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Abstract. During the past 15 years a new technique, calledthe stochastic limit of quantum theory,
has been applied to deduce new, unexpected results in a variety of traditional problems of quantum
physics, such as quantum electrodynamics, bosonization in higher dimensions, the emergence of
the noncrossing diagrams in the Anderson model, and in the large-N-limit in QCD, interacting
commutation relations, new photon statistics in strong magnetic fields, etc. These achievements
required the development of a new approach to classical and quantum stochastic calculus based
on white noise which has suggested a natural nonlinear extension of this calculus. The natural
theoretical framework of this new approach is the white-noise calculus initiated by T. Hida as a
theory of infinite-dimensional generalized functions. In this paper, we describe the main ideas of
the white-noise approach to stochastic calculus and we show that, even if we limit ourselves to the
first-order case (i.e. neglecting the recent developments concerning higher powers of white noise and
renormalization), some nontrivial extensions of known results in classical and quantum stochastic
calculus can be obtained.
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1. The Main Idea of the Stochastic Limit of Quantum Theory

Quantum stochastic differential equations are now widely used to construct pheno-
menological models of physical systems, for example in quantum optics, in quan-
tum measurement theory, etc. However, the fundamental equation of quantum the-
ory is not a stochastic equation but a usual Schrödinger equation. Therefore, the
problem of understanding the physical meaning of these phenomenological models
naturally arose.

The stochastic limit of quantum theory was developed to solve this problem
and its main result can be concisely formulated as follows:stochastic equations
are limits, in an appropriate sense, of the usual Hamiltonian equations of quantum
physics.

Thus, the stochastic limit provides a derivation of the phenomenological sto-
chastic equations from the fundamental quantum laws. In particular, this gives a
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microscopic interpretation of the coefficients of these equations and proves that
the most important examples of quantum Markov flows arise in physics from the
stochastic limit of Hamiltonian models.

From the mathematical point of view, the stochastic limit suggested a new
interpretation of the usual stochastic equations, both classical and quantum, as
normally ordered Hamiltonian white noise equations. In this section, we give a
short illustration of the basic ideas of the stochastic limit and show how this natu-
rally leads to the identification of normally ordered first-order white-noise Hamil-
tonian equations with stochastic differential equations in the sense of Hudson and
Parthasarathy.

The starting point of the stochastic limit is not a stochastic equation but a usual
Schrödinger equation in interaction representation, depending on a parameterλ

∂U
(λ)
t = −iλ(DA+t (Stg)−D+At(Stg))U(λ)

t (1.1)

describing a systemS with state spaceHS interacting with a field with creation
and annihilation operatorsA+t (g), At (g), andD,D+ are operators on a Hilbert
spaceHS. One rescales the time parameter according to the lawt → t/λ2. This
rescaling is motivated both by mathematics (central limit theorem) and by physics
(Friedrichs–van Hove rescaling). After the rescaling, one arrives to an equation of
the form

∂U
(λ)

t/λ2 = (Da(λ)+t −D+a(λ)t )U(λ)

t/λ2, (1.2)

where

a
(λ)
t = λ

∫ t/λ2

0
dsA(Ssg).

It was proved in [1] that, asλ → 0, the iterated series solution of this equation
converges, in a sense which is the natural generalization of the notion of quantum
convergence in law, to the solution of the QSDE

dUt =
(
D dB+t −D+ dBt +

(
− γ

2
D+D + iαD+D

)
dt

)
Ut, (1.3)

whereB+t , Bt is the Fock Brownian motion with varianceγ acting on the Boson
Fock spaceL2(R)⊗K,H = κD+D andκ, γ > 0, are real numbers,K is a Hilbert
space, whose explicit structure is described in terms of the original Hamiltonian
model.

