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Highlights 

> Tools for on-line sorting of sea bass based on size, sex and abnormalities was developed. > Tools 

are based on image analysis and utilizing outline morphometry. > These analyses are combined 

with the multivariate techniques. > For the size estimation the regression efficiency resulted equal 

to 0.9772. > The discrimination efficiency for sex and malformation estimation was equal to 

82.05% and 88.21% respectively. 

Highlights (for review)
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Abstract 

 

In aquaculture, automation of fish processing by computer vision could reduce operating 

costs, improving product quality and profit. Currently fish are mechanically sorted by size, 

but market constraints require that externally malformed fish be removed as well. 

Additionally fish farmers screen for sex, in order to exploit the higher growth potential of 

females. The aim of this study was the development of methodological tools applicable to 

the on-line sorting of farmed seabass (Dicentrarchus labrax, L.) for size, sex and presence 

of abnormalities. These tools are based on image analysis and utilizing outline 

morphometry (Elliptic Fourier analysis) combined with multivariate techniques (based on 

Partial Least Squares modelling). Moreover, the integration of these techniques produce 

size estimation (in weight) with a better regression efficiency (r = 0.9772) than the 

commonly used log of the measured body length (r = 0.9443). The two Partial Least 

Squares Discriminant Analysis models used to select sex and malformed fish also returned 

high discrimination efficiencies (82.05% and 88.21%, respectively). The implementation of 

a similar approach within an on-line sorting machine would allow for real-time live fish 

processing. 

 

Keywords: Image analysis, Fish sorting, Elliptic Fourier analysis, Partial Least Squares 

modelling, Quality grading. 
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Abbreviations 

CS Centroid size 

EFA Elliptic Fourier analysis 

G Gray scale channel 

HSI Hue, Saturation, Value colour space 

LV Latent vectors 

PLS Partial least squares modelling 

PLSDA Partial least squares discriminant analysis 

RPD Ratio of percentage deviation 

RMSE Root mean square error 

SEP Standard error of prevision 

V Value channel in the HSV colour space 

Nomenclature table 
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1 Introduction 

 

In aquaculture, fish grading is an important and frequent operation. The most frequent 

grading is size grading, which is often performed repeatedly during the rearing cycle. This 

ensures homogenous sized batches of fish, as even fish of the same age typically have a 

high variability in body weight (15-40% coefficient of variation, versus 7-10% in poultry or 

pigs; Gjedrem and Olesen, 2005). More homogeneous groups simplify feed management 

(e.g., similar pellet size) and reduce risks for cannibalism (Kubitza and Lovshin, 1999). 

Also for marketing, it is necessary to sort fish according to size, not only because 

“standard” sizes are requested by the market, but because size uniformity is essential for 

efficient automated processing (Biyowski and Dutkiewicz, 1996). 

Morphological, and in particular skeletal anomalies, represent one of the main bottlenecks 

in aquaculture: they affect production with frequencies of deformed fishes ranging between 

30% and 100%, according to the species, rearing system and life stages considered (see 

review in Boglione and Costa, 2011). Fish affected by severe skeletal anomalies cannot be 

marketed whole, as they may harm the consumer's image of aquaculture products, and often 

must be downgraded to filets or fish meal with loss of profit (Le Vay et al., 2007; Lijalad 

and Powell, 2009). Moreover, automated filleting is hampered in fish with severe vertebral 

anomalies (Branson and Turnbull, 2008). Skeletal anomalies are usually detected by 

external observation in the farm, but using this approach only fish with severe anomalies 

(affecting the external shape of fish) could be detected and removed. Removing anomalies 

early in a growth cycle could increase production efficiency. Thus, cost-efficient methods 

for automated sorting of living deformed fish need to be developed.  
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In addition to these routine management practices (size grading to standardize the product 

and culling anomalous fish), the recent development of selective breeding raises new 

sorting issues. Selective breeding in fish can lead to important gains in growth (5-25% per 

generation; Gjedrem and Thodesen, 2005, Vandeputte et al., 2009b) but a large part of this 

efficiency is linked to the ability to carry out early intense selection for fast growing 

individuals (Vandeputte et al., 2009a). This means that selective breeding procedures will 

often implement repeated sorting of thousands or even tens of thousands of fish. This 

sorting has to be accurate in order to get the full benefit of the high selection pressure. 

Separating males from females is important for selective breeding in the seabass 

(Dicentrarchus labrax), a species without a clear morphological sex dimorphism. In this 

species, females are 20-30% larger than males (Saillant et al., 2001) but cannot be 

externally recognised. In selective breeding, selection has to be applied to both males and 

females to realize maximal efficiency, and rapid sorting of males from females would 

therefore be very important to optimize breeding schemes in the sea bass. Today, selection 

for body size is performed without knowledge of the phenotypic sex of the individuals, and 

males and females can only be separated when they are all sexually mature at 2-3 years of 

age, with potential problems due to the rather biased (often >75% males) and unpredictable 

sex-ratio of farmed sea bass batches, a consequence of a complex sex determination system 

with both environmental (Piferrer et al., 2005) and genetic (Vandeputte et al., 2007) 

influences. Therefore, the automation of fish processing by computer vision, could 

contribute to improve the final product quality (Arnarson et al., 1988), the sale gains (Pau 

and Olafsson, 1991) and the ability to conduct efficient selective breeding programs. 

