxni. Moreover, div® is the surface-divergence
operator, which may be introduced as follows [20]: given a vector fieldv : I' — R3,
we extend it to a neighborhood of I, and we let its surface gradient be defined as
Vv = VulP%, where P* = [—n®n is the projector on the tangent space of I"; we then
let the surface divergence of v be the scalar field divSv = P* : V3v = tr(PSVuP%).
Given a tensor field A : ' — R3*%3, we let div’A : I' — R3 be the unique vector
field such that divs(ATa) = a-divSA for all constant vector fields a : ' — R3.
Furthermore, the symbol ““:” denotes contraction between the last two indices. Thus,
componentwise, the second condition in (2) reads: H;jxn jn; = 0.
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As in [35], we introduce a magnetic microstress C : Q — R3*3, an internal
magnetic microforce k : Q — R, and an external magnetic microforce p : Q —
R? (a specification in terms on u and m will be presented later on); then, we write
the magnetic microforce balance:

divC—k+p=0, 3)
along with the null-microtraction condition:
Cn =0, 4)

which we assume to hold on the whole boundary. We do not envisage a Dirichlet-
type condition for m, since a direct physical interpretation of this condition is
problematic, as well as an interpretation of a non-homogeneous microtraction con-
dition.

Next, we write the system of Maxwell’s equations in the so-called eddy-current
approximation [1,9]:

o (h + 1) + curl e = —po(diviym — poVmit, (5a)
—curlh + j = 0. (5b)

The interpretation of the term on right-hand side of the Faraday—Maxwell equation
(5a) is provided in Remark 1 below. Equation (5b) follows from the Ampere-
Maxwell equation gge — curl 2 + j = 0 by neglecting the displacement current gge,
where &g denotes vacuum permittivity. As is well known, the standard Maxwell
system is hyperbolic. Instead, with the eddy-current approximation, the ensuing
evolution laws have a parabolic structure. We shall further discuss this point in
Remark 4.

The solution of (5) in the whole space is seldom pursued. Typically, one restricts
the domain of definition the electromagnetic fields to a bounded region surrounding
the body of interest, and imposes appropriate insulating conditions at the boundary
of the region. To avoid additional technical complication which would not alter
the matter of our treatment, we shall assume that the electro-magnetic field in the
surrounding region can be neglected, and we shall impose the following condition
at the boundary:

nxh=jp. (6)

The above condition is understood in the sense of the following integration-by-parts
formula [12]:

/ curlh-e — h-curledx = /(vxh)-edS
Q r
=/jb-edS= —/(exhb)-ndS, @)
r r

where the last equality follows from having defined:

hy = —n X jp. (8



6 TomAS ROUBICEK & GIUSEPPE TOMASSETTI

We denote by
E(u) = symVu ©

the small strain tensor. We shall write E in place of E(#) when appropriate. We
shall also use the following shorthand notation:

q:=(E m), p:=(@S k), P:=MHC). (10)

Using the above notation, we can write the balance of internal energy in the form:
g4+divg—j-e—p-qg—P-Vq=0. (11)

‘We supplement this balance law with a prescription of the heat flux at the boundary:
gn=aq. (12)

Here ¢ is the (specific) internal energy and ¢ is the heat flux. Letting s be the
(specific) entropy, the local form of the Clausius—Duhem inequality is:

Os > g - VO — divg. (13)
By introducing the free energy:
Yi=¢e—s0, (14)

and by combining the Clausius—Duhem inequality with the balance of internal
energy, we obtain the free-energy imbalance:

W< —s60—0"1g-VO+j-etp-G+P- Vi (15)

Guided by (15), we assume that the free energy depends, at most, on q =
(E,m)Vq = (VE, Vm), and on 6:

¥ =1v(q, Va,0), (16)

and we restrict our attention to constitutive dependencies of the form:

1 : A
Vg, V., 0) = ¢(q,0) + E(ChprVE:VE + §|Vm|2. (17)

The first term on the right-hand side of (17) incorporates temperature-dependent
magnetoelastic coupling; specific choices for NiMnGa may be found in [24,52].
The second term takes into account interfacial energy between twin boundaries
through the positive-definite sixth-order tensor Cpp,. The third term models the
standard magnetic-exchange energy through a positive exchange parameter A. A
(by now) standard argument yields:

s = 59,0) = —¢y(q.0). (18)
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In order to include dissipative effects in our model, we split p and ‘P into their
energetic and dissipative parts by writing:

p= 9 p® = (ST &) + (8% kD), (19a)
P = P+ P = @, CN) + HE, CD), (19b)
and by setting
pe" = p(q, Vq,0) =g, Va. 0), (20a)
P =P, V. 0) = Ygq(a. Va. 0). (20b)

As a consequence of (16)—(20), the force balance (1) and the magnetic microforce
balance (3) become, respectively,

div(pg(E, m, 0) + S% — div(Cppe VE + HY)) + £ =0, (21a)
and
AAm — ¢} (E,m,0) + divC% — k% 4 p = 0. (21b)

Moreover, the balance of internal energy turns into a precursor of the heat-
conduction equation:

c(q, )8 + divg = & +0¢[(a, 0) - 4, (210)
where
c(a,0) = —0935(q. 0) (22)
is the (specific) heat capacity, and
g:=j-e+p" g+ P vy (23)

is the (specific) dissipation rate. Likewise, the free-energy imbalance (15) turns into
the reduced dissipation inequality:

0<—071g-vo+¢. (24)

Our next task is to establish, in a manner consistent with (24), appropriate consti-
tutive restrictions on (g, J, pdl, ‘Bdl). To this aim, we introduce the total dissipation
potential

. . 1 I
;tot(qv 97 V@, e, Cla VCI) = EK(qv e)veve + S(q, 9)@'9 + EDEE
1 e 1, . .
+ 5 Dpr VEVE + ol + £ (xg @B+, (@)r),
(25)
and we require:

(@ P B €0 gy g5 b (@ 6 VO, €, 4, V). (26)
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The constitutive prescription (26) is equivalent to:

g = —K(q,0)V0, (27a)

Jj =15S(q,0)e, (27b)
SU = DE + x£(9) T, (27¢)
HY = Dy, VE, (27d)
K = am + xf (@) o, (27e)
cli=o, (27f)
® € 3 (X), (27g)

with x = %(X(E(u),m)) = Xé(q)E([t) + x,,(q)m. With (27) at hand, we can
write the dissipation-rate (23) as:

£ = DE@):E (i) + Dipr VE(@):VE @) + S(q, 0)e - e + alm|* + ¢ (X).

The phenomenological relations (27a) and (27b) generalize the standard Fourier’s
and Ohm’s laws by including possible dependence on strain, magnetization and
temperature of the thermal conductivity tensor K(q, 8) and of the electrical con-
ductivity tensor S(q, ). Moreover, ID (resp. Dpp) is a positive-definite fourth-order
(resp. sixth-order) tensor whose components [D];x; satisfy [D];jxr = Djixz = D;jux
(resp. [Dnprlijkimn = [Dnpeljikimn = [Dhpelijkmin)- Furthermore, a is the standard
micromagnetic dissipation constant [17]. Finally, ¢ : RE — R := [0, 400) is
a degree-1 homogeneous function and x : R3*3 x R3 — RZ is a “phase indica-
tor”. A typical modeling assumption is that the range of y is the Gibbs’ simplex
A= {(x1,..., x1) € RDL; Z['L:I xi = 1} and values of x are around par-
ticular vertices of A if g is (in the vicinity of) a particular phase, which makes it
possible to distinguish the L+1 phases. Then ¢ determines the energy needed for
transformation between particular phases. These functions incorporate, at the same
time, phenomenological rate-independent dissipation due to phase transformation
[2,3,32,36,40] and magnetic-pinning effects [41,49]. The phase indicator x has
a meaning similar to the phase field used in [26]. The main difference is that a
phase indicator depends on other variables, whereas a phase field is an independent
quantity.

It remains for us to prescribe the volume-force density f in (1), the surface-
force density g in (2), and the bulk term p in (3). To this aim, we introduce the
following splitting:

S = Jo+ fin+ fem, (28a)
g = 80 + &in t &em, (28b)
g = g0 + g + gom. (28¢)
P = po + Pin + Pem. (28d)

Here, a subscript “0” means that the corresponding field is a given datum. The

9

subscripts “in” and “em” stand for “inertial” and “electromagnetic”, respectively,
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and denote terms that may depend on u, m, 6, h, and e; for these terms, we make
the following constitutive assumptions (see Remark 2):

.o hpr mXI’i"t
fin = _Qu,gin =07 gm =Oapil’1 = —0 >
y (Imf)

hy
fem = —1oVh' ' m, gem = po(m-h)n, gem = 0,pem = poh.  (29b)

(29a)

The constitutive prescription for pj, incorporates gyromagnetic inertia in the evo-
lution equation for m. For a discussion, see [35]. Our last step consists in combining
(21) and the Maxwell system (5) with the constitutive prescriptions (27), (28)—(29).
By doing so, we arrive at the following system of equations and inclusion in 2 to
be solved by the six-tuple (u, m, e, h, 0, w):

oif — div (gol/E(E(u), m. 0) + DEG@) + xf(Eu),m)

—div(Cppr VE (u) + thrVE(,;))) = fo—poVh ' m, (30a)
er;l , 1 T
- — A Am+ ¢, (E(u),m,0) = po + jwoh — x,,(E(u), m) o,
y (Iml)
(30b)
c(E(u), m, 0)6—div (K(E(u), m, 0)V6) = £(x) + S(Ew), m, f)e:e
+ DE):E (1) + Dhy VE(@1):VE (1) +a| |
+ 0Ly (E(w), m, 0):E)+0¢,(E(u), m, 6)-m, (30c)
/,L()(il +m) + curle = —po(divi)m — woVm ut, (30d)
curl h — S(E(u), m, 0)e = 0, (30e)
w € (X)) with  x = xg(E@w), m)E@) + x,,(E(u), m)m, (301)

where fo : 0 — R3, g0 : ¥ — R3 hp : & — R? are prescribed bulk and
boundary data. The boundary conditions are:

(q/E(E(u), m, 0) + DE@) + xg(Ew), m) o — divH)n

—div®(Hn) — puo(m - h)n = go, (31a)
H:(n®n) = gl with H = Cppe VE(W) 4+ Dy VE(@),  (31b)
9
onm =0, (31¢)
on
90

K(E(u),mﬁ)a— = gb, (31d)
n

nxh = jy, (3le)

where jj, : & — R3 is a prescribed surface electric current, assumed to be tangent
to the surface I" for all 7, see the qualification (50) together with (72r), later. As
initial conditions, we take:
M(Ov ) = uop, L.t(ov ) = Vo, m(os ) = my, h(ov ) = hOa (323)
6(0, ) = 6. (32b)
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Remark 1. (The convective term.) Let us explain the convective term on the right-
hand side of (5a). In our picture, m is the density of magnetization per unit volume
in the reference configuration. This quantity should not be confused with the spatial
density m that is actually measured in the physical space. In terms of my, the first
Maxwell equation reads:

/Lo(]:l +my) +curle = 0.
The relation between mg and m is
det(I + Vu(z, x))mg(t, x + u(t, x)) = m(t, x), (33)

where we maintain that m(z, x) = 0 for x ¢ €. Differentiating both sides of (33)
with respect to ¢ yields

det(I4+Vu) (g + (I4+Vu) ™ " (dividymg + Vimgil) = m, (34)

where for brevity we omit independent variables. At this point, we introduce the
small-displacement approximation x + u ~ x, which entails Vu ~ 0, my; ~ m,
and Vmg = Vm, so that (34) can be approximated by:

my ~ m — (diviym — Vm u,

whence the convective term in (5a). Again, we note that 1 is not considered small,
which is a case of small but very fast mechanical vibrations in some experiments
on frequencies about 10 MHz or more.

Remark 2. (Bulk and surface forces.) Our constitutive choices for the surface trac-
tions/hypertractions imply that the sum of the electromagnetic power expended on
the continuum and of the flux of the Poynting vector exh = exhy at the bound-
ary compensate for the rate of change of magnetic energy. Indeed, let us note the
following identity:

/ ,uo((divzl)m + Vm 12)~h dx = / podivim & 12)~h dx
Q Q
= / 1o (div((it @m)h) — (m ® L.t)ZVh) dx
Q
= / wo(m-h)(t-n)dS —/ woVh ' m - dx
r Q
=/gem-b'tdS+/fem-lftdx. 35)
r Q

Observe that (35) holds formally since, as we shall see in the next section, Vi is
not defined as a function; in fact, for the sake of mathematical analysis, in the weak
formulation we will express the force ,uOVhTm rather as uo(Vm)Th + oV (h-m),
see (70a). Using (5a), (7), and (35), we have
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/uoizohdx:—/curlah—/uo(lh—i—(divﬁ)m—i—szi)ohdx
Q Q Q

:—/e-jdx—/(exhb)-ndS
Q I
+/(pem-n‘1+fem-ﬁ>dx—/gem-»‘:ds, (36)
Q r

where Ay, denotes a prescribed magnetic field on the boundary, see (8); in fact, the
normal component of Ay, is irrelevant, and Ay, is related with j, occurring in (31e)
via (50) below. Then, we get the following balance statement:

/ pem";l + fem":l + e-j dx
Q

—— ~—— ~—
Electro-Magnetic power of E-M  Joule
(E-M) power bulk force heat
. d
+/ gem-ii 4+ (exhy)ndS + —/ K0\ h12dx = 0. 37)
N —— —_———— dr Q 2
power of  E-M energy magnetic
E-M traction flux energy

We remark that the balance of electro-magnetic energy involves not only a bulk
electromagnetic force fem, but also an electromagnetic traction ger, at the boundary.
Notice, however, that there is no appearance of %12 in the boundary integral in (37),

consistently with the choice gl;ﬁ)]r = 01in (29b).

Also, we can derive the balance of total energy, that is, internal + magnetic
+Kkinetic, see (39) below. Indeed, integrating the energy balance (11) over €2 and
using (1)—(4), we get

d . du . . .
_/8=/8~u+ghpr'—+%d5+/J'€+f'M+P'mdx-
dr Jq r on Q

Since the inertial force compensates the rate of kinetic energy, that is,

. d 0 .0
Sfin-u dx + T E|u| dx =0, (38)
Q\\,_/ tJg
inertial Kinetic
power energy

we obtain, using also the decompositions (28) and the balance (37),

d Moo @ e
— —|h = d
5 Qa—i- 2| | +2|u| X

. ou .
=/go-u+g3pr-— +qb+jb-edS+/ Joudx, (39)
r on Q
where (31e) has been used. Another estimate can be obtained by testing (1) and

(3) by u and m, respectively, and using the traction conditions (2) and (4). This
procedure yields:

. . . . . A
/p-q—i—‘B-qux:/ f~u+p-mdx+/g-u+ghpr-—uds.
Q Q r on
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Again, taking into account the decomposition (28), and the identities (38)—(37), we
obtain:

. . d Qe MO, 2
. ‘Vq)d — [ = —1h|*d
/Q(pq+‘43 ) x+dt/92|u| + - 1n dx
. . . hpr dut .
= [ fou—jedx+ [ gou+gy, -— + jo-edS. (40)
Q r on
Using (19)—(20), we further obtain
/Qw’qw, V6)-4+pt-4 + P-V§ dx
d 1 . A 0, . Ho
— [ —CupeVEIVE + Z|Vm > + Z|u> + =|h?d
+dt/92hpr + 219mP + L1 + B ax
. . . hpr out .
= [ fou—jedx+ [ gou+gy -— + joedS.
Q r on
Eventually, owing to the constitutive equations (27), we obtain the identity:
/wg(q,9)~c'|+§(xé,(q)~d)+S(q,9)e:e+DE:E+thrVEEVE+aIn'1|2dx
Q

e

e2 , MO, 2
—|h|°d
2|M|+2|I X

d [1 . A
— | =Cypy VE:VE + =|Vm|?
+dt /Q ) hpr + 2| m|” 4+

. . u
=/ f0~udx+/go-u+ggpr~—+jb-ed5. 1)
Q T 81’1

Remark 3. (Estimates with enthalpy transformation.) In the next section we shall
use the function

0
c(q,0) ::/c(q,@)d@. (42)
0

We thus have, using the definition (22) of heat capacity, and entropy,

6 0
c(q,0) = —/O O¢4y(q. ©)dO =/0 9p(q, ©)dO — Ogy(q, 0)
=¢(q,0) — ¢(q) + s(q,60)0,
where we have defined
¢ (@) = ¢(q, 0). 43)

Recalling the relation (14) between internal energy and free energy, we conclude
that the following important decomposition holds:

1 . 1
e(q, Va, 0) = &(q,0) + ¢ (q) + z<ChprVE:VE + 5)\|Vm|2.
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Thus, defining
®(u, v, m, h) 12/ §|v|2+¢(E(u),m) (44)
Q

1 : 2
+5 Crpr VE@):VE@) + §|vm|2 + %lhlzdx, (45)

we obtain the following formal estimate by integrating (39) over time:

@ (u(t), (1), m(t), h(1)) +/Qé(q(t),9(t))dx = ®(ug, vo, mo, ho)

+/ E(qo,Go)der/ fO-ﬁdxdt—i—/ g0 +qp + joredSdr,  (46)
Q 0 o

see also its time-discrete version (117). Also, a different version of (41) can be
easily obtained by noticing that

6 0
04(a.0) = ¢'(q) +/0 Phq(d, ©)dO = ¢'(q) — /0 0944(a, ©)dO + 09y, (q, 0)

0

= ¢'(a) + /0 ¢4(q. ©)dO + 0 (q. 0). @7)

Thus, on setting A(q, ) = foe cél(q, ®)de + Gwé’q(q, 0) we obtain:
95, 0) = ¢'(9) + A(q, 6). (48)

Consequently, (41) can also be written as:
d 1 . A 0 . o
— ~Cppr VEVE + Z|Vm|* + Z|af* + = |h|*d
dt/9¢(q)+2 hpr +2| ml+2|ul+2|| x

+/ A, 0)-6 + £ (x (@)-6)+S(a, O)eze + DE:E + Dy VEIVE + el dx
Q

=/ fo~ﬁdx+/go-12+jb-ed5. (49)
Q r

The last term, although physically relevant, cannot be directly used to obtain a priori
estimates because e is not expected to have well defined traces on I". The natural
strategy for treating this term and the boundary condition (31e) is to introduce an
auxiliary field Ay, on the domain 2 satisfying

nxhplr = jb. (50

Using (7) with & = hy, and (30d), we can replace the surface integral in the right-
hand side of (49) with volume integrals, namely

/jb~edS=/(nxhb)~edS=/ curl hp-e — curl e-hp dx
r r Q

=/ curl fuy-e+ poh -y 4 -y + o (divid)ym-hy -+ o (Vm i2)-hy dx. (51)
Q

Later, our estimation strategy will be based on a discrete analog of (49)—(51), see
(109).
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Remark 4. (The parabolic structure of (30d)—(30e).) In the special case S(q, ) =
oL, the constitutive equation (27b) becomes

j=oe. (52)

Then, the unknowns £, e in the system (5) can be converted into a diffusion equation
in the unknown /4. Indeed, substituting the constitutive equation (52) into (5b),
dividing by o and taking the curl of both sides, we obtain

e= U_lcurlzh,
which substituted into (5a) yields
B+ (noo) " teurl 2h = —m —r, (53)

where we have abbreviated r = (divit)ym — Vmui. Using the identity curl 2h =
Vdivh — Ah, we can rewrite (53) as

h— (uoo) ' AL = i — r — (ugo)~ ' Vdivh. (54)

If the initial data satisfy the usual assumption div(ho + mg) = 0, by applying the
operator Vdiv to both sides of (53) and integrating with respect to time, we obtain

'
Vdivh = —Vdiv (m —/ r dt) ,
0

. t
h— (noo) "' Ah = —m — r — (uoo) "' Vdiv (m —/ r dt) , (55)
0

thus (54) becomes

which reveals the parabolic character of the eddy-current approximation.