In [3, 4] it was proved that the iterated series solution of this equation converges
term by term, in the same limit, and in the same sense as above, to the iterated series
solution of the distribution equation

∂tUt = (Db+t −D+bt )Ut, (1.4)
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whereb+t , bt are the annihilation and creation operators of the Boson Fock white
noise with varianceγ (> 0) which is characterized, up to unitary equivalence, by
the algebraic relations

[bt , b+s ] = γ δ(s − t), t, s ∈ R, (1.5)

bt8 = 0, (1.6)

where8 is the Fock vacuum. It is therefore natural to conjecture that Equations (1.3)
and (1.4) are just two different ways of writing the same equation. To prove this
conjecture we have to develop a purely analytical white noise approach to the
standard, classical, and quantum Itô calculus and, in particular, a white-noise for-
mulation of the Itô table, based on the general white-noise theory initiated by Hida
[10] and developed in [12, 13, 16].

2. Notations on Fock Spaces

We begin by describing a concrete representation of the Fock space which, being
well suited for explicit calculations, is most often used in the physical literature.
Such a representation can be used whenever the 1-particle space is concretely re-
alized as anL2-space over some measure space (finite orσ -finite) (S, µ). In this
case, then-particle space can be realized as the spaceL2

sym(S
n,⊗nµ) of all the

symmetric, square integrable functions on the product space

Sn := S × S × · · · × S (n-times)

with the measure⊗nµ, which is the product ofn copies of the measureµ. In the
following we shall fix the choice

S = Rd; µ = Lebesgue measure.

Let F1 = L2(Rd) be the Hilbert space of functions onRd with the inner product

(f, g) =
∫

Rd
f (s)g(s)ds, f, g ∈ F1 (2.1)

andFn = L2
sym(R

nd), n = 1,2, . . . be the Hilbert space of square integrable func-
tions of n-variables inRd , symmetric under the permutation of their arguments.
The elements ofFn are calledn-particle vectors. For an elementψn ∈ Fn we write
ψn = ψn(s1, . . . , sn), si ∈ Rd and one hasψn(s1, . . . , sn) = ψn(sπ(1), . . . , sπ(n))

for any permutationπ .

DEFINITION. Thesymmetric representationof the scalar Boson Fock spaceF is
the direct sum of the Hilbert spacesFn

F =
∞⊕
n=0

L2
sym(R

dn) = F =
∞⊕
n=0

Fn. (2.2)
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Here we setF0 = C. So an element of the Boson Fock spaceF is a sequence
of functions

9 = {ψ0, ψ1, ψ2, . . .},
whereψ0 ∈ C, ψn ∈ Fn, n = 1,2, . . . and

‖ψ‖2 =
∞∑
n=0

‖ψ(n)‖2
L2(Rdn) <∞. (2.3)

More explicitly

‖ψ‖2 = |ψ(0)|2+
∞∑
n=1

∫
Rdn
|ψ(n)(s1, . . . , sn)|2 ds1 . . .dsn. (2.4)

The inner product of elements9 = {ψn}∞n=0 and8 = {φn}∞n=0 from F is given by

(9,8) =
∞∑
n=0

(ψn, φn)

= ψ0φ0+
∞∑
n=1

∫
Rnd
ψn(s1, . . . , sn)φn(s1, . . . , sn)ds1 . . .dsn. (2.5)

The vector90 = (1,0,0, . . .) is called thevacuum vector. It describes the state
of a system in which no particle is present.

3. Annihilator and Creator Densities

Define

DS := {ψ ∈ F | ψ(n) ∈ S(Rdn)}. (3.1)

In the remaining of this section, unless otherwise specified, all then-particle vec-
tors shall belong toDS . Define, moreover,

Do
S := {ψ ∈ DS | ψ(n) = 0 for almost alln ∈ N}, (3.2)

D(a) :=
{
ψ ∈ DS :

∞∑
n=1

n‖ψ(n)‖2 <∞
}

(3.3)

and notice thatD(a) is a vector space containing both the number and the expo-
nential vectors with test functions inS. Define theannihilation density(1) as

(asψ)
(n)(s1, . . . , sn) =

√
n+ 1ψ(n+1)(s, s1, . . . , sn); s ∈ Rd, n ∈ N. (3.4)

The right-hand side of (3.4) is well defined whenever it makes sense to speak of the
valuesψ(n) on any point, for example whenψ(n) is in theL2-equivalence class of
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a continuous function for eachn, and the sequence of functions{(asψ)(n)} defines
an element ofF . This is surely the case ifψ is in D(a). Thus, for anyt ∈ Rd , the
annihilatorat is a densely defined operator which mapsD(a) into F .

