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The Quantum Weak Coupling Limit (II):
Langevin Equation and Finite Temperature Case

By

Luigi ACCARDI*, Alberto FRIGERIO**
and Yun G. Lu***

Abstract

We complete the program started in [4] by proving that, in the weak coupling limit, the matrix
elements, in the collective coherent vectors, of the Heisenberg evolved of an observable of a system
coupled to a quasi-free reservoir through a laser type interaction, converge to the matrix elements of
a quantum stochastic process satisfying a quantum Langevin equation driven by a quantum Brownian
motion. Our results apply to an arbitrary quasi-free reservoir so, in particular, the finite temperature
case is included.

§0. Introduction

In the present paper, the notations and the model will be the same as in [4].
Namely, HQ (the system space) and //, (the one-particle space of the reservoir)
are Hilbert spaces, Q>1 is an operator on H , , W(Hl) is the Weyl-algebra on
//, , <pQ is the mean zero, gauge invariant quasi-free state on W(H{), with
covariance Q, i.e.,

As in [4] we shall use the following notations: {#Q,nQ,$}Q} is the GNS triple of
(W(H^<pQ)\ we denote nQ(W(-)) by WQ(-) and AQ(/), A+(/), (f e H,) the
associated annihilation and creation operators, HR is the free Hamiltonian of the
reservoir, Hs the free Hamiltonian of the system and

(0.1)

with
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V = --(D®A^(g)-D+®AQ(g))- HR=dY(-H) (0.2)

is the total Hamiltonian of the composite system. Here H is a self- adjoint
operator on //, such that S,° = e~"H commutes with Q and D is a bounded operator
on H0 such that (rotating wave approximation)

Ade-'tHs(D) = e-'motD9 Q)0>0 (0.3)

The evolution operator in interaction representation (wave operator at time i) is

Ua}(t) = e"H((\-'tHUt (0.4)

with

and satisfies, weakly on the domain of coherent vectors, the equation

where,

(0.5)
dt i

V(t) = --(D® e-IO)»'A+ (Sfg) -D+® e'
i

= -t(D®A+(S,g)-D+®A(S,g)) (0.6)

and

In [4], we have shown that, in the Fock representation i.e. for Q = I , the
limit

^SJ2du)®Q) (0.7)

exists and is equal to

where, {//,¥, W(£I5T, ®/)} is the Fock Brownian Motion on L2(R,^;7/).
Moreover, from Theorem (II.) in [4], we know that U(t) satisfies the quantum
stochastic differential equation,

= \ + jl
(](D®dA;(g)-D+®dAs(g)-(g\g)_D+D®lds)U(s) (0.9)

where, As(g):=
The first result of the present paper, is the study of the limit (0.7) for Q^l

and the deduction of the corresponding quantum stochastic differential equation.
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(cf. Theorem (1.7) below) The application of this extension, to a system 5
interacting with a free Boson gas in equilibrium, was discussed without proofs in
Section (7.) of [4].

The main new feature in the proof of this result, with respect to [4] is the
more complex structure of the negligible and non negligible terms, due to the
doubling of the space (with respect to the Fock case).

Most of the work of Section (1.) is devoted to the proof that the estimates of
[4] are sufficient to guarantee the convergence to zero of the so-called type II
terms and to make esplicit the additional term, in the quantum stochastic
equation, due to the fact that the state is non-Fock.

The second new result, both in the Fock and in the Q^l case, is that the
limit

/»7]/A2/»7]/A

l SJ{di4)®Q,
JS,/A:

I* TWA2

v<x>W0a " SJ,du)Q>Q) (0.10)
*/S2/A2

exists for any X e B(H0) and is equal to (in the same notations as (0.8))

(w®Wa [ 5 i T i ]<x)^)^^^ (O.lOa)

where, instead of (0.9), U(t) satisfies the equation (1 .45).
This is the main result of the present paper and corresponds to Theorem III,

stated without proof in [4] . Its meaning is that the family of bounded quantum
stochastic processes

XU}(t):=UU)(t)(X®l)UU}(t)

satisfying an ordinary Heisenberg equation in interaction representation,
converges, weakly in the sense of matrix elements (cf. Definition (2.2) of [4]), to
the process

X(t):=U(t)(X®\)U(t)

satisfying the quantum Langevin equations (4.4a), (4.4b). The main difficulties in
the passage from the equations for £7(0 (i.e. (0.9) and (1.45)) to the Langevin
equations (4.4a) and (4.4b), are all present in the Fock case. Once these have
been settled and the result of Theorem (1 .7) has been established, the extension of
the Langevin equation from the Fock to the finite temperature case can be
obtained by some natural (although lengthy) modifications which make use of the
ideas developed in Sections (.1) of the present paper. For this reason we do not
include the proof of Theorem (4.2).

Throughout this paper, when a proof is a simple adaptation of pervious
results, we have barely mentioned the salient points.
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A quantum Langevin equation of different type for a restricted set of
observables was deduced, with different techniques, in [6].

It will be clear from the proof that the above mentioned result is by no means
an easy corollary of Theorem II of [4], even if the basic estimates of that paper
will be constantly used here. On the other hand such a result is needed if we want
to include in the present theory all the previous results on the master equation [6],
[9], [10]. Given the above result, this inclusion is a simple corollary of the
quantum Feynman-Kac formula [1] (for the connection between the quantum
Feynman-Kac formula and the Langevin equation, see [2]).

As in [4], we suppose that there exists a non-zero subspace K c: Dom(Q) (in
all the examples it will be a dense subspace) such that

,/, e£ (0.11)

This condition implies that the sesquilinear form

f . , S . f 2 ) \ d t (0.12)

defines a pre-scalar product on K. We shall still denote by K (or (K, (-}•)) if
confusion can arise) the associated Hilbert space, i.e. the completion of the
quotient of ^by the zero norm elements in the scalar product (0.12). The scalar
product on AT will still be denoted by (•[•). In the following we shall use, without
proof, the following three results from [4].