Although a huge variety of examples using computer vision in food industry have been 
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reported (Panigrahi and Gunasekaran, 2001), the use of computer vision in automation of 

the fish farming industry is still limited but increasing (reviewed by Mathiassen et al., 

2011). Sizing fish is often conducted by sieving-based machinery (SDK Poland; AquaMaof 

Technologies, Israel) (Booman et al., 1997), and only a few systems are integrated with a 

computer vision approach (McCarthy, 1988). For sizing operations Strachan and Nesvadba 

(1990) estimated fish weight with an accuracy of at least 95%. 2D-imaging using area and 

other 2D-geometrical measurement features has been used to estimate the weight of several 

species of fish, including different species of Pacific salmon (genus Oncorhynchus; 

Balaban et al., 2010a), Alaskan pollock (Theragra chalcogramma; Balaban et al., 2010b), 

and rainbow trout (Oncorhynchus mykiss; Gümüş and Balaban, 2010). High-speed 

estimation of volume and size of whole fish and processed fish can be made using 3D-

imaging Marelec Vision Graders (Marelec Food Technologies, Nieuwpoort, Belgium). 

Grading fish quality with machine videos is based, for example, on fish fillet colour 

(Misimi et al., 2006; Quevedo and Aguilera, 2010). Large defects, such as damaged fish, 

different fish species and/or positioning, may be detected and controlled by the filleting 

machine, thus allowing for diversion of defective or incorrectly oriented fishes in order not 

to fillet them. Similar solutions are delivered by Cabinplant (Cabinplant A/S, Haarby, 

Denmark), Baader (Nordischer Maschinenbau Rud.Baader GmbH, Lubeck, Germany) and 

Avanti Engineering (Avanti Engineering AS, Mo i Rana, Norway) (reviewed by 

Mathiassen et al., 2011). Otherwise, fish grading for skeletal anomalies (at market size) and 

sex are not available at all. 

The aim of this study was the development of methodological tools applicable to the on-

line sorting of farmed seabass for size, sex and presence of anomalies. These tools are 
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based on image analysis and utilize outline morphometry (Elliptic Fourier analysis, EFA) 

combined with multivariate modelling techniques (Partial Least Squares modelling, PLS). 

The implementation of a similar approach within an on-line sorting machine should allow 

real-time fish processing. 

 

2 Materials and Methods 

 

2.1 Fish Sampling 

European seabass utilized in this study came from a batch comprised of crosses of 5 

different wild populations, as described in details by Costa et al, 2010. Fish were reared in 

sea cages in tropical sea waters (20-28°C) off Israel (ARDAG Fish farm, Eilat). When an 

estimated 250 g mean weight was reached, a random sample of 259 fish was individually 

photographed live, weighed to the nearest 0.1 g (mean sample weight ± standard deviation 

was 253.73 ± 79.17 g) and dissected. Spine anomalies were assessed by visual inspection of 

the vertebral column after removal of the left fillet. A further characterization of anomalies 

was done by manually measuring the angle between the antero-posterior axis (the axis 

passing through the mouth and the middle fish height) and the axis of the caudal peduncle 

(traced following the posterior part of the lateral line) on the photographs (see below), as 

shown in Figure 1. Sex was determined by visual inspection of the dissected gonads, 

resulting in 179 males and 80 females. 

 

2.2 Image processing 
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For each fish, a digital image (JPG format, 24-bit) was acquired at high resolution (180 

d.p.i.; 6Mpixel) using a Canon PowerShot S50 digital camera. Each fish was placed in the 

left side position on a white dashboard for greater contrast, (Antonucci et al., 2012), with a 

metric reference. Each image was converted to a binary image using  Matlab (Fig. 2). The 

images were transformed utilizing two channels: gray scale (G) and the V (Value channel 

in the HSV colour space).  These two parameters are the most informative channels for 

these specific photographic conditions. A background reference value was sampled 

averaging the G and V channels for the pixel group having the mean value between G and 

V less or equal (darker pixels) to the 5
th

 minimum percentile (>0). The Euclidean distance 

of each pixel from the background reference was calculated. The first and last percentile 

values were discarded. The entire matrix was thus rescaled from 0 to 255. An edging 

„canny‟ (Canny, 1986) Matlab operator was adopted to binarize the image. The Canny 

operator works in a multi-stage process, smoothing the image by Gaussian convolution and 

applying a simple 2D first derivative operator to highlight regions with high first spatial 

derivatives. Finally one „dilate‟ (size 3) and one „fill‟ morphological filters were applied. 

A total of 200 equally-spaced points (x, y) were digitized along the outline with the 

software TPSdig2 (Rohlf, 2006) computed by linear interpolation along the curve. 