From (8) it follows that the mapas is weakly measurable and therefore, for any
square integrable functiong, the integral

A(g) =
∫

Rd
ds g(s)as (3.5)

called theannihilation operatoris well defined as a Bochner integral onD(a).
Proposition 1 below shows that it is a preclosed operator. The explicit action of
A(g) on vectors inD(a) is deduced from (8) to be, forn ∈ N,

(A(g)ψ)(n) =
∫

Rd
ds g(s)(asψ)

(n)(s1, . . . , sn)

= √n+ 1
∫

Rd
ds g(s)ψ(n+1)(s, s1, . . . , sn). (3.6)

For example, the explicit action ofA(g) on the exponential vectors is also deduced
from (3.4):

A(g)ψf =
∫

Rd
ds g(s)asψf =

∫
Rd

ds g(s)f (s)ψf = 〈g, f 〉ψf . (3.7)

Thecreation densitya+s is defined forψ ∈ DS by

(a+s ψ)
(n)(s1 . . . sn) = 1√

n

n∑
i=1

δ(s − si)ψ(n−1)(s1 . . . ŝi . . . sn). (3.8)

Theδ-function on the right-hand side of (3.8) shows that the creation densitya+(t)
is not an operator but a sesquilinear form on the number vectors.

PROPOSITION 1. For any square integrable functiong there exists a preclosed
operatorA+(g), defined on then-particle vectors, represented by continuous func-
tions, by the relation

(A+(g)ψ)(n)(s1, . . . , sn) := 1√
n

n∑
i=1

g(si)ψ
(n−1)(s1, . . . , ŝi, . . . , sn). (3.9)

Moreover, on then-particle space,A+(g) is bounded with norm less or equal to
n1/2‖g‖ (L2-norm ofg) and, onD(a), A+(g) satisfies the relation

〈A+(g)ψ,ψ ′〉 = 〈ψ,A(g)ψ ′〉. (3.10)

Proof.Letψ be as in the statement. Then, using the definition (3.9) ofA+(g):

‖(A+(g)ψ)(n)‖2 = 1

n

n∑
i,j=1

〈giψ(n−1)
i , gjψ

(n−1)
j 〉,
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where

gi(s1, . . . , si , . . . , sn) := g(si);
ψ
(n−1)
i (s1, . . . , si , . . . , sn) := ψ(n−1)(s1, . . . , ŝi , . . . , sn).

Sinceψ(n−1) is a symmetric function, it follows that

|〈giψ(n−1)
i , gjψ

(n−1)
j 〉| 6 ‖giψ(n−1)

i ‖‖gjψ(n−1)
j ‖ = ‖g‖2‖ψ(n−1)‖2

and therefore

‖(A+(g)ψ)(n)‖2 6 n‖g‖2‖ψ(n−1)‖2.
This shows thatA+(g) is a well defined operator on the domainD(a), bounded on
eachn-particle space. To prove (3.10) we compute

〈ψ,A(g)ψ ′〉
=
∑
n

〈ψ(n), (Agψ
′)n〉 =

∑
n

√
n+ 1

∫
dsg(s)〈ψ(n), ψ ′(n+1)

(s, ·)〉

=
∑
n

√
n+ 1

∫
dsg′s

∫
ψ
(n)
(s1, . . . , sn)ψ

′(n+1)
(s, s1, . . . , sn)

=
∑
n

√
n+ 1

∫
dsgs

∫
ψ
(n)
(s, . . . , sn)ψ

′(n+1)
(s, s1, . . . , sn)