Remark 5. (Cross-coupling effects.) Our model can be extended to account for
Seebeck and Peltier effects by generalizing the choice (25) of the total dissipation
potential i as

e e 1 (V0 (—K(,0) Bs(q,e)) (ve) Te oo
g[ot(vevey q9 vq’ q’ VCI) - 2 ( e ) (Bp(q’ 6) S(q,@) e + 2EH])E

1 _-. . o . . .
+3 VE Dy VE + §|m|2 + ¢ (Xg (D E+x,, (@)m).

Here, By is the Seebeck-effect coupling tensor and Bp is the Peltier-effect coupling
tensor [31], satisfying the Onsager’s reciprocity condition [29,30],

By(q, 0) = 0B (g, 0). (56)

This would augment (27a) and (27b), respectively, as:
g = —K(q,0)V0 + Bg(q, 0)e, (57)
Jj = S(gq,0)e + B,(q,e)Vo. (58)

From the analytical point of view, however, the ensuing technical complications
are issues that fall out of the scope of the present paper.
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Remark 6. (Injection of electric current.) In order to better understand the role of
the boundary condition (6), a formal computation is of help. To this aim, let us note
that, since ji is tangential to the surface, we have:

/ Jo-Vu +div*(jp)vdS =0
r

for every scalar test function v. Then, using (5b), along with the identities
divcurl2 = 0 and curl Vv = 0, and with the integration-by-parts formula (7),
we obtain

/(j-n)vdS = /(curlh-n)vdS :/ curl 2-Vv + (div curl h)v dx
r r Q
=/h-cuerv+/(nxh)-VvdS
Q r

= / Jjp-VodS = —/ div®(jp)v dS. 59)
r r
By the arbitrariness of v, we have
jon = —divi(jp). (60)

In other words, by specifying the tangential surface current j,, we can also impose
the normal current pumped in/out of the conductor. Note that the physical dimension
of the surface current j, is A/m, so that div®(j,) has physical dimension A/m? and
thus (60), indeed, prescribes the electric-current density. Another option to pump
electric current in/out the body would be due to the right-hand side of (30e) on
some (presumably thin) layer 2¢ adjacent to the boundary on which, however, the
conductivity S would have to be considered zero, see [9, §1.2.2]. Then, in fact, e
would be controlled in L2(§2\$2) rather than in L2(<).

3. Weak Solutions

Although we have already applied a number of simplifications (small strains,
eddy-current approximation of the Maxwell system, and cross-effects neglected),
the analysis of the system (30) is still complicated in many aspects, in particular by

the L' -structure of heat sources and by the non-integrable term c(q, 6 )é. Standardly,
if ¢ would take a partly linearized form ¢(q, 0) = ¢o(0) 4+ ¢1(q) + 6¢2(q), the
entropy separates the variables, thatis, s = s(q,0) = —(p6 (0) — 2(q), and the heat

capacity is independent of g, that is, E and m. Then the term c(@)é can be easily
integrated as %5(9), where ¢() is a primitive function of ¢, and one can introduce
a simple substitution ¢ = ¢(#), called the enthalpy transformation.

As devised in [38] and already announced in Remark 3, we can enhance this
procedure for our case, too. The enhanced enthalpy transformation requires gradient
theory for mechanical/magnetic variables, but we have used this theory, anyhow,
in our model. This procedure is based on an elementary calculus:

—¢1(q,0):E — ex(q, 0)-1, (61a)

. ac(q, 0)
(q4.0)9 = — 2 2
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where ¢ is from (42) and where

0 0
cl(q,9)=/ ct(q,©)dO  and cQ(q,9)=/ ¢ (4,.0)dO.  (61b)
0 0

‘We introduce the new variable
¥ = ¢(q, 0).

We assume that ¢(q, -) is invertible, and we denote its inverse by 7 (q, -). Then, on
setting

H0(a.9) 1 = K(q, 7 (4. 9) T5(q. 9), (62a)
(4, 9) - =K(q, T (@, 9) Tg(q, 9), (62b)
Ha(a,9) 1 =K(q, T(q,9)) T, (q, D), (62c¢)
S(q,9) : = S(q, 7 (g, 1)), (62d)
A(4,9) 1 = T, 9)egy (@, T (0. 9)) + c1(a, T (q, D)), (62e)
H(q,9) = T, D@ (a, T (@, 9)) + c2(a, T (4, 9)), (62f)
oe(q, ) 1 = ¢e(q, 7 (g, 9)), (629)
om(q, ) 1 = ¢,(a, T (4, 9)). (62h)

we have

K(q.0)V6 = K(q, T (e, 9)V.T(q, D)
= Jo(q, VP + Hi(q, $)VE + Ha(q, 9) V. (63)

Thus, in terms of the 6-tuple (u, m, 9, e, h, w), the system (30) transforms to the
following six equations/inclusion:

ou — diV(UE(E(u), m, ) + DE®@) + xg(Eu), m) w

—div (Copr VEG)+ D VEGD) ) = fo — o Vh m, (64a)
am— % — ) Am~+0, (Ew), m, )= po + poh—x,, (E@), m) Tw,  (64b)
y(m

é—div(%(E(u), m, )V +1 (Ew), m, ) VEu)+ A5 (Ew), m, ﬂ)Vm) —f
with & := g“(xl’;(E(u), m)E@)+x,,(E(), m)n°1) + L (EWm), m, ¥)e-e

+DE(i):E (1) + Dipr VE (i): VE (i) ot |1t

+a (E(u), m, 9):E@) + @A (E(u), m, 9)-m, (64c)
,uo(l; +m) +curle = —puoVmu — po(div i)m, (64d)
curlh — .S (E(u), m, %)e = 0, (64e)

w € 3¢ (xg(Ew), m)E@)+x,,(E(w), m)m), (64f)
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completed by the boundary conditions (31b,c,d,e) and

(GE(E(u), m., 9) + DE()+xL(E(u), m) T w—div H).u

— div® (H-v) —po(h-m)v = go, (65a)
v oE a
J0(E(u), m, 9)— + 1 (E(w), m, 9) @) + JHE®W), m, ﬂ)—m = gp
on an an
(65b)
and the initial conditions (32a) completed by
(0, -) = ¢(E(uo), mo, 6o)- (65¢)

We will use standard notation for function space, namely spaces of continuous
R!-valued functions C (S_Z; R/ ), continuously differentiable functions C l(S_Z; Rl),
Lebesgue spaces L”(€2; R!), Sobolev spaces W57 (2; R!) and Bochner spaces of
X-valued functions L?(I; X). Moreover, we denote by B(f; X),BV(; X), and
CW(I_ ; X) the Banach spaces of functions from I:= [0, T] to X that are, respec-
tively, bounded measurable, have a bounded variation, and are weakly continuous;
note that all these functions are defined everywhere on 7. We will use the notation
p' = p/(p—1) for the conjugate exponent to p. Instead of u(z, -) or q(z, ) or 9 (z, -)
etc., we will write briefly u(¢) or q(z) or ¥ (¢) etc., respectively. Also, we make use
of the Banach space

LD (R = {v e LP(2; RY); curlv € L9(Q; R}, (66)

curl

p
curl

(2; ]R3) cvXn|p= O}. 67)

and, for p = ¢, we shall write simply L” . (Q2; R3). Occasionally, we will also use

LE o R ={velLl

curl

The weak formulation of the heat equation (64c) can be obtained by multiplying it
formally by v, integrating over Q, and applying Green’s formula. Also for (64a,e.f),
we apply integration in time. We shall also assume, for simplicity,

h
g’ =0, po=0. (68)
Thus, also using Ay, from (50), we arrive to the following definition:

Definition 1. (Weak solutions.) We say that the 6-tuple (u, m, ¥, h, e, @) such that

ue WAL WH2(Q RY)) nWho(r; L2(9; RY)), (69a)
m e W2 (I L2(Q; R?) N L®T; WH2(Q; R?)), (69b)
e L (I; W (Q)NL¥®U; LY(Q) with r € [1,5/4), (69¢)
h—hy € LI L2y o(Q RY)), (69d)
e e L*(0;RY), (69¢)
w e L®(Q; RY) (69f)

with ¢ = 0 almost everywhere in Q, is a weak solution to system (64) with

boundary/initial conditions (31c,d,e) and (65) if:
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(i) u(0) = up and, forallv € WH2(I; L2(; R3)NL2(I; W22(2; R?)), itholds
that

/Q (DE (i) +0eEw), m, 9)):E@)+ (Dupr VE(i) + Cryper VE@) ) :VE()
+ w:xg(E(u), m)E(v) — ou-v dx dt +/QQL2(T).U(T) dx
— [ evvoras+ /Q (for+io (V) h)-v
+pto(hom) div v dx df + /E govdSdr; (70a)

(ii) m(0, -) = mg and for all z € W'2(Q; R?) and at almost all time instances 7,

/S2AVm Vz+ (am(E(u) m, ) + am — % — /L()h)

+w-x,, (E(u), m)zdx = 0; (70b)
(iii) for all z € C'(Q) such that z(T, -) = 0,
/ (%/O(E(u), m, »)V-Vz + (1 (Ew), m, ) VE)) - Vz
0

(A5 EW), m, 9)Vm) - Vz - 19% _E z) dxd

=/z902(0) dx +/ qvz dx dt, (70¢)
Q b

where £ is from (64c);

(iv) forall z € C'(1; L2 R¥)) N C (15 L2, (2 RY)) such that z(T, ) = 0,

curl ,

curl ) )
/ CUL _ (htm)-5 — V-
0 Mo

7z — (divi)ymz dx dtr = /Q(ho—i-mo)-z(O, D dx; (70d)
(v) forall z € C(I; Leun 0(2; R?))
/Qh ~curlz — S (E(u), m, %)e-zdx dt = 0; (70e)
(vi) and eventually w from (i) and (ii) satisfies, for all z € LZ(Q; RL),
/ £(2) — w:(z—xg(E(w), m)E@@)— x,, (E(u), m)m) dx dt

2 / & (xg(E@), m)E@)+x,, (E(u), m)m) dx dr. (70f)
0
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For the justification of the particular terms coupling &, m, and u, see (35). Note
that (70d,e) arises from (64d,e) by the curl-formula (7) with general test functions
Leun 0(€2; R3) vanishing the boundary integrals.

