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Motor neuron diseases (MNDs) are a rather heterogeneous group of diseases, with either sporadic or genetic origin or both, all
characterized by the progressive degeneration of motor neurons. At the cellular level, MNDs share features such as protein mis-
folding and aggregation, mitochondrial damage and energy deficit, and excitotoxicity and calcium mishandling. This is particularly
well demonstrated in ALS, where both sporadic and familial forms share the same symptoms and pathological phenotype, with
a prominent role for mitochondrial damage and resulting oxidative stress. Based on recent data, however, altered control of gene
expression seems to be a most relevant, and previously overlooked, player in MNDs. Here we discuss which may be the links that
make pathways apparently as different as altered gene expression, mitochondrial damage, and oxidative stress converge to generate
a similar motoneuron-toxic phenotype.

1. Introduction

Motor neuron diseases (MNDs) are a rather heterogeneous
group of diseases, with either sporadic or genetic origin or
both, all characterized by the progressive degeneration of
motor neurons. All MNDs are primarily axonopathies of the
motor neurons in which neuromuscular synapses are early
targets of damage and death of motor neurons probably
occurs following loss of the neuromuscular junctions [1].
MNDs may manifest as weakness, atrophy of muscles, dif-
ficulty in breathing, speaking, and swallowing, with symp-
toms and severity varying as a consequence of the different
involvement of upper or lower motor neurons or both.

The most common and studied form in adults is Amyo-
trophic Lateral Sclerosis (ALS), followed by Progressive Bul-
bar Palsy (PBP), the rarer forms being Progressive Muscular
Atrophy (PMA) and Primary Lateral Sclerosis (PLS). These
conditions seem to form a continuum of diseases since only
part of patients have a “pure” phenotype, while others with
PBP or PLS eventually develop the widespread symptoms
common to ALS [2]. In all these MNDs, onset of symptoms
occurs mainly in people aged 40–70. Life expectancy is

between 2 to about 5 years after onset in ALS and 6 months to
3 years in PBP, while pure PLS patients may have a normal or
near-to-normal life duration. MNDs also include Spinal and
Bulbar Muscular Atrophy (SBMA), in which age of onset and
severity of manifestations vary from adolescence to old age,
but longevity is usually not compromised. Infantile MNDs
include Spinal Muscular Atrophy (SMA) with an infantile or
juvenile onset and Lethal Congenital Contracture Syndrome
(LCCS), causing prenatal death and thus being the most
severe form of motor neuron disease.

2. Aetiology of MNDs

LCCS1 is an autosomal recessive condition found in commu-
nities of the northeastern part of Finland with a prevalence of
1 in 25,250 births [3]. LCCS manifests in utero with a marked
atrophy of spinal cord motor neurons and fetal immobility
due to lack of anterior horn motor neurons, severe atrophy
of the ventral spinal cord, and hypoplastic skeletal muscles. It
is characterized by total immobility of the fetus, detectable at
the 13th week of pregnancy and invariably leading to prenatal
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death before the 32nd gestational week. The defective gene
for LCCS1 is a 16-exon gene coding for GLE1, an mRNA
export mediator that is known to interact with the nuclear
pore complex and is expressed in the neural tube of 11-day-
old mice embryos, specifically in the ventral cell population
from which the motor neurons differentiate, and later in
other tissues including somites, from which skeletal muscle
and bone tissue differentiate [3]. The most frequent muta-
tion in LCCS1 (FinMajor) does not dramatically alter the
stability or localization of the protein GLE1 but is predicted
to introduce three aminoacid residues in a region that may
be critical in the interaction between GLE1 and a motor
neuron-specific protein [3].

SMA is the most frequent genetic cause of infant mortal-
ity and exists in various forms invariably caused by a genetic
defect. Patients with the most common form (proximal SMA)
are either deleted for the nine-exon gene SMN1, encoding the
ubiquitously expressed protein SMN (Survival Motor Neu-
ron) or carry small mutations in the same gene. However,
SMA patients always carry at least one copy of the gene
SMN2, which encodes the same protein as SMN1 and is
only partially functional because of a critical, translationally
silent single nucleotide C/T transition inside exon 7 that pro-
foundly affects correct splicing. The clinical severity of SMA
ranges from respiratory distress at birth associated with
limited life expectancy (SMA1) to onset at older than 10 years
and a normal life expectancy (SMA4) and is inversely related
to the level of SMN2 compensating for SMN1 deletion [4].