=
∑
n

∫
ds
∫

ds1 . . .
∫

dsn

[
1√
n+ 1

n+1∑
i=1

gsiψ
(n)(s1, . . . , ŝi , . . . , sn+1)

]
×

×ψ ′(n+1)(s1, s2, . . . , sn+1)

= 〈A+(g)ψ,ψ ′〉. 2
LEMMA 2. The following formulae hold onDa:

(a(t1)a
+(t2)ψ)(n)(s1, . . . , sn) (3.11)

=
n∑
i=1

δ(t2− si)ψ(n)(s1, . . . , ŝi , . . . , sn, t1)+ δ(t2− t1)ψ(n)(s1, . . . , sn)×

×(a+(t1)a(t2)ψ)(n)(s1, . . . , sn)
=

n∑
i=1

δ(t2− si)ψ(n)(s1, . . . , ŝi , . . . , sn, t1). (3.12)

Proof.Define

φ
(n+1)
t2

(s1, . . . , sn+1)

:= (a+(t2)ψ)(n+1)(s1, . . . , sn+1)

= 1√
n+ 1

n+1∑
i=1

δ(t2 − si)ψ(n)(s1, . . . , ŝi , . . . , sn+1). (3.13)
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φ(n+1)t2 is a distribution with values inFn+1, i.e., for anyg ∈ S,[ ∫
dt2g(t2)φt2

](n+1)

= 1√
n+ 1

∑
i

g(si)ψ
(n)(s1, . . . , ŝi , . . . , sn+1).

Now, applyingat1, as defined by (3.8), we find[
at1

∫
dt2g(t2)φt2

](n)
(s1, . . . , sn)

= g(t1)ψ(n)(s1, . . . , sn)+
n∑
i=1

g(si)ψ
(n)(t1, . . . , ŝi , . . . , sn)

=
∫

dt2g(t2)δ(t2− t1)ψ(n)(s1, . . . , sn)+

+
n∑
i=1

δ(t2− si)g(t2)ψ(n)(t1, . . . , ŝi , . . . , sn)

=
∫

dt2g(t2)
√
n+ 1φ(n+1)

t2
(t1, s1, . . . , sn).

Therefore, in the sense of distributions,

(a(t1)φt2)
(n)(s1, . . . , sn) =

√
n+ 1φ(n+1)

t2
(t1, s1, . . . , sn) (3.14)

and from (3.7) we get that (3.12), (3.12) are proved in a similar way. 2
Remark. Comparing (3.12) and (3.12), one deduces theBoson commutation

relationsfor a scalar Boson white noise

(t1)a
+(t2)− a+(t2)a(t1) = δ(t2 − t1).

4. Stochastic Integrals with Respect to the Boson Fock White Noises

In this section we shall discuss white noises and stochastic integrals inRd rather
than in R because exactly the same formulae are valid in the 1- and in thed-
dimensional case.

We have defined the operators

A(F) = 〈F,A〉 =
∫

Rd
dsFsas; A+(F ) = 〈F,A+〉 =

∫
Rd

dsFsa
+
s , (4.1)

whenF is a complex-valued function onR. The generalization of these integrals to
the case whenF is an operator valued function are calledright stochastic integrals
with respect toas (resp.a+s ). One has also to define theleft stochastic integrals

〈A,F 〉 =
∫

Rd
dsasFs; 〈A+, F 〉 =

∫
Rd

dsa+s Fs (4.2)
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and thetwo-sided stochastic integrals∫
Rd

dsFsa
±
s Gs;

∫
Rd

dsa+s Fsas. (4.3)

Let D0
S be as in (5.6) and letL be a space of maps fromRd to linear operators

from a dense subspace ofDo
S to F with the property that the maps

s 7→ 〈ψ,Fsϕ〉; s 7→ ‖Fsψ‖2; ϕ,ψ ∈ D0
S,

are locally integrable. Clearlys 7→ as , thena ∈ L, while s 7→ a+s is not inL.
If Pn denotes the projection onto then-particle space of the Fock space, then

for anyt , we can write

Ft =
∑
n,k

PnFtPk =:
∑
n,k

F
(n,k)
t .

