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Abstract. During the past 15 years a new technique, calletistochastic limit of quantum theory

has been applied to deduce new, unexpected results in a variety of traditional problems of quantum
physics, such as quantum electrodynamics, bosonization in higher dimensions, the emergence of
the noncrossing diagrams in the Anderson model, and in the Pértigit in QCD, interacting
commutation relations, new photon statistics in strong magnetic fields, etc. These achievements
required the development of a new approach to classical and quantum stochastic calculus based
on white noise which has suggested a natural nonlinear extension of this calculus. The natural
theoretical framework of this new approach is the white-noise calculus initiated by T. Hida as a
theory of infinite-dimensional generalized functions. In this paper, we describe the main ideas of
the white-noise approach to stochastic calculus and we show that, even if we limit ourselves to the
first-order case (i.e. neglecting the recent developments concerning higher powers of white noise and
renormalization), some nontrivial extensions of known results in classical and quantum stochastic
calculus can be obtained.
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1. The Main Idea of the Stochastic Limit of Quantum Theory

Quantum stochastic differential equations are now widely used to construct pheno-
menological models of physical systems, for example in quantum optics, in quan-
tum measurement theory, etc. However, the fundamental equation of quantum the-
ory is not a stochastic equation but a usual Schrddinger equation. Therefore, the
problem of understanding the physical meaning of these phenomenological models
naturally arose.

The stochastic limit of quantum theory was developed to solve this problem
and its main result can be concisely formulated as follestschastic equations
are limits, in an appropriate sense, of the usual Hamiltonian equations of quantum
physics

Thus, the stochastic limit provides a derivation of the phenomenological sto-
chastic equations from the fundamental quantum laws. In particular, this gives a
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microscopic interpretation of the coefficients of these equations and proves that
the most important examples of quantum Markov flows arise in physics from the
stochastic limit of Hamiltonian models.

From the mathematical point of view, the stochastic limit suggested a new
interpretation of the usual stochastic equations, both classical and quantum, as
normally ordered Hamiltonian white noise equatioms this section, we give a
short illustration of the basic ideas of the stochastic limit and show how this natu-
rally leads to the identification of normally ordered first-order white-noise Hamil-
tonian equations with stochastic differential equations in the sense of Hudson and
Parthasarathy.

The starting point of the stochastic limit is not a stochastic equation but a usual
Schrédinger equation in interaction representation, depending on a parameter

U = —in(DAS(S,g) — DTA(S,)) U (1.2)

describing a systen§ with state space¥s interacting with a field with creation

and annihilation operatora;(g), A;(g), and D, D* are operators on a Hilbert
space#s. One rescales the time parameter according to the law ¢/A2. This
rescaling is motivated both by mathematics (central limit theorem) and by physics
(Friedrichs—van Hove rescaling). After the rescaling, one arrives to an equation of
the form

A M+ A A
8,7, = (Da;”* — D¥a")U,),,

(1.2)

where

/22
a™ =/\f dsA(S,g).
0

It was proved in [1] that, a8 — 0, the iterated series solution of this equation
converges, in a sense which is the natural generalization of the notion of quantum
convergence in law, to the solution of the QSDE

du, = (D dB" — D" dB, + ( — g DtD + iaD*D) dz) u,, (1.3)

whereB;', B, is the Fock Brownian motion with variange acting on the Boson
Fock spacd.?2(R)®.K, H = k Dt D andk, y > 0, are real numbers is a Hilbert
space, whose explicit structure is described in terms of the original Hamiltonian
model.

In [3, 4] it was proved that the iterated series solution of this equation converges
term by term, in the same limit, and in the same sense as above, to the iterated series
solution of the distribution equation

o,U, = (Db — D*b)U,, (1.4)
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whereb/", b, are the annihilation and creation operators of the Boson Fock white
noise with variance (> 0) which is characterized, up to unitary equivalence, by
the algebraic relations

(b, b} = y8(s —1), t5s€eR, (1.5)
b[® = 0, (1.6)

where® is the Fock vacuum. It is therefore natural to conjecture that Equations (1.3)
and (1.4) are just two different ways of writing the same equation. To prove this

conjecture we have to develop a purely analytical white noise approach to the
standard, classical, and quantum Itd calculus and, in particular, a white-noise for-
mulation of the Ité table, based on the general white-noise theory initiated by Hida
[10] and developed in [12, 13, 16].

