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Abstract

A model of particle interacting with quantum field is considered. The model

includes as particular cases the polaron model and non-relativistic quantum electro-

dynamics. We compute matrix elements of the evolution operator in the stochastic

approximation and show that depending on the state of the particle one can get the

non-exponential decay with the rate t
− 3

2 . In the process of computation a new alge-

bra of commutational relations that can be considered as an operator deformation

of quantum Boltzmann commutation relations is used.

1 Introduction

For many dissipative systems one has the exponential time decay of correlations. This
result was established for various models and by using various approximations, see for
ex. [1]. For certain models, in particular for the spin-boson Hamiltonian, also a regime
with the oscillating behavior was found [2], [3], [4]. The presence of such a regime is very
important in the ivestigation of quantum decoherence. The aim of this note is to show
that for the model of particle interacting with quantum field, in particular for the polaron
model, one can have not only the standard exponential decay but also the non-exponential
decay (as some powers of time) of correlations.

We investigate the model describing interaction of non-relativistic particle with quan-
tum field. This model is widely studied in elementary particle physics, solid state physics,
quantum optics, see for example [5]-[8]. We consider the simplest case in which mat-
ter is represented by a single particle, say an electron, whith position and momentum
q = (q1, q2, q3) and p = (p1, p2, p3) satisfying the commutation relations [qj , pn] = iδjn. The
electromagnetic field is described by boson operators a(k) = (a1(k), a2(k), a3(k)); a†(k) =
(a†

1(k), . . . , a†
3(k)) satisfying the canonical commutation relations [aj(k), a†

n(k′)] = δjnδ(k−
k′). The Hamiltonian of a free non relativistic atom interacting with a quantum electro-
magnetic field is

H = H0 + λHI =
∫

ω(k)a†(k)a(k)dk +
1

2
p2 + λHI (1)

where λ is a small constant, ω(k) is the dispersion law of the field,

HI =
∫

d3k
(
g(k)p · a†(k)e−ikq + g(k)p · a(k)eikq

)
+ h.c. (2)

1

http://lanl.arxiv.org/abs/quant-ph/9904084v1


Here p · a(k) =
∑3

j=1 pjaj(k), p2 =
∑3

j=1 p2
j , a†(k)a(k) =

∑3
j=1 a†

j(k)aj(k), kq =
∑3

j=1 kjqj .
For the polaron model the Hamiltonian has the form

H =
∫

ω(k)a†(k)a(k)dk +
1

2
p2 + λ

∫
d3k

(
g(k)a†(k)e−ikq + g(k)a(k)eikq

)

It is different from (1), (2) by a momentum p in the interaction Hamiltonian. For the
analysis of this paper this difference is not important.

In the present paper we will use the method for the approximation of the quantum
mechanical evolution that is called the stochastic limit method, see for example [4], [9]-
[11]. The general idea of the stochastic limit is to make the time rescaling t → t/λ2 in the

solution of the Schrödinger equation in interaction picture U
(λ)
t = eitH0e−itH , associated

to the Hamiltonian H , i.e.
∂

∂t
U

(λ)
t = −iλHI(t) U

(λ)
t

with HI(t) = eitH0HIe
−itH0 . We get the rescaled equation

∂

∂t
U

(λ)
t/λ2 = − i

λ
HI(t/λ

2) U
(λ)
t/λ2

and one wants to study the limits, in a topology to be specified,

lim
λ→0

U
(λ)
t/λ2 = Ut; lim

λ→0

1

λ
HI

(
t

λ2

)
= Ht (3)

We will prove that Ut is the solution of the equation

∂tUt = −iHtUt ; U0 = 1 (4)

The interest of this limit equation is in the fact that many problems become explicitly
integrable. The stochastic limit of the model (1)-(2) has been considered in [10], [11], [12],
[13], [14], [15].

