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a b s t r a c t

The hot-atom reactionmechanism brings about reaction rates several orders of magnitude
higher than those expected in the case of adatomswhichhave thermalizedwith the surface.
This paper addresses the issue of a possible thermodynamic characterization of the adlayer
under reactive conditions and at the steady state. In turn, this implies having to determine
the temperature of the adatoms. This is done by means of a nonequilibrium statistical
thermodynamic approach, by exploiting a suitable definition of the entropy. The interplay
between reaction rate, vibrational temperature of the adatoms and adsorbed quantities
is highlighted. This paper shows that the vibrational temperature depends on reaction
rate, logarithmically and exhibits a non-linear scaling on physical quantities linked to the
energetics of the reaction, namely the adsorption energy and the binding energy of the
molecule. The present modeling is also discussed in connection with response equations of
nonequilibrium thermodynamics.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

During recent decades the study of atom recombination at catalytic surfaces has been a vital issue fromboth experimental
and theoretical perspectives [1–11] and references therein. Experimental findings on reaction cross-sections which are
intermediate between those belonging to the Langmuir–Hinshelwood (LH) and the Eley–Rideal (ER) mechanisms, open
up the possibility of a different mechanism governed by the so-called ‘hot’ adatoms [12–15]. The adjective ‘hot’ refers to an
adspecies which, although trapped in the adsorption potential well, has not thermalized with the surface. These adspecies
are expected to be highly reactive on the surface and, for this reason, their role is thought to be fundamental for the kinetics
of the process.

For reactions proceeding under steady state conditions, determination of the reaction rate requires the knowledge of
how adatoms are distributed in energy, or more precisely, their occupation number in the vibrational level of the adsorption
potential well. In the case of the ‘hot-atom’ reaction mechanism, these occupation numbers are expected to be greater than
those of a Boltzmann distribution at the temperature of the surface; in this respect the energy distribution function (d.f.) of
the adatoms is hyperthermal.

Modeling the energy d.f. of adatoms, in chemisorption and catalysis, has been the subject of several works in the
literature [16–20]. In these approaches two processes have to be taken into account in computing the d.f., namely the
accommodation of the adatom at the adsorption site and the formation of the diatom. The former is linked to the energy
dissipation of the atom, trapped in the adsorption potential well during adsorption, into the solid. The latter implies binary
collisions among reacting species. An approach suitable for computing the vibrational d.f. is based onkinetic equationswhere
energy dissipation and atom recombination are described as first and second order reactions, respectively. Also, continuum
approaches based on the use of the Fokker–Planck equation have been employed in the literature [16,18]. In particular, in
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these models gas atoms enter the adsorption potential well in the upper bound level of the vibrational ladder, and descend
the ladder owing to the energy transfer to the solid surface and/or to the adlayer. It is the interplay between adsorption,
recombination rates and energy disposal to the solid, which affects the vibrational d.f. of the adatoms. At the steady state
these models lead to analytical solutions for the d.f. which, in turn, have been employed for interpreting experimental data
in order to gain information on both the reaction rate and the process of energy disposal [21].

Hitherto these approaches, being ‘kinetic’ in nature, have been aimed at characterizing the system (substrate–adlayer)
through kinetic quantities, such as the reaction rate and the rate coefficients for energy transfer. The purpose of the present
paper is to attempt a thermodynamic characterization of the adlayer, under nonequilibrium reaction conditions, at the
steady state. This is achieved through the computation of the entropy of the adsorbate together with a suitable definition
of the temperature of the adlayer. To this end it is necessary to know the d.f., for instance computed using the kinetic
approach as quoted above. These quantities are further employed to estimate parameters typical of the nonequilibrium
thermodynamic equations, in order to bridge the gap between the previously employed kinetic approach and that based on
the response equations of the nonequilibrium thermodynamics.

2. The model

In this contribution we consider the surface reaction

A + B � AB

where A, B denote the adatoms and AB the gas molecule. The reaction rate is given by

dnAB

dt
= r = Rd − Rr , (1)

that is the difference between direct and reverse reaction rates. In the following we deal with a mobile adlayer model
according to which adatoms are trapped in a 1D potential well (along the normal to the surface) and move freely on the
surface plane. By considering the reaction taking place between A and B species in the vibrational ladder of the adsorption
potential well, these rates are

Rd =


iα ,jλ,k

wiα jλ,kn
(A)
iα n(B)

jλ
, (2a)

Rr =


iα ,jλ,k

wk,iα jλn
(AB)
k (2b)

where n(A)
iα , n(B)

jλ
and n(AB)

k are the amount of species (as specified by the superscript), wiα jλ,k the state to state transition
probability for the open reaction channel Aiα + Bjλ � ABk between an A adatom in vibrational level i and translational state
α, and a B adatom in its vibrational level j, and translational state λ, to produce a molecule in state k. In Eq. (2) the sum
is performed over vibrational and translational states. The index of the vibrational state of the adatoms takes the values
i = 1, 2, . . . , ν∗ where ν∗ denotes the last vibrational level. For each reaction channel energy conservation holds, namely