2. Notations on Fock Spaces

We begin by describing a concrete representation of the Fock space which, being
well suited for explicit calculations, is most often used in the physical literature.
Such a representation can be used whenever the 1-particle space is concretely re-
alized as arl.?-space over some measure space (finite finite) (S, x1). In this

case, the:-particle space can be realized as the spla@:@n(S”, ®" ) of all the
symmetric, square integrable functions on the product space

STi=8SxS8Sx---x8 (ntimes

with the measure” i, which is the product of copies of the measune. In the
following we shall fix the choice

S = R%; u = Lebesgue measure

Let 71 = L?(R?) be the Hilbert space of functions &f with the inner product
(fo= [ Fosos, fgen @)
R

and ¥, = Lgym(R"d), n =1, 2,...be the Hilbert space of square integrable func-
tions of n-variables inR¢, symmetric under the permutation of their arguments.
The elements of, are called:-particle vectorsFor an elemeny,, € %, we write

Vn = Yn(s1, ..., 5,), 5 € RTand one has,(s1, ..., 5,) = ¥u(Sx@), -« - » Sx(n))

for any permutationr.

DEFINITION. Thesymmetric representatioof the scalar Boson Fock spageis
the direct sum of the Hilbert spacé&s

F=PLy R =F =P *. (2.2)
n=0 n=0
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Here we setfy = C. So an element of the Boson Fock spateés a sequence
of functions

v = {WO» 1,017 wZa . '}a
whereyo € C, ¢, € F,,n=12,...and

112 =D 1™ 122 gan, < 00 (2.3)

n=0

More explicitly

Iyl = |w<°>|2+ZfRd W™ (51, ..., 5P dsy .. s, (2.4)
n:l n

The inner product of elements = {y,}°2, and® = {¢,}>2, from F is given by

(W, ®) = > (Y, bn)
n=0

= $0¢>0 + Z /R"d Yu(s1, ooy S)Gn(s1, ..., 8,)dse...ds,. (2.5)
n=1

The vectondy = (1,0, 0, .. .) is called thevacuum vectarlt describes the state
of a system in which no patrticle is present.

3. Annihilator and Creator Densities
Define
Dy :={y e F|y™ e §(R™M)). (3.1)

In the remaining of this section, unless otherwise specified, ak{particle vec-
tors shall belong taD4. Define, moreover,

DY = {¢ € Dy | v = 0 for aimost allz € N}, (3.2)

D(a) = {:/f eDs : Y nly™|? < oo} (3.3)

n=1

and notice thatD (a) is a vector space containing both the number and the expo-
nential vectors with test functions 1 Define theannihilation densit{¥ a,

(asw)(”)(sl, oS =An+ lw(’”rl)(s, S1,...,8.); S € RY neN. (3.4)

The right-hand side of (3.4) is well defined whenever it makes sense to speak of the
valuesy ™ on any point, for example whep™ is in the L2-equivalence class of
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a continuous function for each and the sequence of functiof@:; )™} defines
an element off . This is surely the case if is in D(a). Thus, for any € R?, the
annihilatorga;, is a densely defined operator which mapéa) into .

From (8) it follows that the map;, is weakly measurable and therefore, for any
square integrable functiog, the integral

Alg) = fR g (35)

called theannihilation operatoris well defined as a Bochner integral éd(a).
Proposition 1 below shows that it is a preclosed operator. The explicit action of
A(g) on vectors inD (a) is deduced from (8) to be, far € N,

Ay = /R L ds 2()(as )™ (s1, -, Sn)
= +/n+ 1/ ds ()Y "D (s, 51,00, 50). (3.6)
Rd

For example, the explicit action af(g) on the exponential vectors is also deduced
from (3.4):

Ay = /Rd ds g(s)as ¥y = /Rd ds g(s) f (V= (g, V. 3.7

Thecreation density:;" is defined fory € Dy by
1 n
PP (5180 === Y 8 —s)U " P(s1.. 8 s0). 3.8
(@)™ (51 50) ﬁ;‘(s sV (515 s) (3.8)

Thes-function on the right-hand side of (3.8) shows that the creation demnsity
is not an operator but a sesquilinear form on the number vectors.

PROPOSITION 1. For any square integrable functiog there exists a preclosed
operatorA*(g), defined on the-particle vectors, represented by continuous func-
tions, by the relation

1 n
(AT @Y 1,y 50) = N DY Va8, (3.9)
i=1

Moreover, on the:-particle space A*(g) is bounded with norm less or equal to
n’?||g|| (L?-norm ofg) and, onD (a), A*(g) satisfies the relation

(AT (@Y, ¥') = (¥, A@Y"). (3.10)
Proof. Let ¢ be as in the statement. Then, using the definition (3.9)afg):

n

1 _ n—
IAT@N™IZ == 3 (g™ g9 ),

ij=1
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where

gl'(slv"'vsiv"'vsn) :=g(si);
_1 . 1 n
w,.(n D52y oo Siv ey sn) =" V0, S S0).