Remark.By inspection from formulae (4.2) and (4.3), one can guess that even if
the integrandFs is bounded, in general the stochastic integrals will not be bounded
operators. So a precise definition of the notion of stochastic integral should always
specify the domain of vectors where this inegral is defined. The general scheme
we shall adopt to define stochastic integrals is the following. IfGs denotes any
of the integrands in formulae (4.1) or (4.2) or (4.3),I denotes the corresponding
stochastic integral andψ an arbitrary vector, thenI will be characterized by the
following two properties:

(i) The n-particle component ofIψ is the Bochner integral of then-particle
component ofGsψ :(∫

Rd
dsGsψ

)n
:=
∫

Rd
ds(Gsψ)

n.

(ii) Then-particle component ofGsψ is explicitly computed using the rules of the
previous section.

In the following sections we shall show how these general principles work in
concrete applications.

5. Right Annihilator Integrals

Let D0
S =: D andL := L(D) be as in Equation (3.6).

DEFINITION 3. The right annihilator stochastic integral ofF ∈ L is the operator

ψ =
∫
Fsasψ ds = 〈F ∗, A〉ψ :=

∫
FsAsψ ds, (5.1)

where the integral is meant as a Bochner integral in the Fock space. It is defined for
eachψ ∈ Do

S such thatasψ is in the domain ofFs for eachs and the vector-valued
functions ∈ Rd 7→ Fsasψ is Bochner integrable.
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The explicit form of the right annihilator stochastic integral on then-particle
vectors can be easily obtained by using the same technique as in Section 3. In fact,
because of definition (3.8), one has that

(asψ)
(n) = √n+ 1ψ(n+1)(s, ·), (5.2)

whereψ(n+1)(s, ·) is the function

(s1, . . . , sn) ∈ Rdn 7→ ψ(n+1)(s, s1, . . . , sn). (5.3)

Therefore, (5.1) is equivalent to∫
Fsasψ ds =

∑
n≥0

√
n+ 1

∫
dsFsψ

(n+1)(s, ·). (5.4)

In particular, on the exponential vectors this explicit form is∫
Ftat dtψf =

∫
dtFtf (t)ψf , (5.5)

where the right-hand side of (5.1) is a usual Bochner integral. The right-hand side
of (5.5) is defined on the set of the exponential vectorsψf with test function inH1

such that the vector valued functions 7→ f (s)F (s)ψf is Bochner integrable. From
definition (5.1) we have that

〈F ∗, A〉 :=
∫
Fas ds. (5.6)

In the case whereS = R andF = χIF with I = [0, t] we shall simply write

〈F,At 〉 :=
∫ t

0
Fsas ds. (5.7)

Thus the right annihilator integral maps functionsF : Rd → L(D) into elements
of L(D).

From (5.4) and (5.5) we deduce the estimate∥∥∥∥ ∫ Fsasψ ds

∥∥∥∥ 6 ∑
n>0

√
n+ 1

∫
ds‖Fsψ(n+1)(s, ·)‖

=
∫

ds‖Fs(N + 1)1/2ψ(n+1)
(s,·) ‖(s, ·)‖ (5.8)

andA(χIj ).
The definition of exponential vector implies that

(N + 1)1/2ψ(n+1)
f (s, ·) = f (s)ψ(n)

f , (5.9)

therefore (5.5) implies that for any exponential vectorψf one has∥∥∥∥ ∫ Fsas dsψf

∥∥∥∥ 6 ∫ |f (s)| · ‖Fsψf ‖ds. (5.10)
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A sufficient condition for the finiteness of the right-hand side of (5.10) is that the
vector-valued functions 7→ f (s)F (s)ψ(s) is Bochner integrable.