E(AB)
k = E(A)

iα + E(B)
jλ

. The probability p(A)
iα , to find the adatom A in the state iα , is given by p(A)

iα =
n(A)
iα
nA

with nA =


iα n(A)
iα the

total number of species. Similar expressions hold for both p(B)
jλ

and p(AB)
k . The reaction rate Eq. (1) becomes

r = kdnAnB − krnAB (3)

where

kd =


iα jλ,k

wiα jλ,kp
(A)
iα p(B)

jλ
(4a)

kr =


k,iα jλ

wk,iα jλp
(AB)
k (4b)

are the rate coefficients [22]. In Eq. (4) the sums are performed over the states of the open reaction channels. Specifically, in
these expressions the sums run over the initial and final states and p(X)

iα ≡ p(E(X)
iα ) is the energy distribution function of the

vibrational ladder (X = A, B). The ratio between these two constants reads kd
kr

=


iα jλ,k wiα jλ,kp

(A)
iα

p(B)
jλ

k,iα jλ
wk,iα jλ p(AB)

k
where for each reaction

channel the transition probabilities of direct and reverse processes are equal (microscopic reversibility), i.e.wiα jλ,k ≡ wk,iα jλ .
Let us first consider the case of a reaction in which the reagents (adatoms) and the product (ABmolecules) are in thermal

equilibrium at the substrate temperature, Ts. Moreover, as far as the adspecies are concerned, we are dealing with a mobile

adlayermodel where the probability function is p(X)
iα =

e
−βsE

(X)
iα

qs,X
with qs,X =


iα e−βsE

(X)
iα the single particle partition function
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(X = A, B) and βs = 1/kBTs, kB being the Boltzmann constant. By inserting this expression in the relation above, and
exploiting the equality of the transition probabilities, we get

kd
kr

=
qs,AB

qs,Aqs,B
= e−βs(µ

0
AB−µ0

A−µ0
B), (5)

where µ0
X = −kBTs ln qs,X is the standard chemical potential and µX = µ0

X + kBTs ln nX the chemical potential. This
expression of the chemical potential is attained by considering independent and indistinguishable particles. Eq. (5) is the
detailed balance, i.e. the ratio between the rate constants is equal to the equilibrium constant of the reaction. It is worth
noting, in passing, that writing the equilibrium constant of the reaction as kd

kr
=

PAB
θAθB

(with P being the gas pressure
and θA(B) the surface coverage at equilibrium) would require the following definition of the standard chemical potentials:
µ̃0

A(B) = µ0
A(B) + kBTs lnM and µ̃0

AB = µ0
AB + kBTs lnβsV where M is the number of adsorption sites and V the volume of the

reactor. Using the chemical potential the reaction rate can be rewritten as

r =


iα ,jλ,k

wiα jλ,ke
−βs(E

(A)
iα

+E(B)
jλ

)


eβs(µA+µB) −


iα ,jλ,k

wk,iα jλe
−βsE

(AB)
k


eβsµAB

=


iα ,jλ,k

wiα jλ,ke
−βs(E

(A)
iα

+E(B)
jλ

)


eβs(µA+µB)(1 − eβsAr ) = Rd(1 − eβsAr ), (6)

where Ar = µAB−µA−µB is the affinity of the reaction. In the case of a small departure from equilibrium Eq. (6) leads to the
‘kinetic law of mass action’ [23,24] which implies r ∝ −Ar . It goes without saying that when the direct reaction prevails (for
instance, when the products are continually removed), Ar → −∞ in Eq. (6) and r = Rd > 0. Furthermore, if equilibrium
is established between adsorbed species and the same component in the gas phase, then the chemical potentials entering
Eq. (6) are equal to those of the atoms in the gas phase.

Let us go on to discuss the nonequilibrium case where adspecies have not thermalized with the surface in the course
of the recombination reaction at the steady state. Under these circumstances differences arise in relation to the situation
previously studied, due to both the rate constant and the determination of the adsorbed quantities (surface coverage). The
rate constant depends on the probability function piα , which is no longer given by the Boltzmann distribution; in turn, as
discussed in more detail below, it is expected to depend upon the reaction rate. As regards the surface coverage, while in
the equilibrium case this can be linked to thermodynamic quantities (such as the chemical potential), under nonequilibrium
conditions it is determined by the reaction kinetics. For a non-Boltzmannian energy distribution function of the vibrational
ladder it is not straightforward to define the adlayer temperature, although the mean energy and the entropy of the adlayer
can both be defined. In fact, the entropy of the adlayer can be estimated by exploiting the definition proposed in Ref. [25,26];
this definition also holds in the nonequilibrium case

sX = −kB


iα

p(X)
iα ln p(X)

iα + ln nX


, (7)

sX being the partial molar entropy (X = A, B). In order to write the reaction rate through an expression similar to Eq. (6)
(as usually employed in nonequilibrium thermodynamics) one defines the quantity µ′

X = ĒX − TssX =


iα E(X)
iα p(X)

iα +

kBTs


iα p(X)
iα

ln p(X)
iα

+ kBTs ln nX , which resembles the thermodynamic expression of the chemical potential. (Please notice

that in this definition the term −a ∂(Ē−Tss)
∂a , where a = A/n is the area per particle, has been omitted. This is in view of the

following presentation where only vibrational states are taken into account, with vibrational frequency independent of a.)
In the equation above ĒX =


iα piαE

(X)
iα is the mean energy of the adatom. However, one has to bear in mind that in the

present context µ′ is merely a mathematical definition suitable for expressing the rate in the form of Eq. (6). Nevertheless,
since it is possible to define a vibrational temperature of the adlayer (see below), the µ′ quantity could be also estimated at
this temperature. By means of the µ′ expression and neglecting the rate of the reverse reaction, Eq. (1) becomes

r =


iα jλ,k

wiα jλ,kp
(A)
iα p(B)

jλ
nAnB =

e−βs(ĒA+ĒB)


iα jλ,k
wiα jλ,kp

(A)
iα p(B)

jλ

e


jλ
p(B)
jλ

ln p(B)
jλ e


iα p(A)

iα
ln p(A)

iα

 eβs(µ
′
A+µ′

B), (8)

to be compared with Eq. (6) (for Ar → −∞). In the case of a thermalized adlayer the temperature of the system is Ts and,

since p(X)
iα =

e
−βsE

(X)
iα

qs,X
in this case, Eq. (8) actually reduces to Eq. (6) (qs,X = qX (Ts)).1

1 In the present modeling the surface is considered as a thermal reservoir whose temperature is independent of the reactive process.
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The temperature of the adlayer can be defined by employing the concept of ‘generalized heat’ [25,26] through the
relationship