Coordinates were aligned by generalized Procrustes analysis, a procedure that consists of 

three steps: the translation of point coordinates to a common centroid located at the origin 

(0, 0) of a reference system of coordinates, the scaling of each outline with the unitary 

centroid size; the rotation of coordinates to minimize the sum of square distances between 

correspondent landmarks (Bookstein, 1991; Antonucci et al., 2012). The 200 aligned 

coordinates were treated as the outline (Menesatti et al., 2008). 
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The overall shape of each fish was analyzed by Elliptic Fourier Analysis (EFA) on the 

outline coordinates (Rohlf and Archie, 1984) (Fig. 3). The outline can be approximated by 

a polygon of x-y coordinates. EFA is based on the separate Fourier decompositions of the 

incremental changes of the x and y coordinates as functions of the cumulative chordal 

length of the outline polygon (Costa et al., 2011a). The Fourier series was truncated at the 

value of k at which the average cumulative power is 99.99% of the average total power 

(Menesatti et al., 2008). For every outline, the total power was calculated as the sum, from 

1 to k, of individual harmonic powers where k is equal to the Nyquist frequency (Crampton, 

1995). The harmonic coefficients describe the size, shape, and orientation of each harmonic 

ellipse and form the input to multivariate statistics. According to Rohlf and Archie (1984), 

the elliptic Fourier coefficients were normalized to be invariant of size, location, rotation, 

and starting position. Cartesian coordinates were used. EFA and all further analyses were 

performed using the software Matlab 7.1 (The Math Works, Natick, USA) (for the EFA 

protocol of analysis, see Costa et al., 2011a). In addition, the area, the major and minor axis 

length, the perimeter (converted from pixel into cm or cm
2
 through the metric scale inside 

each image), and the centroids size (CS) (i.e. the square root of the squared distance 

between each point and the centroid of the points configurations summed over all points) 

were extracted. 

 

2.3 Multivariate modelling 

In order to find models able to sort fish on the basis of weight (continuous variable), sex 

and malformation presence (discrete variables), a multivariate approach based on Partial 

Least Squares modelling (PLS) was performed separately for each variable. PLS (Sjöström 
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et al., 1986; Sabatier et al., 2003; Costa et al., 2011a) is a soft modelling method for 

constructing predictive models with many and highly co-linear factors. 

For the weight variable, the PLS was conducted on the matrix composed by the EFA 

harmonic coefficients together with major and minor axis length, perimeter, area and CS 

(X-block; pre-processed with the „log-decay‟ scaling Matlab procedure) and the weights 

(Y-block; pre-processed with the „autoscale‟ Matlab procedure). For the „log-decay‟ scaling 

Matlab procedure the inputs data consist in x to be scaled and the decay rate tau, while the 

outputs consist in the variance scaled matrix and the log decay based variance scaling 

parameters. The predictive ability of the model is partially dependent on the number of 

Latent Vectors (LV) used. It was assessed using Root Mean Square Error (RMSE), 

Standard Error of Prevision (SEP), bias and correlation coefficient (r) between observed 

and predicted values. Finally, we recorded the ratio of percentage deviation (RPD), which 

is the ratio of the standard deviation of the laboratory measured data to the RMSE 

(Williams, 1987). Generally, a good predictive model should have high values for r and 

low values for RMSE and SEP, and maximum RPD. We classified RPD values according 

to Viscarra-Rossel et al. (2007), as reported in Table 1. 

For the discrete variables (sex and malformations presence), the PLS Discriminant Analysis 

(PLSDA) approach was adopted separately. Y-block (sex and malformation presence) 

variables were replaced by a set of dummy variables. The X-block, composed of the EFA 

harmonic coefficients, were pre-processed with the „normalize‟ Matlab procedure. PLSDA 

also expresses the statistical parameters indicating the modelling efficiency in terms of 

sensitivity and specificity of the parameters. The sensitivity is the percentage of the samples 
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of a category accepted by the class model. The specificity is the percentage of the samples 

of the categories different from the modelled one, which are rejected by the class model. 

For modelling analysis, each dataset was subdivided into two groups: (1) 75% of specimens 

for class modelling and validation; and (2) 25% of specimens for the independent test. The 

modelling/validation and independent test sets were maintained with the same proportion of 

the sampled groups in order to avoid the non balances experimental design on sex. For the 

continuous variable (weight), STDSSLCT Matlab function was used to select the two 

groups based on the standardization transform development acting on the individual sample 

multivariate leverage (Wise et al., 2003). The discrete variables (sex and malformation 

presence) were optimally chosen with the Euclidean distances based on the algorithm of 

Kennard and Stone (1969) that selects objects without the a priori knowledge of a 

regression model (i.e., the hypothesis is that a flat distribution of the data is preferable for a 

regression model) (De Maesschalck et al., 1999). 

 

3 Results 

The Fourier series were truncated at k = 7 (average cumulative power equal to 99.99%). 

 

3.1 Weight estimation 

The results of the PLS modelling, which estimates fish weight, conducted on the matrix 

comprised of the EFA harmonic coefficients (k = 7) together with major and minor axis 

length, perimeter, area and CS, are reported in Table 2. For the model (75% of the whole 

dataset), achieved with 10 LV, r is equal to 0.9772, and for the validation test (25% of the 

whole dataset) is 0.9875. The pre-processing algorithm used were respectively „log-decay‟ 
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for the X-block and „autoscale‟ Matlab procedures for the Y-block. The RPD in the model 

is equal to 4.63, while in the validation test is 6.23, indicating an excellent modelling 

performance. The error values (SEP and RMSE) for the model are 16.19 and 16.40, and for 

the independent test 15.96 and 16.03, respectively. 

Figure 4 shows the regression between measured and predicted values of fish weights in the 

model (white circles) and in the test (black triangles) utilizing the EFA harmonic 

coefficients (k = 7) together with major and minor axis length, perimeter, area and CS. 

