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École Polytechnique de Montréal, Montreal, Quebec, Canada
† Dipartimento di Ingegneria Civile e Ingegneria Informatica,
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Abstract— In this paper, we investigate a class of large
population stochastic multi-agent systems where the agents
have linear stochastic dynamics and are coupled via their
measurement equations. Using the state aggregation technique,
we propose a distributed estimation and control algorithm that
combines the Kalman filtering for state estimation and the
linear-quadratic-Gaussian (LQG) feedback controller. More-
over, the stability analysis in terms of exponential boundedness
in the mean square is given for the proposed algorithm.

I. INTRODUCTION

In recent years, analysis and control design for large
population stochastic multi-agent systems have become an
active area in the study and control of complex systems [1]-
[6]. Many practical applications and examples of these
systems arise in engineering, biological, social and economic
fields [7]- [11].

In conventional control systems, control laws are con-
structed based upon the overall states of the plants. However,
in complex systems with many agents, each agent has a
self-governed but limited capability of sensing, decision-
making and communication. Therefore an important issue
is the development of decentralized solutions so that each
individual agent may implement a strategy based on its
local information together with statistical information on the
population of agents. Just as stabilization and optimization
are two fundamental issues for single-agent systems, for large
population stochastic multi-agent systems we are also con-
cerned with how to construct decentralized control laws that
preserve closed-loop system stability while optimizing the
performance of agents in a cooperative or non-cooperative
(the focus of this paper) context.

Agent to agent interaction during competitive decision-
making is usually due to the coupling in their dynamics or
cost functions. Specifically, the dynamic coupling is used to
specify an environment effect to the individual’s decision-
making generated by the population of other agents. While
each agent only receives a negligible influence from any
other given individual, the overall effect of the population
(i.e., the mass effect) is significant for each agent’s strategy
selection.

The state estimation problem has been a fundamental
and a challenging problem in theory and applications of

control systems. A new formulation of particle filters inspired
by the mean-field game theoretic framework of [3], was
presented in [12], [13]. Mean field based distributed multi-
agent decision-making with partial observation was studied
in [1], where the considered agents were weakly coupled
through both individual dynamics and costs. In this paper, we
study a somewhat dual situation whereby large populations
of partially observed stochastic agents, although a priori indi-
vidually independent, are coupled only via their observation
structure. More specifically, the “quality” of individual state
measurements is affected by certain statistics of the rest of
agent states, such as mean, variance, and in the most general
case, the instantaneous empirical distribution of these states.
It is the latter which in the limit of an infinite population is
referred to as the mean field.

Individual agent dynamics are assumed to be linear,
stochastic, with linear local state measurements, and in the
current paper, the measurements interaction model is as-
sumed to depend only on the empirical mean of agents states,
either in a purely additive manner or through the variance
of the local measurement. Each agent is associated with an
exponentially discounted individual quadratic cost function,
and we look for possible, mean field based, Nash equilibrium
inducing decentralized control laws as the number of agents
grows without bounds.

The study of such measurement-coupled systems is in-
spired by a variety of applications, for instance the communi-
cations model for power control in cellular telephone systems
[14], where the received signal of a given user at the base
station views all other incell user signals, as well as other cell
signals arriving at the base station, as interference or noise.
In general, the model is aimed at capturing various forms
of interference effects from the environment on individual
agent observations.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a system of n agents, each with scalar dynamics
where the evolution of the state component is described by

dzi = (azi + bui)dt+ σwdwi (1)

and the evolution of the measured output is given by either
of the following
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• Case (a):

dyi = czidt+ (σv + h

 1

n

n∑
j=1

zj

)dvi (2)

• Case (b):

dyi = (czi + h

 1

n

n∑
j=1

zj

)dt+ σvdvi (3)

for t ≥ 0 and 1 ≤ i ≤ n, where zi(t), ui(t), yi(t) ∈ R
are the state, the control input and the measured output
of the ith agent, respectively. {wi, vi, 1 ≤ i ≤ n} denotes a
sequence of 2n mutually independent standard scalar Wiener
processes. The Gaussian initial conditions zi(0) are mutually
independent and are also independent of {wi, vi, 1 ≤ i ≤ n}.
Moreover, σv is a positive scalar number, and b, c, h > 0.

