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Classical dynamical entropy is an important tool to analyse the efficiency of 
information transmission in communication processes. Quantum dynamical entropy 
was first studied by Connes, Stormer and Emch. Since then, there have been many 
attempts to formulate or compute the dynamical entropy for some models. Here we 
review four formulations due to (a) Connes, Narnhofer and Thirring. (b) Ohya, (c) 
Accardi, Ohya and Watanabe, (d) Alicki and Fannes. We consider mutual relations 
between these formulations and we show some concrete computations for a model. 

Introduction 

The classical dynamical (or Kolmogorov-Sinai) entropy S(T) [13, 261 for a measure 
preserving transformation T was defined on a message space through finite partitions of 
the measurable space. The classical coding theorems of Shannon are important tools to 
analyse communication processes which have been formulated by the mean dynamical 
entropy and the mean dynamical mutual entropy. The mean dynamical entropy repre- 
sents the amount of information per one letter of a signal sequence sent from an input 
source, and the mean dynamical mutual entropy does the amount of information per one 
letter of the signal received in an output system. 

The quantum dynamical entropy (QDE) has been studied by Connes and Stormer 
[lo], Emch [ll], C onnes, Narnhofer and Thirring [9], Alicki and Fannes [5], and others 
[7, 221. Their dy namical entropies were defined in the observable spaces. 

Recently, the quantum dynamical entropy and the quantum dynamical mutual en- 
tropy were studied by one of the present authors [14, 231. They are formulated in the 
state spaces through the complexity of Information Dynamics [al, 231. Furthermore, an- 
other formulation of the dynamical entropy through the quantum Markov chain (QMC) 
was done in [4]. 

In Section 1 we briefly review the formulation by Connes, Narnhofer and Thirring 
(CNT). In Section 2 we explain the formulation by complexity [23, 241. In Section 3 we 
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review the formulation by QMC, and in Section 4 we briefly explain the formulation by 
Alicki and Fannes (AF). Mutual relations among these four formulations are discussed 
in Section 4, and in Section 6 we compute the mean dynamical entropies in quantum 
communication processes. 

1. The CNT formulation 

Let A be a unital C*-algebra, 0 be an automorphism of A, and cp be a stationary 
state over A with respect to 8; ‘p o 8 = ‘p. Let B be a finite dimensional C*-subalgebra 
of A. 

The CNT entropy [9] for a subalgebra 23 is given by 

HP (B) = sup c XkS (wk]B, cp]B) ; 
{ 

cp = c Xkwk finite decomposition of cp , 

k k I 

where cp]B is the restriction of the state cp to f3 and S(. , .) is the relative entropy 
C*-algebra [6, 27, 281. 

The CNT dynamical entropy with respect to 8 and B is given by 

H,(B, B) = liFs:p hHV(B V f?B V.. . V fFIB), 

and the dynamical entropy for 0 is defined by 

H,(B) = supfi+@, B). 
23 

2. Formulation by complexity 

for 

In this section, we first review the concepts of channel and complexity, which are the 
key concepts of ID (Information Dynamics) introduced by Ohya [21, 231. 

Let (d, C(d),a(G)), @E@),&(c)) b e an input (initial) and an output (final) C*- -- 
systems, respectively, where A (resp. ‘3i) is a unital C*-algebra, C(d) (resp. C(d)) is the 
set of all states on A (resp. 2) and (Y (G) (resp. E (c)) is the group of automorphisms 

of A (resp. A) indexed by a group G (resp. G). 
The channel is a map A* from C (A) to : (A). If the dual map n from A to A of 

_4* satisfies the complete positivity, the channel A* is called a complete positive channel 
(CP channel). 

For a weak * compact convex subset S of C, there exists a maximum measure ~1 with 
the barycenter ‘p such that 

cp= 
s 

wdp. 
S 

The compound state, introduced in [17, 181, which exhibits the correlation between the 
initial ‘p and final A’cp states is given by 
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In the sequel, we use a CP channel A* and the compound state to formulate the dynamical 
entropy. 