After the rescaling t → t/λ2 we consider the simultaneous limit λ → 0, t → ∞
under the condition that λ2t tends to a constant (interpreted as a new slow scale time).
This limit captures the main contributions to the dynamics in a regime, of long times

and small coupling arising from the cumulative effects, on a large time scale, of small
interactions (λ → 0). The physical idea is that, looked from the slow time scale of the
atom, the field looks like a very chaotic object: a quantum white noise, i.e. a δ-correlated
(in time) quantum field b†j(t, k), bj(t, k) also called a master field. If one introduces the
dipole approximation the master field is the usual boson Fock white noise. Without the
dipole approximation the master field is described by a new type of commutation relations
of the following form [11]

bj(t, k)pn = (pn − kn)bj(t, k) (5)

bj(t, k)b†n(t′, k′) = 2πδ(t − t′)δ
(
ω(k) − kp +

1

2
k2
)

δ(k − k′)δjn (6)

Such quantum white noises can be treated as an operator deformation of quantum Boltz-
mann commutation relations. Recalling that p is the particle momentum, we see that the
relation (5) shows that the particle and the master field are not independent even at a
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kinematical level. This is what we call entanglement. The relation (6) is a generalization
of the algebra of free creation–annihilation operators with commutation relations

AiA
†
j = δij

and the corresponding statistics becomes a generalization of the Boltzmannian (or Free)
statistics. This generalization is due to the fact that the right hand side is not a scalar
but an operator (a function of the atomic momentum). This means that the relations (5),
(6) are module commutation relations. For any fixed value p̄ of the atomic momentum
we get a copy of the free (or Boltzmannian) algebra. Given the relations (5), (6), the
statistics of the master field is uniquely determined by the condition

bj(t, k)Ψ = 0

where Ψ is the vacuum of the master field, via a module generalization of the free Wick
theorem, see [14].

In Section 2 the dynamically q-deformed commutation relations (7), (8), (14) are
obtained and the stochastic limit for collective operators is evaluated. In Section 3 the
stochastic limit of the evolution equation is found. In Section 4 the non-exponential decay
for vacuum vector in the polaron model is investigated.

2 Deformed commutation relations

In this section we reproduce in the brief form the notations and the main results of the
work [14].

In order to determine the limit (3) one rewrites the rescaled interaction Hamiltonian
in terms of some rescaled fields aλ,j(t, k):

1

λ
HI

(
t

λ2

)
=
∫

d3kp(g(k)aλ(t, k) + g(k)a†
λ(t, k)) + h.c.

where

aλ,j(t, k) :=
1

λ
ei t

λ2
H0eikqaj(k)e−i t

λ2
H0 =

1

λ
e−i t

λ2 (ω(k)−kp+ 1

2
k2)eikqaj(k)

It is now easy to prove that operators aλ,j(t, k) satisfy the following q–deformed module
relations,

aλ,j(t, k)a†
λ,n(t′, k′) =

= a†
λ,n(t′, k′)aλ,j(t, k) · qλ(t − t′, kk′) +

1

λ2
qλ

(
t − t′, ω(k) − kp +

1

2
k2
)

δ(k − k′)δjn (7)

aλ,j(t, k)pn = (pn − kn)aλ,j(t, k) (8)

where

qλ(t − t′, x) = e−i t−t′

λ2
x (9)

is an oscillating exponent. This shows that the module q–deformation of the commutation
relations arise here as a result of the dynamics and are not put artificially ab initio. For a
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discussion of q-deformed commutation relations see for example [16]. Now let us suppose
that the master field

bj(t, k) = lim
λ→0

aλ,j(t, k) (10)

exist. Then it is natural to conjecture that its algebra shall be obtained as the stochastic
limit (λ → 0) of the algebra (7), (8). Notice that the factor qλ(t − t′, x) is an oscillating
exponent and one easily sees that

lim
λ→0

qλ(t, x) = 0 , lim
λ→0

1

λ2
qλ(t, x) = 2πδ(t)δ(x) (11)