SBMA (also called Kennedy’s disease) is an X-linked
recessive motor neuron disease in which only lower spinal
cord and brain stem motor neurons are affected [5]. SBMA is
caused by a polyglutamine expansion in the androgen recep-
tor (AR) [6]; CAG repeat numbers range from 38 to 62 in
SBMA patients, whereas healthy individuals have 10 to 36
CAG repeats. Symptoms appear in childhood or early ad-
olescence [7]; SBMA is a rare disease, with the exception
of some population in the Vasa region of Western Finland
where it was estimated that the prevalence is 13 in 85,000
male inhabitants [8].

While SMA, SBMA, and LCCS1 are invariably familial
diseases, adult-onset MNDs are both sporadic and familial.
PBP, PMA, and PLS are usually sporadic. ALS occurs sporad-
ically in the majority of cases [9]. Proposed risk factors for
ALS include ingestion of high concentrations of β-methyl-
amino-L-alanine [10], use of cholesterol-lowering drugs
[11], intensive physical exercise [12] including football
playing [13, 14] and service in the USA Army [15], possibly
linked to intermittent occupational hypoxia [16] or to head
injury [17–19]. Environmental factors also include cigarette
smoking [18, 20], exposure to heavy metals [21], and pesti-
cides or herbicides [22–24]. Approximately 10% of ALS cases
is inherited, with multiple autosomal dominant and recessive
forms that have been ascribed to mutations in a number
of different genes, each of them accounting for a different
percentage of cases (Table 1). Interestingly, ALS-associated
mutated proteins are implicated in a wide range of cellular
processes, from antioxidant response to axonal and vesicular
transport, angiogenesis, endoplasmic reticulum (ER) stress
and unfolded protein response (UPR), and, most noticeably,
to RNA metabolism.

3. Multifactoriality of MNDs:
The Role of Altered Gene Expression

At the cellular level, MNDs share features such as protein
misfolding and aggregation, mitochondrial damage and
energy deficit, excitotoxicity, and calcium mishandling [1], a
condition often indicated as multifactoriality. This is partic-
ularly well demonstrated in ALS, where both sporadic and
familial forms share the same symptoms and pathological
phenotype, that are recapitulated in available animal and cell
models, with a prominent role for mitochondrial damage
and resulting oxidative stress (for an extended Review, see
[25]). Oxidative stress is reported also in SMA [26] and reac-
tive oxygen species (ROS) inhibit assembly and activity of
SMN complex in a dose-dependent manner [27]. Mitochon-
drial damage seems to be invariably present in neurodegen-
erative conditions [28] including SMA [29–32] and SBMA
[33], in which mitochondrial dysfunction may be due to the
interaction between AR and cytochrome c oxidase subunit
Vb (COXVb) [34].

Based on recent data, however, altered control of gene
expression seems to be a most relevant, and previously
overlooked, player in MNDs.

Several studies addressing epigenetic modifications, tran-
scriptomics, and proteomics of models and tissues from
patients indicate that the overall pattern of gene expression
is modified in MNDs. Because of the known non-cell auto-
nomous mechanism of death of motor neurons, studies in
ALS have been performed in tissues [35, 36] and in neuronal
and in nonneuronal cultured cells (astrocytes, muscle) and
revealed that most of the deregulated genes are involved in
defense responses, cytoskeletal dynamics, protein degrada-
tion system, and mitochondrial dysfunction in neurons [37],
while the insulin-like growth factor-1 receptor and the RNA-
binding protein ROD1 are the most downregulated genes
in glia [38]. The pattern is altered also in muscle, in which
many of deregulated genes are the same found in surgically
denervated muscles, while others appear to be ALS-specific
and include proteins clearly involved in the redox response
(e.g., metallothionein-2 and thioredoxin-1) [39, 40]. In a
recent proteomic study on embryonic stem cell from a severe
SMA mouse model differentiated into motor neurons in
vitro, Wu et al. reported that 6 proteins are downregulated
and 14 upregulated in this model. Most of these proteins
belong to the same categories altered in ALS models, that
is, are involved in energy metabolism, cell stress response,
protein degradation, and cytoskeleton stability [41].

As in other neurodegenerative conditions, alterations of
transcription in MNDs may follow altered epigenetic control
due to an unbalance between histone acetyl transferases
(HATs) and histone deacetylases (HDACs, including sirtuins,
SIRTs) activities [42]. These enzymes catalyze forward and
reverse reactions of lysine residue acetylation; thus, HATs
modify core histone tails thereby enhancing DNA accessi-
bility to transcription factors (TFs), while HDACs activity
in general results in transcriptional repression and gene
silencing. Interestingly, various TFs, like RelA, E2F, p53, and
GATA1, which form part of the transcription initiation com-
plex, are themselves substrates susceptible to the action of
HATs and HDACs.
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Table 1: Genes involved in MNDs.