There are two types of complexities in ID. One of them is the complexity C$ (cp) 
of the system itself, the other is the transmitted complexity TS (p ; A*) from an initial 
system to a final system. These complexities should satisfy the following conditions: 

(i) For any p E S c C, 

m(P) 2 0, Ts($wl*) 20. 

(ii) If there exists an orthogonal bijection j : exC + exC: the set of all extremal points 

in C, then 

c@)(j(,p)) = CS($4 > 

Tj(‘) (j(p) ; A*) = TS (‘p ; A*) 

(iii) For a state p = cp @ $ E St, with cp E S, $J E S, 

cSt(*) = CS((p) + C”(Q). 

(iv) 0 5 TS (‘p ; A*) < C’(q). 

(v) TS (p ;id) = Cs((p) . 

Next we review the definitions of the three types of entropic complexities introduced 
in 1231. - -- 

Let (A, C(d), a(G)), (A, C(d), Z?(c)) and S be as above. Let M,(S) be the set 
of all maximal measures ,u on S with the fixed barycenter (p, and let F,(S) be the set of 
all measures having finite support with the fixed barycenter cp. Then the three pairs of 
complexities are 

TS (‘p ; A*) 

G (P) 

IS (P ; A*) 

cs (9) 

JS (p ; A*) 

cs (9) 

= - sup S (A*+ A*(p) dp : p E M,+, (S) , 

z TS (p ; id) , 

w@A*wdp, ‘p@A*‘p ; ,~~Eht+,(s) . 

= SUP {S S (A*w, A*(p) &f ; /of E F1p (4 
> 

) 

z Js (‘p ;sd) . 

Based on the above complexities, we explain the quantum dynamical complexity (QDC) 

VI. 
Let 8 (resp. 6) be a stationary automorphism of A (resp. A); cp o 6 = cp, and A be a 

covariant CP map (i.e., A o 6 = 6 o A) from A to ,4. t3k (resp. Bk) is a finite s&algebra 
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of A (resp. A). Moreover, let (Y~C (resp. &) be a CP unital map from & (resp. &) to 
A (resp. A) and oM and ti; are given by 

,M = (Ql, ez, . . . , QA4) 7 

a; = (AOcil,AO(U2, .‘.) AObN). 

Two compound states for CY~ and 62, with respect to p E M+,(S), are defined as 

Using the above compound states, the three transmitted complexities [23] are defined by 

When & = Bk = f?, _4 = ii, 8 = e, (Yk = 8”-’ o LY = bk, where cy is a unital CP map 
from _4o to d, the mean transmitted complexities are 

F$ (e, A*) E supp; (e, Q, n*) ) 
a 

and the same for fc and jz. These quantities have properties similar to those of the 
CNT entropy [14, 231. 

3. Formulation by QMC 

A construction of dynamical entropy is due to the quantum Markov chain [4]. 
Let d be a von Neumann algebra acting on a Hilbert space ‘l-l and let cp be a state on 

A and de = Md (d x d matrix algebra). Take the transition expectation 8, : Jlo @d + d 
of Accardi [l, 21 such that 

where A = Ci,j eij @ Aij E .& @ A and y = {+yj} is a finite partition of unity I E A. 

Quantum Markov chain is defined by $J E {cp, E,,o} E E(y &) such that 

+(Br(Ar) . . ..in(&)) - c~(&,e(Ar 8 Eg(A2 @ -.. @AA,-IE,,~(A, CZI I) . ..))) , 
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where Ef.6, = 8 o E, ? 8 E Aut (A)? and jk is an embedding of de into 7 do such that 

jk(.‘t) = I@...$$I$j$ A @I.... 
k-th 

Suppose that for 9 there exists a unique density operator p such that ~(-4) = Tr pA 

for any A E A. Let us define a state $I,, on &St, expressed as 
1 

+,(A1 @...@A,) =Wl(A,)..~jn(&)). 

