Assembly of natural compounds with microparticles to improve the targeting of human topoisomerase I in cancer therapy

Blasco Morozzo della Rocca Structural Biology Unit Department of Biology

Topoisomerases are classified as type I and type II

They cleave the DNA phosphodiester backbone by nucleophilic attack from a catalytic tyrosine residue which becomes linked to the phosphate end (P-Y) of the DNA break.

The reaction is highly reversible and leaves the DNA sequence unchanged following topoisomerization.

Human topoisomerase IB

The protein has a bilobed shape and completely clamps around the DNA

Mechanism of action: five steps

The linker domain and the nose cone helices are responsible for the *Controlled Rotation* mechanism.

DNA }-0-CH2 Thy Tyr⁷²³ DNA DNA forward cleavage transesterification Lys⁵³² Arg⁴⁸⁸ Tyr⁷²³ Ade o cleavage +1 Arg 590 (H₂O) His 632 DNA "catalytic formation of a pentacoordinate water" phosphorane transition state DNA reverse religation transesterification HO-CH₂ Tyr Ade DNA transient covalent complex: DNA-(3'-phosphotyrosyl)-enzyme intermediate

Nucleophilic attack

DNA topoisomerase I inhibitor classes

Cellular poisons

>Bind reversibly the cleaved complex

Diminish the "religation" speed

> Catalytic Inhibitors

·Class II

·Class I

Interfere with DNA-topoisomerase I binding

Interact with the protein active site.

Human Topoisomerase IB is the unique target of the antitumor drug camptothecin

The anticancer drug camptothecin (CPT) specifically binds to the covalent human topoisomerase I–DNA complex stabilizing it and then inducing cell death.

The drug intercalates between the DNA base pairs interacting both with protein and the DNA.

The binding of the drug to the covalent complex is reversible, but when the complex collides with the replication fork it induces an irreversible effect. The inhibition is S-phase specific.

Cleavage/Religation equilibrium in absence and presence of CPT using a 900 bp dsDNA as a substrate.

Keq = kcl/kr

Decrease activity
Improve activity

Eliminate activity

Camptothecin (lactone)

Camptothecin (carboxylate)

b

Topotecan

Clinically approved Camptothecin Derivatives

Topotecan (Hycamptyn)

Ovarian Carcinoma

Renal expulsion

Irinotecan (CPT-11)

Metastatic colo-rectal cancer

ADVANTAGES

TOP1ccs is the only target

Camptothecins penetrate vertebrate cells readily and target TOP1 within minutes of exposure.

CPTand its derivatives have a relatively low affinity for TOP1ccs, micromolar drug concentrations are required to detectably trap TOP1ccs which indicates that camptothecin was naturally selected for on the basis of its selectivity rather than its potency.

MAIN LIMITATIONS

The α-hydroxylactone E-ring of camptothecins is readily converted into a carboxylate which is inactive against TOP1 and binds tightly to serum albumin

Accumulation of CPT induces side effects

Camptothecin

Nitidine

Coralyne

Colchicine

Luothonin

Thaspine

Wakayin

Liriodenin

Alkaloids

Flavones

Topostin HO NH2 Topostatin Conjugated eicosapentanoic acid

— Triterpens

Quinones

Lapachol

β-Lapachone

Fatty acids

cEPA

- cEPA, conjugated eicosapentaenoic acid
 is found in seaweeds such as red and green algae
- It was found to have an inhibitory effect on human cancer cells, inducing cell apoptosis through both p53-dependent and p53-independent pathways in cell lines NALM-6 and HL-60 (human leukemia).

Inhibits relaxation, completely and irreversibly with preincubation, inhibits cleavage, but not binding nor religation,

cEPA Docking on protein and binary complex

Arch Biochem Biophys. 2009 486(2):103

entine data

Erybraedin C, a natural compound from the plant *Bituminaria bituminosa*, inhibits both the cleavage and religation activities of human topoisomerase I

Cinzia TESAURO*, Paola FIORANI*, Ilda D'ANNESSA†, Giovanni CHILLEMI†, Gino TURCHI‡ and Alessandro DESIDERI*1

The pterocarpan Erybraedin C (ERYC) from Bituminaria bituminosa

It contains a tetracyclic ring system characterized by the presence of two hydroxy groups, located, respectively, on the 7 and 4 position, and two prenyl groups (γ , γ -dimethylallyl) on the 8 and 5 position.

Relaxation assay with ERYC

ERYC inhibits topoisomerase I relaxation activity in a dose dependant manner and is enhanced by pre-incubation with the enzyme

Relaxation kinetics with ERYC

ERYC is an irreversible inhibitor of topoisomerase I

"Cleavage-religation" equilibrium

ERYC does not stabilize the covalent complex

Three cases:

"binding" inhibition

"cleavage" inhibition

Acceleration of "religation"

Covalent complex

Electrophoretic mobility-shift assay (EMSA)

Complex 1 Topo I-DNA
Complex 2 Topo I-DNA

DNA

ERYC does not inhibit the binding of topoisomerase I to DNA

Religation kinetics with ERYC

Suicide Substrate

"Cleavage"

ERYC

Oligonucleotide R11

"Religation"

ERYC inhibits "religation"

Molecular Docking

(Dott.ssa Ilda D'Annessa)

Prenyl group in position 8 interacts with Arg488 and His 632

The compound bind both the free protein and the binary complex topoisomerase I- DNA

EryC summary

ERYC acts with a different mechanism from CPT and can be classified as a catalytic inhibitor of topoisomerasi I

Blocks both "cleavage" and "religation" steps

No effect on DNA binding

A Natural Anticancer Agent Thaspine Targets Human Topoisomerase IB

Silvia Castelli¹, Prafulla Katkar¹, Oscar Vassallo¹, Mattia Falconi¹, Stig Linder³ and Alessandro Desideri^{1,2,*}

THASPINE (NSC76022)

An alkaloid from the South American tree *Croton lechleri*.

Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells.

The gene expression signature of thaspine is similar to that shown by camptothecin

thaspine inhibits topoisomerase I activity in a dose-dependent manner

Pre-incubation increases inhibition

Inhibition is reversible

Topo IB 5'-AGAAAAAATTTT-3' (R11) -3' 5'-p-GAAAAAAGACTT 3'-C TTTT T TCTGAATCTTTTTAAAAAT-5' DMSO Thaspine

Inhibition of the cleavage

Inhibition of the religation

In the presence of the DNA duplex, thaspine docks in the DNA nick with a good interaction energy that explains the ability of the drug to inhibit the reaction of religation

In the absence of DNA duplex in all the docking runs thaspine is flattened over the active site surface, in the proximity of Tyr723 explaining the ability of the drug to inhibit the cleavage reaction

CLOSED STATE

Thaspine conclusion

Thaspine targets human topoisomerase IB

It acts as a poison but also as a catalytic inhibitor

Chemical modifications of the thaspine molecule may confer specificity toward one of the two characteristics

Anticancer Agents Med Chem. 2013 Feb;13(2):356-63.

How can we improve the targeting of the drug, maximizing its effect and minimizing the side effects on healthy tissue or on accumulation sites?

Camptothecin loaded Chitosan-Folate Microcapsules specifically target HeLa tumor cells

PVA=Poly(vinyl alcohol)

Is water soluble

Biocompatible

Injectable

It can be used for biomedical applications and to design new micro-(nano) structured devices

- Microballoons
- Hydrogel microparticles
- Films

Atactic commercial PVA

OH groups

Biomacromolecules 2006, 7, 604-611

Diameter 4.2µm
Shell thickness 0.9µm
Z-potential -4.7±0.6mV

STRATEGY

Exploit the structure of the microcapsules to target camptothecin toward tumor cells. PVA is the "sponge" for CPT

Exploit the Folic Acid receptor overexpression profile of a number of tumors. Folic acid is the key recognition element

Use a spacer arm of chitosan, in order to maintain the flexibility needed to interact with the receptor

Test on two cell lines: immortalized NIH3T3 fibroblasts, not expressing folic acid receptor, and Hela cells of cervical cancer who have high folic acid receptor levels.

Chemical synthesis

Chitosan: C3, C4, C2 carbon atoms of the sugar and to the methyl protons, falling at 3.90, 3.77, 3.18 and 2.07 ppm respectively.

Chitosan-folate: additional peaks at 8.73, 7.66 and 6.83 ppm due to the folate aromatic rings and one at 2.40 ppm due to the protons linked to C22.

Chi-FA-Rhod CPT merge

MC can be functionalized with the chitosan-folate and absorbed with CPT on PVA Shell.

The absorbed CPT is indirectly quantified following the spectrophotometer signal at λ =370nm in the external solution to the MC

Functionalization with Chi or Chi-FA allows the absorption of larger amounts of CPT (78% of the concentration of external solution 100um), compared to 50% absorbed by nude MC.

Release kinetics of CPT from MC and MC-Chi-FA in D-MEM at 37°C

Rate of release

MC: $2.4 \pm 0.2 \text{ h-1}$

MC-Chi-FA: 0.52 ± 0.02 h-1

Data are reported as percentage of release normalized to the maximum of released drug. In both cases the maximum quantity of released drug corresponds to about 20-25% of the total adsorbed CPT.

CPT released in H2O RT,

changing the media every 3 days.

MC release more drug, and earlier than the functionalized capsules

The percentages are always calculated based on the amount of CPT that is still linked to the structure after the change of the medium

MC-Chi-FA selectively target HeLa tumour cell

3*10⁻¹⁰moles Chi-FA/mg MC

Green: Phalloidin-FITC Red: MC-Chi-FA-Rhod

Competition experiments

with 4mg/L of folate excess in D-MEM

The interaction between MC-Chi-FA and HeLa cells is due to the presence of folate on the microstructure surface

Proliferation: cells have been incubated with MC for 48 hours and allowed to grow on fresh medium for additional 48 hours before being assayed on their proliferation

MC-Chi-FA impact the proliferation of HeLa tumor cells, while do not perturb in significant way, the growth of NIH3t3 cells.

Green:Phalloidin-FITC Red:MC-Chi-FA-Rhod

MC-Chi-FA are internalized by HeLa cells

SUMMARY

Chitosan-folate on MC leads to greater absorption of the drug.

Lower rate of drug release from functionalized MC

MC-Chi-FA are able to bind and to be internalized by HeLa cells

MC-Chi-FA, interacting with HeLa cells, impact their proliferation

People involved:
Alessandro Desideri

Alice Galbiati

Cinzia Tesauro Barbara Arnò Paola Fiorani

Oscar Vassallo Prafulla Kaktar Silvia Castelli

Ilda D'annessa Mattia Falconi Francesco Oteri Andrea Coletta Collaborators:

Gaio Paradossi, STC Uniroma2

Hemanta Majumder, ICB Calcutta, India

Gino Turchi, CNR-IBF, Pisa

Stig Linder, Karolinska, SWE

Giovanni Chillemi, CINECA

Simone Beninati, Bio, UniRoma2

Birgitta Knudsen, Aarhus, DK

...And you for your Kind Attention!

