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Breakup of small aggregates driven by turbulent hydrodynamical stress
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The breakup of small solid aggregates in homogeneous and isotropic turbulence is studied theoretically and
by using direct numerical simulations at high Reynolds number, Reλ � 400. We show that turbulent fluctuations
of the hydrodynamic stress along the aggregate trajectory play a key role in determining the aggregate mass
distribution function. The differences between turbulent and laminar flows are discussed. A definition of the
fragmentation rate is proposed in terms of the typical frequency at which the hydrodynamic stress becomes
sufficiently high to cause breakup along each Lagrangian path. We also define an Eulerian proxy of the real
fragmentation rate, based on the joint statistics of the stress and its time derivative, which should be easier to
measure in any experimental setup. Both our Eulerian and Lagrangian formulations define a clear procedure
for the computation of the mass distribution function due to fragmentation. Contrary, previous estimates based
only on single point statistics of the hydrodynamic stress exhibit some deficiencies. These are discussed by
investigating the evolution of an ensemble of aggregates undergoing breakup and aggregation.
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Turbulence has a distinct influence on the aggregation
of colloidal and aerosol particles. It not only enhances the
rate of collision among particles, i.e., by inducing high
velocity differences and preferential concentration within the
particle field [1,2], but also it creates hydrodynamic stress
that can cause restructuring and breakup of aggregates [3], a
phenomenon macroscopically expressed in shear thinning in
dense suspensions [4]. The breakup of small aggregates due
to hydrodynamic stress in turbulence is of high relevance to
various applications, e.g., processing of industrial colloids,
nanomaterials, waste waters, and sedimentation of marine
snow [3,5]. In a mean-field situation, aggregation-breakup dy-
namics is described by the Smoluchowski equation. Defining
nξ (t) = Nξ (t)/N0, where Nξ (t) is the number concentration
of aggregates consisting of ξ primary particles, and N0 =∫ ∞

0 dξ ξNξ (t), the Smoluchowski equation reads as

ṅξ (t) = −fξnξ (t) +
∫ ∞

ξ

dξ ′ gξ,ξ ′fξ ′nξ ′ (t)

+ 3φ

4π

[
1

2

∫ ξ

0
dξ ′ kξ ′,ξ−ξ ′nξ ′ (t)nξ−ξ ′(t)

− nξ (t)
∫ ∞

0
dξ ′ kξ,ξ ′nξ ′ (t)

]
, (1)

where φ = 4
3πa3

pN0 is the solid volume fraction, ap is the
radius of the primary particle (assumed monodisperse and
spherical), and kξ,ξ ′ is the aggregation rate. Breakup is
accounted for by the fragmentation rate fξ and the fragment
distribution gξ,ξ ′ . Determining these functions is not easy,
and despite considerable efforts [6] a basic understanding of
breakup dynamics is still lacking. A reason for this is the
complex role of turbulence and the way it generates fluctuating
stress to which an aggregate is exposed.

The main issue we investigate in this Rapid Communication
is how to define and measure the fragmentation rate fξ in a

turbulent flow. The outcomes of our analysis are manifold:
(i) A Lagrangian and an equivalent Eulerian definition of the
fragmentation rate can be derived, that fall off to zero in the
limit of small aggregate mass, while they have a power-law
behavior for large masses; (ii) the power-law tail description
is crucial to obtain a steady-state aggregate mass distribution
when considering the full aggregation and breakup dynamics;
and (iii) turbulent fluctuations allow for a broad asymptotic
mass distribution, while a much narrower distribution of
aggregates is obtained in the laminar case.

We adopt the simplest possible framework [6], and consider
a dilute suspension of aggregates in a stationary homoge-
neous and isotropic turbulent flow. We consider very small
aggregates—much smaller than the Kolmogorov scale of
the flow, in the range of 25–100 μm for typical turbulent
flows, with negligible inertia. Further, we assume that the
concentration of aggregates is such that they do not modify
the flow. Hence, their evolution is identical to that of passive
pointlike particles (unless extreme deviations from a spherical
shape are present, e.g., elongated fibers). Moreover, the
aggregates are brittle and breakup occurs instantaneously once
they are subject to a hydrodynamic stress that exceeds a
critical value [7]. For small and inertialess aggregates, the
hydrodynamic stress exerted by the flow is ∼μ(ε/ν)1/2, where
μ and ν are the dynamic and kinematic viscosity, respectively,
and ε is the local energy dissipation per unit mass. Thus, the
key role is played by the turbulent velocity gradients across the
aggregate which are known to possess strongly non-Gaussian,
intermittent statistics [8].