dĒ = Tds ≡ −kBT

iα

dpiα ln piα , (9)

where the number of adatoms and the area of the surface are taken as constants and dĒ =


iα Eiαdpiα . In Eq. (9) and in the
equations that follow, the index of adspecies is omitted since we are considering a one component system. Eq. (9) is to be
considered as the definition of temperature in terms of d.f. and the energy spectrumof the single particle. For instance, in the
case of an equilibrium adlayer piα =


iα e−βsEiα

−1 e−βsEiα and Eq. (9) gives T = Ts. To give a more concrete example, let
us consider the case of a vibrational ladder where the levels are overpopulated with respect to the Boltzmann distribution
computed at the temperature of the surface, Ts. To simplify the discussion, from now on the vibrational states are assumed
to be non-degenerate, i.e. the α index is dropped in the sums.

In order to arrive at a more manageable expression for T , the d.f. is rewritten here in terms of the ‘overpopulation factor’,

fi =

ni
n0
ni
n0


B

=
ni
n0
eβsEi , namely the ratio between the relative population of the actual system and the relative population

of the Boltzmann distribution computed at the same n0 value. The energy of the ground level is set equal to zero (E0 = 0).
Accordingly, pi =

ni
n =

n0
n e−βsEi fi and Eq. (9) gives rise to


i dpiEi = −kBT


i dpi [ln fi − βsEi], namely

1
Ts

−
1
T

=

kB

i
ln fidpi

i
Eidpi

, (10a)

where p0 =
n0
n and the condition


i dpi = 0 has been used. Clearly, the case fi = constant reduces to the Boltzmann

distribution function, for f0 = 1 always holds true. Furthermore, dpi = e−βsEi fidp0 + p0e−βsEidfi. One can now conjecture
that the variation of the overpopulation is a one parameter function of the form dfi =

∂ fi
∂ξ

dξ . Under these circumstances and

using the constraint above one evaluates gi =
dpi
dp0

as

gi =

e−βsEi fi −
e−βsEi ∂ fi

∂ξ

p0
ν∗
i=1

e−βsEi ∂ fi
∂ξ

 for i ≠ 0 (10b)

g0 = 1

with ν∗ being the vibrational quantum number of the upper bound level, p−1
0 =

ν∗

i=0 e
−βsEi fi and

ν∗

i=0 gi = 0.2 From
Eq. (10a) the following relation is obtained for the vibrational temperature of the adlayer

1
Ts

−
1
T

= kB

ν∗
i=1

gi ln fi

ν∗
i=1

giEi

. (11)

Two cases are worthy of note. In the first the overpopulation factor is independent of quantum number according to the
expression fi = 1 + (1 − δi,0)ξ where δi,0 is the Kronecker delta, and ξ is a positive constant. For a harmonic vibrational
ladder Eν = νE01, E01 being the energy spacing of the ladder, and Eq. (11) eventually becomes (see also Appendix A),

1
Ts

−
1
T

=
kB
E01

(1 − γ ) ln(1 + ξ) (12)

where γ = e−βsE01 and the case βsE01 > 1 is considered. It is apparent from Eq. (12) that in this case the temperature scales
logarithmically with the nonequilibrium parameter, ξ .

The second example concerns the d.f. previously derived in Refs. [17,27] in the case of prevailing vibrational quantum
exchange between adatoms. The d.f. reads,

pν =
n0

n
e−βsEν eνξ , (13)

2 As obtained from the constraint
ν∗

i=0 pi = 1.
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where fν = eνξ is the overpopulation factor and ξ is a positive constant. For the harmonic vibrational ladder, Eqs. (11) and
(13) give

1
T

=
1
Ts

−
ξkB
E01

. (14)

Alternatively, Eq. (14) defines the nonequilibrium parameter in terms of T : ξ =

1 −

Ts
T


βsE01. The details of the derivation

of Eq. (14) are reported in Appendix A. It is worth noticing that, differently to the case above, the ratio Ts/T scales linearly
with ξ .

Eq. (11) can be rewritten in the alternative form

T
Ts

=

βs

i
giEi

i
gi(βsEi − ln fi)

, (15)

which holds true provided that fi < eβsEi . In fact, for the d.f. Eq. (13) this constraint implies ξ < βsE01 in agreement with the
above result.

3. Application to adatom recombination at the steady state

3.1. Vibrational temperature of the adlayer

The aim of this section is to compute the vibrational temperature and the entropy of the adatoms in the case of diatom
formation, A2, at the steady state. The model takes into account several reaction channels where adatoms, in vibrational
levels n (An) and m (Am), react to produce a molecule. As far as the energy transfer is concerned, only energy exchange
between the adatom and the solid lattice is taken into account. A reaction channel is open for Em + En ≥ E# where E# is
the activation energy and En the vibrational energy of the adatom (Fig. 1). Owing to the greater occupation number of the
ground level, contributions of reaction channels involving only this level are considered in the computation. For a harmonic
ladder the d.f. is given by [20],

fκ+j =
(1 + ρ)j

γ j


η +

ρ + (1 − γ )z j

(1 + ρ − γ )


1 ≤ j ≤ ν∗

− κ (16a)

fj = 1 +
γ κ

γ j
η 0 < j ≤ κ (16b)

where ρ = wθ0/k, z = γ (1 + ρ)−1, with w being the rate constant for diatom formation, k the rate constant for the loss
of a vibrational quantum to the solid, and θ0 the occupation number (in monolayer units) of the ground level. Furthermore,

η =
ρ(1+ρ)ν

∗
−κ

2−(1+ρ)ν
∗−κ+1 where Eκ = E# and Eν∗ is the energy of the upper bound vibrational level. It is worth noticing that ρ is an

important quantity of the model, for it determines the displacement of the d.f. from the Boltzmann one. The reaction rate,
Φ , is given by Φ = ΦB

η

ρ
and in the limit ρ → (21/(ν∗

−κ+1)
− 1) it becomes several orders of magnitude higher than the

value computed for the Boltzmann d.f. at the surface temperature, namely ΦB = 2wθ2
0 γ κ . Also, limρ→0 Φ = ΦB. It needs

to be stressed, however, that the condition Φ ∼= ΦB does not necessarily imply that the adlayer has thermalized with the
surface. In fact, according to Eq. (16) the Boltzmann d.f. is recovered only in the case of a non-reactive adlayer, for in this
case the overpopulation factors – of the whole ladder – are negligible when compared to unity. For high exoergic adsorption
and/or low surface temperature this condition is fulfilled, in general, for w → 0, i.e. for ΦB → 0.