 

3.1 Sex estimation 

The results of the PLSDA modelling, conducted on the matrix composed of the EFA 

harmonic coefficients (k=7), in order to estimate the sex, is reported in Table 3. The model 

was constructed with 9 LV and with the „normalized‟ pre-processing for the X-Block. In 

the model, the mean specificity is 77.4%, the mean sensitivity 76.4% and the mean 

classification error 23.1%. The mean of correct classification is 82.1%  for the model and 

82.8% for the test. 

 

3.2 Malformed individual estimation 

A total of 85 individuals (32.8%) were affected by vertebral deformations. Observed 

deformations were fusion (fused vertebrae), lordosis (V-shaped curvature of the vertebral 

spine) and scoliosis (lateral curvature of the vertebral spine). 

The results of the PLSDA modelling, which estimates the malformation presence, 

conducted on the matrix comprised of the EFA harmonic coefficients (k = 7) is reported in 

Table 3. The model was constructed with 9 LV and with the „normalized‟ pre-processing 
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for the X-Block. In the model, the mean of correct classification is equal to 88.2%, while 

85.9% in the test is lower. The mean specificity, sensitivity and the classification error are 

88.4%, 88. % and 11.7% respectively. 

The number of abnormal individuals, separated for localization and type of anomaly, and 

the number of individuals correctly classified by the PLSDA are reported in Table 4. 

The results of the PLSDA show that the (rare) anomalies located cephalad to the 1
st
 dorsal 

fin and the half of the fusions occurring in the region of 2
nd

 dorsal fin were not detected. 

The mean of the angle α for the regular individuals was calculated to be -3.8°±2.9°. The 7 

healthy individuals incorrectly classified (4.3%) as deformed by the PLSDA models had an 

average angle equal to -4.1°±1.5°. Among the malformed individuals, those affected by 

lordosis have a mean of the angle equal to 5.3°±7.3°; the ones correctly classified by the 

PLSDA model as malformed have a mean  angle equal to 6.6°±6.4°, while the 7 

incorrectly classified (15.6%) have a mean  angle equal to -1.9°±8.4°. It is therefore 

possible to affirm that the angle above which it is possible to detect a lordosis is 0°. 

 

4 Discussion 

The use of computer vision in automation of fish processing is still limited. Therefore we 

can only compare our result (model r = 0.9772) with the method traditionally used to assess 

fish weight, e.g. regressing the observed weight vs the log of the measured body length, 

which appears to be less accurate (r = 0.9443). Results we obtained are comparable with 

those obtained by Balaban et al. (2010a) who used the surface (cm
2
) of different species of 

Pacific salmon. 
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Results of our computer vision based sex estimation demonstrated the ability (83% of 

correct classification for the test) to discriminate sex of European seabass at market size 

(250 g mean weight). Although the discrimination was not perfect (17% misclassified, 

mainly females), this method would be of help to ensure relatively balanced sex ratios in 

broodstock for seabass selective breeding programs, if automated for real-time processing 

of images. Some sex-specific biometric traits have been discovered in seabass 

recently(Coban et al., 2011), but these have not been evaluated for their power to correctly 

classify sexes, and moreover require specific linear measurements not automatically 

detectable. 

Morphological anomalies are a primary concern in fish aquaculture (Sfakianakis et al., 

2006; Boglione et al., 2009; Boglione and Costa, 2011). The problem may be solved by 

increasing the precision of the quality assessment with appropriate and standardized 

morphological criteria. These to check, as early as possible in the development, for the 

presence of skeletal anomalies affecting the external appearance of the fish 

(Koumoundouros et al., 1997, 2001; Boglione et al., 2003; Sfakianakis et al., 2003). The 

method we propose appears able to detect some of the most important vertebral anomalies 

(i.e., where the angle of deformation is large enough) and may be used for automatic 

removal of deformed fish, at least at the market size. However, this late sorting would only 

partially solve the problem, as even the possible use of deformed fishes for fillet processing 

is impaired by the presence of skeletal (particularly vertebral) deformations, the machine 

being designed for normal fish shape. The efficiency could then be reduced by the need for 

more manual processing and extra trimming (Branson and Turnbull, 2008). However, the 

most important problem of morphological anomalies for marine species (e.g., European 
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seabass and gilthead seabream) is actually at the hatchery level, where manual sorting of 

thousands of juveniles represents a high cost, and is an important source of stress for the 

young fish. It could be interesting to test this automated method on fingerlings (1-5 g); a 

challenging task when considering that anomalies at the juvenile stage are often less severe 

than in older age (Bardon et al., 2009). 