Sincey "~V is a symmetric function, it follows that

-1 n—1 n—1 n—1 n—
e g < g™ Plllgi v "Il = gy V112
and therefore

AT (W™ I2 < nllglPlly V2

This shows thati ™ (g) is a well defined operator on the domaina), bounded on
eachn-particle space. To prove (3.10) we compute

(¥, A(Q)Y)
=) W, Ay =) Vn+1 f dsg(s)(y ™, ¥/ s, )

=) Y+l / dsg} / [N ORI OF IS
— Z Vn + l/ dsg, /E(H)(s, e sn)w’("ﬂ)(s, STy eens 8n)

n+1

1

= d dsy... | ds,| — (1, Sy S, }x
;/3/51 /S[«/mizzlg,lﬁ (51 5 Sn+1)
X w/(n+1) (S].’ 8§25 ..., Sn+1)

= (AT (), ¥'). O

LEMMA 2. The following formulae hold o®,:
(a(ty)a™ (t)y) ™ (s1, ..., ) (3.11)

= 28(t2 - Si)l//(n)(slv ceey §i7 ceey Snv tl) + 8(t2 - t]_)l//(n)(S]_, L) sl’l)x
i=1
x(at(t)a(t)P) ™ (s1, .. .\ 50)

=Z(S(Iz—si)lﬁ(”)(sl,-.-,fi,---,Sn,l‘l)- (3.12)
i=1

Proof. Define
WD (51 Say1)
= (@ (1)) " (51, - Sua1)
1 n+1

== Za(zz — OV (51, ..o, Sty Sug). (3.13)
i=1
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" +1),, is a distribution with values itF,. 4, i.e., for anyg € 4,

r (n+1)

drag (¢ =
i / 28( 2)¢z2] NoES
applyinga,,, as defined by (3.8), we find

D g sn, iy Saga).
i

Now,

_at1 / dtzg(tz)q&,z](n)(sl, ey Sy)
= g(t)Y ™ (51, .., 50) + ig(s,-)w(")(tl, ey Sis ey Sn)
i1
= /dtzg(tz)S(tz—tl)t/f(")(sl,...,sn)—f-
- Xn:(saz —s5)8) Yty .., Siv ey Sn)

i=1
= / drag(12)vV/n + Lo 2 (11, 51, - . ., 50).

Therefore, in the sense of distributions,

(@(t)p) ™ (52, - sw) = Vn + 1y Ve, 51, s0) (3.14)
and from (3.7) we get that (3.12), (3.12) are proved in a similar way. O

Remark. Comparing (3.12) and (3.12), one deduces Boson commutation
relationsfor a scalar Boson white noise

(h)a™ (tp) — a™ (tp)a(ty) = §(t — 1).

4. Stochastic Integrals with Respect to the Boson Fock White Noises

In this section we shall discuss white noises and stochastic integri riather
than inR because exactly the same formulae are valid in the 1- and ithe
dimensional case.

We have defined the operators

) =(F A = [ dFai  atE) = (F.AY) = [ dFal @)
R4 Rd

whenF is a complex-valued function dR. The generalization of these integrals to

the case whelf is an operator valued function are calléght stochastic integrals

with respect taz; (resp.a;”). One has also to define theft stochastic integrals

<A, F) = dsast; <A+, F) = dsa:Fs (42)
R4 R4
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and thetwo-sided stochastic integrals

dsFSafGS; dsa; Fa;. (4.3)
R4 R4
Let i)g be as in (5.6) and ler be a space of maps froR? to linear operators
from a dense subspace H¥; to ¥ with the property that the maps

s (U Rl s IEYI% ¢, v € DS,
are locally integrable. Clearly — a;, thena € £, while s — a; is notinL.