Lemma (0 .1) . For each g e Dom(Q) and for any -<x>< S < 7 <+<*>, the
integral

(0.13)

is well defined and belongs to Dom(Q), moreover,

Q I Stgdt = I QStgdt = I StQgdt (0.14)
Js Js Js

Lemma (0.2). For each pair f,g^K satisfying (0.10) and for any S,,7j,
ST,T~> e R (S; < Tf, j = 1,2), one has

l i m < A J " ' SJdu^l~ Sllgdu) = (x{SJ^X\s,T^{(f^s,8)dt (0.15)
A^° Js,/A2 Js2/A2 ''' :': JR

where, the scalar product of the characteristic functions are meant in L2(R) and
the limit is uniform for 5,, T{, 52, T0 in a bounded set of R.



STOCHASTIC LIMIT OF QUANTUM FIELD THEORY 549

Lemma (0.3). For each n e N,/,,•••,/, e £,S,,7;,---, Sn,Tn € R, * , , - • • , jc,, e
R,th

(0.16)
A-+0

exists uniformly for xl,---.xn,Sl,---,Sn,T],--,Tn in a bounded set of R am/ z'r w
equal to

(W W ( x y (x) f V - - W (x y (x) f W } CO 17)\X0' ^QV^I/I^TI] ^ ^ i ^ KKcvA/jA[s,,,7;,] w - / / i / T <2/ w- 1 / ;

i is the Q-Brownian Motion on L2(R,dt\^).
Throughout the paper, we shall use the notations

D0 =-D+ \ D{=D (0.18)

and

A° =A ; A1 =A+ (0.19)
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Added In the second revision
The present paper has undergone two revisions because the authors found

some difficulties in explaining that the first part of the paper is devoted to
establish the convergence of (0.7) to (0.8) in the quasi-free non-Fock case and the
second one to establish the convergence of (0.10) to (0.1 Oa) in the Fock case.
This implied a number of revisions of the introduction which were also delayed
by subsequent developments. On the other hand, the statement of the theorems and
their proofs have not undergone any revision and they are the same as in the
original version of the paper in July 1989.

Added in the third revision
On request of the referee, we have inserted the proof of the unitarity of the

operator £7(0 in Theorem (1.7). No other changes were required.

Added in the fourth revision
On further request of the referee, we correct a statement made in the

subsection Added in the second revision. Effectively our claim that the statement
of the theorems and their proofs have not undergone any revision and they are the
same as in the original version of the paper in July 1989. is not true: we added in
Theorem (1.7) the statement. Moreover U(t) is unitary for each f>0 and the
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referee asked for its proof. The proof is an application of the standard unitarity
condition and of the standard representation of a boson, quasi-free state. In the
present (fourth) revision of our paper, no other changes were required by the
referee, nor introduced by us.

We take the occasion of this further requirement of revision of the present
paper to make esplicit that the subsequent developments mentioned in the
subsection Added in the second revision have nothing to do with the present paper.
They concern: the complete solution of the low density problem and the related
connection with quantum scattering, the discovery that the Wigner-Voiculescu
diagrams of the semicircle law arise canonically from the solution of the problem
considered here in quantum electrodynamics, without dipole approximation, the
applications to quantum chromodynamics, the emergence of quantum noises living
on Hilbert modules rather than Hilbert spaces, and the development of the
associated stochastic calculus, the applications to the lA/V-expansion, the
discovery of a new type of semiclassical approximation in quantum field theory,
arising from the present limit, and its application to high energy physics, the
applications to stochastic bosonization in arbitrary dimensions, ....

§1. The Gauge Invariant Qeasi Free Case

For any Hilbert space //, denote Hl the conjugate space of //, i.e.

# '=(#,<- ,•>,) (1-1)

where H l coincides with H as a set, i : f e H — > H is the identity map and

i(A/):=Ai(/) , feH (1.2)

(K A K*)>, :=<*,/> , /,*e/f (1.3)

For a linear operator A ://-»//, we write

Al:Hl->Hl , A1 (i(f)):=i( A/) , / G H (1.4)

Denoting by <pF and (pF the Fock states on the Weyl algebras W(H) and W(Hl)
respectively and {,7/F,nF,^F}, {//'F,nr

F,^r
F} the corresponding GNS triples, and

putting

i/i 1 1 r/T r
(1.5)

It follows that, if {?Q,nQ,®Q\ is the GNS triple of [W(H),(pQ] , then the map

)) (1.6)

(1.7)
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extends to a unitary isomorphism of the triple {^Q^Q^Q} with the triple

[WF <8> ff'p, nF ® ̂ ,OF ® O!
F}. In the following, this unitary isomorphism will be

denoted by R. With this notation, (1 .6) becomes:

(1.6)'

Thus, for the field operators one obtains:

i t=Q i at t=o

= nF(B(Q+f))®l-\®n<F(B(Q_f)) (1.8)

Moreover,

RnQ(A(f))R = nF(A(QJ))®\ + \®K'F(A+(QJ)) (1.9)

From now on, we shall usually omit the map nQ, n'Q and write simply Wg, AQ,
A+ for nQ(W), nQ(A), nQ(A+),or n'Q(W\ n'Q(A) , K'Q(A+) and, if Q = 1 (Fock
case), we simply write W, A, A+ and we identify R with I®/? . With these
notations, for any n e N a n d # , , • • • ,£„ e //, one has,

R(D®A+
Q(gl)-D

+®AQ(gl)-...-(D®A+
Q(g,,)-D+®AQ(g,l))R

- X Den]-Df(a]®(Aen

re(O.I)"

= X DE(]}---De(in®A^
ee{0,l}"

_ (1-10)

where, in (1.10), the exponents £(j) and a(j) have different meaning, namely:

A£ =A if £ = 0 • =A+ if £ = l (1.11)
X° = \ if a = 0 • =X if a = l (1.12)

The explicit form of the product of creators and annihilators in (1 .10) is

(1.13)
ln-k

Here, for each k <n e N, 1 <j, <~-<jk <n, we have introduced the notation:
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with

7,'<-<7,U (1-15)

Now, notice that each of the two factors in the product (1.13) is of the type (4.8),
considered in Lemma (4.1) of [4] and therefore, in the notations (4.8) of [4], and
remembering that the multi-index £ is uniquely determined by the positions of the
creation operator, we see that (1.13) takes the form:

} ® i) • (i ® r(jt )
g

with e(j) = ( e ( j } ) , ~ ' , e ( j k ) ) and e ( j l ) = (e(X),-~,e(jl
n_k)). Expanding (1.16) we

obtain an expression of the form
r ) ® r ( j f ] + ne(j)®ir(j o (i.i7)

ft ft ft ft ft i? ft" ft*

In the following we shall show that only the terms of the form 7^(7) ® 7^ ( / c }

survive in the limit A -> 0 and that the other terms play, in this case, the role
played by the terms which, in formula (4.8) of [4], we have called of type 77.