Gene Protein MND Main known function

SOD1 Cu, Zn superoxide dismutase ALS1 Antioxidant enzyme

ALS2 Alsin ALS2 guanine nucleotide exchange factor for GTPases

SETX Senataxin ALS4 DNA/RNA metabolism and repair

SPG11 Spataxin ALS5 Neuron differentiation and axonal transport

FUS/TLS Fused in sarcoma ALS6 RNA binding protein

VAPB VAMP-associated protein B ALS8
Trafficking between the endoplasmic reticulum and
Golgi apparatus

TDP-43 TAR-DNA-binding protein-43 ALS9 DNA- and RNA-binding protein

ANG Angiogenin ALS10
Angiogenesis in response to hypoxia; possibly RNA
metabolism

FIG4 PI(3,5)P(2)5-phosphatase ALS11
Metabolism of phosphatidyl inositol bisphosphate and
vesicle dynamic

OPTN Optineurin ALS12 Vesicular trafficking

nAChR
Neuronal nicotinic

acetylcholine receptor
ALS Glutamatergic pathway

CHMP2B
Charged multivesicular

protein 2B
ALS

Chromatin-modifying protein/charged multivesicular
body protein family

VCP Valosin-containing protein ALS
Membrane trafficking, organelle biogenesis,
maturation of ubiquitin-containing autophagosomes

DAO D-aminoacid oxidase ALS Oxidative deamination of D-aminoacid

UBQLN2 Ubiquilin2 ALS Ubiquitin-proteasome response

Sig-1R Sigma-1 receptor ALS
ER chaperone, modulates calcium signaling through
the IP3 receptor

C9ORF72 Unknown ALS Unknown

AR Androgen receptor SBMA Androgen receptor

SMN Survival Motor Neuron SMA RNA processing

GLE1 Nucleoporin GLE1 LCCS1 Export of mRNAs containing poly(A)

Evidence for the involvement of this kind of regulation
in MNDs is accumulating, although still far from definitive,
and unspecific HDAC inhibitors such as sodium phenylbu-
tyrate, trichostatin A, and valproic acid have been tested as
neuroprotective drugs for the treatment of ALS with some
positive result [43–47]. It is interesting to note that valproic
acid is also endowed with antioxidative and antiapoptotic
properties. However, most likely only selected HDACs partic-
ipate to onset or propagation of motor neuron damage and
thus must be targeted for an effective therapy. This concept
is strengthened by the observation that complexes formed
by ALS-linked proteins TDP-43 and FUS/TLS control the
expression level of HDAC6 [48].

The SMN gene has a reproducible pattern of histone
acetylation that is largely conserved among different tissues
and species [49] and several HDAC pan-inhibitors such as
suberoylanilide hydroxamic acid (SAHA) [50], trichostatin
A [51], and the benzamide M344 [52] increase SMN2 trans-
cript and protein levels. Valproic acid is currently tested in
phase I and II clinical trials for the treatment of SMA (http://
clinicaltrials.gov/). However, valproic acid has also serious
adverse effects in cell and mice models for SMA [53, 54]
pointing again to the need of inhibition of selected HDACs
in MNDs, especially in the light of a recent report that the
SMN2 gene is differentially regulated by individual HDAC

proteins and silencing of HDAC5 and 6 enhances inclusion
of an alternatively spliced exon in SMN2 [55]. Finally, oral
administration of the HDAC inhibitor sodium butyrate has
been tested also in a transgenic mouse model of SBMA with
some positive outcome but only within a narrow range of
drug dosage [56].

Epigenetic control of transcription may also occur via
methylation by DNA methyltransferases (DNMTs) or his-
tone methyltransferases (HMTs), both using S-adenosylme-
thionine (SAM o AdoMet) as the methyl donor. DNA meth-
ylation in eukaryotes occurs by the covalent modification of
cytosine residues (on the fifth carbon) in CpG dinucleotides,
leading to gene silencing. Methylation of histones (as well as
transcription factors) occurs on lysine or arginine. Methy-
lated lysine residues can carry up to three methyl moieties on
their amine group, whereas arginine can be mono- or dim-
ethylated on the guanidinyl group. Lysine methylation of
histones is associated with activation or repression of trans-
cription, depending on the degree of methylation and on the
residue location [57].