Let εcr(ξ ) be the critical energy dissipation needed to break
an aggregate of mass ξ . In the simplest case of a laminar
flow, εcr relates to the critical shear rate for breakup as
Gcr ∼ (εcr/ν)1/2. Earlier works [7,9] support the existence
of a constituent power-law relation for εcr, implying that
larger aggregates break at a lower stress than smaller ones:
εcr(ξ ) = 〈ε〉(ξ/ξs)−1/q , where the exponent q is related to the
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aggregate structure and ξs is the characteristic aggregate mass.
An equivalent relation exists for small droplets breaking at
a critical capillary number εcr ∼ σ 2/(μρξ 2/3) (here ξ is the
droplet volume, and σ the interfacial energy). Hence, fξ can
be equally formulated in terms of a critical dissipation fεcr(ξ ).

In this contribution we propose to define the fragmentation
rate fξ or fεcr in terms of a first exit-time statistics. This
amounts to the measurement of the fragmentation rate by
using the distribution of the time necessary to observe the first
occurrence of a local hydrodynamic stress that is strong enough
to break the aggregate. An operational formula of fεcr reads as
follows: (i) Seed homogeneously a turbulent, stationary flow
with a given number of aggregates of mass ξ ; (ii) neglect
those aggregates in regions where the hydrodynamic stress is
too high (ε > εcr); and (iii) from an initial time t0, selected
at random, follow the trajectory of each remaining aggregate
until it breaks, and count the total number of breaking events
in a given time interval [τ,τ + dτ ]. The time τ is the first
exit time: For an aggregate initially in a region with ε < εcr,
τ is the time it takes to the hydrodynamic stress seen by the
aggregate along its motion to cross the critical value εcr at first
opportunity (Fig. 1).
The fragmentation rate is the inverse of the mean exit time:

fεcr =
[∫ ∞

0
dτ τPεcr (τ )

]−1

= 1

〈τ (εcr)〉ex
, (2)

where Pεcr (τ ) is the distribution of the first exit time for
a threshold εcr, and 〈·〉ex is an average over Pεcr (τ ). The
definition in Eq. (2) is certainly correct but difficult to
implement experimentally as it is needed to follow aggregate
trajectories and record the local energy dissipation, something
still at the frontier of present-day experimental facilities [10].
The question thus arising is if we can obtain a proxy for
the fragmentation rate which is easier to measure. Given a
threshold for the hydrodynamic stress εcr, one can measure the
series T1,T2, . . . of diving times, namely, the time lags between
two consecutive events of instantaneous stress crossing the
threshold εcr along the aggregate motion (Fig. 1). In Ref. [11],
it was proposed to estimate the fragmentation rate as the inverse
of the mean diving time f E

εcr
= 1/〈T (εcr)〉. An important result

is that 〈T (εcr)〉 can be obtained using the Rice theorem
for the mean number of crossing events per unit time of

FIG. 1. (Color online) Pictorial evolution of the energy dissipa-
tion ε along an aggregate trajectory. Starting to record the stress at
time t0, the exit time τ and the diving times T1,T2, . . . for a given
threshold εcr are shown.

a differentiable stochastic process across a threshold [12].
Hence,

f E
εcr

= 1

〈T (εcr)〉 =
∫ ∞

0 dε̇ ε̇p2(εcr,ε̇)∫ εcr

0 dε p(ε)
. (3)

Here the numerator is the Rice formula giving the mean
number of crossings of εcr in terms of the joint probability
of dissipation and its time derivative p2(ε,ε̇); the denominator
is the measure of the total time spent in the region with ε < εcr.
Notice that the integration in the numerator goes only on
positive values in order to consider only upcrossing of the
threshold εcr [12]. An obvious advantage of Eq. (3) is that it is
quasi-Eulerian: It does not require to follow trajectories, since
it depends only on the spatial distribution of dissipation and of
its first time derivative in the flow. Expressions (2) and (3) are
not strictly equivalent. A direct calculation of the mean exit
time in terms of the distribution of diving times gives indeed
〈τ (εcr)〉ex = 〈T 2(εcr)〉/[2〈T (εcr)〉], which relates the mean exit
time to moments of the diving time.