Thus it is natural to expect that the limit of (8) is

bj(t, k)pn = (pn − kn)bj(t, k) (12)

and the limit of (7) gives the module free relation

bj(t, k)b†n(t′, k′) = 2πδ(t − t′)δ
(
ω(k) − kp +

1

2
k2
)

δ(k − k′)δjn (13)

Operators aλ,j(t, k) also obey the relation

aλ,j(t, k)aλ,n(t′, k′) = aλ,n(t′, k′)aλ,j(t, k)q−1
λ (t − t′, kk′) (14)

In what follows we will not write indexes j, n explicitly. The relation (14) should disappear
after the limit, see [14]. In fact, if the relation (14) would survive in the limit then,
because of (11), it should give b(t, k)b(t′, k′) = 0, hence also b†(t, k)b†(t′, k′) = 0, so all the
n–particle vectors with n ≥ 2 would be zero.

3 Evolution equation

Let us find stochastic differential equation for the model we consider. In the introduction
we claimed that the stochastic limit for the Shrödinger equation in interaction picture will
have the form (4): ∂tUt = −iHtUt. But in this equation both Ht and Ut are distributions.
We need to regularize this product of distributions. In the present section we will make
the following regularization: roughly speaking we replace Ht by Ht+0 + const.

We investigate the evolution operator in interaction picture U
(λ)
t . We start with the

equation

U
(λ)
t+dt =

(
1 + (−iλ)

∫ t+dt

t
HI(t1)dt1+

+(−iλ)2
∫ t+dt

t
dt1

∫ t1

t
dt2HI(t1)HI(t2) + . . .

)
U

(λ)
t

where dt > 0. We get for dU
(λ)
t = U

(λ)
t+dt − U

(λ)
t

dU
(λ)
t =

(
(−iλ)

∫ t+dt

t
HI(t1)dt1 + (−iλ)2

∫ t+dt

t
dt1

∫ t1

t
dt2HI(t1)HI(t2) + . . .

)
U

(λ)
t

Let us make the rescaling t → t/λ2 in this perturbation theory series. We get

dU
(λ)
t/λ2 =

(
(−i)

∫ t+dt

t
dt1

1

λ
HI

(
t1
λ2

)
+
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+ (−i)2
∫ t+dt

t
dt1

∫ t1

t
dt2

1

λ
HI

(
t1
λ2

)
1

λ
HI

(
t2
λ2

)
+ . . .

)
U

(λ)
t/λ2 (15)

To find the stochastic differential equation we need to collect all the terms of order dt
in the perturbation theory series (15). Terms of order dt are contained only in the first
two terms of these series. Let us investigate the first two terms. For the first term of the
perturbation theory we get

∫ t+dt

t
dt1

1

λ
HI

(
t1
λ2

)
=
∫ t+dt

t
dt1

∫
dk
(
g(k)(2p + k)aλ(t1, k) + g(k)a†

λ(t1, k)(2p + k)
)

(16)
In the stochastic limit λ → 0 this term gives us

∫
dk
(
g(k)(2p + k)dB(t, k) + g(k)dB†(t, k)(2p + k)

)

where the stochastic differential dB(t, k) is the stochastic limit of the field aλ(t, k) in the
time interval (t, t + dt):

dB(t, k) = lim
λ→0

∫ t+dt

t
dτ aλ(τ, k) =

∫ t+dt

t
dτ b(τ, k)

We will prove that the stochastic differential dB(t, k) and the evolution operator Ut are free
independent. In the bosonic case independence would result in the relation [dB(t, k), Ut] =
0. From this relation follows that 〈X dB(t, k)Ut〉 = 0 for arbitrary observable X. In the
case of Boltzmannian statistics we get the same relation: the (free) independence means
that roughly speaking dB(t, k) kills all creations in Ut. We have the following

Lemma. The stochastic differental dB(t, k) and the evolution operator Ut are free
independent. This means that for an arbitrary observable X

〈X dB(t, k)Ut〉 = 0 ∀X

Here 〈·〉 is the stochastic limit of the vacuum expectation of boson field (that acts as a
conditional expectation on momentum of quantum particle p).