To reduce the complexity of the computation in the following we consider the functional form taken by Eq. (16) for ρ
much lower than unity. Under these circumstances the d.f. becomes

fi = 1 +
ξ

γ i
κ < i ≤ ν∗ (17a)

fi = 1 +
ξ

2γ i
0 < i ≤ κ, (17b)

where the parameter ξ is proportional to the ratio between reaction rate and rate coefficient for energy disposal to the
solid: ξ =

Φ

kθ0
. In fact, the d.f. Eq. (17) is typical of a reactive adlayer at steady state. This d.f. also holds for reaction channels

involving adatoms in the same vibrational level although, in this instance, a multiplicative factor enters the definition of
ξ [15]. Accordingly, in what follows the general form of the vibrational distribution, Eq. (17), will be employed. In Fig. 2
the typical trend of the overpopulation factor given by Eq. (17) is reported for γ = 0.05, and ξ = 10−14 and ξ = 10−16,
values which are representative of real systems. In the same figure the overpopulation factor given by Eq. (13), in the case
of a harmonic ladder, is also displayed for comparison. Notably, Eq. (13), as derived by Treanor et al. in Ref. [27], applies
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Fig. 1. Schematic representation of the harmonic vibrational ladder of the adatoms in the 1D adsorption potential well. In the drawing, Φ is the
recombination rate, Φn is the flux of adatoms which leave the n-th vibrational level as diatoms, Ea is the adsorption energy, DA2 is the diatom binding
energy, E01 the energy spacing of the ladder and Eκ = κE01 = E# the activation energy for recombination.

Fig. 2. Typical behavior of the overpopulation factors for the vibrational distribution function employed in Sections 2 and 3.1. Solid symbols refer to the
d.f. Eq. (17) at γ = 0.05, κ = 9, ξ = 10−14 (squares) and ξ = 10−16 (diamonds). Open symbols are the distribution function derived in Ref. [27], Eq. (13),
for ξ = 0.5.

to the vibrational relaxation of gas molecules in the case of anharmonic vibrational ladder. In this case the vibrational
‘up-pumping’ is due to both Vibrational–Translational (VT) and Vibrational–Vibrational (VV) energy exchange among the
molecules. In fact, to be active VV ‘up pumping’ requires an anharmonic potential. In the case of a harmonic vibrational
ladder, as considered here, Eq. (13) matches a hyperthermal Boltzmann distribution function. As far as Fig. 2 is concerned,
the great difference between the d.f. given by Eqs. (13) and (17) can be ascribed to the fact that, while the distribution given
by Eq. (17) results from the pumping of vibrational quanta at the top of the ladder, in the case of Eq. (13) it stems from the
pumping of vibrational quanta from the bottom of the ladder. A detailed analysis of the time dependence of the vibrational
d.f. in the reactive gas phase is discussed in Ref. [28]. Furthermore, Eq. (17) considers the dissipation of adatom vibrational
energy to the solid to be dominant when compared to the VV energy exchange. This is also the reason for the difference
in shape between the d.f. of Fig. 2 which are characterized by the same value of the temperature ratio, Ts/T ∼= 0.83 (with
ν∗

= 17 for ξ = 10−14 and ν∗
= 20 for ξ = 10−16). We emphasize that the ξ quantity in Eq. (17) can be estimated by

modeling the recombination reaction on the basis of Eq. (8), which implies a strong coupling between reaction rate and d.f.
An example of this approach is reported in Section 3.3.

Use of the d.f. Eq. (17) in Eq. (11) leads to the following expression for the vibrational temperature of the adlayer (see
also Appendix B)

Ts
T

= 1 −
2

c(κ, ν∗)βsE01


κ

i=1

ln fi + 2
ν∗

i=κ+1

ln fi


(18)
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with c(κ, ν∗) = [2ν∗(ν∗
+ 1) − κ(κ + 1)]. Since 1

2DA2 +Ea ∼= ν∗E01, withDA2 being the dissociation energy of themolecule,

the term c(κ, ν∗) in Eq. (18) can be rewritten as c(ν∗,D) = −2ν∗2
+ 4ν∗D− D(D− 1) where D =

DA2
E01

and 1
2D < ν∗ < D is

assumed. The activation energy of the reaction therefore reads E#
= 2Ea = (2ν∗

− D)E01 where Ea is the adsorption energy
(Fig. 1).