If P, denotes the projection onto theparticle space of the Fock space, then
for anyz, we can write

F,=> PFP =Y F"
n,k n,k

Remark.By inspection from formulae (4.2) and (4.3), one can guess that even if
theintegrandF; is bounded, in general the stochastic integrals will not be bounded
operators. So a precise definition of the notion of stochastic integral should always
specify the domain of vectors where this inegral is defined. The general scheme
we shall adopt to define stochastic integrals is the followingz Jfdenotes any
of the integrands in formulae (4.1) or (4.2) or (4.B)denotes the corresponding
stochastic integral ang- an arbitrary vector, them will be characterized by the
following two properties:

() The n-particle component of ¢ is the Bochner integral of the-particle
component ofG,y:

( dsGSW) ::/ ds(Gsy)".
Rd Rd

(ii) The n-particle component o is explicitly computed using the rules of the
previous section.

In the following sections we shall show how these general principles work in
concrete applications.

5. Right Annihilator Integrals
Let DY =: O and L := L(D) be as in Equation (3.6).
DEFINITION 3. The right annihilator stochastic integral®fe £ is the operator

Y= / Fyasyr ds = (F*, A)yr .= / Fy A ds, (5.1)

where the integral is meant as a Bochner integral in the Fock space. It is defined for
eachyr € DJ such that,y is in the domain off; for eachs and the vector-valued
functions € R? — F,a,y is Bochner integrable.
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The explicit form of the right annihilator stochastic integral on thparticle
vectors can be easily obtained by using the same technigue as in Section 3. In fact,
because of definition (3.8), one has that

(asy)™ =+ Ty (s, 0, (5.2)
wherey "V (s, .) is the function
($1,...,8,) € R" > 1,0(”+1)(s, S1yevesSp). (5.3)
Therefore, (5.1) is equivalent to
/ Fyagyr ds = Z vn+ 1f ds Fy (s, ). (5.4)
n>0

In particular, on the exponential vectors this explicit form is

/F,at dry s =/thtf(t)1//f, (5.5)

where the right-hand side of (5.1) is a usual Bochner integral. The right-hand side
of (5.5) is defined on the set of the exponential vectprswith test function in#;

such that the vector valued functien— f(s) F (s)yf is Bochner integrable. From
definition (5.1) we have that

(F*, A) := / Fag ds. (5.6)
In the case wher§ = RandF = yx; F with I = [0, ] we shall simply write

(F, A;) = /Ot F.a, ds. (5.7)
Thus the right annihilator integral maps functiofis R? — £(D) into elements

of L(D).
From (5.4) and (5.5) we deduce the estimate

[ Faves| < SvaT [ eimem el

n=>0
= / ds|| £ (N + DYy 5P )G, )l (5.8)
andA(x;,)-
The definition of exponential vector implies that
(N + D2yt (s, ) = fo)wf”, (5.9)

therefore (5.5) implies that for any exponential veatgrone has

H/Fsas dswf” </If(S)I NI Fspyll ds. (5.10)
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A sufficient condition for the finiteness of the right-hand side of (5.10) is that the
vector-valued function — f(s) F(s)¥ (s) is Bochner integrable.

6. The Left Creator Stochastic Integral

DEFINITION 1. The definition of left creator stochastic integrals is the natural
extension of formula (3.13) for the scalar case

(n)
(/aﬁFtt/f dt) (51, -+, Sn)

-7 D FGHI TP (s1, S a). (6.1)
i=1

Definition 1 has a meaning for any measurable funcfipmand, given such an
F, the natural domain of its left creator stochastic integral is

(n)2
i)(/a;rF,dt):{w (/aﬁF,Wdt)

or, more explicitly, a vectot is in D([ a;" F; dr) if and only if

LTS 2

dsy...ds, < oo. (6.3)
n= l

o0

2

n=1

< oo} (6.2)

<F@mm"%nwu,,.w%)

We want now to obtain an estimate on the normy'ef! F, dsy which guaran-
tees that the stochastic integral exists. This is given by the following lemma:

LEMMA 1. Lety =D belong toD(F,) for all s € RY. Then one has, for each

n €N,
2
‘Pn</dsa;rFS1ﬁ)

In particular

n [ @sipaEl?
- /dsH\/(N FDFY)" Y| (6.4)

2
/dsas < /dSH(VN + DFy (6.5)
Proof. The norm square of (6.1) is
f fml D AEA "D s, 5 sa),

i J
(stl/f)(nfl)(sl’ cey §], ey sn))
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1¢ .
S 3l CORR TR AL R NI

ij=1
F (n—1) 5.
X”( Sj’(p) (s17"'7s./a~~~7sn)||
n2

= s f s dsz...ds, [ (Fy) " V(s .0 0)l?
R R n—

n

— f ds[[(Fy)™ V)2 0
Rd

COROLLARY 2. LetL, be a function with values i (¥) such that

(i) forany0 < T' < +00SUR 0.7 1 Lsllew < v/Crr,
(i) Ly andL;} commute with every,, a,", P, t € R, k € N.