The density operator <,, for $,, is given by 

Put 

The dynamical entropy through QMC is defined by 

S, (e; y) = lim sup - ’ (-l+[nlOg<,) =limsupl(- 
71-m R 7l-!x 72 

C Pz ,,,,_ i,lOgPt ,,... I,). 

i, ,.... i,, 

If Pi,,...*, satisfies the Markov property, then the above equality is written by 

S,(e;y) = - C ~(i~li~)~(i~) iogp(izlil). 

il .iz 

The dynamical entropy through QMC with respect to 8 and a von Neumann subalgebra 
B of A is given by 

S,(e; q E sup { S,(er ?) : y c 8) 

4. Formulation by AF 

Let A be a C.-algebra, tI be an automorphism on A and cp be a stationary state with 

respect to 8 and t3 be a unital * -subalgebra of A. A set y = {-yr ,y2,. . , yk} of elements 

of B is called a finite operational partition of unity of size k if y satisfies the following 
condition: 

k 

c ya*yi = I. 
1:l 

(1.1) 

The operation o is defined by 

~oE-{r&; i=1,2 ,..., k. j=1.2 q.... I} 

for any partitions y = {yr,y2,. . ,-yk} and < = {[I,&, . . . .<I}. For any partition y of 
size k, a k x k density matrix p(y] = (p[y]i.j) is given by 

P[Ylz,j = cP(Y;Y*) . 
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Then the dynamical entropy gP(8, t3, y) with respect to the partition y and shift 8 is 
defined by von Neumann entropy S( . ); 

tiP(O, B, 7) = limsup IS(p[P-‘(7) 0 ... 0 B(y) 0 71). 
12+oo n 

(4.2) 

The dynamical entropy B,(B, B) is given by taking the supremum over operational par- 
tition of unity in B as 

&@, a> = SUP{ &(6 6 7); Y c B}. (4.3) 

5. Relations among the four formulations 

In this section we discuss relations among the above four formulations. The S-mixing 
entropy in GQS introduced in [20] is 

Ss (cp) = inf {H (P) ; CL E n/r, (S)), 

where H (CL) is given by 

H(P) =SUP - c I*(&)bw(&) : 
{ 

..4 E P(S) , 

A,4 
1 

and P(S) is the set of all finite partitions of S. 
The following theorem [14, 231 shows the relation between the formulation by CNT 

and that by complexity. 

THEOREM 5.1. Under the above settings, we have the following relations: 
(1) 0 < Is (‘p ; A*) 5 TS (‘p ; A*) 5 Js (‘p ; A*), 

(2) C?(P) = CT” (cp) = CF (P) = S= (cp) = & (A) 7 
(3) A = A = B(X), for any density operator p, and 

OIIS(p;A*)=TS(p;A*)< J’(p;A*). 

Since there exists a model showing that S’(“)(cp) 2 H,(A,), Ss((p) distinguishes 
states more sharply than H,(d), where A, = {A E A; a(A) = A}. 

Furthermore, we have the following results [24]. 

(1) When A,, A are abelian C*-algebras and cyk is an embedding map, then 

M _ 
Tx(,uu; CI”) = S;lassical(m~l A,) , 

IQ;#, CrN) = I;l-ical( 7 A,, 3 &) 
m=l n=l 

are satisfied for any finite partitions d,, & on the probability space (0 = spec(d), 

37 P). 
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(2) When A is the restriction of A to a subalgebra M of ,4; A = IM, 

H,(M) = Jz(cp; (M) = Jz(id; IM) . 
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Moreover, when 

we have 

NC&, d=&b, 8 E Aut (A) ; 

QN E (a,oocr,...;f?~-locx); 

Cl=&; & ---f A an embedding ; 

N 

&,(e; N) = j,“(S, N) = l$~szp $I$“; INN). 
+ 

We show the relation between the formulation by complexity and that by QMC. 
Under the same settings in Section 3, we define a map ETn,_,) from C(X), the set of all 

density operators in 3-1, to E(($ (I$) 8 H) by 

qz,,) (P) = C. . . C C ei,i, E3 . . . @ ein_li,_l @ einin @ 
il i,_l i, 

~e8n-1(yi,)e(n-2)(yi,_,). . . yi*p^lil . . . e(“-2)(yi,_,)e”-l(yin), 

for any density operator p E C(3-I). Let us take a map Ein, from C((&a?) @ 7-1) to 
1 

C(& Cd) such that 
1 

Then a map r&) from C(X) to E(f Cd) is given by 

qz)(P) = qq (“&,(P)) 7 VP E -WY J 

so that r&,,(p) = & and 

3,(&y) = limsup IS(ri,,,,(p)) . 
n-+m n 

From Theorem 5.1, we have C~(F~~,yj(p)) = S(rin,,,(p)). Hence 

%(R 7) = CF(riyj(~)) ( = limsup lCF(r&,,j(p))). 
n-+m n 
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Now we briefly show the relation between the formulation by complexity and that by 
AF. 