We first state our main existence result. For this, we first summarize the assump-
tions. We use the abbreviation

H = (H,00) and o = (A, ). (71)

We then impose the following assumptions, formulated in terms of the transformed
data:

() = (-, 0) : R2>3xR3 - R* is continuously differentiable, and (72a)

sym

dCpeRe>0:¢(:)+ Cyl - |2 is convex (that is, so-called semiconvexity of ¢),

d(@) < Cp(1+[al®). ¢/ @] = Cy(1+[aP ). (72b)
By, (@) £ Cop(1+[al), (72¢)
¢(E,m) = e|m|*; (72d)
ICx. Co €R, k0.6 >0 ¥(q.9) e RIGXRIxR, £ e R :
Ho(@, D)EE = Kol (72¢)
| H0(a. )| £ Cog (141al%7 7+ 91377, (72f)
| (@, 9)| £ Cop V14D (712¢)
ICy < 00 ¥ (4. 9) ERJAXRIXR 1 |/(q,9)| £ Corv/1+¢(q)+0:  (72h)
¢ : RY — R* convex and positively homogeneous of degree 1; (721)
X Rg’yxn? xR — RF is bounded with x’ continuous and bounded; (72))
y : R — R* continuous, Je > 0VE e RT : (&) > ¢&; (72k)
0 >0, D,Dpp,C, Cyy symmetric positive definite; (721
S ngxn? xR3 — ]Rsyxng

continuous, bounded, (uniformly) positive definite; (72m)
fo e L*(I; LA (@ RY),  go € L*(I; LY (I'; RY)); (72n)
ug € W22(2: RY), vo € L2(92:; RY); (720)
mo € WH2(Q; RY), ho € L2, (92 R?); (72p)
020, qp=0, &(E(o),mo.00) €L (Q), gpelL (D) (72q)
hy € L Who @ RP) n whir; L2 (Q; RY)). (72r)

In fact, we will need (72) only for # = 0 in what follows. Note that (72f) ensures
integrability of #o(q, 9)V¥ if ¢ € LO(Q; Ry x RY), 9 € L¥?7¢(Q), and
VY e L/4¢ (0; R3). Note also that the additional assumptions (72¢) ensure that
om(q, ©) is in duality with m1, see (126) and (127) below.

In view of the definitions (62f-g), (71), and (72a), we can write (48) as

940, 7 (@,9)) = ¢ (@) + & (q, ), (73)
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that is,
oe(q, ?) = ¢e(q) + (g, D), (74a)
om(q, 9) = ¢y, (q) + (g, F). (74b)
The symmetry in (721) means that D : Rffﬁ — ]fonfl, = that is, Djji; = Djix,

and similarly [Dnprlijkimn = [Dhprlikjimn, While for Hhyper we need [Chprli jkimn =
[Chprlikjimn = [Chprlimnijk

The following main result is a consequence of Lemma 1 together with Propo-
sition 1 below when taking into account that, due to the qualification (720) of ug,
the regularization uq,, with all properties required in Proposition 1, always exists.

Theorem 1. (Existence of a weak solution.) Let (72) hold. Then the transformed
system (64) with the initial/boundary conditions (31b-d,f,g) and (65) possesses a
weak solution (u, m, 9, h, e, ) according to the Definition 1 such that, in addition,

U oe L2(I; W22 (2 RY)™), (75a)
9 e LN(1; w32(Q)h), (75b)
he L2(I; L2y o(2 RY)"), (75¢)

and the total energy balance (46) with (51), as well as the electro-magneto-
mechanical energy balance (49) integrated over I, hold.

4. Proof of Theorem 1

We will prove Theorem 1 by several carefully assembled steps, merging and
modifying various techniques from [35,39,40], using [38] for particular sub-
systems.

(A) We modify the problem (64) by a suitable extension for ¥ < 0 and then
we build a semi-implicit time-discrete approximation of the modified prob-
lem. We use the equi-distant partition with the timestep T > 0. We still use
some auxiliary regularization by higher-order monotone terms of 7-growth to
compensate for the superlinear growth of the heat-source terms in (64c) and,
for n large enough, to ensure coercivity at each particular time step and to
put all non-monotone terms in the position of lower-order terms. For 7 large
enough, we prove existence of a solution to (77) by the theory of set-valued
pseudomonotone coercive operators with the set-valued part having a convex
potential.

(B) We show non-negativity of the approximated temperature z?f = 0.

(C) We perform the physically relevant a priori estimates, that is “real” energy
bounds, see (102a-f).

(D) Using the L'-theory for the heat equation together with a Gagliardo—
Nirenberg interpolation made simultaneously for the thermal and the magneto-
mechanical parts, we derive estimate on the temperature gradient, see (102g).

(E) We let T — 0 and we show, in particular, strong convergence of all quantities
involved in dissipation & from (64c); it is important to do these simultaneously
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to benefit from cancellation, especially of the magnetostrictive terms, see
(136). Intimately related, we use (and also prove) energy conservation for
which rates of u, m, and h have to be proved sufficiently regular.

The steps (A)—(B) are executed in Lemma 1, while (C)-(D) are executed in
Lemma 2, and eventually (E) is executed in Lemma 3 and Proposition 1.

In our proofs, positive constants dependent only on the data will be denoted
by C. When two or more constants appear in the same formula, they will be denoted
by a progressive integer subscript (Cq, C», etc.).

To perform Step (A), we define

1 kt 1 kt

f== / got, ) de, iy == / Jo(t, ) dt, (76)
T Jk=1t T Jk—1)t

and similarly hb . gr and qg .- It is important that this construction, based on a

linear operator, inherits (50), that is, n x h r = ]b . in fact, hb ; 18 used later

only in (83) and in the proof of Lemma 2 but not in (77)—(79). Then we use the

recursive formula for the six-tuple (u m ﬁf, e;, hk ’r‘) solving the system

k k—1 k=2
0 uy—=2u7 ui

- - div(s’; — div H’;) = £5 — po(VA) Tm* with
k—1

k
u-.—u _ _
sk .= aE<q’;,z9’<>+DE(—f - ) + xg(@E DTk + T E@H)"?E@), and

o _thrVE( ) Chpr VE@)+7| VE@X) " 2VE W), (77a)
k k—1 k—1
mz—mz mr m —mz k k k
o . y(|mk|) " — AAmy + o (97, 07)
+x0 (@D Tk — poh® + tjmk 7 =2mk :rdiv(|Vm’;|’7—2)Vm’;), (77b)
ok _ k=1 ] qk 1
—div( oGk, 2HVIE + o (@, 9DVl ) =¢ (x @b H )
k_ k=1 k_ k-1
rr e kel 4 (10 DB (M) (M)
k k—1 k k—1
Uz —uz )Z Ur—uz
+Dipr VE - vE( : )
k k—1
+(1—“/7?)a‘m’—‘ + o (qk, o) #, (77¢)
h’;—hlé_l n curler =Vm1; u’i—u'é 1 _ mlé—mlé 1 —i—divu];_u];_lm];, (77d)
T o T T T
k k kN k kyn—2 k
curl b7 — L (qy, 07) e = tleg|" “ef, (77e)
of € 3¢ (x' (@ (et —at™h) (77f)

fork=1,..., K; := T/t, starting from k = 1 by using
u® =ugr, u7t = ug—tvo, md=mog r, 90 =E(Euo), mo, 6o), h°=ho, (78)

completed with the corresponding regularized boundary conditions.
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uk k=1 / -
(oeat. ) + DE(T——) + x(@h) "ok + TIEGd) " E )

—div H’;).v — divs (HE ) — o -mbyv = gk, (79a)
Hﬁ:(n@n) =0 with

B uk_ukfl
HY = (Chpr + I VE@)|7"?) VE@¥) + Dipr VE(=——),  (79b)
9 k
(1+ z|Vm’;|"*2Vm§)% —0, (79¢)
30 dE (uk)
Ho(Wg, D) 5 + A (g, 90)— =+ Ha(dy, O ) =gy, (79d)
nxht=ji.. (79)

Note that in (78) we use regularized initial conditions for those quantities which
involve the -regularizing terms yielding L°°-estimates in time. For this, we assume

e W R, uo < llwono:re)

=o(t "), ug. — ugin WHA(Q; R?), (80a)
moc € WHHQ R, llmo.cllwino:rs)
=o(t™Y"), mor — moin WH(Q; R?). (80b)

Lemma 1. (Existence of solutions to (77).) Let (72) and (80) hold, and let the
regularization exponent n be sufficiently large, namely n > 8. Then the recursive
boundary-value problem (77)—(79) has a weak solution

ke w2n; RY), (81a)
mk e whn(Q; R?), (81b)
ok e W]’Z(Q) (81c)
h* e Cuﬂ T (Q: R, (81d)
kel (@R, (81e)
ke L@ RE), (81f)

such that 9% > 0 foranyk =1, ..., T/t.

Proof. We apply the abstract existence theorem for underlying set-valued nonlinear
pseudomonotone coercive operators sending the six-tuple (u, m, 9, h, e) from the
reflexive Banach space involved in (81a—e) to its dual.

To prove the coercivity of this operator resulting from (77)—(79), the particular
equations (77a—e) in the weak formulation that also involve the respective boundary
conditions (79) have to be tested, respectively, by t_lulj, r_lm’T‘, ﬁf , hlé, and e’r‘ .f
inequalities. Let us briefly discuss the estimation of the non-monotone terms under
this test. On setting 04 = (og, 0j,,), and abbreviating E’; = E(uﬁ), we have by
(72b) and (72h)
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< ‘/Q(ﬁ;(q’;)-qﬁdx +'/Q%<q’;,z>‘f>-q$dx

< c+c/ |q’§|6*€dx+0/ JokIgk dx
Q Q

‘/Q oq(qt. 0% - g dx

< kym
S C+ 5||ET ||L,7(Q;ngxn§)
k k2
+8”mr ”2?7(52;]1%3) + 8”‘0'5 ||L2(Q) (82)
where the last inequality requires n = 6.
k ko k-1
The gyroscopic term vanishes, that is, % x T -mk = 0, due to the

orthogonality of m* x (m*—m*=1) and m*.
The mentioned test of the Maxwell equations (77d) by h’; and (77e) by elr‘ uses
g;l'r]l(Q; R3) and e = €f €
Lgl’lf] ($2; R?), with the arising boundary term also counting (79e), and then uses
the estimate

the “curl-cancellation” property (7) with h = h’; elL

/F(nxh’;)-e’; ds = /Fj{)"r-elé ds =/Qe];-curlh’g’r — hy -curl ek dx

k k
= 2||hb,r||L§url @R ller ||L§url (:R3)

k k
< Cyllif ez, @iy lebll 02 oy (83)

Next, we use the cancellation of =7 ! m’; ‘hli in (77b) and (77d), and the cancellation
(35) of the magnetostrictive terms in (77a) and (77d), that is,

/Q ((div ukymk 4 Vm];u’lé)hlé dx
= /F (m*-h*y (uk 0y ds — /Q (Vi) Tmkuk dx, (84)

see also (35), while the remaining right-hand side terms in (77d) can be estimated

as
'/ (meuf_l + (div uﬁ_l)mﬁ)h’; dx
Q

—1.2n/2n—2—
< Golluk =PRI L s vmk )

k
LOO(Q;R3) ) + 8”h

o qumey (89

n
wln(Q;R3

and then absorbed in the left-hand side, provided n > 2.