Then

2
P, / dsarL,Foy| < Crn / ds || Py For |2 (6.6)

Proof. From Lemma 1 the left-hand side of (6.6) is less than or equal to

Con / ds || Py_a Ly Fy 2

and, using (ii) and (i), the thesis follows. O

7. The Normally Ordered Two-Sided Integral

DEFINITION 1. The two-sided (normally ordered) integrablsb, F;b, is de-
fined, weakly on the exponential or number vectors by

€. [ @b Fbon) = [ vt Fbn. (7.1)
In particular, on exponential vectors one has
. [ i o) = [ 6T . Fo) (7.2)

LEMMA 2. For anyn € N and for any exponential vectof,, one has the
estimate

@
(/ dsb:_Fsbsl//f)

In particular,

2

< nf ds| £ ) I IR (7.3)

2
/ dsb? Fubyys| < / ds| ) 2IN + DY2y 1. (7.4)
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Proof.Using b,y = f(s)¥ s, the left-hand side of (7.3) becomes

(n)
([osrom)

and, because of (8.4), this is

gn/ ds | (F, )™ 121F )12,

i.e. (1). (2) is obtained from (1) by summing over all O

8. Differential Calculus

Usually in stochastic calculus one considers the differentials only as symbolic
expressions for the corresponding integrals. We want to develop a differential cal-
culus directly in analogy with classical analysis.

Let us first consider the differentiability properties, with respect,tof the
Brownian motion operator8,, B;".

THEOREM 1. Lety € Dj be such that, for each, ¥ is continuous with
compact support. Then, with B; defined by(6.5) below, one has the following:

(AAB’ —b(z))wu =0, (8.1)

t

0 lim

At—0

where the operatob(r) is defined in(6.5).
(i) The strong limit, asAt — 0, of AB;t/At — b*(r) does not exist on the
number vectors. However, the weak limit of this expressiomuloes exist,

|ev¢1, 1,02 € £01
. AB} N
Alltr—>n0 (z/fl, N 1//2) = (Y1, D™ (t)Y2) (8.2)
1 Z/ dsy...ds;...d
= — s1...0s; ...0s, X
\/E i—1 Rnfl !
XY (510 e SOV (510 s S Sa).
(iii) im | (2P0 AB0 1)y, ] o (8.3)
At—0 At l/f - .
(iv) lim AB/ AB =0 (8.4)
At—0 At tl// o .
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Proof. One has
t+At
(ABY) (1, ..., s0) =+vn+1 / (s, 51, 8,) ds, (8.5)
t

(ABY) ™ (51, ..., )

n

= 3 K anGOV OV (s1, B s) (8.6)
i=1

and
(AB,ABY) ™ (sq, ..., 50)
=Y (s1,...,8) At +

n t+At
+ Z X[t,t+At](Si)/ U (51 oy Siy ey Sy 1) A (8.7)
i=1 4
From (8.2), we have
AB, 2
—b(t) )y
|(5 -0)s
=(n+1) dSl...dsnX
Rdn
t+At 2
X ~ / w("H)(s, S1, ..., 8,)0s — 1,0(”+1)(t, S1,...,8)] . (8.8)
t

Becausey "*Y are continuous functions with compact support, one can go to the
limit A+ — 0 under the integral oversd ..., ds, and we get (1).
To see that the limit in (i) does not exist let us tak&’ = ®. Then one has

(AB )P (51) = X an(s1) (8.9)
and
(AB+I/I)(1) 2 1 1

From (8.10) it is clear that the limit whefnt — O does not exist. However, there
exist the limit of the bilinear form (8.2). Now, from (8.7) one has

AB - ABF o 2
At

2

= ds; ... ds,
Rdn

n 1 t+At t+At t+At
= — ds-/ dtlf dt’/ ds;...ds;...ds,x
,-,,22:1 (Al)z ./; l t t ! Rr-1 l '

XY (s, ..., 8iv ey Spo )W ™ (51, .. s Sje ey Spy 1) (8.11)

1 <& t+At
AL Z X[t,t-i—At](Si)/ Y (s, 8y s, 1) O
i=1 d
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which ten ds to zero whent — 0. This ends the proof of the theorem. O

Remark 1.0ne can symbolically write the relation (8.1) in the form

dB;, = b(¢) dr (8.12)
and the relation for bilinear form (8.2) as

dB," = b* (1) dr. (8.13)
Formulas (8.3), (8.4) look like the It6 rules

dB, dB}} = dr, (8.14)

dB;"dB, = 0. (8.15)

However, we emphasize that we get them as differential relations (8.3), (8.4) and
not as integral relations like in the I1t6 calculus.