The problem to be considered is stated as follows.
Problem1: Design coupled distributed estimation and control
strategies based on a feedback control of the form

ui(t) = −fẑi(t) (4)

where f > 0 and ẑi(t) is an estimate of zi(t), such that each
agent’s individual cost function given by

Ji(ui) , E
∫ ∞
0

e−ρt(z2i + ru2i ) dt (5)

is optimized utilizing only its local information. Here it is
assumed that ρ, r > 0.

III. COUPLED DISTRIBUTED ESTIMATION AND
CONTROL ALGORITHM

We combine the Kalman filtering for state estimation and
the LQG feedback controller into a closed-loop dynamics
model. Noting the information constraints for the agents,
the Kalman filtering cannot be directly applied to the n
dimensional system. That is also because in our model there
is not a central optimizer which can access all other agent’s
outputs and then form the optimal estimate of the state vector.
However, for large n, as in the typical mean field analysis [3],
we shall assume in the first place that conditions are satisfied
so that controlled agents become asymptotically independent
(in large population limit), and furthermore the coupling term
(mass effect) described by

m(t) = h

 1

n

n∑
j=1

zj(t)

 (6)

for t ≥ 0 and 1 ≤ i ≤ n, is approximated by a
deterministic continuous function m∗(t) defined on [0,∞)
(to be determined later). It is implicitly predicated on the
assumption that the coupling in a stochastic process sense,
between agent states becomes sufficiently weak as n grows
without bounds, and furthermore, that the individual state
variance under state estimate feedback remains bounded,
so that by the law of large numbers the average in (6)
converges pointwise a.e. to its (deterministic) mean. This

leads to uncoupled measurement equations, and therefore
the optimal state estimation for zi would be given by the
standard scalar Kalman filtering. Now in the large but finite
population condition, it is expected that the Kalman filtering
structure will still produce a satisfactory estimate when
m(t) appears in the measurement equations (2) and (3) but
is approximated by m∗(t) when constructing the filtering
equation. Here we simply proceed by presuming m∗(t) as
a given deterministic function, and the detailed procedure
for obtaining this function will be given after the control
synthesis is described. In addition, we establish sufficient
conditions under which the variance of zi’s remains indeed
bounded. This justifies, after the fact, our initial deterministic
assumption.

A. LQG Feedback Controller

Consider only the dynamic model (1) (without measure-
ment equation (2) or (3)) and assume for the moment that
the state zi is completely observable. For minimization of
Ji defined by (5), the admissible control set is taken as
Ui = {ui|ui is adapted to the σ-algebra σ(zi(s), s ≤ t), and
Ji(ui) <∞}. The set Ui is nonempty due to controllability
of (1). Let f > 0 be the solution to the algebraic Riccati
equation

bf2 + (ρ− 2a)f − b

r
= 0 (7)

Moreover, if one assumes that E|zi(0)|2 < ∞ and β1 =
−a+ bf > 0, then the control law

ui(t) = −fzi(t) (8)

is stabilizing and further minimizes Ji(ui) for all ui ∈
Ui [15].

Assumption 1:
a− bf < 0 (9)

B. Kalman Filter

Now assume that zi’s are only partially observable and
consider either of the two measurement equations (2) or (3).
Approximating and replacing m(t) with the same assumed
deterministic function m∗(t) for all agents, the standard
(time-varying) Kalman filter would produce the optimal state
estimate using the following algorithm [15]- [16],

dẑi = (aẑi + bui)dt+K(t)(dyi − cẑidt) (10)
dP (t)

dt
= 2aP (t) +Q− c2R−1(t)P 2(t) (11)

K(t) = P (t)cR−1(t) (12)

where the process noise covariance matrice is Q = σ2
w and

the measurement noise covariance matrices are chosen as
Ra(t) = (σv + m∗(t))2 and Rb(t) = σ2

v for case (a) and
case (b), respectively. Additionally, the separation principle
holding, feedback of the state estimate in (8) would also
produce optimal performance.

Assumption 2: All agents have mutually independent
Gaussian initial conditions with Ezi(0) = ζ1 and Ez2i (0) =
ζ2 > 0 for all i, where ζ2 > ζ1

2.
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Remark 1: For agent i, the initial condition of the Riccati
equation (11) is V ar(zi(0)) which yields the corresponding
solution Pi(t). Under Assumption 2, V ar(zi(0)) = ζ2 −
ζ1

2 = ζ > 0 for all i, and therefore the same solution P (t)
is obtained for all agents.