The contribution of the last level to the vibrational temperature of the adlayer is attained by retaining in Eq. (18) only
the term at i = ν∗ according to

Ts
T


ν∗

= 1 −
4

βsE01c(ν∗,D)
ln

1 +

ξ

γ ν∗


. (19a)

For an ample class of exoergic reactions the constraint γ ν∗

≪ ξ < 1 is fulfilled, and (19a) becomes
Ts
T


ν∗

∼=


1 −

4ν∗

c(ν∗,D)


+

4
βsE01

1
c(ν∗,D)

|ln ξ | . (19b)

Eq. (19b) allows us to determine the upper bound of the contribution of the level ν∗ to the vibrational temperature according

to 1 ≤


T
Ts


ν∗

<

1 −

4ν∗

c(ν∗,D)

−1
which is a function of both adsorption energy of the adatom and binding energy of

the molecule. Eqs. (19a) and (19b) are important for they make it possible to characterize the non-equilibrium state of
the system. In fact, the displacement from equilibrium of the vibrational levels – i.e. the overpopulation – is expected to
be greater at i = ν∗. In addition, the population of the last level is shown to be important for reaction kinetics under
nonequilibrium condition [28]. The behavior of Eq. (19a), as a function of the activation energy, is reported in Fig. 3(a)
for several values of DA2 and at given values of ξ and βsE01. In particular, for H recombination on metals D ≈ 36 (at
E01 ∼= 0.12 eV) and ξ is of the order of magnitude of ξ ∼= 10−14. The non-linear trend of (Ts/T )ν∗ on adsorption energy
(in Fig. 3(a)) is mainly due to the c(ν∗,D) function which depends on the energetics of the process. In panel (b) (Ts/T )ν∗ is
plotted as a function of the parameter ξ =

Φ

kθ0
for several values of D, activation energy and βsE01. For H recombination on

metals the interval of the experimental values of ξ =
Φ

kθ0
is alsomarked by the arrows in Fig. 3(b). For a given system (Ts/T )ν∗

increases with reaction rate. In turn, shifting from one system to another, (i.e. changing the ν∗,D couple) the temperature
exhibits the complex behavior brought about by the non-linear term c(ν∗,D). With reference to Fig. 3(b), at the lowest
binding energy (D = 10) the adlayer has thermalized (at βE01 = 6) provided ξ < 10−17, while at βE01 = 8 its vibrational
temperature can be higher than that of a system which is more exoergic, depending on ξ . In general, in the case of a highly
exoergic reaction and/or sufficiently low substrate temperature, for realistic values of ξ the adlayer has not thermalized
with the surface. The minimum values (Ts/T )ν∗,min, as defined by Eq. (19b), are displayed in Fig. 3(c). These values are
characteristic of each ‘reaction–catalyst’ system, for they depend solely on the energetics. Values of (Ts/T )ν∗,min in Fig. 3(c)
span the ample range 0.6–0.9; as a general trend the higher D the higher this figure.

To include in the computation of Ts/T the contribution of all levels, the sum over the logarithms of the overpopulation
factors has to be carried out. This can be accomplished, analytically, by retaining in the sum only the leading terms for which
ξ

γ i ≫ 1. This condition is usually well satisfied for energies greater than the activation energy, i.e. for Ei > Eκ . According to
the derivation reported in Appendix B, Eq. (18) becomes

Ts
T

=
κ(κ + 1)

c
+

4(ν∗
− κ)

cβsE01
|ln ξ | , (20)

to be compared with Eq. (19b). Computations of the vibrational temperature according to Eq. (20) are reported in Fig. 4 as
a function of ξ and for several values of D, and ν∗. This figure shows that the contribution of levels at i > κ is important
in determining the vibrational temperature; the contribution of the whole ladder is, on average, twice that of the last level.
On the one hand, for a given system and at a given ξ the vibrational temperature of the adlayer decreases with substrate
temperature, in other words the adlayer is more ‘hot’ the lower Ts. On the other hand, the vibrational temperature increases
with D: i.e. the hotter the system, the higher the energy released by the reaction.

Above we have defined the quantity ΦB = 2wθ2
0 γ κ as the ‘hypothetical’ recombination rate for a Boltzmann d.f., at the

temperature of the surface, and at the actual value of ρ =
wθ0
k . The behavior of (Ts/T )ν∗ for Φ = ΦB is displayed in Fig. 5a

as a function of E# for two values of D. The same figure also reports the (Ts/T )ν∗ ratio for parameter values typical of H
recombination on metals (D ≈ 36 and ξ ≈ 10−14) where adsorption energies are in the interval 0.3–0.6 eV and E#/E01
ranges between 5 and 12 [21]. One notices that for ξ = 2 × 10−14 the recombination rates are several orders of magnitude
higher than ΦB, although this entails a vibrational temperature increase, on average, of a factor of two (Fig. 4). This is due
to the strong non-linear dependence of reaction rate on adatom vibrational temperature. This aspect is further discussed in
Section 3.3.

The entropy of the adlayer is computed through Eq. (7) bymeans of the d.f. Eq. (17). Performing the sums of the arithmetic
series and retaining the leading term of the logarithmic contributions, one ends up with (see also Appendix C)

s = s0 − kB ln n +
1
4
kBp0ξβsE01c(ν∗,D)

Ts
T

, (21a)
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Fig. 3. In panel (a) the contribution of the upper bound level to the vibrational temperature is reported as a function of the activation energy E# , for several
values of the diatom binding energy (D = DA2/E01) in the range 10–36. The computations refer to Φ/kθ0 = 2 × 10−14 and βsE01 = 6. In the figure the
behavior of the minimum value of (Ts/T )ν∗ is also displayed for D = 26 (dashed line). Panel (b) shows the (Ts/T )ν∗ ratio as a function of the parameter
ξ = Φ/kθ0 for several values of D, at βsE01 = 6 (dashed lines) and βsE01 = 8 (solid lines). In particular, D = 36, ν∗

= 21 (open circles); D = 26, ν∗
= 16

(open squares); D = 20, ν∗
= 13 (solid triangles) and D = 10, ν∗

= 6 (solid squares). Panel (c): minimum values of (Ts/T )ν∗ as a function of activation
energy for several values of D in the range 10–36. Since E#

= (2ν∗
− D)E01 the activation energy is in the range 0 < E#

E01
< D.

where s0 = −kB ln p0 + kBp0βsE01
γ

(1−γ )2
. For ξ = 0 (i.e. Φ = 0), T = Ts, p0 = q−1

s , Eq. (21a) gives the usual expression of
the entropy. Moreover, for βsE01 values much higher than unity p0 ∼= 1− γ . The excess entropy (with respect to that of the
thermalized adlayer) reads

sex = sex0 − kB ln(n/neq), (21b)
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Fig. 4. Vibrational temperature of the adlayer as a function of ξ = Φ/kθ0 computed through Eq. (20). Dashed and solid lines refer to βsE01 = 6 and
βsE01 = 8, respectively. Parameter values are: D = 36, ν∗

= 21 (open circles); D = 26, ν∗
= 16 (open squares) and D = 20, ν∗

= 13 (solid triangles).