Altogether, counting the positive-definiteness assumptions (72b,d,e) and the
regularizing terms of n-growth in (77a,b,e), the coercive left-hand side terms are
of the type

2
Juz ||L2(Q;R3) + [[Ef ||7‘7/{/1J](Q;Rs’;<n?) + [t ”ZVM(Q;R%

O Boaiy + 1 g + 1k gz o
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This dominates the growth of the remaining non-monotone terms on the right-hand
side of the heat equation (77c). Moreover, from (77d) we can see that

k
||cur1 [ ”LZ(Q;R3)

0 | Vmt u’é—u];_l + divu];_u];_lmk - m];_m];_l - h];_hk_l
T T T T T T L2(Q:RY)
2
< C(l + H“IE ”%V'-Q(Q;IR@) + Hm’é Hlez(Q;H@) + ”hlé HLZ(Q:R3))’ &7

while from (77¢), for n 2 2, we can also see that
| curl A% ||L’I/(SZ;]R3) = [[zles]"%ef + 7 (d. 99 € ||L'7/(S2;]R3)
S sup |0 “elr{ HLn’(sz;R3) + T”e]; HE(IQ;RW (88)

so that we also control both ||curl e’§ 2 (q:r3) and [[curl h’; ||L'7’(£2;R3)’ and thus we
obtain coercivity on the spaces indicated in (81d,e), as well as ensuring validity of
the curl-cancellation formula (7).

Further, one can estimate the .# -term by using Holder’s inequality for three
factors with exponents 4, 1, and 2 and by using (72g)

[k obvaivotas
Q

§/QC%,/1+|19§I|Vq1§||Vz?f|dx§/C;g(l—i— |19§|)|Vq’;||vl9§|dx

+6[Ex

< Contd |04 72t VEX T o manansy +8 ] VO£ |20

(89)

L(Q; R3><3)

with § > O arbitrarily small and some Cs , depending on 7 and §; here we needed
that n > 4. The heat sources with quadratic growth can be estimated as

/Q (DEX:EX + D VEXVES ) 9% dx

= Csn+38 ” E]; ”zrz(g;ngxn?)
/ozlmlﬂzz?f dx
Q

[k obreket)okax
Q

+ 8| VE Ly + 8196 [ agy OO)

< Coy 4 3| ey + 01 9 agye amd D)

< Coy + 8L+ 319E 12y 92

Here, again, we used that n > 4. Also, because of the boundedness assumption
(72j), we have the estimate

/Q (x(qf,ﬁ’w &) dr < /|><<qf,vs*">||“"_qr d

= Cho + 81BN, gpaes) +81ME g

93)
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By (72h), the o/-term in (77¢) can be estimated as

[ Ak ot dbotan
Q

gcA/Q 1+ ¢ (qh) + [9¥]1g5 9% dx

3
<Cy (1+/Q\/¢<q’;>|q’;||ﬁf|dx+/Q|ﬁf|2|q’;|dx)

' 3
< CA+CAC¢/Q g% 14195 dx +CA/Q 19121q%] dx

< Cop +8Im N} ., + SIELN |+ 3lof (94)

Ln(S;R3 LVI(Q;]RS;;S L2(Q)’
provided that n > 8.

The mentioned test of (77f) in the weak formulation, that is,
tw) — k(v — X' @ HE@E—) Z e (@Dt -ah).  ©5)
by v = 0 gives

COx (@D —ay ) S X0y DBy + (e Delfmy

X (@ HoF B — 4 (@ ok mk !

. (90)
with the last two terms being bounded in L®($2), since a)’; e L®(Q:; RL). The
pseudomonotonicity of the full operator is obvious because all non-monotone terms
are of a lower order, with the exception of the Z-term in (77c). This term is,
however, linear in Vq];, hence weakly continuous. Then the claimed existence
follows standardly by the theory of pseudomonotone operators using the classical
Brézis theorem [10] generalized for set-valued mappings having a convex potential,
see for example [37, Sect. 5.3]; in fact, this is a very special case of the general
set-valued pseudomonotone operators merging only standard concepts from convex
analysis and single-valued monotone and compact mappings. Here it is important
that we have made a semi-implicit discretisation so that the nonsmooth part has a
potential q — {(x’(q’;")(q—qlg’])), which is indeed convex.

Eventually, one can test (77c) by (z?f)_, which yields z?f 2 0. For this, we can
realize that, for the moment, we can define <7 (q, ) = 0 for ¥ < 0, and then find
that this possible re-definition is, in fact, irrelevant for this particular solution. O

Let us define the piecewise affine interpolants u, and ¥, by

t—(k—Drt kt —t
( )uf-i-

u(t) = uk=t forr € [(k—D)t, kt],  (97)

with & = 0,..., K; := T/t. We also define the backward piecewise constant
interpolant i, and u, by

i (1) = uk, forr € (k—1)t, k], k=1,..., Ky, (98)
u, () =u"l fort e [(k—1)t, k), k=1,..., K;. (99)
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Similarly, we define m¢, mo, m_, Oz, Or, g1, fzb,T, etc. We will also need the piece-

wise affine interpolant of the (piecewise constant) velocity dé‘f , which we denote

by [%c]', that is,

o i t—(k—Dr. kt—t.
[i]' @) == MMr(kl') + = uc(kt—7) fort e ((k—1)7, kt].
T T
(100)
N hat i = 2[i.]'is pi i ith the val wy—2uy ™ uk—?
ote that u; = E[“f] 1s piecewise constant with the values =——>—"— on

the particular subintervals ((k—1)7, k7).

In terms of these interpolants, we can write the approximate system (77) in a
more “condensed” form closer to the desired continuous system (64) as treated in
the weak formulation (70):

oil}, — div(aE(af, 9¢) + DE(iir) + xg(a,) @ + t|E(ir)|"*Eir)

—div (Copr VE(iir) + Dipr VE i) + 7| VE() " 2 VE (o)) )

= fr — no(Vhe) i, (101a)
iy XM _ - _
T~ 4 — AAm¢ + Um(CIr, Ur) + X;;z(qr)—rwr
v (|m<|) -
—1tohe + Tl |7, = tdiv(| Vi [T Vi), (101b)

B —div(Ho(Fr. D) Ve + H (Fe. D2)' Vi) = £ (xE(@,)E i) +x7,(a,)rite))

_ - - _ T . .
+7(qx, 0r)et'er+(1 — %)DE("H):E(W()
. . . T . - Q °
Dage VEGie VE Gy + (1 — 0 b + /e, o). (101¢)
. . curl e; _ . e -
he +m¢ + = —Vmyu; — (divuy)mq, (1014d)
Mo
curl iy — .7 Ge, Or)er = 1ler | %e,, (101e)
wr € BC(X’E(QT)E(ﬁr)+x,§1(gr)ﬁ1r)) (1011)

with the corresponding initial and boundary conditions.

Lemma 2. (A priori estimates.) Let the assumptions of Lemma 1 and (80) hold.
Then, there exists T) > 0 such that, for sufficiently small 0 < T < 1, it holds:

Huf”W'-°°(1;L2(Q;R3))DWL2(1;WZ«Z(Q;R3)) =C, (102a)
e HLoo(l;WLZ(Q;R%)mWLZ(I;LZ(Q;R3)) =G, (102b)
19l Lo 101 =€ (102¢)
17 ] et 2@y = € (102d)
e ||L2(Q;R3) =G, (102e)
|@e] e ggimry = C (102f)
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Vol vinma < Cr with r <5/4, (102g)
L"(Q:Rd)
Uy Loo (W@ RI3y) = T~
[E@ | 1 romrnmyy = €77 (102h)
HmT”LOO(l;Wl,n(Q;H@)) = CT_IM, (1021)
”eT ”LU(Q;]R3) <co ', (102j)

with some C and C, independent of t.

k_ k—1
Proof. We test the particular equations/inclusion of (77), respectively, by %,

k k—1
%, é, hk h{; o e’;, and 0. We use the semiconvexity of ¢, and hence the

convexity of the functional
DE:E + a|m |2
27
for sufficiently small 7, namely for r < (ming|=; (DE E+ajm |2)/(4C¢))2 with

Cy from (72b) if Cy > 0. Then, estimating jointly (77a) and (77b) we have a
discrete chain rule at our disposal:

k k—1 uk k—1

(£ @) + DE(=—"—) + IEGh" Ewh) ) E(=——)

qa=(E,m — ¢+ IEI" nlml”

k k—1 k k—1
mi—m _ mi—mf
(08 + o) k) P

= (6k(a) + —=DEW) + r|E<u’;>|"*2E<u">) E(

JT
’ ok 1 k k-2, k m’? mk
+(¢m(qt)+ﬁamt+f|m,| mr)f
1 uk k M —1 uk_uk—l
—ﬁDE(uﬁ‘l):E(%)+(l VTDE(- )E(=——)
1 k_ k 1 k 1
—ﬁamlfl Me=Me + (1— \/_)a‘ T M )
1 DE(uk):E(uk)+a|m R T
z—(¢<q’;>+ d Nf? g +E|E<u’;)|"+5|m’;|"
DE@A1:E@*1) + ajm*—112 < T
k—1 T T T k—1 k—1
— — — ZIE n_ - 1
¢y ) NG nl (uz ) lm7 I)
1 k__ . k—1 k__ . k—1 k_ . k—1
_71@5(”':1);5(%)+(1—ﬁ)DE(”f ()
1 k. k—1 k__ k=1 o
et P o
=¢(q’;)—¢(q’;—1>+ [Eo)l"=[E@g DI me|"—lm )"