C. State Aggregation

Assume m∗(t) ∈ Cb[0,∞) is given, where Cb[0,∞)
denotes the set of deterministic, bounded and continuous
functions on [0,∞). For the ith agent, after applying the
optimal control law (4), the closed loop equation is

dzi = (azi − bf ẑi)dt+ σwdwi (13)

Denoting z̄i(t) = Ezi(t) and taking expectation on both sides
of (13) gives

dz̄i
dt

= az̄i − bfEẑi (14)

with the initial condition z̄i|t=0 = Ezi(0) assumed and
shared by all agents. Also note that in the view of the
unbiasedness of the Kalman filter estimate, Eẑi = Ezi.
Moreover, the population average of means is defined as
z̄ , (1/n)

∑n
i=1 z̄i and is simply called the population mean.

If as assumed z̄ becomes deterministic as n goes to infinity,
then because of independence of the individual controlled
zi’s under Assumption (2), z̄ must converge pointwise to its
expectation, i.e. to Ez̄i of a generic agent with initial mean
ζ1, where for the considered uniform population of agents:

dz̄

dt
= (a− bf)z̄ (15)

which yields
z̄(t) = z̄(0)e(a−bf)t (16)

with condition (9) from Assumption 1 guaranteeing bounded-
ness of z̄(t). Here, for simplicity of the analysis, we assume
that z̄(0) ≥ 0.

Furthermore, the population effect (1/n)
∑n
j=1 zj is ap-

proximated by z̄. Since we wish to have

m∗(t) ≈ m(t) = h

 1

n

n∑
j=1

zj(t)

 (17)

for large n, m∗(t) is expressed in terms of the population
mean z̄(t) as

m∗(t) = hz̄(t) (18)

Remark 2: Under Assumptions 1 and 2, m∗(t) does in-
deed belong to Cb[0,∞).

Remark 3: The state aggregation equation (15) also holds
in the case of perfect observation; that is, it is not affected
by the partial observation situation.

D. Proposed Algorithm and Closed-loop Dynamics

The coupled distributed estimation and control strategies
are presented in Algorithm 1. We proceed by obtaining the
resultant closed-loop dynamics of the ith agent and of the
population mean.

Solution Algorithm 1

• Initialization

ẑi(0) = Ezi(0) = z̄(0) ≥ 0, P (0) = ζ > 0, 1 ≤ i ≤ n

• State Aggregation

z̄(t) = z̄(0)e(a−bf)t

m∗(t) = hz̄(t)

• LQG Feedback Controller

ρf = 2af − bf2 +
b

r
ui(t) = −fẑi(t), 1 ≤ i ≤ n

• Kalman filtering
– Case (a):

dẑi =(aẑi + bui)dt+K(t)(dyi − cẑidt)
dP (t)

dt
=2aP (t) + σ2

w − c2(σv +m∗)−2P 2(t)

K(t) =P (t)c(σv +m∗)−2

– Case (b):

dẑi =(aẑi + bui)dt+K(t)(dyi − (cẑi +m∗)dt)

dP (t)

dt
= 2aP (t) + σ2

w − c2σ−2v P 2(t)

K(t) = P (t)cσ−2v

1) Case (a): Defining the estimation error as

z̃i = zi − ẑi (19)

and replacing (2) and (4) in (10), yields

dẑi =(a− bf)ẑidt+ P (t)c2(σv +m∗)−2z̃idt

+ P (t)c(σv +m∗)−2(σv + h

 1

n

n∑
j=1

zj

)dvi (20)

Subsequently, using (1), (19) and (20) it follows that

dzi = (a− bf)zidt+ bf z̃idt+ σwdwi (21)

and

dz̃i =(a− P (t)c2(σv +m∗)−2)z̃idt+ σwdwi

− P (t)c(σv +m∗)−2(σv + h

 1

n

n∑
j=1

zj

)dvi (22)

In addition, letting z′n = (1/n)
∑n
i=1 zi, ẑ′n =

(1/n)
∑n
i=1 ẑi, z̃′n = (1/n)