Under the same settings in Section 4, for any partitions y = (71, . . . , ok} of size k, 
the k x k density matrix p[y] = (p[y]i,j) is defined by 

P[Yli,j = P(^lj*Yi) 

which is acting on the k-dimensional Hilbert space tik. We define a map Z&,r) from 

z(1-Ik) to z(Ekm) by 

qL,,,MYl) = PPm-%) O.. . O q-/1 O 71 
for any partitions y = (71, . . . , yk} of size k and any density matrices p[y] E c(tik). The 
dynamical entropy by AF is given by 

In any case, the formulation by the entropic complexities contains other formulations. 
Moreover it opens other possibilities to classify dynamical systems more fine [5]. 

6. Computation of quantum dynamical complexity for a model 

LetX={al,... , UM} be an alphabet used to construct the input signals and let S = 

{El,... , EM} be a set of one-dimensional projections on a Hilbert space ?is satisfying 
(1) E,_LE, (n # m) and (2) En corresponds to the character a,. 

By Co we denote the set of density operators generated by S 

Suppose that the input quantum state is an element of Co. To send the information 
effectively, the state is first transmitted through a quantum modulator; the transmitted 
state is called the quantum modulated state. Let -yiM) be a map from Co to CAM) such 
that r(M) is a completely positive unital map from A to A induced by the modulator 

(M). For any En E S, the modulated state ELM) is given by 

ELM’ = 7;~) (En) - 

By Ei”) we denote the set of modulated states 

,Ei”’ E (aCM) = &E;“‘; 5X_ = 1, X 2 O}. 
n=l n=l 

In this paper, we consider the modulated states constructed by the photon number states. 
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For any E, E Ce, the modulated state EipAM) for PAM (Pulse Amplitude Modu- 
lator) is defined by 

EcPAM) = ~ipAM)(h) = ln)(nl, n 

where ]n)(n] is the n photon number state on ‘FI. 

For any E, E Co, the modulated state EippM) for PPM (Pulse Position Modula- 
tor) is defined by 

E(pp”) 
n = Y;PPM+) 

n-th 

where EhPAM) is the vacuum state and ErAM) = ld)(dl (d is fixed). 

The transmission efficiency using the MER (mutual entropy - entropy ratio) [29] is 
calculated for some modulators. 

Now we compute the mean dynamical mutual entropy for PAM and PPM expressed 
by the photon number state (as above). 

Let B(‘&) (resp. B(Re)) be th e set of all bounded linear operators on a Hilbert 
space tie (resp. %e), and let Be (resp. I$,) be a finite subset in B(7&) (resp. I?(?&)). 
Let A (resp. A) b e an infinite tensor product space of B(‘!Ye) (resp. B(?&)) denoted by 

dr & B(T-lo), As 5 B('Flo). 
i=-cQ 2=--03 

Moreover, let 0 (resp. 8) be a shift transformations on A (resp. A) defined by 

%( g Ai) = 6 Ai, (i’ = i - 1) for any g A,cd, 
i=-00 i'=-cc i=-cc 

6( 5 Aj) = ($$ ii,, (j'=j - 1) for any 5 A&i. 
j=-, j’z-cc j=-00 

Let (Y (resp. 6) be the embedding map from Be into A (resp. f?e to A) given by 

~~(A)=..-I~~IAA~I...~E, for any A E ,130 , 

$4) = . ..l@I@A@I@... E A, for any A E Be. 