T T T

JT u];’l u'i—u’fl m'é—mlfl 2
+(1—7)(ID)E( ):E( ) + o | ) (103)
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provided 7 is sufficiently small as already specified. Similarly, and even more sim-

ply, we use the convexity of the kinetic energy % |-|? and of VE %(ChprVEfVE +

%|VE|’7, and also of Vim %|Vm|2. The gyroscopic term again vanishes, that is,
m’§ m’é 7m’§" m

y(mk)) T T

and m]; —m];_l. Therefore, this joint test of the magneto-mechanical part (77a) and

(77b) gives
(B - )
Q21 T T
+¢(q’;>—¢(q$—1> N A VmE P —n | Vmk=1 2
T

2T

k—1 k_ k-1 k_ k=1 o
mc—m

T ) a’TT‘E ‘)

+(1—%?) (]D)E(MI;_TMT )E(

k"= 0, now due to the orthogonality of m¥ x (mk—mk=1)

+ChprVE(u’;)EVE(u’;)—chprVE(u’;—l)EVE(u’;—l)

2T
k_ k=1 k_ k-1
D VE () ivE ()
T T
k_ k—1 k_ o k—1
u.—u m-.—m
+oA @k, POE (T + (e, o)

+|E<u’;)|'7—|E<u’;*‘)|'7 N IVE@X)|"—|VE@A=1) " N Im 71— |m% =t
n n n

k—1 k mk—l

k
_ ut—u _ mk—
+X|/5(q]§ I)Tw’;E(%)"'X;n(q]; I)Twﬁ'%

k_ k=1

=/ (ff—lto(Vh'i)Tmli)~uf—’
Q T

ko k—1 ko k=1
—HLoh];-wdx—i—/gf-%dS. (104)
T r T

In the Maxwell system, we test (77d) by h’; — hlﬁ,r and use the convexity of & —
Suolh|?, which yields

k2 k—1)2 k k—1 k k—1 k k—1
|hr| _lhf | mf_m'[ kur_ur : uf_uf k k
/QMOT + MO(— - Vm; ——— —div———m )~hf

T T T
+curl ek (hk—n*=1) dx
k—1 k k—1

WK —pk=1 gk k1 uk —yk— ut—u

S/ MO( T T + T T —mG T T —div== T mk)'hk dx

= T T b,t .
Q T T T T

Moreover, we test (77e) by elr‘, which gives

/Qy(q’;, O9)ekiek + tlek | — curl (hE—hf )-ef dx = 0. (106)
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The mentioned test of (77f) in the weak formulation, taking 0-homogeneity of d¢
into account, that is,

k 1 1

) - o (v — X' ) EI o) 2 o ()@ I qﬁ ). ao

for v = 0 gives

_ k=1 uk—uk_l
c(x/(q )Ulr q’ )éxé(q’i‘l)Ta)’;:E (—’ - )

k —
_ mi—m
+x gk I)Ta)’;-%. (108)

Then, we can sum (104), (105), (106), and (108), and again use the cancellation of
the magnetostrictive terms (84) and the curl-cancellation (7) now with the boundary
term vanishing, since n X (hli—h{;’ ;) = 0 on I'. The terms with wlr‘ , as well as

11—
the terms i%hi, mutually cancel. Thus, summing up over the time levels
I =1,...,k and using (45) and (73), we arrive at the following estimate for the
electro-magneto-mechanical energy

k
\/? Ml _ul—l . Lll _ul—l ml _ml—l 2
;/Sz(l—T)(DE(ftf JE(=— )—i—a‘ — ‘)

-1 1 -1

wp—uf ! Ur—uq I ogly,l. 0 !
+Dppr VE( . ):VE( . )+ LAy, Op)ey e + Tl ]
l 1 q
v (0 )+d(qpﬂ)+dx
k ”5_“15_1 k gk T ek T k Tk
o ik, fmh) + [ ZIE@DI + TIVEGA + Sk ax
k [ _pl—1 [ i-1
h!.—h m.—m
<z (/ +curlh € —{—,uo( D
I -1 i1 I -1
_sztu_divumg).hgrdﬁ/gg.uds)
T T ' r T

T
+¢(”017v07m017h0)+/ZlE(u()f)ln —IVE(MOT)|'7+ IMOTI"dx
Q
(109)

This is a discrete analog of (49)—(51) with the additional regularizing “n-terms”.

We still add the heat part (77¢) tested by % to see || z&‘f L1 (g)» but simultaneously
to keep (one half of) the dissipation terms in the left-hand side. We thus arrive at
the the following estimate:
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k k—1
u.—u
q’(“i%mﬁh ) Hﬁk”Ll(Q)
k _ _ _
1 ﬁ I/tl _Ml 1 ul _ul 1 ml _ml 1.2
M) pE(Z=—== E(r = ‘ T T ‘
30 [ G (e e
1 -1 1 -1
— . — 1
=Dy VE(FE ) WE (2 )+ 5 e Oekel + Tl
T T
1 _ I __4-1
3o (@) 4 Dl ol ¢ dx

T T T
+/—|E<u’<)|"+—|VE(u">|”+—|m"|"dx+ /r|e’|"dx
en T oo T ; o

hl _hlf] ml _mlfl
th(/ +curlhbte +,u0(ftf + ftf
1,1 1_,l-1 I _l-1
vl t”f — dive T”f )hb,dx+/gg %q{”dS)

+® (or, vo, Moz, ho) + ||év(Euor), 60) HLl(Q)
T T T
+/ —|E(uor)|" + = |VE(uor)|" + —[moc|" dx. (110)
Q1 n n

To get the a priori estimates by the discrete Gronwall inequality, we must still treat
the hp-terms carefully. First, we use the by-part summation formula

h _hl ! k 1k 1 : -1
Ty hy = hthy  —hohy, —T Y T
=1 =1

hl _hlfl
b,t b, (111)

1 M=l hi)l -1 —hy
=T dx| = (14|Af || (QR3)||—[”L2(QR3)’

which needs hy, € W1 (I; Lz(Q, [R?)). The same treatment applies to the term
I _pl=1
%Jl{”. The other two hp-terms can be estimated by using (35) as

1 -1 l -1
up—u . Up—u
/(—ler T —div+——+ )h dx
Q T

and estimate | [, hl

:/Q(Vh{m)T dx—/(m B )T dS
< I/l
< | vh, ||L°°(Q R3)||m ”LZ(Q R3) T L2(Q:RY)
I/ll —u.
+||h£J,‘L’ ||L°°(F;R3) ”m{f ||L2(F;R3) T - L2(I':R3)
1 I/Ll _ul—l 2 5
= 1 £ - £ LR ||Vh£J,r||L°°(Q;R3)”mlr ||L2(F;R3)
ul _ul—l 2 2 5
+4 %‘ LR + %”hb,r”Lm(I‘;R%”mlt ||L2(F;R3)’
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11u _ul L2 1 1 2 1 !
= ZH# ) EHV}Z"’THLWQ;R})/sz¢(E(ut)’ e
ub —ul=12 2
: rr ‘LZ(F;RS)—FEH b,rHL°<>(1“;]R3)||V"11r |‘L2(Q?R3X3)
N? 2
+E”hlln,r||L00(1";R3)/Q‘i’(E(ult)’mlr)dx’ (112)

where ¢ comes from (72d) and N is the norm of the trace operator m +— m|r :
wl2(Q) — L%). All the terms on the right-hand side can be treated by
the discrete Gronwall inequality except the third term, which can be absorbed
in the left-hand side of (110) if § > 0 is chosen sufficiently small, depending on
the positive-definiteness of ID.

The .o/ -term in (1 10) can be estimated as

/qu,ﬂ)q’ -

|t oh fodr

T

A

LZ(Q‘R3X3+3) L2(Q.R3><3+3)

qr_qr ‘

A

3 (113)
where C . is from (72h), and then treated again by the discrete Gronwall inequality
after absorbing the last term in the left-hand side of (110), if § > 0 is chosen
sufficiently small depending on the positive-definiteness of ID and on A.

In this way, we obtain all the estimates (102) except (102f) and (102g).

As for (102f), it follows simply from boundedness of 3¢ C RE.

To obtain (102g), we define @ (¥) = ((149)t—2 — 1)/(e—1) and test (77c)
by @’ (9F). Note that @ (0) = 0 and is convex, and thus @ (#%) — & (94~1) <
(0% — 95N’ (95). Using this, after summation of (77¢) tested by @’ (1) for
k=1,...,T/t, we obtain

V_ 2
0€ L dx dt
o (1+ﬂr)1+€

=K()/ @ (97)| VO, |* dx dt
0

I l
—C 1+/¢(E(ur) mr)+l9 dx) +5‘ LZ(Q;R3X3+3)’

< /Q o (D) Ko (s Do)V, Ve dx di

= /Q H0@r. 90) VOV (9;) dx dt

< /Q Ho@@r. Do) VD,V (9;) dx dr + /Q @ (9 (T, -)) dx
g/Qw(z?o)dm/qu,fw’(&f)der

+/ Few'(07) — H (e, D:) V-V (97) dx dt
0
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é ||6(E(u0)’ m()’ 00) || LI(Q)+ ||éb,1’ ”LI ():) + ||ff “ LI(Q)

eTC? IV |?
+ +88C~/.—dxdt, 114
45 7 Jo () THe (1

where «q is from (72¢), and where we abbreviated the heat sources

)

Foo= L) + (1— DE (1t ):E (it ) + Dipe VE (i) VE (i)
T . o= _ = e
+(1_\/7_)05|mr|2 + L (Ar, Or)er-er + F (Gr, V0)iqr. (115)
In the last line of (114), C is from the already proved estimate (102a) and we have

used that @ (%) < ¥ =: ¢(E(uo), mo, 0o), and that always 0 < @’ < 1, as well
as

/ H Gz, 00)Vi:-Voo' (9;) dx dt
0

dx dr

/ _ K ([, V) ® VO,
=¢ | Vg;: =—
[0} (1 +ﬁr) +e
| (e, 90> [V )?
14+9;  (14+0,)1+e
1 Vo, |2
§e/ —|vqf|2+acf|_—’| x
048 (14+0,) 1+

1
< —|Va. > +8
_S/Q45| a1+
dt, (116)

with C  from (72g). From the already obtained estimates, we can see that
the dissipative-heat terms (included Joule heat) on the right-hand side of the
heat equation (10lc) are bounded in L'(Q). As [, ¢(E@l), mb)+9!dx is
shown bounded uniformly in time, from (72h) we have .27 (g, ) bounded in
L%(I; L*(Q; R3313)) so that the adiabatic heat <7 (g;, U;):q; is bounded, in
fact, not only in L!(Q) but also in L>(I; L3/2(Q)). Altogether, 7, from (115) is
bounded in L' (Q).