∑n
i=1 z̃i, w′ =

(1/
√
n)
∑n
i=1 wi, and v′ = (1/

√
n)
∑n
i=1 vi, where

w′ and v′ are two independent standard Wiener processes,
we get

dz′n = (a− bf)z′ndt+ bf z̃′ndt+
1√
n
σwdw

′ (23)
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and

dz̃′n =(a− P (t)c2(σv +m∗)−2)z̃′ndt+
1√
n
σwdw

′

− 1√
n
P (t)c(σv +m∗)−2(σv + hz′n)dv′ (24)

2) Case (b): Similarly, using (3) in place of (2), it follows
that

dzi = (a− bf)zidt+ bf z̃idt+ σwdwi, (25)

dz̃i =(a− P (t)c2σ−2v )z̃idt− P (t)cσ−2v h

 1

n

n∑
j=1

zj

 dt

+ P (t)cσ−2v m∗(t)dt+ σwdwi − P (t)cσ−1v dvi (26)

and

dz′n = (a− bf)z′ndt+ bf z̃′ndt+
1√
n
σwdw

′, (27)

dz̃′n =(a− P (t)c2σ−2v )z̃′ndt− P (t)cσ−2v hz′ndt

+ P (t)cσ−2v m∗(t)dt+
1√
n
σwdw

′ − 1√
n
P (t)cσ−1v dv′

(28)

IV. STABILITY ANALYSIS
For stability analysis of the closed-loop dynamics (23)-

(24) and (27)-(28) we make use of the following concepts
of boundedness for solutions of stochastic differential equa-
tions.

Definition 1: [17] The stochastic process x(t) is said to
be stochastically sample path bounded, if for every δ > 0
there is a β(δ) > 0 such that

P[sup
t≥0
‖x(t)‖ ≤ β(δ)] ≥ 1− δ (29)

Definition 2: [17] The stochastic process x(t) is said to
be exponentially bounded in mean square, if there are real
numbers η, ν, ϕ > 0 such that

E ‖x(t)‖2 ≤ ϕ ‖x(0)‖2 exp(−ηt) + ν (30)

holds for every t ≥ 0.
Definition 3: [17], [18] Consider the continuous-time

stochastic process described by the Itô stochastic differential
equation,

dx(t) = F (x(t), t)dt+G(x(t), t)dw̄(t) (31)

where x(t) ∈ Rnx is the state, and w̄(t) ∈ Rnw is a standard
Wiener process. Moreover, the nonlinear functions F and G
are assumed to be continuously differentiable, and such that
(31) has a unique solution. Consider a nonnegative function
V (x(t), t) which is continuously twice differentiable in x and
once in t, i.e., V (x, t) ∈ C2,1. The differential generator of
(31) associated with the Lyapunov function V (x, t) is defined
by

LV (x, t) =
∂V

∂t
(x, t) +

∂V

∂x
(x, t)F (x, t)

+
1

2

nx∑
i=1

nx∑
j=1

∂2V

∂xi∂xj
(x, t)[G(x, t)GT (x, t)]i,j

(32)

where x = [x1, . . . , xnx
]T , and [G(x, t)GT (x, t)]i,j is the

matrix element of G(x, t)GT (x, t) in the ith row and the jth

column. Furthermore, the sum in (32) can be simplified as
nx∑
i=1

nx∑
j=1

∂2V

∂xi∂xj
(x, t)[G(x, t)GT (x, t)]i,j

= tr(G(x, t)GT (x, t)Hessx[V (x, t)])

= tr(Hessx[V (x, t)]G(x, t)GT (x, t)) (33)

where Hessx[·] denotes the Hessian matrix with respect to
x as the variable vector.

Lemma 1: [17] Assume there is a sufficiently smooth
function V (x(t), t) ∈ C2,1 of the stochastic process x(t)
in (31) and real numbers ϑmin, ϑmax, µ, α > 0 such that

ϑmin ‖x(t)‖2 ≤ V (x(t), t) ≤ ϑmax ‖x(t)‖2 (34)

and
LV (x(t), t) ≤ −αV (x(t), t) + µ (35)

are satisfied. Then the stochastic process x(t) is exponen-
tially bounded in mean square, i.e.,

E ‖x(t)‖2 ≤ ϑmax

ϑmin
‖x(0)‖2 exp(−αt) +

µ

ϑminα
(36)

for every t ≥ 0. Moreover, the stochastic process is sample-
path bounded.