We will prove this result by analizing of the perturbation theory series. We have

〈X dB(t, k)Ut〉 = lim
λ→0

〈Xλ

∫ t+dt

t
dτ aλ(τ, k)

(
1 + (−i)

∫ t

0
dt1

1

λ
HI

(
t1
λ2

)
+ . . .+

+(−i)n
∫ t

0
dt1 . . .

∫ tN−1

0
dtN

1

λ
HI

(
t1
λ2

)
. . .

1

λ
HI

(
tn
λ2

)
+ . . .

)
〉

where 1
λ

HI

(
tk
λ2

)
is given by the formula (16). Here limλ→0 Xλ = X. Let us analize the

N -th term of perturbation theory. The N -th term of perturbation theory is the linear
combination of the following terms (we omit integration over k, kn)

〈Xλ

∫ t+dt

t
dτ aλ(τ, k)

∫ t

0
dt1 . . .

∫ tN−1

0
dtN aε1

λ (t1, k1) . . . aεN

λ (tN , kN)〉

Let us shift aλ(τ, k) to the right using dynamically q-deformed relations. In the follow-
ing we will use notions of the work [14]. Let us enumerate annihilators in the prod-
uct aε1

λ (t1, k1) . . . aεN

λ (tN , kN) as aλ(tmj
, kmj

), j = 1, . . . J , and enumerate creators as
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a†
λ(tm′

j
, km′

j
), j = 1, . . . I, I + J = N . This means that if εm = 0 then aεm

λ (tm, km) =

aλ(tmj
, kmj

) for m = mj (and the analogous condition for εm = 1).
We will use the following recurrent relation for correlator (analogous formula was

proved in the work [14]):

〈Xλ

∫ t+dt

t
dτ

∫ t

0
dt1 . . .

∫ tN−1

0
dtN aλ(τ, k)aε1

λ (t1, k1) . . . aεN

λ (tN , kN)〉 =

=
I∑

j=1

δ(k−km′

j
)〈Xλ

∫ t+dt

t
dτ

∫ t

0
dt1 . . .

∫ tN−1

0
dtN aε1

λ (t1, k1) . . . â†
λ(tm′

j
, km′

j
) . . . aεN

λ (tN , kN)〉

1

λ2
qλ

(
τ − tm′

j
, ω(k) − kp +

1

2
k2
) ∏

mi>m′

j

q−1
λ

(
τ − tm′

j
, kkmi

) ∏

m′

i
>m′

j

qλ

(
τ − tm′

j
, kkm′

i

)

∏

mi<m′

j

q−1
λ (τ − tmi

, kkmi
)
∏

m′

i
<m′

j

qλ(τ − tm′

i
, kkm′

i
) (17)

Here the notion â†
λ means that we omit the operator a†

λ in this product.
The right hand side of the equation (17) is equal to

I∑

j=1

δ(k − km′

j
)〈Xλ

∫ t

0
dt1 . . .

∫ tN−1

0
dtN aε1

λ (t1, k1) . . . â†
λ(tm′

j
, km′

j
) . . . aεN

λ (tN , kN)〉

1

λ2
qλ

(
−tm′

j
, ω(k) − kp +

1

2
k2
) ∏

mi>m′

j

q−1
λ

(
−tm′

j
, kkmi

) ∏

m′

i
>m′

j

qλ

(
−tm′

j
, kkm′

i

)

∏

mi<m′

j

q−1
λ (−tmi

, kkmi
)
∏

m′

i
<m′

j

qλ(−tm′

i
, kkm′

i
)

∫ t+dt

t
dτ qλ

(
τ, ω(k) − kp +

1

2
k2
) ∏

mi>m′

j

q−1
λ (τ, kkmi

)
∏

m′

i
>m′

j

qλ

(
τ, kkm′

i

)