 

4.1 Methodological remarks 

Fish sorting utilizing computer vision to generate animal profiles and the subsequent 

mechanical handling of fish is currently achievable (Mathiassen et al., 2011). The 

algorithmic integration we performed is decisive in the transition from the first-generation 

artificial vision (i.e. monovariate) to the second-generation artificial vision (i.e. 

multivariate; Aguzzi et al., 2009). Nowadays, selection based on first order morphological 

parameters (size-dependent) uses monovariate classification systems. The proposed shape-

based method could be implemented in sorting machines together with other parameters 

such as colour (White et al., 2006; Costa et al., 2012) and spectra (Nery et al., 2005; Costa 

et al., 2011b). The proposed upgrade of such systems integrates complex shape variables 

(EFA; size-independent) with multivariate classification tools. Such techno-methodological 

upgrades should not compromise the processing speed of the first-generation systems, 

given the current enhanced performance of information systems. Even taking into 

consideration that the Matlab interpreted language developed in the present processing 

system is slower than direct machine-code execution, the duration of the entire processing 

(image segmentation, outline extraction, EFA, PLS) remains small (0.06-0.08 s) and the 

time necessary to process is estimated to be about 10 fish s
-1

. The current study did not 
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include the implementation a conveyor belt equipped with a backlighting system or a 

standard illuminated site that would simplify the image processing and enhance the whole 

processing performance.  

 

5 Conclusions 

At present, the machines for fish grading are able to grade fish with a certain precision 

(Aquadef, Palinox and Vaki fish sorting machines, for example). There are also machines 

for real-time detection of gross skeletal anomalies in fry of the most common aquaculture 

species but the delivered performances need improvement. The promising results of this 

study may help to develop more accurate machines for automated fish sorting based on 

whole shape characters. In this study, the image binarization was conducted using a specific 

image analysis protocol. The implementation of this approach in commercial sorting 

machines and on other stages of life (fry or fingerlings) still requires focused species-

specific tests, but we believe that this could be an important step forward both for routine 

sorting of deformed fish at different stages and for the implementation of selective breeding 

programs through efficient selection based on body size and phenotypic sex. 

 

6 Acknowledgements 

 

This study was carried out within the framework of the Competus project (COOP-CT-

2005-017633), financed by the European Union, the fish farms Ecloserie Marine de 

Gravelines, Les Poissons du Soleil, Viveiro Vilanova, Tinamenor and Ardag and the High-

Vision project (DM 19177/7303/08) from the Italian Ministry of Agricultural, Food, and 



Page 18 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 17 

Forestry Politics. We wish to especially thank Haydar Fersoy, Benny Ron, Sergei 

Ghorshkov, Pedro Marques, Stanislas Laureau, and Aquastream for providing access to the 

broodstock that made this experiment possible, and all partners for their very active 

participation at all stages of the project.  

This publication also benefits from participation in LARVANET COST action FA0801. 

 

7 References 

Aguzzi, J., Costa, C., Fujiwara, Y., Iwase, R., Ramirez-Llorda, E., Menesatti, P., 2009. A 

novel morphometry-based protocol of automated video-image analysis for species 

recognition and activity rhythms monitoring in deep-sea fauna. Sensors 9, 8438-8455. 

Antonucci, F., Boglione, C., Cerasari, V., Caccia, E., Costa, C., 2012. External shape 

analyses in Atherina boyeri (Risso, 1810) from different environments. Italian Journal 

of Zoology 79, 60-68. 

Arnarson, H., Bengoetxea, K., Pau, L.F., 1988. Vision applications in the fishing and fish 

product industries. International Journal Pattern Recognition Artificial Intelligence 2, 

657-71. 

Balaban, M., Gulgun, F., Soriano, M., Ruiz, E.G., 2010a. Using image analysis to predict 

the weight of Alaskan salmon of different species. Journal of Food Science 75(3), 

E157-E162. 

Balaban, M., Chombeau, M., Cırban, D. Gümüş, B. 2010b. Prediction of the weight of 

Alaskan Pollock using image analysis. Journal of Food Science 75(8), E552-E556. 



Page 19 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 18 

Bardon, A., Vandeputte, M., Dupont-Nivet, M., Chavanne, H., Haffray, P., Vergnet, A., 

Chatain, B., 2009. What is the heritable component of spinal deformities in the 

European sea bass (Dicentrarchus labrax)? Aquaculture 294(3-4), 194-201. 

Biyowski, P. Dutkiewicz, D., 1996. Freshwater fish processing and equipment in small 

plants. FAO Fisheries Circular 905, FAO, Rome, Italy, 59 pp. 

Blaxter, J.H.S., 1969. Development: eggs and larvae, in: Hoar, W.S., Randall, D.J. (Eds.), 

Fish Physiology III, Academic Press, New York, USA, pp. 177-252. 

Boglione, C., Costa, C., Di Dato, P., Ferzini, G., Scardi, M., Cataudella, S., 2003. Skeletal 

quality assessment of reared and wild sharpsnout sea bream and pandora juveniles. 

Aquaculture 227, 373-394. 

Boglione, C., Marino, G., Giganti, M., Longobardi, A., De Marzi, P., Cataudella, S., 2009. 

Skeletal anomalies in dusky grouper Epinephelus marginatus (Lowe, 1834) juveniles 

reared with different methodologies and larval densities. Aquaculture 291, 48-60. 

Boglione, C., Costa, C., 2011. Skeletal deformities and juvenile quality, in: Pavlidis, M. 

Mylonas, C. (Eds.), Sparidae: Biology and aquaculture of gilthead sea bream and 

other species. Wiley-Blackwell, Oxford, UK, pp. 233-294. 

Bookstein, F.L., 1991. Morphometric tools for landmark data: geometry and biology. New 

York: Cambridge University Press, 435 pp. 

Booman, A.C., Parin, M.A., Zugarramurdi, A., 1997. Efficiency of size sorting of fish. 