6. The Left Creator Stochastic Integral

DEFINITION 1. The definition of left creator stochastic integrals is the natural
extension of formula (3.13) for the scalar case(∫

a+t Ftψ dt

)(n)
(s1, . . . , sn)

= 1√
n

n∑
i=1

(F (si)ψ)
(n−1)(s1, . . . , ŝi , . . . , sn). (6.1)

Definition 1 has a meaning for any measurable functionFs and, given such an
F , the natural domain of its left creator stochastic integral is

D

(∫
a+t Ft dt

)
=
{
ψ

∣∣∣∣∣
∞∑
n=1

∥∥∥∥( ∫ a+t Ftψ dt

)(n)∥∥∥∥2

<∞
}

(6.2)

or, more explicitly, a vectorψ is in D(
∫
a+t Ft dt) if and only if

∞∑
n=1

1

n

∫
Rdn

∣∣∣∣∣
n∑
i=1

(F (si)ψ)
n−1(s1, . . . , ŝi , . . . , sn)

∣∣∣∣∣
2

ds1 . . .dsn <∞. (6.3)

We want now to obtain an estimate on the norm of
∫
a+s Fs dsψ which guaran-

tees that the stochastic integral exists. This is given by the following lemma:

LEMMA 1. Letψ(n−1) belong toD(Fs) for all s ∈ Rd . Then one has, for each
n ∈ N,∥∥∥∥Pn(∫ dsa+s Fsψ

)∥∥∥∥2

6 n

∫
ds‖Pn−1(Fsψ)‖2

=
∫

ds
∥∥√(N + 1)(Fsψ)

(n−1)
∥∥2
. (6.4)

In particular∥∥∥∥ ∫ dsa+s Fsψ
∥∥∥∥2

6
∫

ds‖(√N + 1)Fsψ‖2. (6.5)

Proof.The norm square of (6.1) is∫
. . .

∫
ds1 . . .dsn

1

n

∑
i,j

〈(Fsiψ)(n−1)(s1, . . . , ŝi , . . . , sn),

(Fsj ψ)
(n−1)(s1, . . . , ŝj , . . . , sn)〉
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6 1

n

n∑
ij=1

∫
ds1 . . .dsn‖(Fsiψ)(n−1)(s1, . . . , ŝi , . . . , sn)‖×

×‖(Fsj ψ)(n−1)(s1, . . . , ŝj , . . . , sn)‖
= n2

n

∫
Rd

ds
∫

Rd(n−1)
ds2 . . . dsn‖(Fsψ)(n−1)(s2, . . . , sn−1)‖2

= n
∫

Rd
ds‖(Fsψ)(n−1)‖2. 2

COROLLARY 2. LetLs be a function with values inB(F ) such that

(i) for any0< T < +∞ sups∈[0,T ] ‖Ls‖∞ <
√
CT ,

(ii) Ls andL+s commute with everyat , a+t , Pk t ∈ R, k ∈ N.

Then∥∥∥∥Pn ∫ dsa+s LsFsψ
∥∥∥∥2

6 CT n
∫

ds‖Pn−1Fsψ‖2. (6.6)

Proof.From Lemma 1 the left-hand side of (6.6) is less than or equal to

CT n

∫
ds‖Pn−1LsFsψ‖2

and, using (ii) and (i), the thesis follows. 2

7. The Normally Ordered Two-Sided Integral

DEFINITION 1. The two-sided (normally ordered) integral
∫

dsb+s Fsbs is de-
fined, weakly on the exponential or number vectors by

〈ξ,
∫

dsb+s Fsbsη〉 =
∫

ds〈bsξ, Fsbsη〉. (7.1)

In particular, on exponential vectors one has

〈ψf ,
∫

dsb+s Fsbsψg〉 =
∫

dsf (s)g(s)〈ψf , Fsψg〉. (7.2)

LEMMA 2. For any n ∈ N and for any exponential vectorψf , one has the
estimate∥∥∥∥(∫ dsb+s Fsbsψf

)(n)∥∥∥∥2

6 n
∫

ds|f (s)|2‖(Fsψf )‖2. (7.3)