In order to achieve this program, let us begin to define the decomposition
(1.17) in a precise way. To this goal, taking g e 7f,, and denoting gk = St g, one
has

R V f y ) - - ' V ^ ( t n ) R =Ri"fl(D®A+(gk)-D-®A(gk))R (1.18)

Defining

f / / A 2 f'1 ("«-'
A (

n
A)(r):= A" dt}\ dti~'\ dtn" i i iJo Jo Jo

f7;/A2
 f7WA2

( w ® V ^ ( A l Sllf]du)<&Q,(-iyiVi,(tl)--Vs,(tll)v® WQ(h I Suf^du)^Q) (1.19)
J^/A2 " ^ S " Js2/A2

and expanding V? (r,)• • - V^ (/n) according to (1.10), (1.13) and (1.18) we see that
the right hand side of (1.19) is equal to

o Jo

71/A2

VA- •'VA-
/?

v Y Y Ae(h)(O Q v . -4 f
Z«t 2-i Z^ "• \*£+& /| / ^

ee{0.1}"A-0 !</,< </A</i

/»
W(A

J5

T./A2 /a/;/A2

S^/z^)*'̂
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= I I I ("-Am-JW)
ee{0,l}" A=0 !<./,< <jk<n

/.Tj/A2

A" f rfr, f r f r , • • • f "V<W(A f ' S.fiJ.rfM)*,,
«/0 Jo JO Js,/A2

CT:

W(U (1.20)

Now, if for each of the two scalar products in (1.20) we separate the terms of
type I and those of type II, we obtain four types of terms. If we split them
according to the decomposition (1.17), we see that the expression (1.20) above
splits into a sum of two types of terms

where, A(,f}(l) corresponds, in the notations of (1.17) to the products Ie
g
(J}

and has the form

A=() !</,< <tk<n

A v A ( A - v )

I I I
\=o /n=o i</,< <I ,<A i

/»7]/A „,

SuQJtdu)<l>F,ll(S _&+g,S
Js,/A: ;,=i \ '"

n A+(\G^) n
/.7;/A2

5Ba/^«)*F>
J5:/A

2

A \ ' A ( A ' - \ ' )

• I I I I

F. ri(s/ -iQ-g,s, Q_S},
's.if *=i ',';,; '!,.

A+(S, e.«) n
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where we introduced the notation

Dn(jl,..-Jk'il,---J^--.J:,) = DE(l)---D£(n) (1.23)

with

[0, otherwise.

The term A(
lj

l)(2) in the notations of (1.21) is equal to

71 f»tl£ f*|

A=0 l<7,< </A<« Jo c/O

.7] /A2

s,/A2 Js,/A2

=: [/ ® //] + [// ® /] + [// ® //] (1 .25)

with the following form:

A=0

A \ A ( A - \ )

, Q_g,S, Q_g)t
*»l '!,• 'ft

uQ_f2duys>'F }, <«, Dn (7, , - , A ; i, , • - , i, ; i,', • • • , i» (1 .25a)

O c/0
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A x A ( A - x ) /

X I I I
\—Q m=0 l</i< < / x < A (/;i,</|, ,/?,„

pT\l m

SuQ,fiduyt>F, 1{(S, Q+g,S, Q+g)
Js,u2 '-=1 '">> '"*n A+(s,a&g) n A(s,aQ

A V ' A ( H - A - X ' )

I I I I
x'=0 i;j'=0 !</,'< <i\><n-k !<;,'<• </,;,-< x ' , } / ^ , -l};;'=ln{/;. }/,=|=0

/"Tj

JS,

n
{ /;- i;,=l \ i / };;'=,

Q_f,duyi>l
F),(u,DaUl,---JM,---,irf,---,i(.)v) (1.25b)

] = t X A" f" rfr.pAj
A=() !</,< </A<n •'O Jo

A i A ( A - \ ) /

I I I I

/i— A \ ' A ( / / — A — v')

I I
\'=() m'=Q

71 /A2

n A+(5,oe_^) n
i /Ui M /;,• i™=, «si /;, i;;;{ MI /;. i,;l,ui /;,, i;»=l i

'" 5,,e_/^«)*', }, <«, Dn (y, , • • - , jk ; i, , - , i, ; /,', • • • , /» ( 1 .25c)

where, Z?,,,^,, . /> , „ .< / „ , ) is the sum for all /?, , • • • , pm such that
(i) \(ph}£l\ = ma
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(ii) ph<qh for each h = l , - - - , m and jpj <jtf/ -1 for some h = l,--,m
The sum Z^,^ , / ? ' , , < / ' , ) has the analogous meaning.
The length and the complexity of the formulas (1.22), (1.25) should not

obscure the basic conceptual difference between these two kinds of terms: in the
terms of type I (formula (1.22)) all the scalar products (St F,S, G) correspond to
time indices such that tk = f / + I . In the terms of type II (formula (1.25)) there are
some scalar products of the form (St F, 5, G) with \j-k\>\. The basic intuition of
the weak coupling phenomenon is that this second kind of terms go to zero. The
main estimate that allows to turn this intuition into a precise statement is the same
as in the Fock case, only that here the combinatorics is more complex due to the
doubling of the Fock space.

As an help for the reader's intuition we summarize the meaning of the
(unfortunately many) indices which appear in the formulas (1.22), (1.25):

- n is the total number of creators and annihilators in (1.13).
- 7, ,-",7A are the indices of the creators and annihilators in the 1-st Hilbert

space (in the identification (1.6), (1.6)'). These indices go with the operator Q+

of (1.5).
- Ji ,•••, Jn_k as above, for the 2-nd Hilbert space. These indices go withQ_.
- Since the j\,• • • , j L

n _ k are uniquely determined by j } , m ~ , j k , summation is
taken only over the latter indices.