International Journal of Production Economics 48, 259-265. 

Branson, E.J., Turnbull, T., 2008. Welfare and deformities in fish, in: Branson, E.J. (Ed.), 

Fish welfare. Blackwell Publishing Ltd, Oxford, UK, pp. 201-216. 



Page 20 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 19 

Canny, J., 1986. A computational approach to edge detection. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 8(6), 679-698. 

Coban, D., Yildirim, S., Kamaci, H.O., Suzer, C., Saka, S., Firat, K., 2011. External 

morphology of European seabass (Dicentrarchus labrax) related to sexual 

dimorphism. Turkish Journal of Zoology 35, 255-263. 

Costa, C., Vandeputte, M., Antonucci, F., Boglione, C., Menesatti, P., Cenadelli, S., Parati, 

K., Chavanne, H., Chatain, B., 2010. Genetic and environmental influences on shape 

variation in the European sea bass (Dicentrarchus labrax). Biological Journal of the 

Linnean Society 101, 427-436. 

Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sun, D.W., Menesatti, P., 2011a. Shape 

analysis of agricultural products: a review of recent research advances and potential 

application to computer vision. Food and Bioprocess Technology 4, 673-692. 

Costa, C., D‟Andrea, S., Russo, R., Antonucci, F., Pallottino, F., Menesatti, P., 2011b. 

Application of non-invasive techniques to differentiate sea bass (Dicentrarchus 

labrax, L. 1758) quality cultured under different conditions. Aquaculture International 

19(4), 765-778. 

Costa, C., Antonucci, F., Menesatti, P., Pallottino, F., Boglione, C., Cataudella, S., 2012. 

An advanced colour calibration method for fish freshness assessment: a comparison 

between standard and passive refrigeration modalities. Food and Bioprocess 

Technology DOI 10.1007/s11947-011-0773-6. 

Crampton, J.S., 1995. Elliptic Fourier Shape analysis of fossil bivalves: some practical 

considerations. Lethaia 28, 179-186. 



Page 21 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 20 

De Maesschalck, R., Estienne, F., Verdú-Andrés, J., Candolfi, A., Centner, V., Despagne, 

F., Jouan-Rimbaud, D., Walczak, B., Massart, D.L., de Jong, S., de Noord, O.E., Puel, 

C., Vandeginste, B.M.G., 1999. The development of calibration models for 

spectroscopic data using principal component regression. Internet Journal of 

Chemistry 2, 19. 

Gjedrem, T., Olesen, I., 2005. Basic statistical parameters, in: Gjedrem, T. (Ed.), Selection 

and breeding programs in aquaculture. Springer, Dordrect, The Netherlands, pp. 45-

72. 

Gjedrem, T., Thodesen, J., 2005. Selection, in: Gjedrem, T. (Ed.), Selection and breeding 

programs in aquaculture. Springer, Dordrecht, The Netherlands, pp. 89-111. 

Gümüş, B., Balaban, M., 2010. Prediction of the weight of aquacultured rainbow trout 

(Oncorhynchus mykiss) by image analysis. Journal of Aquatic Food Product 

Technology 19(3-4), 227-237. 

Kennard, R.W., Stone, L.A., 1969. Computer aided design of experiments. Technometrics 

11, 137-148. 

Koumoundouros, G., Gagliardi, F., Divanach, P., Boglione, C., Cataudella, S., Kentouri, 

M., 1997. Normal and abnormal osteological development of caudal fin in Sparus 

aurata, L. fry. Aquaculture 149, 215-226. 

Koumoundouros, G., Divanach, P., Kentouri, M., 2001. The effect of rearing conditions on 

development of saddleback syndrome and caudal fin deformities in Dentex dentex. 

Aquaculture 200, 285-304. 



Page 22 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 21 

Kubitza, F., Lovshin, L.L., 1999. Formulated diets, feeding strategies, and cannibalism 

control during Intensive culture of juvenile carnivorous fishes. Reviews in Fisheries 

Science 7(1), 1-22. 

Le Vay, L., Carvalho, G.R., Quinitio, E.T., Lebata, J.H., Ut, V.N., Fushimi, H., 2007. 

Quality of hatchery-reared juveniles for marine fisheries stock enhancement. 

Aquaculture 268, 169-180. 

Lijalad, M., Powell, M.D., 2009. Effects of lower jaw deformity on swimming performance 

and recovery from exhaustive exercise in triploid and diploid Atlantic salmon Salmo 

salar L. Aquaculture 290, 145-154. 

Mathiassen, J.R., Misimi, E., Bondø, M., Veliyulin, E., Østvik, S.O., 2011. Trends in 

application of imaging technologies to inspection of fish and fish products. Trends in 

Food Science and Technology 22, 257-275. 

McCarthy, K., 1988. Report on the development of an automated fish sorting system using 

machine vision. Canadian Industry Report of Fisheries and Aquatic Sciences, No. 

185. 

Menesatti, P., Costa, C., Paglia, G., Pallottino, F., D‟Andrea, S., Rimatori, V., Aguzzi, J., 

2008. Shape-based methodology for multivariate discrimination among Italian 

hazelnut cultivars. Biosystem Engineering 101(4), 417-424. 