In particular,∥∥∥∥ ∫ dsb+s Fsbsψf
∥∥∥∥2

6
∫

ds|f (s)|2‖(N + 1)1/2ψf ‖2. (7.4)
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Proof.Usingbsψf = f (s)ψf , the left-hand side of (7.3) becomes∥∥∥∥(∫ dsb+s f (s)Fsψf
)(n)∥∥∥∥

and, because of (8.4), this is

6 n
∫

ds‖(Fsψf )(n)‖2|f (s)|2,

i.e. (1). (2) is obtained from (1) by summing over alln. 2

8. Differential Calculus

Usually in stochastic calculus one considers the differentials only as symbolic
expressions for the corresponding integrals. We want to develop a differential cal-
culus directly in analogy with classical analysis.

Let us first consider the differentiability properties, with respect tot , of the
Brownian motion operatorsBt, B+t .

THEOREM 1. Let ψ ∈ Do
S be such that, for eachn, ψ(n) is continuous with

compact support. Then, with1Bt defined by(6.5)below, one has the following:

(i) lim
1t→0

∥∥∥∥(1Bt1t
− b(t)

)
ψ

∥∥∥∥ = 0, (8.1)

where the operatorb(t) is defined in(6.5).
(ii) The strong limit, as1t → 0, of 1B+t /1t − b+(t) does not exist on the

number vectors. However, the weak limit of this expression onDo
S does exist,

i.e.∀ψ1, ψ2 ∈ Do
S ,

lim
1t→0

(
ψ1,

1B+t
1t

ψ2

)
= (ψ1, b

+(t)ψ2) (8.2)

≡ 1√
n

n∑
i=1

∫
Rn−1

ds1 . . .dŝi . . .dsn×

×ψ(n)
1 (s1, . . . , t, sn)ψ

(n−1)
2 (s1, . . . , ŝi , . . . , sn).

(iii) lim
1t→0

∥∥∥∥(1Bt ·1B+t1t
− 1

)
ψ

∥∥∥∥ = 0. (8.3)

(iv) lim
1t→0

∥∥∥∥1B+t1t 1Btψ

∥∥∥∥ = 0. (8.4)
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Proof.One has

(1Btψ)
(n)(s1, . . . , sn) =

√
n+ 1

∫ t+1t

t

ψ(n+1)(s, s1, . . . , sn)ds, (8.5)

(1B+t ψ)
(n)(s1, . . . , sn)

= 1√
n

n∑
i=1

χ[t,t+1t ](si)ψ(n−1)(s1, . . . , ŝi , . . . , sn) (8.6)

and

(1Bt1B
+
t ψ)

(n)(s1, . . . , sn)

= ψ(n)(s1, . . . , sn) ·1t +
+

n∑
i=1

χ[t,t+1t ](si)
∫ t+1t

t

ψ(n)(s1, . . . , ŝi , . . . , sn, t1)dt1. (8.7)

From (8.2), we have∥∥∥∥(1Bt1t
− b(t)

)
ψ(n)

∥∥∥∥2

= (n+ 1)
∫

Rdn
ds1 . . . dsn×

×
∣∣∣∣ 1

1t

∫ t+1t

t

ψ(n+1)(s, s1, . . . , sn)ds − ψ(n+1)(t, s1, . . . , sn)

∣∣∣∣2. (8.8)

Becauseψ(n+1) are continuous functions with compact support, one can go to the
limit 1t → 0 under the integral over ds1, . . . , dsn and we get (1).