Fig. 5. Panel (a). The temperature ratio (Ts/T )ν∗ is displayed as a function of activation energy for the ‘Boltzmann recombination rate, ΦB , at wθ0/k = 0.1,
for D = 36 (solid circles, full line) and D = 20 (dashed line) at βsE01 = 8. The computation for ξ = Φ/kθ0 = 2 × 10−14 and D = 36 is also shown
(solid diamonds). The arrow indicates the typical value of the activation energy for H recombination on metals. Specifically, Ea ≈ 0.6 eV, E01 ∼= 0.12 eV
and DH2

∼= 4.5 eV. Panel (b). The normalized excess entropy of the adlayer, sex0 /sex0,B is shown as a function of recombination rate for D = 36, ν∗
= 21

at βsE01 = 6 (solid diamonds, full line) and βsE01 = 8 (solid circles, full line). sex0,B is the excess entropy at Φ = ΦB (wθ0/k = 0.1). The computation is
performed for ξ = Φ/kθ0 = 2× 10−14 and n = neq . The behavior of the Ts/T ratio is also displayed as dashed lines for D = 36, βsE01 = 6 (solid diamonds)
and βsE01 = 8 (solid circles).

where sex0 =
1
4kBp0ξβsE01c(ν∗,D) Ts

T and neq the adsorbed quantity at equilibrium. The ratio between the excess entropy of
the adlayer, sex0 , and that of the same systematΦ = ΦB, sex0,B, is displayed in Fig. 5b as a function of ξ . Vibrational temperatures
of the adlayer are also reported. The plot shows that the excess entropy scales almost linearly on ξ , i.e. on the recombination
rate.
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3.2. Equilibrium condition and linear response equation

This section is devoted to the equilibrium condition of the adlayer that is actually achieved, as discussed in the previous
section, atΦ = 0 (T = Ts). So farwe have dealt with the adlayer, alone. In order to study the system at equilibrium, however,
the species in the gas phase also have to be considered. In fact, at the steady state the reaction rate (expressed as the number
of adatoms that recombine per unit of time) is linked to the process of adsorption–desorption through the expression

2r ≡ Φ = F(1 − θ) − ν0pν∗θ, (22)

where F =
P

N
√
2πmkBTs

is the flux of incoming gas atoms at the surface, P the gas pressure,N the surface density of adsorption
sites, m the mass of the adatom, ν0 the rate constant for desorption and θ the total surface coverage. By exploiting the
definition of gas and adatom chemical potentials,µg = µ0

g +kBTs ln P/P0 andµ′
= µ′0

+kBTs ln θ , respectively, Eq. (22) can

be rewritten as Φ = α(1 − θ)eβs(µg−µ0
g) − ν0pν∗eβs(µ

′
−µ′0) with α =

P0
N

√
2πmkBTs

. Alternatively, exploiting the equilibrium
condition, Φ = 0, θ = θeq, Eq. (22) becomes

Φ =
(1 − θ)

(1 − θeq)
ν0pν∗,eqeβs(µ

′
eq−µ′0

eq) − ν0pν∗eβs(µ
′
−µ′0)

=
(1 − θ)

(1 − θeq)
ν0pν∗,eqeβs(µ

′
eq−µ′0

eq)


1 −

(1 − θeq)

(1 − θ)

p0
p0,eq

fν∗eβs(µ
′
−µ′

eq−(µ′0
−µ′0

eq))


. (23)

In the limiting case of a very small departure from equilibrium, θ ∼= θeq and the thermodynamic equation of motion is

Φ ≈ −
ν0γ

ν∗

θeq

kBTs
(µ′

− µ′

eq), (24)

with the linear response coefficient L =
ν0θeq
kBTs

e−βs(
1
2DA2+Ea). In Eq. (23) the difference µ′0

− µ′0
eq = (Ē − Ēeq − Tssex0 ) has been

neglected in the exponential function. In fact, in the expression Ē − Ēeq ≈ (f1 − 1)γ E01, γ < 1 and f1 − 1 ≪ 1 hold, while
the excess entropy is of the order of magnitude of ξ that is in the range 10−15–10−12. However, the validity of the linear
approximation is linked to the value of the coverage at steady state and, in turn, to the energetics of the reaction as discussed
in the next section. Moreover, as maintained in Ref. [24], catalytic processes usually take place under far from equilibrium
conditions where the linear response theory does not apply.