Once a definition from first principles is set up, we proceed
to measure the fragmentation rate for aggregates convected
as passive point particles in a statistically homogeneous and
isotropic turbulent flow, at Reynolds number Reλ � 400.
Details on the direct numerical simulations (DNSs) of Navier-
Stokes equations with 20483 grid points and Lagrangian
particles are in Ref. [2]. The present analysis is obtained
averaging over 6 × 105 trajectories, recorded every 0.05τη,
where τη is the Kolmogorov time of the flow.

Figure 2 shows the fragmentation rate measured from the
DNS data following the evolution of the velocity gradients
along aggregate trajectories. The exit-time measurement (2)
and its Eulerian proxy (3) show a remarkable, nontrivial
behavior for small values of the critical threshold, i.e., for
large aggregate mass. In this region, there is a competing
effect between the ease in breaking a large aggregate and

FIG. 2. (Color online) The normalized fragmentation rate fεcrτη

vs the normalized energy dissipation εcr/〈ε〉. Solid circles are the
definition (2), measured up to thresholds where statistical conver-
gence of exit times is obtained; the solid line is f E

εcr
. Squares are f I

εcr
,

while crosses are f II
εcr

. Bottom inset: Joint distribution p2(ε,ε̇). The
continuous line is the dimensional estimate ε̇ ∼ ε/τη(ε). Top inset:
Numerator of Eqs. (3)–(5); curve colors are the same as in the main
figure.
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the difficulty in observing a large aggregate existing in a
region of low-energy dissipation. As a result, the estimated
fragmentation rate develops a quasi-power-law behavior for
small thresholds. On the other hand, for large thresholds
the superexponential falloff is expected. It is the realm of
very small aggregates that are broken only by large energy
dissipation bursts. The exit-time (2) and diving-time (3)
measurements are very close and we therefore consider the
latter a very good proxy of the former, the real fragmentation
rate. The main advantage of the estimate (3) is the very
high statistical confidence that can be obtained since it is a
quasi-Eulerian quantity. Moreover, it gives a reliable estimate
also in the region of large thresholds where the convergence of
exit-time statistics, requiring very long aggregate trajectories,
is difficult to obtain.

Starting from Eq. (3), simple models can be proposed
for the statistics of ε̇, whose direct measure requires a very
high sampling frequency along Lagrangian paths. First, as
it appears from the bottom inset of Fig. 2, the dissipation
and its time derivative are significantly correlated. Scaling
on dimensional grounds suggests ε̇ ∼ ε/τη(ε), where τη(ε) ∼
(ν/ε)1/2 is the local Kolmogorov time. It follows that the joint
probability density function (PDF) p2(ε,ε̇) can be estimated as
p2(ε,ε̇) = 1

2p(ε)δ(|ε̇| − ε/τη(ε)), where p(ε) is the probability
density of energy dissipation. The prefactor 1/2 appears since
for a stationary process ε̇ is positive or negative with equal
probability. Plugging this expression in Eq. (3) gives

f I
εcr

=
1
2εcrp(εcr)/τη(εcr)∫ εcr

0 dε p(ε)
. (4)

We refer to it as closure I. A different approach was proposed
in Ref. [6]. It assumes that active regions in the flow where
ε > εcr engulf the aggregates at a rate ∼ 1/τη(ε), which
results in

f II
εcr

=
∫ ∞
εcr

dε p(ε)/τη(ε)∫ εcr

0 dε p(ε)
. (5)

We refer to it as closure II. Both models share the advantage
of being fully Eulerian and based on the spatial distribution of
the energy dissipation only. In Fig. 2, the fragmentation rates
obtained from closures I and II are also shown. Both of them
reproduce the correct behavior for large values of the critical
dissipation but deviate for small ones. The reason for such a
discrepancy is made clear in the top inset of Fig. 2, where the
numerator of Eqs. (4) and (5) is shown. It appears that, for
small values of the critical stress εcr, f I

εcr
underestimates the

number of breakup events, while the numerator of f II
εcr

saturates
to a constant value.