9. Mutual Quadratic Variation

In this section we prove that the limit relation (8.3) is true in a topology much
stronger than the one given by strong convergence in a dense subsgace of
For a real numbeAr > 0, we shall denote

+._ pt +
ABE = B, \n— BS,. (9.1)

From (8.4), (8.5) we deduce that

t+At
(ABll//)(n)(slv "'7Sn) = v”l‘}‘l/ ]//.(""Fl)(s’ slv "'7sl’l)ds’ (92)
t
(ABFY) ™ (51, ..., sn)
1 n I R
== ) Xaaran() YV la LS ). (9.3)
\/ﬁ i=1
From (8.6), one deduces the identity, for any real nuntwer
(AB,ABY) (51, 50)
n t+At
= Z X(.o+ar)(Si) / Y (51, Sy Spy ) it
i=1 !

+ AL YD (s, .. 8). (9.4)

The Ité multiplication table is obtained from (9.4) when — 0 and has the
form

(AB; - AB Y)W (s1, .., 5,) = ¥ ™ (s, ..., s,) At + 0(AL), (9.5)
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where @Ar) means something that, when summed over all the intefvals- At)

of a partition of a fixed intervalS, T), tends to zero a#&\r — 0. In order to

make this statement precise, one has to choose a topology and this can be done in
a multitude of ways. In the following, we prove some estimates which show that
some topologies arise quite naturally in our context. For example, if the function

¥ ™ is measurable and bounded, then one has the estimate

I(AB, - ABFY) ™ (1, ... 80) — ™ (s, ..., 85,) Al

<Y oA Y Xiraran(si). (9.6)
i=1

LEMMA 1. Assume that/™ is bounded, fix a bounded intervé, 7) and con-

sider the partition of(S, ') into intervals of equal widtl\z. Then, if) ", denotes
summation over the intervals of the partition, one has

‘ > (ABABY) P (st, ... 50) = (T = 8) ™ (s1. ..., 5)

<nAt- [ ™| - (9.7)

In particular, the limit

At—

IimOZ(AB,ABﬁ//)(”)(sl, cess) = (T =8) - ¥ ™(s1, ..., ) (9.8)

holds uniformly insq, ..., s,.
Proof. Summing the identity (9.4) over all the intervals of the partition, we
obtain

> (ABABFY) (s, ... 5)

n t+At
= ZZX(I,I+AI](Si)/ w(n)(s:]_,...,Si,...,sn,tl) dt1+
i=1 t !

+(T = 8) - Y™ (s1, ..., ).
But

n t+At
Z Z Xt i+an(8i) / A (T S W ¥ 121
i=1 t ¢

n
<AL YD oo D0 Kerran(s) = At 1P|,

i=1

which tends to zero, a&r — 0, uniformly ins., ..., s,. O
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10. Normally Ordered White Noise Equations inR?

Given a notion of stochastic integral, one can study the problem of the meaning,
existence, uniqueness, and unitarity of the corresponding integral equations. We
will study integral equations of the form

Y, = Yo+/ L01(S,l‘)Ys6lst+/ Lio(s, t)a) Y, ds +
Rd Rd
+/ L1a(s, t)a; Ysa, ds+/ Loo(s, t)Y ds, (10.1)
Rd Rd

where the coefficientd.. ./ (s, 1) (¢, ¢ = 0, 1) are linear operators acting Gty
such that,
(i) for any (e, ¢’ = 0, 1) ands, t € R?, the operatol, . (s, t) is bounded;
(ii) defining
max [ Lee(s, DIl =:1(s, 1), (10.2)

then for any bounded sé& C R, the functions
s € R I(s,1) (10.3)

are integrable for eache B and the set of integrals, as a functionzof B,
is bounded;

(iii) for any bounded seB C R, there exists a constat> 0 such that, for any
natural integek one has

Lk
/ R dsq... dskl(sl, Dl(s2, 51) ... 1(sg, Sp—1) < — (104)
R4 R4 k'

uniformly in# € B. (In Section 12, we shall give examples of coefficients
L. . (s, t) which satisfy this condition.)