3.3. Surface coverage and reaction rates

On the basis of the present approach, under nonequilibrium conditions the fractional surface coverage is a function of
recombination rate. Also, the relationship between these two quantities is, in general, non-linear. Specifically, bothΦ (i.e. ξ )
and θ can be determined by solving the system of Eqs. (8) and (22), where the equilibrium condition implies w = 0. For the
d.f. Eq. (17) with activation energy E#

= Eκ , the system can be solved analytically by employing reasonable approximations.
Using Eq. (17) in Eq. (8) the reaction rate is computed as

Φ = w′p20θ
2


γ κ

+
ξ

2


+

ν∗
−κ

j=1


γ j+κ

+ ξ


∼= w′p20θ
2 γ κ

+ c ′ξ


where c ′
=

1
2


2(D − ν∗) + 1


,

w′
= 2w and p0 =


n γ nfn

−1 ∼= 1 − γ (γ ≫ ξ). Consequently, since by definition Φ = kξθ one gets

θ ∼=
k
w′


ξ

e−βsE# + c ′ξ


, (25)

where p0 ∼= 1 was employed. By means of Eqs. (22) and (25) the following equation is obtained for ξ eventually

k̄ξ ′2
+


λ −

w′

k
c ′


ξ ′

−
w′

k
= 0, (26a)

where ξ ′
= ξeβsE# , k̄ =

1
F [k + ν0] e−βsE# , λ =

1
θeq

= 1+
ν0e

−βsEν∗

F , and p0 ∼= 1 was again assumed. The solution for ξ ′ reads,

ξ ′
=

1
2k̄

−


λ −

w′

k
c ′


+

λ −
w′

k
c ′


1 +

4w′

k k̄
λ −

w′

k c ′

2
 . (26b)
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One notices that in the limit w′

k → 0, ξ ′
≈

w′

k
1
λ
and Eq. (25) gives θ ∼=

1
λ

= θeq. For (λ −
w′

k c ′) → 0 ξ ′
≈


w′

kk̄

1/2
and

the surface coverage (Eq. (25)) becomes 1
θ

=
1

θeq
+


k̄

θeqc′

1/2
. On the other hand, in the case of high desorption energy of

the adatoms (βsEν∗ ≫ 1), high reaction rates are attained for w′

k c ′ > λ ∼= 1 and k̄ < 1. In fact, under these circumstances

ξ ′
≈

1
k̄


w′c′
k − 1


where c ′ > 1 and λ ∼= 1 is used. In addition 1

θ
=

w′

k


k̄

c′w′

k −1
 + c ′


≈

w′c′
k that is greater than

1
θeq

= λ ∼= 1. Consequently, the ratio Φ

ΦB
, being ΦB = w′θ2e−βsE# the reaction rate for the Boltzmann d.f., reads

Φ

ΦB
=

c ′

k̄


c ′w′

k
− 1


≈

F
(k + ν0)

eβsE# (27)

that can be several orders of magnitude higher than one. Interestingly, the value of this ratio is dictated by the relative
magnitude of the rate constant for energy disposal (desorption) and the activation energy containing term. In the case of
highly exoergic reactions the conditions that validate Eq. (27) are usually satisfied. For k ≈ 1013 s−1 the constraint k̄ < 1
is verified for βsE# > 29. In particular, in the case of H recombination on metals F ≈ 0.1 s−1, k and ν0 are of the order
of 1013 s−1 and for E01 ≈ 0.12 eV and Ea ≈ 0.3 eV one gets c ′

=
1
2


DH2−2Ea

E01
+ 1


≈ 16 [21]. At T = 150 K one obtains

k̄ ≈ 10−6 and 1
θ

∼=
c′w′

k is therefore a very good approximation.
It is instructive to estimate the vibrational temperature of the adlayer for the kinetic model discussed so far. Use of

Eq. (20) gives

Ts
T

=
κ(κ + 1)

c
+

4(ν∗
− κ)

c


κ −

1
βsE01


ln

w′

k
+ ln θ + ln

Φ

ΦB


, (28)

where the logarithmic dependence of Ts/T on reaction rate and surface coverage has been made explicit. In terms of rate
coefficients the temperature becomes Ts

T =
κ(κ+1)

c −
4(ν∗

−κ)

cβsE01
ln


c ′ w′

k − 1


F
k+ν0


where the argument of the logarithmic

term is expected to be lower than one. For instance, for hydrogen recombination at θ ≈ 0.25, using the quantities above
one gets Ts

T
∼= 0.3 and Φ/ΦB ∼= 107; in other words, a factor of three variation of the temperature of the adlayer entails a

reaction rate enhancement of several orders of magnitude.

4. Conclusions

A thermodynamic approach has been developed for determining the vibrational temperature of the adlayer during
diatom formation under steady state conditions. The model exploits the definition of generalized heat, together with the
definition of nonequilibrium entropy, and requires the knowledge of the energy distribution function of the adatoms. These
d.f. have been computed bymeans of kinetic rate equations. It is shown that, provided the reaction rate is different from zero,
the temperature of the adlayer is higher than the temperature of the substrate to an extent that depends, logarithmically,
on both the coverage and the reaction rate normalized to the reaction rate of a fully thermalized adlayer. Typical figures for
H recombination on metals indicate that a vibrational temperature increase of a factor of three brings about a reaction rate
enhancement of several orders of magnitude. On the other hand, the adlayer temperature exhibits a complex non-linear
dependence on adsorption energy and binding energy of the molecule.

The present approach is discussed in connection with the linear equations of the nonequilibrium thermodynamics.
The response coefficient has been determined; in particular it has been shown to be proportional to the rate constant for
desorption.

The definition of the adlayer temperature here proposed is shown to be consistent with the results previously attained
in the literature in the case of prevailing VV quantum exchange.