Misimi, E., Mathiassen, J.R., Erikson, U., Skavhaug, A., 2006. Computer vision-based 

sorting of Atlantic salmon (Salmo salar) according to shape and size. Proceedings of 

VISAPP Intl. Conference on Computer Vision Theory and Applications, February 25-

28, 2006, Setubal, Portugal, pp. 265-270. 



Page 23 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 22 

Nery, M.S., Machado, A.M., Campos, M.F.M., Padua, F.L.C., Carceroni, R., Queiroz-Neto, 

J.P., 2005. Determining the appropriate feature set for fish classification tasks. 

Proceedings of the XVIII Brazilian Symposium on Computer Graphics and Image 

Processing, Oct. 9-12, IEEE Xplore Press, USA., pp: 173-180. DOI: 

10.1109/SIBGRAPI.2005.25. 

Panigrahi, S., Gunasekaran, S., 2001. Computer vision, in: Gunasekaran, S. (Ed.), 

Nondestructive food evaluation techniques to analyze properties and quality. New 

York, Marcel Dekker, pp. 39-92. 

Pau, L.F., Olafsson, R., 1991. Fish quality control by computer vision. New York: Marcel 

Dekker, pp. 23-38. 

Piferrer, F., Blazquez, M., Navarro, L., Gonzalez, A. 2005. Genetic, endocrine, and 

environmental components of sex determination and differentiation in the European 

sea bass (Dicentrarchus labrax, L.). General and Comparative Endocrinology 142, 

102-110. 

Quevedo, R., Aguilera, J.M., 2010. Computer vision and stereoscopy for estimating 

firmness in the salmon (Salmon salar) fillets. Food and Bioprocess Technology 3, 

561-567. 

Rohlf, F.J., 2006. TpsDig ver. 2.10, digitalized landmarks and outlines. Department of 

Ecology and Evolution, State University of New York at Stony Brook. 

Rohlf, F.J., Archie, W., 1984. A comparison of Fourier methods for the description of wing 

shape in mosquitoes (Diptera: Culicidae). Systematic Zoology 33, 302-317. 



Page 24 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 23 

Sabatier, R., Vivein, M., Amenta, P., 2003. Two approaches for discriminant partial least 

square, in: Schader, M., Gaul, W., Vichi, M. (Eds.), Between data science and applied 

data analysis. Berlin: Springer. 

Saillant, E., Fostier, A., Menu, B., Haffray, P., Chatain, B., 2001. Sexual growth 

dimorphism in sea bass Dicentrarchus labrax. Aquaculture 202, 371-387. 

Sfakianakis, D.G., Koumoundouros, G., Anezaki, L., Divanach, P., Kentouri, M., 2003. 

Development of a saddleback-like syndrome in reared white seabream Diplodus 

sargus (Linnaeus, 1758). Aquaculture 217, 673-676. 

Sfakianakis, D.G., Georgakopoulou, E., Papadakis, I.E., Divanach, P., Kentouri, M., 

Koumoundouros, G., 2006. Environmental determinants of haemal lordosis in 

European sea bass, Dicentrarchus labrax (Linnaeus, 1758). Aquaculture 254, 54-64. 

Sjöström, M., Wold, S., Söderström, B., 1986. PLS Discrimination plots, in: Gelsema, E.S., 

Kanals, L.N. (Eds.), Pattern recognition in practice II. Amsterdam: Elsevier. 

Strachan, N.J.C., Nesvadba, P., 1990. A method for working out the moments of a polygon 

using an integration technique. Pattern Recognition Letters 11, 351-354. 

Vandeputte, M., Dupont-Nivet, M., Chavanne, H., Chatain, B., 2007. A polygenic 

hypothesis for sex determination in the European sea bass. Genetics 176, 1049-1057. 

Vandeputte, M., Baroiller, J.F., Haffray, P., Quillet, E., 2009a. Genetic improvement of 

fish: achievements and challenges for tomorrow. Cahiers Agricultures 18, 262-269. 

Vandeputte, M., Dupont-Nivet, M., Haffray, P., Chavanne, H., Cenadelli, S., Parati, K., 

Vidal, M.O., Vergnet, A., Chatain, B., 2009b. Response to domestication and 

selection for growth in the European sea bass (Dicentrarchus labrax) in separate and 

mixed tanks. Aquaculture 286, 20-27. 



Page 25 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 24 

Viscarra-Rossel, R., Taylor, H., McBratney, A., 2007. Multivariate calibration of 

hyperspectral G-ray energy spectra for proximal soil sensing. European Journal of 

Soil Science 58(1), 343-353. 

White, D.J., Svellingen, C., Strachan, N.J.C., 2006. Automated measurement of species and 

length of fish by computer vision. Fisheries Research 80, 203-210. 

Williams, P.C., 1987. Variables affecting near-infrared reflectance spectroscopic analysis, 

in: Williams, P., Norris, K., (Eds.), Near-Infrared Technology in the Agricultural and 

Food Industries. American Association of Cereal Chemists, St Paul, MN, USA, pp. 

143-166. 

Wise, B.M., Gallagher, N.B., Bro, R., Shaver, J.M., 2003. PLS Toolbox for use with 

Matlab, Ver. 3.0, Eigenvector Technologies: Manson. 



Page 26 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 25 

Figure captions 

 

Figure 1: Angle α characterizing the severity of axis anomalies (mainly lordosis), defined 

as the angle between the antero-posterior axis evaluated on the first half of the fish and the 

axis of the caudal peduncle. 