We shall write Equation (10.1) in the notation
Yo=Yot [ Losndal o), (10.5)
R4

where summation is understood in the indiees’ € {0, 1}.
In this notation we define thkth iterated approximation solution of Equation
(10.5) by

Y0 = v, (10.6)
yFh = / Leo(s, 1) dAS (s)Y P, (10.7)
Rd
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The iterated series, associated to Equation (10.1) is

> v, (10.8)
k=0

In this section we shall fix the set

8o ={f € L*RY) : max{| flloo, I f 112} < 1} (10.9)

and we denoté& (8y) as the corresponding set of exponential vectors. It is known
that 4y is a total set inF .

THEOREM 1. Suppose that the coefficients of Equatf®.1) satisfy conditions
(i), (i), (i) and, moreover,

1
L <—. 10.10
T (10.10)

Then the iterated serigd.0.8) converges, strongly in norm ag(4$p) to a solution
of this equation uniformly in bounded subset&R6f

For the proof of Theorem 1 we shall use several lemmata.
LEMMA 2. LetL,.(s,t) (e,& = 0,1) be linear operators o satisfying the

conditions(i), (i) and (iii), then for anyr ¢ B € R?, a bounded set; € N and
f € 4y 0ne has

In particular, ¥*' defined by(10.7)verifies that

2

P, f Leo(s, )Y, dAS () f

< 8n / 1(s, 1) ds (| P YW £ 117 + [ P Yo 11%). (10.11)

1P Y,y
< 8n f ds 1(s, (I Pa-a YO0 12 + [ P YOy [17). (10.12)

Proof. First of all,

2

P, / Ls,s’(s7 t)Ys dAi/(S)Wf

(2

£,6'=0,1

2

N

P, / La,a’(s7 1) dAi/(S)Yvwa)
R4
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The Schwarz inequality

M 2 M
(Za,) < MZa/Z'
j=1 =1

(M is an integer and/ anda; are real numbers), implies that, for amy N,

2

P, f Leo(s, DY, dAE ()

<4 >

e,e'=0,1

2
(10.13)

P, / Leo, dAS (s) ¥,
R

Now we investigate the quantity in the right-hand side of (10.13) term by term
according to the values ef ¢'.
By letting a, act on the exponential vector, we deduce

2

P, / LOl(Sa t)YSaSWf ds

< ||f||§/ 1Py Loa(s, Yo |2 ds
<112 / dsi (s, 1)1 P, Yo 2 ds. (10.14)

From formula (6.4), one has

2
Pn/ ds Lyo(s, Daf Y,y r|| < n/ ds (s, )| Pu_1 Y ||? (10.15)

and from formula (7.3),
2

Pn/ ds Ll]_(S, t)a:_Ysaswf

<If12n / ds 1G5, )| Py_1Ys0r 12 (10.16)

Finally, the usual properties of Bochner’s integral imply that

2
< [ sieoinr? (10.17)

Pn/ dsLoo(s, )Yy ¢

Because of our assumption (10.9) ¢nthe sum of the left-hand sides of (10.14),
(10.15), (10.16), (10.17) is less than or equal to

Zf ds £(s, Dl P Y5y I + an ds £(s, Dl P2 Vo512

<2 / ds 15, (| Pa-sYs 0117 + | Pa Yo 1 12)
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and this is (10.11). To deduce (10.12), one simply applies (10.11) to the definition
of y*t. O

LEMMA 3. If the series
D 1yl (10.18)
k=0

converges uniformly on a bounded getn R¢, then for each € B there exists a
unique operatory; on #s ® &€(4$p) such that

>y =y, (10.19)
k=0

and the series on the left-hand sidgb.19)converges strongly in norm a&(4),
uniformly fors € B. Moreover, the functior> Y, is a solution of Equatior§10.1)

Proof. From Lemma 2 we know that there exists an oper&tam #s ® & (o)
such that (10.19) holds. And the convergence estimates also imply that the sto-
chastic integrals oft;, for the basic integrators exist. To prove thHat satisfies
Equation (10.1) it will be sufficient to prove that, for eache N, P,Y; satisfies
Equation (10.1). To show this, we use the estimate of Lemma 2 to deduce that