- x is the number of creators in the 1-st space,
-jt'-as above for the 2-nd space.
- m is the number of creators in the 1-st space used to produce scalar

products.
- m'-as above for the 2-nd space.
- jl , - - - J , are the indices of the creators in the 1-st space.
- J''i'"J'', -as above for the 2-nd space.
- j, i'"J, are the indices of the creators in the 1-st space used to produce

scalar products.
- ft ,-",y'/

t', ~as above for the 2-nd space.

- ( /? , , - • •,/?„,) (resp. ( < 7 p - - - , <?,„)) are refered to those creators (resp. annihi-
lators) in the 1-st space used to produce scalar products of type II, i.e. with some
y;-7,,>2.

- (/?,',••-,/?'„,) (resp. (q{i'~*q'm>)) -as above for the 2-nd space.
First of all, we estimate A (

n
A )(l) defined in (1.22),

Lemma (1.1). There exists a constant C satisfying

(1.26)
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Proof. Putting, in (1.22)

Sl=X?tl9'",sa=^ttt (1.27)

one gets
n k \A(A- i )

|A?(DI<I I I I

I I II
,< </x<A. l<i,< <;m<\,{y, -U^.nt/}^,^ i'=0 in'=0

I

M, DO', , • • • , yt ; «i , • • • , i\ ; i,', • • • , «'- ) v)|

ds, fV- r""Xl^|.-.*n.^
Jo Jo

where, F(-,...,-, A) has the form

Now, we enlarge 5" , to t, s . to s ,--,s , to s , ; s , to ?, 5 , , to s , , - • - ,0 / i - 1 /:~' /i /A ~' / A ~ ' /| -1 i-, -1 /,

5 , _j to 51 , . Then since, by (1.10) and (1.14), the y,/ are a partition of
{!,••- ,«}, the integral term in (1 .28) is dominated by

f fM fU-i

ds} ds,-\ &Jfj(jp-,^;A)|-
Jo Jo Jo

dy.'fV- r""&B'_JF,(^,...,Ct;^)l d-30)
o Jo Jo

Since each integral in (1.30) has the same form as the integral in (5.8b) in [4],
we can apply to each of them the estimate (5.18) of [4] which leads to the
following estimate (for some C,)

With the same procedure, we get the uniform (in A) estimate for ^'(2):

d.32)
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which is the analogue of the estimate (5.34) of [4]. Summing up, we have the
following

Lemma (1.2). There exists a constant C, such that, if A(^(t) is defined by
(1.19), then for each ^eN

(1.33)

3
Now, we shall prove the analogue of Lemma (4.2) of [4].

Lemma (1.3). For each n e N9/p/9,g e K,

lira 4," (2) = 0 (1.34)

Proof. The proof is an easy modification of the proof of Lemma (4.2) in [4]
and we only sketch the main idea of it. Consider, for example, [I® II}. The
general term of this type will be majorized in modulus by

s,/A2 =/5,/A2

/oTWA2

Wa "
J5./A2

SttQ_f,duWF) (1.35)

With the same trick as in the proof of Lemma (1.1), we majorize (1.35) with a
product of two factors of the form (1.30). We then use the estimate (1.26) to
majorize the first term of this product and we obtain that (1.35) is less or equal
than

ds> ^- ^ W.-.^;A) d-36)

But, the integral on the right hand side of (1 .36) is of the same form as the right
hand side of (4.16) of [4] which goes to zero because of Lemma (4.2) of [4]. The
argument for the other two types of terms is similar.

The following is the analogue of Theorem (5.1) of [4].

Lemma (1»4). For each neN,f},f2,gEK,t>Q
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n A \ A ( A - u=i ^1^1 i i < ( < x < t i < i < < i < ( i i i r n i j i > _ 8
''/I '~ ' '" ''/I

OTl< I <~ , < , < « • < , £ , - , < . • - ./ l " ~ ' l <
(
< ' /" ~x ' ''>;, I I_A

/I=I^ ;'|;(
 /l=l

''/I '"" ' '~ ''/I

dt,'-dt "-dt "-dt c • • • J f ( • • •<#
I '^ x\ x\ xx i /,( /,, /',; /,; "

e»Q(/ , / ; . ,/; ,/ ( . ,/ ( ) I "' '|' '/;/'
''l ''"' ''/,' ''/'' ,

.
«si i:l: i,;,i M /,, )i;=. aE' '" 1/1=1 u ' '<,, u.i ui '.,t -> >;"=i

(G-giG'g)f -(G-giG-y;)1 '-"1 ' -(G-/2 iQ-
n *[S,T,]('«) n

w/zere, (G~/I2~^)+ .(G+/I2+^)- are defined by (\ 39a) below,

and Q,(t,t/ ,-",^ ;^, , - " ^ « ) is the n — m — m' dimensional subset of { ( t } , - - 9 t n )

e R" ;0 < tn < • • • < t{ < t} in which, the variables

V"''V'/;-''"''/,, (L39)

are suppressed.

Proof. Also in this case we limit ourselves to a sketch of the proof, which is
an easy adaptation of that of Theorem (5.1) in [4]. By inspection of the
expression for A (

;f '(l) and using again the fact that the ( j , j l )-indices are a
partition of { I , - - - , / ? } , we see that we can apply separately to the ( f H -? ; ) -
variables and the (t, , -t, )-variables, the argument of the second part of the
proof of Theorem (5.1) in [4]. Recalling that the indices jl ,jt, here play the role
of the indices jf there (i.e. they label the factors At ^A*) and that the change of
variables needed involve only the indices jt _,, jt ;y, (,_i'/C ' • ̂ e see tnat tne missing
variables in the integral

. . ^ dtr-'dt, -"dt. '-dt. "-dt "'dt..
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(i.e. the £) correspond to the factors

(Q+g I &*)- = l°dt(Q+g,StQ+g) , (Q_g I Q_g)+ I dt(Q+g,StQ+g) (i.39a)
J-oo JO

The apperance of Q~ is then justified by the identity:

(Q-f\Q-g\=(Q-g\Q-f) ; f , g e K

which easily follows from (1 .38) and the definition of ( • ! • ) •
Putting together Lemma (1.1), Lemma (1.2), Lemma (1.3) and Lemma (1.4),

one has

Lemma (1.5). In the above notations and assumptions, one has, for each
/,,/2,ge^,7;,r2,S1,52 eR and t>Q, the limit

Saf,du)$g) (1.40)
0/5,/A2 s2/A2

exists and is equal to

oo n k X A ( A - O

II I I I I
n=0k=0 1<7,< <]k<n \=0 m=Q !</,< < / v <A

A X'A(/ /- / (-I ' )

I I I I
!</,< </ I I I<x,{7, -l}/"=|n{/, }/*=,=0 i'=0 m'=0 !</,'< </; <n-A

^ dtx-"dt] •••dtf "-dt t "-dt, ---^

'''.V '''i';-. ' '' '"' '''

ia^)--(a/, \o+gra

.
si y,/r ),;„ \i A, I;;L, ««i >* it,, ui ;,/( i,;,, u{ ,,^

(fi-« i G-*):' • (G-^ i Q-fi )''"'"' • (G-/2

Remark. In [4] we repeatedly stressed that the iterated series converges
weakly on the domain of collective coherent vectors. The same type of
convergence is assured in the present case as used in Lemma ( 1 . 5 ) .
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Denoting by G(«,f) the limit (1.40), in the following Lemma, we shall

compute — -G(u,t).
at

Lemma (1.6). For each /P/2,ge K,T},T2,S},S2 eR, and r > 0 , G(w,0 is
a.e. differ enviable for t > 0 and

ds((QJ} I Q+g)G(D+u, s)X[Si T] ] (s) + (Q+g I QJ2 )G(-Du,s)X[s2 j2 ]

> j)) (1.41)

Proof. First of all, notice that the limit (1.40) exists, is sesquilinear in u, v
and is dominated by IM|-|v||. Hence there exists a contraction
^ := VX/;,/2,SpS2,7;, r2)://0 -^//0 such that the limit of the left hand side of
(1.40) is equal to

Moreover, from Lemma (1.1), Lemma (1.2), Lemma (1.3) and Lemma (1.4),
G(w,0 is a.e. differentiable for t > 0.

In order to deduce an equation for G(w,0, first notice that, for fixed A, one
has:

A
flf

/•/w A"

JS-./A2

,1 fVA: c fJ ^ V< , -N 1 f / /A^ P j
?(A I 5(//1aw)O0, 2^ (—0"A" I «?, I a^2 •

Js,/A2 ,,=i Jo J()

/.72/A2

Js./A2

f7'^ ' 1 2

Js,/A2 " A ?

/•7;/A2

J S2 / A
2

f71^2 1I Sltf}du)<&Q, [-D®Ag(S ,g) + D ®/
Js,/A2 " A //A

/B7;/A-

J% /A2

1®A(S /A=GL*))
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* ® (A(S : i^g)®\ + \® A+(Sin2Q_

2 SaQJ2du)<S>F
 2

2

Js,

f7]/A f7]/A

SttQ,f,du)<S>F ® W(A SH0_/i^)d>^
=/S,/A2 J5,/A2

'T-, /A2

\ttQ_f2du)&F) a.e. (1.42)

Notice that the right hand side of (1.42) can be written in the form 7 A +77 A ,
where, 7A and 77A are the analogues of the quantities (6.8) and (6.9) in [4]. So,
the results of the Lemmas (6.2), (6.3) and (6.4) of [4] can be applied to these
quantities with only verbal changes. From this, we get (1.41).

In the following we shall denote {^^Q^l@Q^l@Q} the gauge invariant quasi
free Gaussian representation of the CCR on L2(R,dt,K) with mean zero and
covariance \®Q and A ( % [ 0 t ] ® g ) , A + ( % { ( ) t ] ® g ) the associated Q-Brownian
Motion on L2(R+,dt;K) in the sense of the definition (2.3) of [4].

Theorem (1.7). In the above notations and assumptions, for each /,,/2,
ge A',7;,r2,5I,52 eR,f >0 and w , v e 7/0, De£(#0),,

.7; /A2/»7]

Js,

where,

(1.44)

/or ^eL 2 (R) , and t/(r) w r/z^ MAI/^M^ solution of quantum stochastic differential

equation

U(t) =
o

+(-(Q+g\Q+g)_D+D®l-(Q-g\Q-g)+DD+®l)ds)U(s) (1.45)
on
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= HQ®r(L2(R)®(K,(-\-)))®r(L2(R)®(K,,(-\-),)) (1.46)

with

e.=^+T ; g-,^l ( I 4 7 )

Moreover U(t) is unitary for each t > 0.

Proof. For each u e HQ , put

It is easy to show F(u,t) satisfies (1.41). Since we know from [8] that the
equation (1.45) has a unique solution, it follows that F(u,t) is the unique solution
of (1.41). So, F(u, 0 = G(w,f) for all t>0.

To prove unitarity, first notice that from (1.44) one easily deduces the
covariance of the quantum BM AQ(t,g), A g ( t , g ) :

2

This implies that the Ito table is:

dAQ(t,f) dA+
e(t,g) = (f,^-g}dt (1.48)

dA+
Q (t, f)dAQ (t, g)(g, ^i f)dt ( 1 .49)

dA dA = dA+dA+ = 0 (1.50)

Moreover since (/ 1 /)_ = (/ 1 /)+ it follows from a simple calculation that

g)_ (1.51)

g+) (1.52)

the equation (1 .45) could be rewritten in the form

t/(r) = l+ \'[D®dA+
Q(s,g)-D^®dAQ(s,g)

J()

Q_g I Q_g)ds

Q+g)_ - DD+Im(Q_g I Q_g)+)ds]U(s)
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which, in view of the ho table (1.48), (1.49), (1.50) and of the identities (1.51),
(1.52) makes evident that the formal unitary condition of [11] and [12] (in [8]
only the Fock case, not the general quasi-free case, as needed here, is con-
sidered) is satisfied.

Since D is bounded, the formal unitarity condition guarantees existence,
uniqueness and unitarity [12].