Methylation may be extremely relevant in MNDs if one
considers, for instance, that recognition of some Sm proteins
by the SMN complex (that mediates the assembly of the Sm
proteins onto snRNAs involved in pre-mRNA splicing and
histone mRNA processing) is dependent on symmetrical



4 International Journal of Cell Biology

dimethyl arginine modifications of their RG-rich tails [58,
59]. This methylation is achieved by PRMT (protein arginine
methyltransferase) 5 or by PRMT7, two enzymes that func-
tion nonredundantly [60] and utilize SAM as methyl donor.
Furthermore, the SMN2 gene is subject to gene silencing
by DNA methylation and some HDAC inhibitors including
vorinostat and romidepsin are able to bypass SMN2 gene
silencing by DNA methylation, while others such as valproic
acid and phenylbutyrate are not [61].

Other observations support the concept that MNDs may
be considered as “RNA dysmetabolisms” [62]. As reported
in Table 1, several of the genetic factors involved in MNDs
encode proteins with a role in RNA metabolism, and some
overlap may exist among different diseases. For instance,
copy number abnormalities of the SMN genes have been
reported in sporadic ALS, although decrease of SMN protein
in the anterior horn cells of ALS patients may be only a
secondary phenomenon [63, 64]. RNA metabolism, however,
consists of several intertwined steps, such as pre-mRNA
splicing, mRNA transport, translational regulation, or
mRNA decay, and the precise RNA pathway that is affected in
a single MND remains unknown because virtually every one
of the involved RNA-binding proteins has been implicated in
more than one of these steps. Thus, it is not clear why motor
neurons are so vulnerable to mutations in RNA-binding
proteins.

Very recently, familial ALS has been associated with an
expansion of a noncoding GGGGCC hexanucleotide repeat
in the gene C9ORF72 [65, 66] that codes for an unknown
protein. The transcribed GGGGCC repeat forms intracellu-
lar accumulations of RNA fragments in cells in the frontal
cortex and the spinal cord from patients carrying the expan-
sion [65]. These RNA foci are composed of the expanded
nucleotide repeats that may disturb transcription by seques-
tering RNA-binding proteins involved in transcription regu-
lation as observed for other expanded RNA repeats diseases
[67] such as myotonic dystrophy [68]. Interestingly, the
GGGGCC sequence also represents a potential binding site
of several RNA-binding proteins including hnRNP A2/B1, a
TDP-43 interactor [69, 70].

4. Altered Gene Expression,
Mitochondrial Damage, and Oxidative Stress
in MNDs: Which Are the Links?

Which are the links among altered gene expression, mito-
chondrial damage, and oxidative stress in MNDs is not clear
yet. While oxidative stress and mitochondrial dysfunction
are obviously connected into a vicious cycle in which excess
in ROS production may influence the functionality of the
organelles, that in turn would produce excess ROS, the con-
nection with altered gene expression in MNDs is still some-
what foggy.

A few considerations may help to shed some light on
possible, not mutually exclusive, mechanisms.

In analogy to what has been proposed in development
[71] and in cancer [72], an interplay among oxidative stress,

thiol redox signaling, and epigenetic modulation by methy-
lation may be critical in motor neurons. The antioxidant
capacity of cells is influenced by the production of glu-
tathione (GSH), and increased GSH production influences
DNA and histone methylation by limiting the availability of
SAM, the cofactor utilized during epigenetic control of gene
expression by DNA and histone methyltransferases [71]. The
above mentioned forms of methylation, which are relevant
in MNDs, are not directly linked, since they involve different
enzymes and different targets. However, they all require the
same methyl donor, which could be limiting in MNDs.

HDACs themselves seem to be linked to and modulated
by oxidative stress. Pan-HDAC inhibition promotes neuronal
protection against oxidative stress in a model of glutathione
depletion [73], thus suggesting that HDACs are downstream
mediator in the mechanisms of toxicity by ROS, while
carbonylation of reactive cysteines of some, but not all, class
I HDACs causes reduction of histone deacetylase activity and
change in histones acetylation and transcription of genes
repressed by these HDACs [74]. Thus, oxidative stress may
be a modulator of gene expression through the modulation
of DNA accessibility.