 

Figure 2: Flow chart representing the automated binarization protocol steps operated in 

Matlab environment. The visual results of some image processing steps are shown on the 

left side. 

 

Figure 3: Example of an image processing sequence results. A. Original image with metric 

scale. B. Binarized image (see Fig. 2); on this image the major and minor axis lengths, the 

perimeter and the area were measured. C. Outline. D. 200 equally-spaced points along the 

outline. 

 

Figure 4: Regression between measured and predicted values of fish weights (g) in the 

model (i.e. 75% of whole sample dataset) and in the test (25% of whole sample dataset) 

observed for the EFA harmonic coefficients (k = 7) together with major and minor axis 

lengths, perimeter, area and CS. White circles represent the individuals used for modelling 

and black triangles represent the test individuals. 
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Figure1

http://ees.elsevier.com/aque/download.aspx?id=17066&guid=89a4438c-79c9-4c5b-a870-1139fbf76d24&scheme=1
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Figure2

http://ees.elsevier.com/aque/download.aspx?id=17067&guid=e950ee3b-6950-46fb-8edd-852c20345de8&scheme=1
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Figure3

http://ees.elsevier.com/aque/download.aspx?id=17068&guid=26526508-77ab-4cf0-8d25-92f45e140094&scheme=1
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Figure4

http://ees.elsevier.com/aque/download.aspx?id=17069&guid=10c2ebda-8e32-40e6-ae2b-b0b0d5bd5acd&scheme=1
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RPD values 
Classification model and/or 

prediction 
Use 

< 1.0 very poor not recommended 

between 1.0 and 1.4 poor 
only high and low values are 

distinguishable 

between 1.4 and 1.8 fair assessment and correlation 

between 1.8 and 2.0 good 
quantitative predictions are 

possible 

between 2.0 and 2.5 very good quantitative 

> 2.5  excellent recommended 

Table 1: Ratio of percentage deviation (RPD) values classifying model and/or prediction 

performances according to Viscarra-Rossel et al. (2007). 

Table1
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Weight 

Parameters Values 

Model (75%) 

N. LV 10 

Pre-processing X-Block Log-decay 

Pre-processing Y-Block Autoscale 

% Cumulated variance X-block 100 

% Cumulated variance Y-block 95.51 

r (observed vs. predicted) 0.9772 

RPD 4.6285 

SEP 16.19 

RMSE 16.40 

Test (25%) 

r (observed vs predicted) 0.9875 

RPD 6.2312 

SEP 15.96 

RMSE 16.03 

Table 2: Characteristics and principal results of the Partial Least Squares (PLS) model 

performed on Elliptic Fourier Analysis (EFA) coefficients together with area, major and 

minor axis length, perimeter and centroids size (CS) in order to estimate the fish weight. 

Table reports for the model (75% of the whole dataset) and for the test (25% of the 

whole dataset): N. LV (number of latent vectors), pre-processing for X- and Y-Block, 

the percentage of cumulated variance for X- and Y-Block, r (correlation coefficient), 

RPD (ratio of percentage deviation), SEP (Standard Error of Prevision), RMSE (Root 

Mean Square Error). 

 

Table2
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 Sex Malformation presence 

Parameters Values 

Model (75%) 

N° LV 9 9 

Pre-processing X-Block Normalize Normalize 

Pre-processing Y-Block None None 

% Cumulated variance X-block 99.86 99.85 

% Cumulated variance Y-block 70.29 80.73 

Mean specificity (%) 77.4 88.35 

Mean sensitivity (%) 76.4 88.35 

Mean classification error (%) 23.10 11.65 

Random probability 50.00 50.00 

Mean % correct classification 82.05 88.21 

Males (correctly/incorrectly class.) 123/12  

Females (correctly/incorrectly class.) 37/23  

Test (25%) 

Males (correctly/incorrectly class.) 42/2  

Females (correctly/incorrectly class.) 11/9  

Mean % correct classification 82.81 85.94 

Table 3: Characteristics and principal results of the Partial Least Squares Discriminant 

Analysis (PLSDA) models performed on Elliptic Fourier Analysis (EFA) coefficients in 

order to estimate sex and malformation presence. Table reports for the model (75% of 

the whole dataset) and for the test (25% of the whole dataset): N. LV (number of latent 

vectors), pre-processing for X- and Y-Block, the percentage of cumulated variance for 

X- and Y-Block, of the mean specificity, sensitivity and classification error, the random 

probability (probability of random assignment of an individual into a unit) and the 

percentage of the mean correct classification. For the sex model the number of males 

and females correctly/incorrectly classified has been reported. 

 

Table3
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 Fusion Lordosis Scoliosis 

Before the 1
st
 dorsal fin 1(0) 1(0) 0 

Along the 2
nd

 dorsal fin 28(15) 37(32) 1(0) 

After the 2
nd

 dorsal fin 9(6) 7(6) 1(1) 

Table 4: Number of deformed individuals separated for positioning and kind of 

deformity (before the 1
st
 dorsal fin and along and after the 2

nd
 dorsal). In brackets the 

table reports the number of individuals correctly classified by the Partial Least Squares 

Discriminant Analysis (PLSDA) model. 

 

Table4