§2e The Uniform Estimates of the Heisenberg Evolution:
Fock Case

In the following sections, we shall deal with the Langevin case, that is, we
shall consider the weak coupling limit of the matrix elements in the collective
coherent vectors of Ua) (t)(X ® l)UU)+ (t) and their properties. For X e B(HQ),
t >0 ,put

Xa\t) = Ua)(t)(X®l)Ua*(t) (2.1)

then,

a)+(— Ua)+(t))
dt dt dt

= -hV(t)Xa}(t)--JiXa)V+(t) = -A,[V(t),XU)(t)] (2.2)
i / i

and

X ( A )(0) = X®1 (2.3)

So,

XU) (t) = X ® 1 + £ (-On A" f dt, f ' dt2- (*~'dtn
,1=1 Jo Jo Jo

[V(r,),[y(r2),...,[l/aj,X(x)l]...]] (2.4)

If n e N , and B,Al9-~,An, are operators, there exists a subset -7,,° of the n-
permutations Sn such that

cl=() (J6 /„"

where 9(a) = ±1 and is determined uniquely by d , moreover

So, for each n e N , one has
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So, for each n e N , one has

r ,X®l ] - ] ]=S
d=0 ae /„"

= 111
(1=0 aeS'n ee{0.1)"

Lemma (2.1). There is a constant C, for each n e N , /j,/7, g e J^, w, v

0 ) , T } , S } , T 2 , S 2 e R , f > 0

/-7]/A2 /.//A2 /•/, «/„_,

5J,^),A" A, dr2- An
^5,/A2 •/O «/0 «/0

SJ2du))\

(2.6)

(Ifl)

Proof. In (2.6), for each a e ^° (introduced after formula (2.4)), in
analogy with Lemma (4.1) of [4], the product

can be written as the sum of two terms: the collective term /^(d) and the
negligible term //J(d) with:

/^T^I <H *
/;/

n <s'..vg's'«vg>'«,;1,n

«.. .,«H u,,,- ,

and
k A ( n - k ) f

JTP / \ X"1 X"1 X"^/7:(ff)= I (< <i < i
/;;

~ , *) (2.8)
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where, here and in the following, X^}jr=l<Tj) means the sum for all {pj^ e

{^•••^IMy/jL,, \{ph}'l{\ = m- ph<qh, \o(qh)~a(Ph)\=\, for all A = l>-,m, and
^u<y/, . /» / , ) / ;= , . <r. 2) means the sum for all {ph}"'=] c{1,•••,«} \ {y, };

A_ \ p <q for h = l

~'>™> \{phYh^\ = m, \o(qh)-a(Ph)\>2 for some /i = l,».,m.
Using Lemmas (1.1) and (1.2) above, for each ^ = 0,l,--,n, we easily get the

estimates:

pT^/A" /»//A" /»/| fn-i

I <M ® O(A 5My; JM), A" Jr, £/r7 • • • *„
Js,/A2 Jo Jo " Jo

CEJO,!}" £6{0,1}" o'ST/A

^* II II II II /"'" ^ ' /"O Q"\-M-M.C, w

and

/»//A2
f7]/A2 -//A- -/, j./fl_

SJidu\h dtA dt2"-\
Js,/A2 Jo Jo Jo

y y D - - - D XD - - - D2—^ ^^ e ( l ) £(d) £(d+\) E(n
ee{0,l}"e£{0,l}'!

/»r2/A2

Js./A2

where, C,,C2 are constants. Summing up (2.5), (2.9) and (2.10), one obtains
(2.6).

§3. The Weak Coupling Limit of the Heisenberg Evolutions
Fock Case

In this section, we shall compute the limit

f 7, /A2

5I(/2J«)> (3.1)
^-»o ^ /A 2 52/A2

where, X ( A ) ( r ) is given by (2.1) and /j ,/2 ,ge^, M,V e //0, X,De 5(/f0), 7;, S,, T2,
5 2 e R a n d r > 0. First of all, notice that, expanding X U ) ( r /A 2 ) in (3.1) according
to (2.4), (2.5) and using Lemma (2.1), by the uniform estimate, one can exchange
the limit and the summation in this expansion. Therefore,

/*VA /o7;/

5 ; // ,^),X ( A )(r/A2)y(x)a>(A| SJ2du))
J5,/A2 JsWA2

M ® y; ), (
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+ZZ Z Z X 0(ff) lira <'((/, CT, 7,,-, yj (3-2)
n=l f/=0 ore /„" A=0 !<;,< <lk<n A~»°

where, for each d, (J and y , , - " ' .A>

/^ /A -/| /•/„_, p7, /A
:=A" df, dr2- «*(A SJ^du),

Jo JO Jo Js,/A2

^S-< /A"

(u,Dn(d,X,j[,--,j,)v) (3.3)

and for each e e {0,1}" satisfying

i, if ye fAt , ;
, (3.4)

0, if ye {I,-, K}\{y,l,

and J = 0, 1, • • • , /?, Dn (d, X, j} , • • • , jk ) is defined as

D£(\)'" D£(d)XD£(d+\) ' ' ' D£(n}

In analogy with the decomposition of (5.8a) and (5.8b) in [4], we split each of the
terms ^^(d.aJ^-'-J^) into the sum of two terms. Then we determine explicitly
the limit of one of these two terms while the other one is shown to vanish as
A — > 0 . More precisely:

A<
1f'(d,(T,y1,-,y t):=C(d,<T,y1,-,J1) + //iAl(d,ff,J,,-,y1) (3-5)

and

/iA)(d,CT,y,,-,7 l):=<ii,D ( I(d,X,71,..-J1)v>A'1 pdr, fdr2- f"~X
Jo Jo Jo

7,/A2 *T, /A2

SI /A-
k^(n-k) '

= I Z I

< « , D n ( d , X , j t , - - - , j t ) v ) A " £ dr, ["dr,-£~'dr„

|°7| /A" /»

f7'7^
~~ (A " SJ.du)) (3.6)