In turn, the activity of HDACs modulates alternative
splicing of human genes when the nascent RNA is still asso-
ciated with chromatin (in particular the splicing of hundreds
of genes is altered upon HDAC inhibition) [75] but also the
activity of various TFs. Noticeably, oxidative stress is also a
modulator of several TFs and thus ROS and HDACs may
concur in the generation of a pathological phenotype
through the same mechanism. For instance, as reviewed by
Rahman et al. [76], oxidative stress inhibits HDAC activity
and activates HAT activity; this leads to NF-κB activa-
tion, which, in turn activates proinflammatory mediators.
The antioxidant and/or anti-inflammatory effects of thiol
molecules (GSH, N-acetyl-L-cysteine and Nacystelyn) and
dietary polyphenols (e.g., curcumin and resveratrol) have a
role in either the control of NF-κB activation or the mod-
ulation of HDAC. Thus, oxidative stress may regulate both
TFs and chromatin remodeling which in turn impacts on
proinflammatory responses.

Furthermore, SIRTs (class III HDACs) control the expres-
sion or the activity of a number of proteins involved in
redox regulation (Table 2). Among these proteins, some are
mitochondrial and many have been involved in one or more
MNDs by transcriptomic/proteomic studies [77–79].

Last, but not the least, we have reported that mitochon-
drial damage itself is a cause of modification in the abun-
dance of selected splicing variants [80] and that defective
RNA metabolism seems to play a role also in SOD1-linked
ALS and to descend directly from mitochondrial stress [81].

5. A Unifying Mechanism for MNDs?

From what summarized above, it is tempting to speculate
that indeed all MNDs are mainly forms of RNA dysmetab-
olisms. Motor neurons seem to be exceedingly susceptible
to defects in RNA transcription or processing; one appealing
explanation is that they require that RNA is not only correctly
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Table 2: Effects of class II HDACs (Sirtuins) on redox-related proteins.

Sirtuin Target Effect Reference

SIRT1 (nucleus and mitochondria)

FOXO3a ↑ Transcriptional activity [82]

PGC-1α ↑ Transcriptional coactivation [83, 84]

HIF1α ↓ Transcriptional activity [85]

HIF2α ↑ Transcriptional activity [86]

eNOS ↑ Enzyme activity [87]

p53
Mediates transcriptional activity,

depending on SIRT1 expression level
[88, 89]

SIRT2 (cytoplasm) FOXO3a ↑ Transcriptional activity [90]

SIRT3 (mitochondria)

HIF1α ↓ Transcriptional activity [91]

SOD2 ↑ Enzyme activity [92, 93]

OTC ↑ Enzyme activity [94]

NDUFA9 ↑ Enzyme activity [95]

GDH ↑ Enzyme activity [96]

IDH2 ↑ Enzyme activity [97]

SIRT4 (mitochondria) GDH ↓ Enzyme activity [98]

SIRT5 (mitochondria) CPS1 ↑ Enzyme activity [99]

SIRT6 (mitochondria) HIF1α ↓ Transcriptional activity [100]

SIRT7 (nucleoli) p53
Mediates transcriptional activity,

depending on SIRT7 expression level
[101]

CPS1: carbamoyl phosphate synthetase 1; eNOS: endothelial nitric oxide synthase; FOXO3a: Forkhead box O3 a; GDH: glutamate dehydrogenase; HIF1α:
hypoxia-inducible factor 1, alpha subunit; HIF2α: hypoxia-inducible factor 2, alpha subunit; IDH2: isocitrate dehydrogenase 2; NDUFA9: NADH dehydroge-
nase [ubiquinone] 1 alpha subcomplex subunit 9; OTC: ornithine transcarbamylase; PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator
1-alpha; SOD2: superoxide dismutase 2.

transcribed and spliced, but also correctly transported along
axons to neuromuscular junctions (NMJ). While there is no
clear demonstration of the presence of mRNAs at the NMJs
yet, this process (at least in ALS) might resent from the
known alterations in axonal transport that precedes onset of
symptoms [102].

However, one form or the other of alteration of RNA
expression may have different weight in different MNDs and,
most importantly, RNA dysmetabolisms may be a primary
event (for instance in SMA or in TDP43- and FUS/TLS-
linked ALS) or dysregulation of components of the genetic
machinery (the HATs/HDACs system, transcription factors,
the splicing complex) may be secondary to oxidative stress
or energy failure. In turn, which step is the primary site of
damage may dictate the severity of disease (age of onset, pro-
gression), and which cell type beside motor neurons is pri-
marily affected may dictate the form of MND. This field
surely deserves further investigation aimed to the individu-
ation of novel therapeutic approaches for MNDs.
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