Lemma 2: Each system described by scalar dynamics (1)
and either of

dyi = czidt+ (σv +m∗(t))dvi (37)

or
dyi = (czi +m∗(t))dt+ σvdvi (38)

is uniformly detectable.
Proof: For c > 0, any real number Λ such that Λ < −a

c
yields a + Λc < 0. Therefore, according to definition 4.1
in [17], the system is uniformly detectable.

Lemma 3: [17] For each uniformly detectable system
described by (1) and either of (37) or (38), there are real
numbers pmin, pmax > 0 such that the solution P (t) of the
scalar Riccati differential equation (11) satisfies the bounds

pmin ≤ P (t) ≤ pmax (39)

for every t ≥ 0.
Theorem 1: If

f >
2a

b
(40)

and also if there exists a fixed real number l such that

2pmaxc
2h2

nσ4
v(bf − 2a)

< l <
σ2
w

bfp2max

+
c2

bf(σv + hz̄(0))2
, (41)

then the stochastic process x(t) =

[
z′n(t)
z̃′n(t)

]
verifying the

closed-loop dynamics (23)-(24) for 1 ≤ i ≤ n, is exponen-
tially bounded in mean square and stochastically sample-path
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bounded. Specifically,

E(z′n
2
(t) + z̃′n

2(t)) ≤
max{l, 1

pmin
}

min{l, 1
pmax
}

(z′n
2
(0) + z̃′n

2(0))e−αt

+
(l + 1

pmin
)
σ2
w

n + 2pmaxc
2

nσ2
v

min{l, 1
pmax
}α

(42)

holds with

α =
1

max{l, 1
pmin
}

min{l(bf − 2a)− 2pmaxc
2h2

nσ4
v

,

− lbf +
σ2
w

p2max

+
c2

(σv + hz̄(0))2
} (43)

Proof of Theorem 1: Choosing

V (x(t), t) = xT (t)Π(t)x(t) (44)

with

Π(t) =

[
l 0
0 P−1(t)

]
(45)

where l is a fixed real number verifying (41) and applying
Lemma (3) we can write

lz′n
2 +

1

pmax
z̃′n

2 ≤ V (x, t) ≤ lz′n2 +
1

pmin
z̃′n

2 (46)

Therefore, (34) is verified with ϑmin = min{l, 1
pmax
} and

ϑmax = max{l, 1
pmin
}.

Next, considering the dynamic equations (23)-(24) as in
the form of (31) with

F (x, t) =

[
(a− bf)z′n + bf z̃′n

(a− P (t)c2(σv +m∗)−2)z̃′n

]
, w̄(t) =

[
w′

v′

]
(47)

and

G(x, t) =

[
1√
n
σw 0

1√
n
σw − 1√

n
P (t)c(σv +m∗)−2(σv + hz′n)

]
(48)

and using (32) we have

LV (x, t) =xT (t)
dΠ(t)

dt
x(t) + 2xT (t)Π(t)F (x, t)

+
1

2
tr[G(x, t)GT (x, t)Hessx(V (x, t))] (49)

which can be expressed as

LV =(2aP−1(t)− 2c2(σv +m∗)−2 − Ṗ (t)P−2(t))z̃′n
2

+ 2l(a− bf)z′n
2 + 2lbfz′nz̃

′
n + tr[GGTΠ(t)] (50)

Expressing Ṗ (t) by means of Riccati differential equation
(11), and applying the inequality 2z′nz̃

′
n ≤ z′n2 + z̃′n

2 yields

LV (x, t) ≤l(2a− bf)z′n
2 + (lbf − σ2

wP
−2(t))z̃′n

2

− c2(σv +m∗)−2z̃′n
2 +

1

n
(l + P−1(t))σ2

w

+
1

n
P (t)c2(σv +m∗)−4(σv + hz′n)2 (51)

In addition, using the bounds from Lemma 3, applying the
inequality 2σvhz

′
n ≤ σ2

v +h2z′n
2 and noting that mint{σv +

m∗(t)} ≥ σv > 0 and also maxt{σv+m∗(t)} ≤ σv+hz̄(0),
after some simplification in the right-hand side of (51), it can
be written as

LV ≤ (l(2a− bf) +
2pmaxc

2h2

nσ4
v

)z′n
2 + (l +

1

pmin
)
σ2
w

n

+ (lbf − σ2
wP
−2(t)− c2(σv + hz̄(0))−2)z̃′n

2 +
2pmaxc

2

nσ2
v
(52)

Enforcing conditions (40) and (41) in (52) and using the
bounds from Lemma 3, inequality (35) holds with α defined
in (43) and

µ = (l +
1

pmin
)
σ2
w

n
+

2pmaxc
2

nσ2
v

(53)

Therefore, it follows that (42) holds according to (36). This
ends the proof for case (a).