∏

mi<m′

j

q−1
λ (τ, kkmi

)
∏

m′

i
<m′

j

qλ(τ, kkm′

i
)

(we use that qλ is an exponent). The first three lines of this formula do not depend on
τ and the last two lines do not depend on t1, . . . , tN . Therefore the stochastic limits for
these values can be made independently (the limit of product is equal to the product of
limits). It is easy to see that the stochastic limit for the multiplier that depends on τ (of
the last two lines) is equal to zero. This finishes the proof of the Lemma.

The second term of the perturbation theory series is equal (up to terms of order (dt)2)

∫ t+dt

t
dt1

∫ t1

t
dt2

1

λ
HI

(
t1
λ2

)
1

λ
HI

(
t2
λ2

)
=

=
∫ t+dt

t
dt1

∫ t1

t
dt2

∫
dk|g(k)|2(2p + k)2 1

λ2
e−i

t1−t2

λ2 (ω(k)−kp+ 1

2
k2)

due to q–module relations on aλ(t, k), p. Performing integration over t1, t2 and using the
formulas ∫ t+dt

t
dt1

∫ t1

t
dt2

1

λ2
e−i

t1−t2

λ2 x =
∫ t+dt

t
dt1

∫ 0

−t1/λ2

dτ eiτx

6



∫ 0

−∞
dteitx =

−i

x − i0
= πδ(x) − i P.P.

1

x

we get for the second term

−idt
∫

dk|g(k)|2(2p + k)2 1

ω(k) − kp + 1
2
k2 − i0

Let us denote

(g|g)−(p) = −i
∫

dk|g(k)|2(2p + k)2 1

ω(k) − kp + 1
2
k2 − i0

=

=
∫

dk|g(k)|2(2p + k)2

(

πδ
(
ω(k) − kp +

1

2
k2
)
− i P.P.

1

ω(k)− kp + 1
2
k2

)

Combining all the terms of order dt we get the following result:
Theorem. The stochastic differential equation for Ut = lim

λ→0
U

(λ)
t/λ2 have a form

dUt =
(
−i
∫

dk
(
g(k)(2p + k)dB(t, k) + g(k)dB†(t, k)(2p + k)

)
− dt (g|g)−(p)

)
Ut (18)

The equation (18) can be rewritten in the language of distributions as

dUt

dt
=
(
−i
∫

dk
(
g(k)(2p + k)b(t, k) + g(k)b†(t, k)(2p + k)

)
− (g|g)−(p)

)
Ut (19)

Here we uderstand the singular product of distributions b(t, k)Ut in the sense that (19) is
equivalent to (18). We have to stress that dB(t, k) =

∫ t+dt
t dτ b(τ, k) 6= b(t, k)dt and we

can not obtain (19) dividing (18) by dt.

4 Non-exponential decay

Let us investigate the behavior of 〈Ut〉 using stochastic differential equation (18). We get

〈dUt〉 = 〈
(
(−i)

∫
dkg(k)(2p + k)dB(t, k) − dt (g|g)−(p)

)
Ut〉

Using the free independence of dB(t, k) and Ut we get

d

dt
〈Ut〉 = 〈 d

dt
Ut〉 = −(g|g)−(p)〈Ut〉

Because U0 = 1, we have the solution

〈Ut〉 = e−t(g|g)−(p)

In this section we calculate the matrix element 〈X|Ut|X〉 where X = f(p) ⊗ Φ in the
momentum representation and Φ is the vacuum vector for the master field. This matrix
element is equal to

〈X|Ut|X〉 =
∫

dp|f(p)|2e−t(g|g)−(p) (20)
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We investigate the polaron model when ω(k) = 1. For this choice of ω(k) we get

ω(k) − kp +
1

2
k2 = 1 − 1

2
p2 +

1

2
(k − p)2

One can expect non-exponential relaxation when supp f(p) ⊂ {|p| <
√

2}. In this case
Re(g|g)−(p) = 0 and there is no dumping. All decay in this case is due to interferention.