Next, we choose § < ko/C 4 to absorb the last term in (114) in its first term.
Then the usual Gagliardo—Nirenberg interpolation with the already obtained esti-
mate (102c¢) yields (102g); we refer to [7,8] or to [37, 2nd edn, Sect. 9.4] for details.
O

Remark 7. (Discrete energy balance.) Adding the heat part (77c) tested by 1 to
(109), we could see the cancellation of the dissipative-heat and the adiabatic terms
and would have arrived at the the following estimate for the total energy:

uk—yk=1
(D(MI;’ %mﬁhﬁ) + ||17$||L1(Q)

k
T T T
+/—IE(uk)|’7+—|VE(uk)|"+—|mk|"dx+ /t|e1|”dx
en T ! no " ;Q !
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k I 0—1 [ _pl—1
u' —u ht —h m:—m
§T E (\/Qf‘g% +Curlh£3,r'e£:+ll“0( T TT + T T
=1

1 -1
] U U

I i-1 I l-1
Uy —u uy—u
—Vm} —div—= tr ml,)~h{,’r dx—l—/rgl,'%“‘%lm dS)

T
+®(uor, vo, mor, ho) + || &y (Ewor), 00) 11 g

T T T
+/ —|E@oo)|" + —IVE(uoo)|" + —|mo|" dx. (117)
Qn n n

This imitates the energy balance (46), here with the regularizing terms added
and again combined with (51). Note that here, to have the mentioned can-
cellation of the dissipative terms, we benefit from having carefully designed
(77¢) with the suitable coefficient 1—./7/2 in front of some dissipative-heat
terms.

Remark 8. (Estimates in electrically isolated specimens.) The estimate (117) is
usually a point of departure to obtaining estimates ® (i, itr, mi, hy) € L(I)
and ¥, € L°(I; L'()), while the rest of (102) is obtained only afterwards by
executing (110) with the already obtained estimates; this allows for sophisticated
repeated Gagliardo—Nirenberg interpolation and weakening of the growth hypothe-
ses on 7. In this way, the adiabatic heat <7 (q, ¥):q would be optimally controlled
only in L} (Q), instead of its sub-optimal estimate L%(I; L3/*(Q)) obtained by the
used technique above. This would, indeed, be possible here if h, were zero (hence

the body would be electrically isolated). Yet, in the general case, (112) combined
i1
with (117) does not yield an estimate because % is not controlled if there is

no dissipation in the left-hand side of (117).

Lemma 3. (Further estimates.) Under the assumptions of Lemmas 1 and 2, for
some constant C independent of T, it also holds that

oo <C 118
o~ LA W2(QR) LY (W2 (@R — e
ngi, — div(|E(iir)|"*E(iiy))
di 2 VE(i n72vE ~ < C, 118b
+7div (| (ug)| (MT)) L2(1: W22 (u:R3)%) — ( )

”7-.9T ”LI(I;W3'2(Q)*) é Ca (IISC)
Jeurl by + e " %ec | 1o g3y < C (118d)
||l:lt ”Lz(l;l‘gurl.O(Q;Rz)*) g C. (1186)

From this, we see that an expression like a — divw + divzh in the “dual” norm in
(118b) refers to the linear functional
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7> /a~z+w:E(z)+thE(z)dxdt
0

+/ ((w+div §)-v + div:(hv) — (divsv)(h:(v®v)))-z
)
—(h:(v®v))-§—i dsdr. (119)

Proof of Lemma 3. These “dual” estimates ((118)a—c) can be obtained routinely
as a consequence of the previously derived ones. In particular, in view of (119) and
(101a), the estimate (118b) turns into the estimate for

sup /Q (0E@r. 90) + DEGio) + xg(@,) " @) :E(v)

il 2 w22 @r3) <1
+(Chpr VE(ii7) + Dipr VE i) ) :VE (v)

+(,uo(VhT)TmT —f,)-vdxdt+/ gr-vdSdr
b))

= sup /; (O'E(Elr’ ;,‘E) + DE(ut,) + X{;(ﬂr)Td)r):E(v)

ol 2 w22 @r3y)< 1

+(Chpr VE (i) + Dipe VE (1)) : VE(v)
—po((divvym, + Vi v)-he — frvdxde

-l-/ 8-V + po(m-h)(v-n)dSde, (120)
z

where (35) has been used with v in place of u. Similarly, the estimate (118c) is
required to bound

sup / (t%/()(alr» ﬁt)v{% + # (Gr, 5r)fvﬁr)'Vv —rrv dx dt,
‘Ivlle(l;W3»2(Q;R3))§l o

(121)

with 7; from (115). Using (102a-g), boundedness of both (120) and (121) then
becomes obvious. Due to the assumptions (72b) and (72h), we have, for instance:

/ oe(@r, ¥7) : E(v)dx dr
]
g ”UE (E]r, ﬂ‘[)”Lz(I;L(’/S(Q;RE;;?)) ”E(U)HLZ(I;LG(Q;RS';;?))’
where
lloe (@, l_?r)”Lz(I;Lﬁ/s) < C(l + ”r;lI;”Lw(l;LG(Q;R%)

—k 3k
+||E.[ ”L"O(I;L(’(Q;Rg;(n‘?)) + ”0r “LOO(I;L'(Q)))’
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which is bounded because of (102a), (102¢), and (102c). All other terms on the
right-hand side of (120) can be estimated in the same manner. Notice that the term

/Q(Vrh, v)he dxdr < C|Vite|| oy 2 0imie))

x| e ’|L°¢(1;L2(Q;R3X3)) v ||L2(1;L00(Q;R3))

can also be estimated as

/Q(div Vitghe dx dt < C e | oo o iimsy)

X ||E, ||Loo(1;L2(Q;R3x3)) ||div v ||L2(1;L6(Q;R3))'

As to (118d), it follows from (77e) that the equation curl hy + 1)e.|" %6, =
-, ¥;)é,; holds in the sense of distributions, where the right-hand side has
already been shown to be bounded in LZ(Q; R3).

Using (77d), the norm in estimate (118e) means

”hf H L2(I;L2 | (;R3)*)

curl ,0

= sup (l.zr,v)

””“L2<1;L§url.0(9;R3>>§1

. .. . _ curle; .

= sup <erur+(d1vur)mr+ +my, v>

”vHLz(I:Lgurlv()(Q;R3)>§1 Ko

. . - . ercurl v

= sup /(Vﬁz,ut—f—(divur)mr—i-m,)-v—f— ! dxdr, (122)

vl 2.2 R3 9]
LAILG g (@R N1

and then (118e) follows by knowing already that Vi i, € L*(Q;R>) since
Vit € L®; L2(Q2, R33)) and i1, € L2(I; L (2, R?)), and that (divii;)m, €
L?*(Q; R3) since divit; € L2(I; L%()) and i, € L°(I; L%(Q, R?)), and that
my; € LZ(Q; R3), and also that e; € LZ(Q; R3). Note that in the last equal-
ity in (122) the boundary term vanishes due to the assumed boundary condition
vxv=0. O

Proposition 1 (Convergence for t — 0.). Let (72) hold and let 1 as used in (77)
be sufficiently large as specified in Lemma 1; also, let (80) hold. Then there is a
subsequence such that

u; — u strongly in Wh2(I; W>2(Q2; R?)), (123a)
my — m strongly in W52(I; Wh2(Q: R?)), (123b)
U — O strongly in L*(Q) withany s < 5/3, (123¢)
er — e strongly in LZ(Q; R3), (1234d)
he — h weakly*in L®(I; L*(S2:; R?)), (123e)

oy — w weakly* in L°(Q; RD), (123f)
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and, moreover,

hie—hv — h—hy weaklyin L' (I L3} (2 RY), and ~ (123g)

curl iy + tle.|Y 2e; — curlh weakly in L>(Q; R3*3). (123h)

Any (u, m, v, h, e, w) obtained in this way is a weak solution to the system (64) with
boundary/initial conditions (31b-d.f,g) and (65), which also preserves the energies
as claimed in Theorem 1.

Proof. For lucidity, we divide the proof into 6 steps.

Step 1. Convergence in the semilinear mechanical/magnetic/electro part. We select
a weakly* converging subsequence with respect to the norms from the estimates
(102a-f) and (118). Moreover, Aubin-Lions’ theorem based on (102g) and (118c)
interpolated with the estimate (102c) gives the strong convergence (123c).

The equations (64a,b,d,e) are obviously semilinear, and therefore the weak
convergence is sufficient to obtain them in the limit from the corresponding equa-
tions (101a,b,d,e). To this goal, we again use Aubin-Lions’ theorem to get, with
(123c), both g; — q and 9. —q strongly to pass through the nonlinearities
(e, V1), X/(ﬂr)’ and .%; (q, ;) fori =0, 1, 2.

The quasilinear regularizing terms in (101a,b,e) vanish during the limit passage.
This can be seen from the estimates (102h-j), for example,

| /Q o[BG " 2E (@) Ew) dx de| £ TIEGON], | goen) IE®) oo

< CtME@)IILr(girixy — 0 (124)

for any smooth v with C from (102h), similarly for 7|VE(ii;)|"">VE(ii;), and
also for the terms |m |2, , T|Viig |72 Vi, and t|é; |7~ 2é; in (101b,e). Thus
(64a,b,d,e) in their weak formulation, that is, (70a,b,d,e), has been proved.