Theorem 2: If
f >

a

b
, (54)

then the stochastic process x(t) =

[
z′n(t)
z̃′n(t)

]
verifying the

closed-loop dynamics (27)-(28) for 1 ≤ i ≤ n, is exponen-
tially bounded in mean square and stochastically sample-path
bounded. Specifically,

E(z′n
2(t) + z̃′n

2(t)) ≤
max{l, 1

pmin
}

min{l, 1
pmax
}

(z′n
2(0) + z̃′n

2(0))e−αt

+
(l + 1

pmin
)
σ2
w

n + pmaxc
2

nσ2
v

+ σ−2v h2z̄2(0)

min{l, 1
pmax
}α

(55)

holds with

α =
1

max{l, 1
pmin
}

min{2l(bf − a),
σ2
w

p2max

} (56)

and a fixed real number l =
chσ−2

v

bf
.

Proof of Theorem 2: Considering the dynamic equations
(27)-(28) in place of equations (23)-(24) and following a
similar procedure as in Theorem 1, this theorem can be
proved for case (b). The details are omitted here for brevity.

Remark 4: Note that under our stability condition (40),
inequality (42) is consistent with our initial assumption that
as n goes to infinity z′n(t) becomes deterministic. Indeed,
it confirms that as n goes to infinity, the variance of z′n(t)
under measurement model (a), goes to zero, provided the
initial mean of z′n is known to all agents. Similarly, under
stability condition (54), inequality (55) indicates that if the
initial agents’ mean estimate of z̄(0) is correct and equal to
zero, the variance of z′n(t) under measurement model (b) ,
goes to zero. The same result can be shown to remain true if
the initial mean of z̄(0) is strictly positive, but again correctly
estimated by all agents.
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V. NUMERICAL EXAMPLE

The following numerical values were used with noise
model (a): a = −0.5, b = c = h = σw = σv =
ρ = r = 1, Ezi(0) = 10 and V ar(zi(0)) = 1. The
simulation results as depicted in Figures 1 and 2 illustrate
a case where f∗LQG satisfies the bound of Theorem 1, thus
guaranteeing convergence of the mean state when f∗LQG is
used, to a deterministic value. In this case, f∗LQG induces a
Nash equilibrium. It also happens to be a socially optimal
equilibrium. However, in general the separation principle will
not hold for noise model (a) even as n goes to infinity.

VI. CONCLUSIONS

This paper addressed the distributed decision-making in
a system of uniform agents coupled via their measurement
equations, whereby each agent has noisy measurements of
its own state. Specifically, a distributed estimation and con-
trol algorithm was developed using a decentralized control
synthesis in which each agent utilizes an estimate based on
its local information and a priori (shared) information on the

initial mean state estimate for its control strategy. One special
feature of the proposed algorithm is the fact that it combines
the Kalman filtering for state estimation and the linear-
quadratic-Gaussian (LQG) feedback controller based on the
anticipation of the collective effect (mean field) of all agents
and using the state aggregation technique to anticipate that
effect. It was proved that under certain conditions the closed-
loop dynamics is exponentially bounded in mean square and
stochastically sample-path bounded.
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wireless communication systems: a stochastic control analysis, IEEE
Trans. Autom. Control, vol. 49, pp. 1693-1708, Oct. 2004.

[15] A. Gelb, Applied Optimal Estimation, MIT Press, Cambridge, MA,
1974.

[16] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall.
Englewood Cliffs. NJ., 1979.

[17] K. Reif, S. Günther, E. Yaz and R. Unbehauen, Stochastic stability of
the continuous-time extended Kalman filter, IEE Proc. Control Theory
Appl., vol. 147, no. 1, pp. 45-52, Jan. 2000.

[18] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian
Switching, Imperial College Press, London, UK, 2006.

4358