We will use the approximation diam supp g(k) ≫ diam supp f(p). Physically this
means that the particle is more localized in momentum representation than the field. This
assumption seems natural because the field’s degrees of freedom are fast and the particles
one are slow. Under this assumption we can estimate the matrix element (20). We will
prove that in this case there will be polynomial decay.

For |p| <
√

2 we get

(g|g)−(p) = −i
∫

dk |g(k)|2(2p + k)2 1

1 − 1
2
p2 + 1

2
(k − p)2

=

= −2i
∫

dk |g(k)|2 − i (I1 + I2) ;

I1 =
(
−2 + 10p2

) ∫
dk |g(k)|2 1

1 − 1
2
p2 + 1

2
(k − p)2

I2 = 6
∫

dk |g(k)|2p(k − p)
1

1 − 1
2
p2 + 1

2
(k − p)2

Here only I1 and I2 depend on p and therefore can interfere. Let us find the asymptotics
of (g|g)−(p) on p (we investigate the case when p is a small parameter).

We will use the following assumption on g(k): let g(k) be a very smooth function.
This means that |g(k)|2 = λF (λk), F (k) > 0 is compactly supported smooth function, λ
is a small parameter. Let us consider the Taylor expansion on the small parameter p

λF (λk) = λF (λ(k − p)) + λ2
∑

i

pi
∂

∂ki
F (λ(k − p)) + . . . .

We get that λF (λ(k − p)) is a leading term with respect to λ. Taking λ → 0 we get
that we can use |g(k − p)|2 instead of |g(k)|2 in the formulas for I1 and I2 for sufficiently
smooth g(k). Let us calculate I1 a d I2. Using assumptions considered above we get

I1 =
(
−2 + 10p2

) ∫
dk |g(k − p)|2 1

1 − 1
2
p2 + 1

2
(k − p)2

=

=
(
−2 + 10p2

) ∫
dk |g(k)|2 1

1 + 1
2
k2

− p2
∫

dk |g(k)|2 1
(
1 + 1

2
k2
)2

I2 = pQ, Q = 6
∫

dk |g(k)|2k 1

1 + 1
2
k2

We get

(g|g)−(p) = −2i
∫

dk |g(k)|2 + 2i
∫

dk |g(k)|2 1

1 + 1
2
k2

− iAp2 − ipQ;
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A = 10
∫

dk |g(k)|2 1

1 + 1
2
k2

−
∫

dk |g(k)|2 1
(
1 + 1

2
k2
)2 (21)

We get for X(t) = 〈X|Ut|X〉

X(t) =
∫

dp|f(p)|2e−t(g|g)−(p) =

= e
it2

(∫
dk |g(k)|2−

∫
dk |g(k)|2 1

1+ 1
2

k2

) ∫
dp|f(p)|2eit(Ap2+pQ)

Let us estimate this integral for f(p) = e−Bp2

, B >> 1. Let us consider for simplicity the
case Q = 0 (for example g(k) is spherically symmetric). In this case the integral is equal
to

4π
∫ ∞

0
dp p2e−Bp2

eiAtp2

=
(

π

B − iAt

) 3

2

We get that for large t the decay of the matrix element X(t) = 〈X|Ut|X〉 is proportional

to (At)−
3

2 where A is the functional of the cut-off function given by (21).
To conclude, in this paper we obtain that in the polaron model for some (symmetric

and very smooth) cut-off functions we have the polynomial relaxation, the matrix element

being proportional to t−
3

2 . The dependence on the parameter B that corresponds to the
size of the support of the smearing function f(p) of quantum particle in the momentum
space for large t is not important. We can say that particles with large momentum decay
exponentially and the particles with small momentum decay as t−

3

2 and the decay for
large t does not depend on the smearing function f(p).
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