N
P, f Leo(s, )Y, dAS ()Y — P, f D Lew(s,nY® dAi’(s)wa
R¢ R 1

< 8n / D IPYEY s, 1) ds. (10.20)
d

RO =N+1

By assumption, for eache B, the functions — (s, t) is integrable. Therefore,

the right-hand side of (10.20) tends to zero by dominated convergerni¢e-asx.
Letting N — oo in (10.20), we see thaf satisfies Equation (10.1) and this

completes the proof. O

LEMMA 4. Letl,, (n, k € N) be positive numbers satisfying the inequality
In,k+l < Cn(ln,k + Infl,k)a (1021)

wherec > 0is a constant, then

In,k+l < (zcn)k Z Im,O- (1022)

m=n—k
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Proof. By iterating the inequality (10.21) we see that the right-hand side is equal
to

en(enly 1 +cenly 1, 1+cmn =Dl 15 1+cn =D, 25-1)
< (en)?(Iyp1 + 2Ly 41 + Tu25-1)
< (en) (g2 + 3142+ 3242 + Ii—34-2) - .-
< (en)* o+ hily—r0+ halyi—p0+ -+ + hily—i0),

where the coefficients,, satisfyh, < 2 and (10.22) immediately follows from
this. O

Proof of Theorem lntroducing the notation
Lyiya(s) = 1P Y,y )2,
we have from Lemma 2

Iy jy1(t) < / ds I(s, )8n (L, k (s) + L,—1x(s)),

therefore, arguing as in Lemma 4

Lia(®) < 160% Y L o(s0) / / dsy ... dsgl(s1, 1) ¥

m=n—k

X l(Sz, Sl) e l(Sk, Skfl). (1023)
But for anys; € R?

2L

m!

Lno(si) = [ Pu Yoy 1> = [ Yoll
and, without loss of generality, we can assume that
[ Yoll = 1. (10.24)

Moreover, according to assumption (iii), the multiple integral in (10.23) is domi-
nated byL*/k!. In conclusion

(I6LY o <~ If1%"
1Yy P < ==t 3T (10.25)

m!
m=n—k

Since for largen the sequencif ||?" /m! is decreasing the sum in (24) is majorized
by

2(n—k)
I LA .
(n —k)!
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Therefore

(16L)k | £1Pe
SGoD R

So in order to estimate

k+1
1P, Y Py )12

k+1 2
1Y, Py )12,

we are lead to estimate the series

i B P e
= b A | o =k
s .
— — | gkelfie, (10.26)
dr* t=0

Moreover, because of our assumption (10.9) on the test funcftiowe can restrict
our attention to the case in whidly'|| = 1 in (10.26). (We could have pytf| =

1 directly in (10.25), but it is convenient to leave it to show the opportunity of
introducingBell numbers depending on a parame}én this case by Leibnitz rule
the expression (10.26) is

“(k
> ( h) K" Bk — h), (10.27)

h=0

whereB,(k — h) are the Bell numbers of order 2 as defined in [9].
Under this assumption denoting

c:=16L, (10.28)
we have
ck d k
PY* Py 2 < kK" By(k — h
1Y (k_l)!; ) K Batk =)
k" Ba(k = 1)
kc* ) 10.29
( )Z hy (k h)' ( )

Now, since all the terms involved are positive, clearly

k" Batk — h) ( a kh)( a Bz(k—h)>
h=0 R (k= m)t im M\ k=R

and, from [9] we know that this is

< €Ga(1)/2,
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whereG;, is an analytic function. Therefore

1Y 5Py 112 < Ga(Dk(ce) /2 (10.30)
But if ce < 1 or, equivalently due to (10.28), if
1
L <—
16¢
the series on the right-hand side of (10.30) is convergent. O

11. An Example

In this section we produce an example of coefficients which satisfy condition (iii)
of Equation (10.11). Let, far,r € R?

Lo (s, 1) = Le o (IsD) xp0.0) (IsDe (S, 1), (11.1)
whereL, . € B(Hs) (¢, =0, 1),

0, ifx¢lCR,

X () = {1, if x e 1.

(11.2)

¥: Ry — Candg: 9 x §@ — C are continuous functionsS{? is the unit
sphere irR¢) and

t=tlf eR%  |t] e Ry; £ €S9  (unit sphere irR?) (11.3)
is the polar decomposition ofe R¢. Then

/ R ds;... dSkl(Sl, Hl(s1, 52) ... L(sk, Sp—1)
R

i Jra

=/---/Pf_ldpldﬂ---,l)f_ldpk dSi x10.1(P1) X10, 1) (P2) - - - X10.p,_1) (Pn) X
X 981, D@(S2, 51) - . . (s k=)W (p1) - .. ¥ (px)

<At ieltof - " 4o / “ .. / " o on w00

Lo Y () dp)t

d—1vk ) 1k
= (11" ) llellso, ]

Therefore, ifB € R? is a bounded set ande B, condition (iii) is satisfied.
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