Step 2. Passage to the limit in the variational inequality (101f). Writing (101f) in
the weak form like (70f), we obtain

/Q £2) — e (2= (0 EGie)— 1y () dix dr

iéC(Xé(ﬂr)E(’;‘r)"'Xy/n(ﬂr)’hr)dth- (125)

The convergence w.: Xé(ﬂf)E(ﬁr) weakly in L2(Q; RL) is by using the Aubin-
Lions theorem, which also gives strong convergence of E(i1;) due to the con-
cept of viscous hyperstresses that we have used. For the convergence of the
right-hand-side term, we use (strongxweak)-lower semicontinuity of (g, q)
E(Xé(q)E(d)+X,/" (q)m), relying on convexity and non-negativity of ¢, see [18,
Sect. 4.3, Thm.4.4]. Thus the only difficult term is - x;, (ﬂt)n'ar for which we can
get only a limsup-estimate.
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To this goal, we choose z = m; as the test function in (77b). By the convergence
results established in Step 1, and by the weak-lower semicontinuity of the L? norm
we obtain

lim sup/ O X (C|T)n'1t dx dr
0 q

7—0

= lim sup/ (X (qT)TJ),).n}t dx dt
o fmd

=0

. 7;11— Xn.’l-[ - _ - _ 2 - . .
= lim sup ( - + pohy — om(Ge, O7) — Tlm|" iy — am,)mr
=0 JQ y(Im<|)

—(AVitt e +T| Vi |72 Vit ): Vi, dx dt

< lim sup/ (uofzr — 0 (Ge, O7) — om'lr)w'zf dx dr
0

t—0

.. A 2
—llmmf/ —|er(T, ~)| dx
Q2

70

A T T
+1lim [ Z|Vm(0, -)|2 + — 1m0, )|+ =|Vm, (0, -)|" dx
=0 /g 2 n n
§/(u0h—om(q, z9)—om'1)-n'1dxdt
0

A 2 A 2
—/ z|Vm(T, 9| —§|Vm(0, )| dx, (126)
Q

where the usual gyroscopic-term cancellation and (80b) have been used.

By (123a), (123b), and (123c), we have that, in particular, ¢ = (E(u), m) €
L®(1; LS(2; R¥3 x RY)) and 9 € L337¢(Q).

Moreover, by (74b),

lom (g, D)l 1203 < ||¢;”(q)||L2(Q;R3) T 1A, Dll2om
é C (l + |||q|3||L2(Q;R3) =+ || ¢(q)”L2(Q;R3)
IV lizgm)

1/2
= C (14 lalsgups) + 190 gzn) - (127)

It follows from (64b) with (72k) and (127) that Am € L2(Q;R3); note
that |m/y(jm|)] < 1/ with ¢ > 0 from (72k). Moreover, since m €
L2(1; Wh2(Q: R3) N Wh2(1; L2(©2; R3)), the function I 3 ¢ — Vm(t,-) €
L?(2; R¥3) is weakly continuous. Thus, the following by-parts integration for-
mula holds:

A 2 A 2 .
/—\Vm(T, )T = Z|vm(, )| dx:/ AAm-m dx dr. (128)
Q2 2 0
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Combining (126), (128), and (70b) we obtain

lim sup/ O Xy (qr)n:tr dx dt
0 q

=0

< / (,uoh —opm(q, ) — (xm)m + AAm-m dx dt
0

= / w-x), (q)m dx dt. (129)
0

Taking the limsup/liminf of both sides of (125) and using (129), we arrive at (70f).
Step 3. Mechanical/magnetic energy preservation (49) with (51). We test the
mechanical/magnetic/electro part (64a,b,d,e), respectively, by u, m,h, and e. We
use (132) and (134) to make the by-part integration. Here (128) and the last equality
in (129) are used once more. From the estimate (118b), it follows that

oii'y — vdiv(|E(ir) " *E i)
+rdiv(|VE(i,)|" *VE(it,))—~ ¢ eL*(I; WH2(2; RH)). (130)
Testing both sides of (101a) by a smooth test function w with compact support

in Q, passing to the limit, and using the convergence to zero of the regularizing
n-terms, we obtain:

(¢, w) = lim oit - — t|E(ii,) " 2Eii;) : E(w)
T— Q

+r|VE(ﬁr)|”_2VE(ﬁ,)fVE(w)dxdt=/ ot -wdxdr.  (131)
0

This implies that { = i in the sense of distributions, and hence o1 is in duality
with u:

we LI, WP2(QRY) & ol € LP(I; W22 (2: RY)™). (132)
By (130) and (131), we have

T T
Qitr(T)=Qito+/ QiirthQﬁo+/ ¢dt = ou(T), (133)
0 0

where the weak convergence is in W22 (€2; R3)*. Moreover, it follows from (102a)
that o1, (T) is bounded in L2(Q; RY). Consequently, the weak convergence (133)
is actually in L%(Q2; R?).

Another important idea is that, although in general i, — hy; & L>(I; L
(2 R3)), see (123g), in the limit we have

2
curl ,0

h—hye L2 L2, o(Q:R3) and he L2(I; L2, o(2: RY),  (134)

curl ,0 curl ,0
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because we have already proved (70e). Hence, in the sense of distributions on Q,
we have curlh = . (q, ¥)e € LZ(Q; R3) and also vX(h—hy)|y = 0, which can
be seen by passing to the limit in the identity

/(vx(ﬁ,—ﬁb,t)).u det:/curl(hr )0 — (hy—hp 7 )-curl v dx dt,
= o

with t — 0for any smooth v by using (123e) and (123g), while the later information
in (134) is inherited by (118e), respectively.

The contribution of the w-terms arising from (70) with v = u and (70b) inte-
grated over [0, T'] with z = m can be treated as:

, . 9 9
o xe(@E@) + 0 x,,(9m = o —x(q) =¢ ( x(q)) (135)

Note that, by putting z = 0 into (70f), we get the inequality w:(xé(q)E(it) +
X (@) 2 £ (xE(@E@) + x,,(q)m), but we need the equality for (135). Here
we use that, having proved (70f), we already have proved that € L*°(Q; R)
belongs to 3¢ (xE(DE®@) + x,,())m) = 8{(%X(q)). The chain rule used in the
last equality in (135) holds in L*(Q) for any w belonging almost everywhere to
this set just due to the assumed degree-1 homogeneity of ¢; in fact, it holds if and
only if ¢ is degree-1 homogeneous.

Altogether, we arrive to the energy balance (49) integrated over / and employing
@ from (45), if (73) is also taken into account.
Step 4. Strong convergence of VE(it;) and m. and é.. Using (109) with k = T/t
and the abbreviation (45), we have

/ DE@):E@) + ]D)hprVE(zi):VE(li) +alm|® + Z(q, 9)e-edx dt
0
< limi(r)lf/ DE(it):E (i) + Dhpr VE (it ): VE (i)
T—> Q
+alm > + . @r. Dr)er-er dxde
< lim sup/ DE@i,):EGi,) + ]D)hprVE(l;t-[)IVE(l;lr)
0

7—0
talme|> + L (§r, Or)er-e; dx dt
< lim sup (D(uOr: Vo, Moz, hO) - (D(M'L’(T)v e (T), me(T), hr(T))

7—0
/ —|E(u0r)|” + —|V|5(M0r)|77 + - |m0r|”dx —/ gootir dS dt
D)
/ fette — ¢ (xg(EQuy), m)E@)+x,,(Ew,), m )m:) + curl hy ¢ -e;

‘|’,U«0(hf + m‘L’ - V”hr’;’r - (diVI:‘r)"_’lr)’hb,r G Br)x-lr dx dt
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< ®(uo, vo, mo, ho) — ®(u(T), u(T), m(T), h(T)) —/ g-udSds
)
+/ fu— ¢ (xg(E@), m)EQ@)+x,,(E(w), m)m) + curl hy-e
0

o (4 m — Vmii — (diviym)-hy, — <7 (q, 9):4 dx dr

=/ DE (it):E (1) + Dppr VE(@1):VE @) 4 a|m|* + 7 (q, 9)e-edx dt. (136)
0

For the first inequality in (136), we used that fQ Z(q, ®)e-edx dr < liminf,_
fQ <Az, O;)er-e; dx dt by using the strong convergence (qr, Or) — (q,9) in
L'(Q; R?) by Aubin-Lions theorem, along with continuity and positive semidefi-
niteness of ., see again [18, Sect. 4.3, Thm.4.4]. Later in (136), we used the weak
upper-semicontinuity of —® and of the term —¢(-). We also used (80). The last
equality in (136) was just proved in Step 3.

Altogether, we can see that equalities hold everywhere in (136). Denoting ¢ =
(E(u), VE(u), m, e), (136) can be written more “compactly” as

lim G(ﬁ,,ﬁf)érférdxdtz/ S(q, ¥)etedx dr, (137)
0 o

=0

with the shorthand notation &(q, ) := (D, Dy, al, (g, )). Then, with cg
denoting the positive-definiteness constant of S, we have

cg lim ler—e|? < limsup/Q6(5[,,19,)(6,—e)5(€r—e) dx dr

7—0

= lim sup/ S (e, D0)erer + S(fe, Up)ei(e—2¢,) dx dr
0

=0

=/ S(q, ¥)eie + S(q, ¥)e:(e—2e) dx dr = 0, (138)
0

where, successively, we used (137) and the continuity of the Nemytskil mapping
qr, 0:) > &y, ¥;)e into an L2(Q)—space, and eventually the weak conver-
gence ¢; — e in the respective L>(Q)-space. Obviously, (138) yields the strong
convergence e; — e, that is (123a,b,d).

Step 5. Limit passage in the heat equation (101c). Having proved the strong con-
vergence in Step 4, the right-hand side of (101c) converges strongly in L' (Q) and
this limit passage is then easy.

Step 6. Total energy preservation (46) with (51). Now that we have =
LY (I; W32(Q)*), see (118¢), and having realizes the already proved identity (64c),
which is in duality with the constant 1, we can perform this test rigorously and sum
it with the mechanical/magnetic energy balance already obtained in Step 3. O
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