Appendix A

In this appendix we report the computations of Eq. (11) for the two d.f. discussed in Section 2. The evaluation of Eq. (11)
requires the determination of the sum

ν∗

i=1 Eigi, that is,

ν∗
i=1

(iE01)gi = E01

(1 + ξ)

ν∗
i=1

ie−βsE01i −

ν∗
i=1

ie−βsE01i

p0
ν∗
i=1

e−βsE01i


∼= E01


(1 + ξ)

γ

(1 − γ )2
−

1
p0(1 − γ )


(A.1)
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with γ = e−βsE01 . Since
ν∗

i=0 pi = 1 one gets 1
p0

= 1+ (1+ ξ)
γ

1−γ
which can be used in Eq. (A.1) to eliminate p0. Moreover,ν∗

i=1 gi ln fi =
ν∗

i=0 gi ln(1+ξ)−g0 ln(1+ξ) = − ln(1+ξ),where the condition


i gi = 0has been exploited. Accordingly,

1
Ts

−
1
T

= kB
ln(1 + ξ)

E01(1 − γ )−1
, (A.2)

namely, Eq. (12).
For the d.f. fν = eνξ , one obtains

ν∗
i=1

giEi =

 ν∗
i=1

e−βsEi fiEi −

ν∗
i=1

e−βsEiEi
∂ fi
∂ξ

p0
ν∗
i=1

e−βsEi ∂ fi
∂ξ

 = E01

 ν∗
i=1

ie−(βsE01−ξ)i
−

ν∗
i=1

i2e−(βsE01−ξ)i

p0
ν∗
i=1

ie−(βsE01−ξ)i


ν∗
i=1

gi ln fi =

 ν∗
i=1

e−βsEi fi ln fi −

ν∗
i=1

e−βsEi ∂ fi
∂ξ

ln fi

p0
ν∗
i=1

e−βsEi ∂ fi
∂ξ

 = ξ

 ν∗
i=1

ie−(βsE01−ξ)i
−

ν∗
i=1

i2e−(βsE01−ξ)i

p0
ν∗
i=1

ie−(βsE01−ξ)i


that is

i

gi ln fi =
ξ

E01


i

giEi, (A.3)

from which Eq. (14) is derived.

Appendix B

For the d.f. Eq. (17) the gi terms are given by (0 < i ≤ κ)

gi = γ i
+

ξ

2
−

1
2

p0


κ

n=1

1
2 +

ν∗−κ
j=1

1

 = γ i
+

ξ

2
−

1
p0(κ + 2(ν∗ − κ))

= γ ifi −
1

p0D
(B.4)

where D = (2ν∗
− κ). Similarly, for κ < i ≤ ν∗

gi = γ i
+ ξ −

1

p0


κ

n=1

1
2 +

ν∗−κ
j=1

1

 = γ ifi −
2

p0D
. (B.5)

It follows:
i

gi ln fi =

κ
i=1


γ ifi −

1
p0D


ln fi +

ν∗
i=κ+1


γ ifi −

2
p0D


ln fi

=

ν∗
i=1

γ ifi ln fi −
1

p0D


κ

i=1

ln fi + 2
ν∗

i=κ+1

ln fi


, (B.6)

and
ν∗
i=1

giEi = −β−1
s

ν∗
i=1

gi ln γ i
= −β−1

s

ν∗
i=1

γ ifi ln γ i
−

1
p0D

E01


κ

n=1

n + 2
ν∗

n=κ+1

n



= −β−1
s

ν∗
i=1

γ ifi ln γ i
−

1
p0D

E01


ν∗(ν∗

+ 1) −
1
2
κ(κ + 1)



= −β−1
s

ν∗
i=1

γ ifi ln γ i
−

c
2p0D

E01 (B.7)
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with c = 2ν∗(ν∗
+ 1) − κ(κ + 1). Using Eq. (11) one eventually gets

Ts
T

= 1 +

ν∗
i=1

γ ifi ln fi − 1
p0D


κ

i=1
ln fi + 2

ν∗
i=κ+1

ln fi



i

γ ifi ln γ i +
cβsE01
2p0D

∼= 1 −
2

cβsE01


κ

i=1

ln fi + 2
ν∗

i=κ+1

ln fi


(B.8)

where terms of the order of γ i ln fi have been neglected. In addition, the leading terms in the bracket are those involving
vibrational levels with i > κ where the approximation fi ≈

ξ

γ i ≫ 1 is expected to hold for realistic values of ξ . Eq. (B.8)
becomes

Ts
T

∼= 1 −
4

cβsE01

ν∗
i=κ+1


− ln γ i

+ ln ξ


= 1 −
c − κ(κ + 1)

c
−

4(ν∗
− κ)

cβsE01
ln ξ

=
κ(κ + 1)

c
+

4(ν∗
− κ)

cβsE01
|ln ξ | , (B.9)

where ξ ≪ 1.

Appendix C

In this appendix the term s′ = −kB


i pi ln pi, which enters Eq. (7), is computed. By using the pi expression in terms of
fi one obtains

−
s′

kB
=


i

p0fiγ i
[ln(p0γ i) + ln fi] =

κ
i=1

p0


γ i

+
ξ

2


ln(p0γ i) +

ν∗
i=κ+1

p0(γ i
+ ξ) ln(p0γ i)

+

κ
i=1

p0


γ i

+
ξ

2


ln fi +

ν∗
i=κ+1

p0(γ i
+ ξ) ln fi (C.10)

that is

−
s′

kB
= −

s0
kB

+

κ
i=1

p0
ξ

2
ln(p0γ i) +

ν∗
i=κ+1

p0ξ ln(p0γ i) +

κ
i=1

p0


γ i

+
ξ

2


ln fi +

ν∗
i=κ+1

p0(γ i
+ ξ) ln fi. (C.11)

The first two sums give the term −
1
4p0ξβsE01c +

1
2ξ(2ν∗

− κ)p0 ln p0. Moreover, using Eq. (B.8) the contribution

p0ξ
κ

i=1
1
2 ln fi +

ν∗

i=κ+1 ln fi

can be rewritten in terms of Ts/T as follows

p0ξ
2


κ

i=1

ln fi + 2
ν∗

i=κ+1

ln fi


=

p0ξ
2

βsE01c
2


1 −

Ts
T


. (C.12)

Inserting these expressions in Eq. (C.11) and neglecting terms of the order of ln p0 and γ i ln fi (Appendix B) the entropy is
eventually computed as

s′ ∼= s0 +
1
4
kBp0ξβsE01c

Ts
T

. (C.13)
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