Since in experiments breakup a fortiori takes place together
with aggregate recombination, we explore how the actual
fragmentation rate Eq. (3) and the two closures, Eqs. (4)
and (5), influence the time evolution of an ensemble of aggre-
gates nξ (t). At this purpose, the Smoluchowski equation (1),
subject to the initial condition nξ (0) = δ(ξ − 1), is evolved
in time. To model aggregation we use the classical Saffman-
Turner expression kξ,ξ ′ = D0/τη(ξ 1/df + ξ ′1/df )3, where D0 is
an O(1) constant and df is the fractal dimension that relates
the collision radius of an aggregate to its mass, a/ap = ξ 1/df .
Breakup is assumed to be binary and symmetric, gξ,ξ ′ =

FIG. 3. Time evolution of I0 for df = 2.4 and q = 0.36 with
breakup rates f E

εcr
(squares), f I

εcr
(circles), and f II

εcr
(triangles). Runs

with different solid volume fractions φ are shifted. Inset: I0 at
steady state as a function of φ (same symbols). At large φ, the
model with fragmentation (3) relaxes to the predicted scaling curve
I0 ∼ φ1/(1+χ/q−3/df ), given by the solid line. Here, ξs = 104, implying
that a/ap ∼ ξ

1/df
s ≈ 50 is the value of the characteristic aggregate

size.

2δ(ξ − ξ ′/2), which, despite its simplicity, represents well the
quality of the evolution. To quantify our findings we consider
the second moment observable readily accessible from static
light scattering [7]. Figure 3 shows the time evolution of I0

for typical values of df and q found in turbulent aggregation
of colloids [3]. After an initial growth period, curves obtained
with Eqs. (3) and (5) both relax to a steady state. At small solid
volume fraction φ, the two models nearly overlap, whereas
at larger φ closure II underestimates I0. This behavior is
confirmed in the inset of Fig. 3, which shows I0 at steady
state for both models and for different values of φ. Clearly, at

FIG. 4. (Color online) Stationary mass distribution nξ (t) with
df = 2.4 and q = 0.36, for different solid volume fractions φ.
Distributions obtained in the turbulent flow at Reλ � 400 (a) are
compared to those of the laminar cases (b), with the uniform shear
rate εlam

cr = 〈ε〉. In (a), we plot fξ (dashed line) as given by Eq. (3),
assuming a power-law behavior in the limit of large aggregate mass.
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large φ other phenomena, i.e., modulation of the flow due to
the particles, may occur which, however, is beyond the scope
of the present work. Closure I shows a very different behavior.
At small φ, an evolution similar to previous cases is observed.
However, by increasing φ a drastic change appears and I0

diverges, a direct consequence of the presence of a maximum
in the shape of f I

εcr
(see Fig. 2).

The time evolution of the number concentration nξ (t),
governed by Eq. (3), is further examined in Fig. 4. Here, we
compare the steady distribution obtained in the turbulent flow
with that of a laminar flow for different values of the solid
volume fraction. In the turbulent case, nξ (t) rapidly grows and
reaches a stationary state whose peak mode is controlled by
the magnitude of aggregation, i.e., the solid volume fraction φ.
Increasing φ causes the mode to broaden and to shift to the right
as the aggregation gets more pronounced. The distribution thus
gradually moves into the region where fεcr assumes power-law
behavior. A numerical fit of the left fragmentation tail in
Fig. 2 gives fξ ∼ ξχ/q , with χ = 0.42 ± 0.02 (dashed curve
in Fig. 4). Using this latter expression in Eq. (1), one can
derive a scaling relation for integral quantities of nξ (t) at steady
state [13,14]. Such scaling is reported in the inset of Fig. 3.
On the other hand, in the laminar case where a uniform shear
rate governs the breakup, the steady-state distribution is much
narrower and shows multiple resonant modes. These are due
to the sharp onset of breakup once the aggregates grow larger
than the characteristic aggregate mass ξs . These results clearly

demonstrate the strong influence of turbulent fluctuations on
the statistically stationary mass distribution function.

We have presented a study of the fragmentation rate
of small and diluted aggregates in turbulent flows at high
Reynolds number. We have introduced an expression for the
fragmentation rate in terms of the exit-time statistics, which
is a natural way of measuring the first-order rate process.
Also, a purely Eulerian proxy based on Eq. (3) provides
a very good approximation to the actual fragmentation rate
measured from our DNS. Remarkably, a steady state in the
full breakup-aggregation process is crucially determined by the
left tail of the fragmentation rate, i.e., by events of low-energy
dissipation. Our investigation puts the basis for many devel-
opments, such as the stability of the Smoluchowski evolution
using the measured fragmentation rates in experiments, and the
extension to the case of inertial aggregates. In such case, the
correlation between the hydrodynamic shear and the Stokes
drag may result in a nontrivial breakup rate dependency on
the degree of inertia. Future work aims to introduce spatial
fluctuations in the mass distribution caused by local breakup,
a research path still poorly explored.
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