J5./A2
otejl. ,;/

Notice that, for each a E-yn
(\l<ql <••• <qin <n and 1 < /? , , • • •,/?,„ <«, there

exists a unique * and 1 < r, < ••• < rx < m such that
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O(qh)-O(ph) = \ for /z = r, ,"-,rx

and

= l for / z e { l , - - - , m } \ { r

Hence, one can write (3.6) as

/;v.<r.7,.-.A)=T> I I
f r / A 2 f'1

Jo *'i

ore{l, .n

On the other hand,

n (5<0,,,0-<„„.„,£"?> n A"(5w,s)
A(S,^<g)<i>aF' SJ2du)) (3.7)

pr/A 2 /»/| /o/,,_| f7!^2

A" A, A,- «0(A SJ&),
Jo Jo Jo J5,/A:

U(S,aiiig,S g}-

SJ2du)) (3.8)
~

In analogy with Lemma (4.2) in [4], one has the following:

Lemma (3.1). For each k,n,d e N, 1 <y, < ••• <jk < n,a e -7n\ /,,/2, ge ,^,
M,V e 7/0, D,X e 5(//0), T^ T2, 5,, S2 e E, r > 0 .

lim//iA)(rf,cr>yp-J j l) = 0 (3.9)

Proof. With the same argument as in Lemma (1 .3), we find:
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* I I I
/f/=0 !<</,< «/,„<«, ({</,,, /^L,. C7, 2)

(3.10)'i • i f *, f dt2 - f"~X fl KS /A: g, S , A;
A Jo Jo Jo h=\ a(l], ' ff"'/, '

where, C3 is a constant. Now it is clear that the integral (3.10) has exactly the
same form as the right hand side of (4.22) in [4]. In fact, since in (3.10) only the
modulus of the scalar product appears, it does not matter, for this estimate
weather we have

O(ph)<o(qh) or o(ph)>o(qh)

Therefore, using Lemma (4.2) of [4], we immediately obtain the result.
As the analogue of Theorem (5.1) of [4], we have the following:

Lemma (3.2). For each n e N, fl9f29ge^,u9veH0,D,X&B(H0),Tl9S]9

TI , S7 e R, and t > 0 , one has

fVA2 |»?/A2 p/, -/„_,

\im(u ® 0(A SJidu), A" dt} I dt2 • • • dtn (3.11)
A->o Js,/A: Jo Jo ~ Jo

, ), [V(t2 ) , - • - , [V(ta ), X ® 1] • • •]]

-III X I I I
J=Oae/,,"A=0 !</,< </A<» m=0 l<t/,< <t/,,,<«, ({c//;./j/?}}"=l.

'',, (d, x, j},- -,j
(gi^-^

Jn(t,a,{q,h \}l=t,[pa,ae(l, , m } \ ( i h } } l

n

where £l(t,a,{qn )l=^{pa,(X e { l , - - - ,m} \ {r/7}^,}) is the (n-m) dimensional subset

of { (f , , • • • , tn ); 0 < tn < - • • < t{ < t] in which the variables {t0(q , }^=1 , and

t . areabsent-

. Expanding [ V(t} ),[ V(r2 ) , - • - , [ V(tn ), X ® 1] • • • ] ] , by Lemma (3.1), one
obtains

p7j/A : /.//A2 /-/, /•/„_,

SJidu\ A" ^, A9 • • • dtn (3.12)
Js,/A2 Jo Jo J()
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d=Q erg /;(° A=0 l<y, < </A <n A-»o

/ i n A.A(/I— A)

Y Y
Am* Z=d

<q,,,<n. ( ( q h , /?/,})"=, , (T, 1

<«, D,, (rf, X, y, , • • • , y, ) v> lira A" f A, f ' dt2- f""dta
A^O Jo do do

,
5, /A- «6{//(}/,=l

ore{l, ,/*}\({//,}LM/>/, }/"=i)

n /i A A ( I Z - A ) '

= Y Y Y Y Y Y Y
Z^ /4=y /4=< Z^ Z^ A^ £*t
rf=Oo-6/,,%=0 !</,< </ j i</ / '"=0 !<(/,< <ci,,,<n. ((qh,ph\

n^,o, 1)

{<//, }/"=|£{ //,)/, = !

<«, Da (d, X,jt,--, jk ) v> lira A" f ' *, f ' dt, • • • ("~'dt,,
*-»<> Jo Jo Jo

5'/A"

ae{l, ,;i

s,/A2

Comparing (3.12) with (5.10) in [4], we see that the two expressions are exactly
of the same type. So using here the same change of variables, used to establish
the equivalence between (5.10) and (5.16) in [4], we see that the role played by
the permutations is only in the appearance of terms of the form

f dsa(lla,(g,S g) (3.13)
J - -

corresponding respectively to a e { r , , - - - , r x } and a 6 { l , - - - ,m} \ { r , , - - - , r x } . Thus,
introducing the notations:
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f ( g , S , g ) d s = : ( g \ g ) + , I (g,S^g)ds=:(g\g)_ (3.15)
JO J-°o

the Lemma follows immediately.

Combining together Lemma (2.1), Lemma (3.1) and Lemma (3.2), we have

Lemma (3.3) For each /j,/2 , #£/ ' , M , V G / / O , D, Xe B(HQ), 7;, T2, 5,, 52

e R, f > 0, r/z

/.7^/A-

SIf/,dii), X a ' ( f /A2)v(8)(I>(A Slf/2£/n)> (3.16)
J5,/A:

exists and is equal to

oo „ „

I I X I I e<ff) IX x
/z=0 cl=0a& /„" A=0 !</,< </^</ i »/=0 1<^/|< <q „,<!!, ({<// , , /?/ , }/"=) ,(T, 1 )

/ I -A)

L^,M,,,,, u~
.,«,«, ,,- J3, ,„,, .,«„ r ,*"

5,.,,(^«,)- n ^ls..r,](^«,) (3.17)

§4. The Quantum Langevin Equation

In the section, we shall study the relation between the limit (3.16) and the
solution of the quantum stochastic differential equation (q.s.d.e.)