The set of all density operators on ‘He (resp. Ro) we denote by &, (resp. TO), and let 
C (resp. C) be the set of all density operators on A (resp. j? on A). 
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The maps cx&, and &i(M) are given by 

$m, E (o” T(M), 8’ Q o q(M), . . . ,@N-1 o a o ;Y(,U)) , 

QIi(M) 
I - 

= (~(M)Ono~,;Y(M)Onoeocr,...,~(M)Onoe -N-1o ci)) 

where we took a special channel and modulator such that d z g II and T(MI E 
i=-00 

g Y(M). i=-00 

(I) PAM. Let us take a stationary initial state p E Z: 

P=&m $?J PE E P m=l, Pm # llrn~, 
i=-a 

Cm # ml)) (6.1) 
77% m 

with the unique Schatten decomposition pm (i) = ~ft-lA~~)Eni E c, (=&xiy = 

1 , Xi:) # Ai?’ (ni # ki)) of ~2”. Then we have 2 ’ 

When A* is an attenuation channel, we obtain [17] 

where F,(PAM) = Iji)(jil is the ji-photon number state in the output space Es and 

ICJ2 = j,!(nTJ ,),@(l - ?p-ji) 7 

z 2 . 

where 77 is the transmission rate of the channel [17, 191. The compound states related to 
the channel A* become 

n#J=l 7x.&-1=1 m k=O jo=o jj,_~=O k’z0 

N-l N-l 

X 
(8 

,#‘AM) 
12% I@ 

F!PAM) 

3i’ > 
, 

i=o i’=iJ 

(6.4) 
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M M N-l M M N-1 

no=1 nj$1=1 m k=O n'a=l n“c_1=1 m’ k’=O 

, 

x J;o-. ngl (“ri’ ,C$ ,“) (g @YAM)) (5 F”y”)) . (6.5) 
J’~_~=O k”=O z=o iI=0 

For an initial state p in (6.1), we have 

IEh “&AM)> ‘&=A,)) 
M M M M N-l N-l 

=c... c c... c 
jo=o jN_1=0 n(J=Jo n~_l=J~-~ m k=O k’=O 

Having the above equality, we obtain the following theorem. 

THEOREM 6.1. (1) For an initial state p in (6.1), we have the lower bound of tip(e, 
(Y(pA&f)) S’ILch that 

(2) Let ,UO = 1, pk = 0 (v/c > 1) and A;” 1 X, in (6.1). When A = A, 0 = e and 
cy = Cr, we obtain the following equalities: 

(II) PPM. For an initial state p in (6.1), we obtain the following compound states: 

@d+‘PM)) = 

nrJ=l nN-I=l m k=O i=o j=o 

M M N-l 

no=1 npJ_1=1 m k=O 

db,n, d6M.n.,--l N-l M 

x c ... c ,C~~1,na,2...~C~~~;,--112(~(~~~~~’)). (6.7) 
e,=o e,_1=0 i=O j=l 



468 L_ ACCARDI, M. OHYA and N. WATANABE 

!@E biy,Pibf) ” G(PPilq) 

no=1 nN-I=l n’o=l n’N_~=l m k=O 

(6.9) 

For an initial state p in (6.1), we have 

‘-&; “&PM)I &&PM)) 

no==1 np.r_l=l m k=O P=l {a,.. A,lC{L2,~+7 

x f: ... f: Jc~~2...lced,12(1-~)N--p~plog(C~,, fJ AL;‘)). 

cl=1 e,=l m’ k’=O ’ 

THEOREM 6.2. (1) For an initial state p in (6.1), we have the lower bound of ??,,(O, 
cyppM)) such that 

GA@, Q(PPM)) 2 c Pms(P:)) L 

(2) Let po = 1, p,k = 0 (Vk 2 1) and A?’ z A, in (6.1). When A = A, 8 = 8 and 
cx = (Y, we obtain the following equalities: 

M 

qff qPPA4)) = - c &z log A, , 

7L=1 

T@, Q(Pl?M) 7 A*) = 0 - (1 - 77>d)~p:p(4 qmw)) f 

(3) IfA=& e=S, CY = 6 and d > N, then 

@ ,a(PPM), A*> ?I -@, Q(PA,Vf),n*). 
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