U(t) = l+ f (D®dA+(s,g)-(D+®dA(s,g)-(g\g) D+D®\ds)U(s) (4.1)
Jo

on H(} ® T(L2(R) ® // ) . Put

X(t) = U(t)(X ® \)U+(t) , t > 0 (4.2)

then, by Ito's formula,

dX(t) = (dU(t)) • (X ® 1) • (/+(r) + U(t) • (X ® 1) • dt/+(f) (4.3)

= (D®dA+(t,g)-D+®dA(t,g)-(g\g^D+D®\dt)X(t) +

X(t)(D+®dA(t,g)-D®dA+(t,g)-(g\g)+D+D®ldt)
+(D®dA+(t,g)-D+®dA(t,g}-(g\g),D+D®\dt)X(t)

(D+®dA(t,g)-D®dA+(t,g)-(g\g)+D+D®\dt)
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(t, g)-D+® dA(t, g)-(g\ g)_ D+D® ldt)X(t)
(D+®dA(t,g)-D®dA^(t,g)-(g\g)+D+D®ldt)

In other words, the process X(t) satisfies the quantum Langevin equation:

dX(t)=(D®dA+(t,g)-D+®dA(t,g)-(g\g)_D+D®ldt)X(t) +
X(t)(D+®dA(t,g)-D®dA+(t,g)-(g\g)+D+D®ldt)

I g) • (D+ ® l)X(t}(D ® l)dt (4 .4a)
X(0) = X®1 (4.4b)

For each X, DeB(H()), /„/,,* e f f , 7P S,, T2, 52 e R, f > 0, it is clear that
there exists an operator X(t)on H{) such that for each u, v e //0 ,

(4.5)

Denote

F(M,v , f ) - (w®X(r )y> (4.6)

then,

F(W,v,0)-{W,XvX¥a [S iT(]®/i),¥(j [S2r2 l®/2)) (4.7)

Moreover,

(g I g)_ (-D+D ® l)ds]X(s)v ®

^^

DyJ5) (4.8)

It is clear that the integral equation (4.8) has a unique solution global in t since D
is bounded. So, in order to prove that the limit (3.16) is equal to F(u,v,t) for each
f >0, it is sufficient to prove that the limit (3.16) satisfies (4.8). To this goal,
denote the limit (3.16) G(w,y,0 and notice that, because of the uniform
convergence of the series in (3.16), this is an a.e. differentiable function on R+.
Moreover, for each fixed A

d f7"^2 f7"1^2

— <w®0(A Sufidu),XU}(t/tf)v®Q>(U ' SJ,du)
dt Js,/A: JS:/A

2
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fV*2 1 f^/^2

SJjd«M-i)|-[V,(r/A2 ) ,*<*>(*/A2 )]v®<P(A " 5a/,dii)> (4.9)
Js,i».- A JS,/A :

and

2)]

>+®ACS / ; i 2g)

(4.10)

In analogy with the proof of Lemma (6.2) in [4], one gets easily:

/•7,/A2

' Stlf,du)
J5:/A

2

^(OG(M,-Dv,0

D+v,t) (4.11)

Furthermore, one has

)+ ® 1)(-0"A" f A, f" A, ••• f"
Jo Jo " Jo

g),[Vg(t}),[V,(t2),---,[V,(ta),X

+ ® !)(-/)" A" f'1 A, f" dr, • • • ['"
J(l Jo " Jo

-([I® A ( S l j f g ) , V g ( t l /A 2 ) ] -X a i ( f , /A2)
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- i ) d r , - i
O

(4.12)

By the proof of Lemma (6.4) in [4], one gets

f>VA2 1 f t
Suf}du),(D+® l)(-i) — dtd(D®\)

JS,/A2 A JO

fTWA2

• , 5,,/2JM)
JS:/A-

/;/A2 i ft
£»+ ® l)(-i) - rfr,

A Jo

fr,/A : 1 p
S,,/,J«), (£»+ ® l)(-i) T

J5,/A: A JO

Similarly, we obtain

lim<M
S,/A2

(4.13)

Xa '(f, /A 2 ) -i(D® 1) <S//Jl2g,5 /J12«> v®0(A SJ2du))

= (g\g)_-G(Du,Dv,r) (4.14)

and

,
JS-, / A'

= 0 (4-15)

(4.16)

Summing up (4.9), (4.10), (4.1 1), (4.12), (4.14), (4.15) and (4.16), one has

d
lim — <«

\ g ) X [ S T i l
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)_G(-D+Du,vJ) + (g\g)^G(u,-D+DvJ) + (g\g)G(Du,Dv,t) (4.17)

Since each term in the series expansion of

d
—
dt

fV*" £T^
SJldu),Xa\tl)c}v®®(U ' SJ.du})

JS,/A2 JS2/A2

has a form similar to the terms obtained from the expansion of

f7]/A2 f7^1*2

(w(x)^(A S^dM),X ( A ) ( f /A 2 )v®<I>(A " 5H/^M)>
JS,/A2 JS2/A2

we can use the uniform estimate here obtaining

r d r7^2
G(«, v, 0 = G(u, v, 0) + lim — (u ® d>(A S,,/;^),

A^Ojo 6/5" J5,/A2

= G(n,v,0)+ f ((
jo

+(^ ' /2 )^[52 T2 ] (SM-DU, V, 5) + (g I /, )^[S2 ^ , (5)G(M, D+ V, 5)

)- G(-D+Dw, v, 5) + (g I g)+ F(n, -D+Dv, 5) + (g I g)G(Du, Dv, s))& (4.18)

On the other hand, it is clear that

G(n,v,0) = F(M,v,0) (4.19)

thus, comparing (4.18) with (4.8) we obtain the following theorem

Theorem (4.1). For each fl,f2,ge^,u,veHQ,D9XeB(H(])9T},T29Sl9S2

e R, t > 0 ,

H
5 2 / A 2

2 T : l®/^ (4.20)

where, U(t) is the unique solution of q.s.d.e. (4.1).

Finally, combining §1, §2, §3 and §4, we have the following:

Theorem (4 ,2) 0 For each /,,/2, g E .^,M, v E //0, D,X e B(H(}),T^, T2, 5,, S2

e E, r > 0 flwJ g > 1, f/ze //m/r

f T ^ / A 2 /"7-,/A2

l im<«®%(A , SB/idii)<De, X ( A ' ( ? / A 2 ) v ® WC(A " , SJ2du)<I>Q) (4.21)
^••^(3 e/i|/A" J52/A"

exists and is equal to

18fl> (4.22)
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where,

(4.23)
z,

for ^ e L2(E) and U(t) is the unique solution of the quantum stochastic differential
equation (1.45).
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