To see that the limit in (ii) does not exist let us takeψ(0) = 8. Then one has

(1B+t ψ)
(1)(s1) = χ[t,t+1t ](s1) (8.9)

and ∥∥∥∥ (1B+t ψ)(1)1t

∥∥∥∥2

= 1

(1t)2

∫
χ[t,t+1t ](s1)ds1 = 1

1t
. (8.10)

From (8.10) it is clear that the limit when1t → 0 does not exist. However, there
exist the limit of the bilinear form (8.2). Now, from (8.7) one has∥∥∥∥(1Bt ·1B+t1t

− 1

)
ψ(n)

∥∥∥∥2

=
∫

Rdn
ds1 . . . dsn

∣∣∣∣ 1

1t

n∑
i=1

χ[t,t+1t ](si)
∫ t+1t

t

ψ(n)(s1, . . . , ŝi , . . . , sn, t1)dt

∣∣∣∣2
=

n∑
i,j=1

1

(1t)2

∫ t+1t

t

dsi

∫ t+1t

t

dt1

∫ t+1t

t

dt ′1

∫
Rn−1

ds1 . . . dŝi . . . dsn×

×ψ(n)(s1, . . . , ŝi , . . . , sn, t1)ψ
(n)(s1, . . . , ŝj , . . . , sn, t

′
1) (8.11)
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which ten ds to zero when1t → 0. This ends the proof of the theorem. 2
Remark 1.One can symbolically write the relation (8.1) in the form

dBt = b(t)dt (8.12)

and the relation for bilinear form (8.2) as

dB+t = b+(t)dt. (8.13)

Formulas (8.3), (8.4) look like the Itô rules

dBt dB+t = dt, (8.14)

dB+t dBt = 0. (8.15)

However, we emphasize that we get them as differential relations (8.3), (8.4) and
not as integral relations like in the Itô calculus.

9. Mutual Quadratic Variation

In this section we prove that the limit relation (8.3) is true in a topology much
stronger than the one given by strong convergence in a dense subspace ofF .

For a real number1t > 0, we shall denote

1B±t := B±(0,t+1t) − B±(0,t ). (9.1)

From (8.4), (8.5) we deduce that

(1Btψ)
(n)(s1, . . . , sn) =

√
n+ 1

∫ t+1t

t

ψ(n+1)(s, s1, . . . , sn)ds, (9.2)

(1B+t ψ)
(n)(s1, . . . , sn)

= 1√
n

n∑
i=1

χ(t,t+1t ](si) · ψ(n−1)(s1, . . . , ŝi , . . . , sn). (9.3)

From (8.6), one deduces the identity, for any real number1t ,

(1Bt1B
+
t ψ)

(n)(s1, . . . , sn)

=
n∑
i=1

χ(t,t+1t ](si)
∫ t+1t

t

ψ(n)(s1, . . . , ŝi, . . . , sn, t1)dt1+

+1t · ψ(n)(s1, . . . , sn). (9.4)

The Itô multiplication table is obtained from (9.4) when1t → 0 and has the
form

(1Bt ·1B+t ψ)(n)(s1, . . . , sn) = ψ(n)(s1, . . . , sn)1t + o(1t), (9.5)
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where o(1t)means something that, when summed over all the intervals(t, t+1t)
of a partition of a fixed interval(S, T ), ten ds to zero as1t → 0. In order to
make this statement precise, one has to choose a topology and this can be done in
a multitude of ways. In the following, we prove some estimates which show that
some topologies arise quite naturally in our context. For example, if the function
ψ(n) is measurable and bounded, then one has the estimate

|(1Bt ·1B+t ψ)(n)(s1, . . . , sn)− ψ(n)(s1, . . . , sn)1t|

6 ‖ψ(n)‖∞1t
n∑
i=1

χ(t,t+1t ](si). (9.6)

LEMMA 1. Assume thatψ(n) is bounded, fix a bounded interval(S, T ) and con-
sider the partition of(S, T ) into intervals of equal width1t . Then, if

∑
t denotes

summation over the intervals of the partition, one has∣∣∣∣∑
t

(1Bt1B
+
t ψ)

(n)(s1, . . . , sn)− (T − S) · ψ(n)(s1, . . . , sn)

∣∣∣∣
6 n1t · ‖ψ(n)‖∞. (9.7)

In particular, the limit

lim
1t→0

∑
t

(1Bt1B
+
t ψ)

(n)(s1, . . . , sn) = (T − S) · ψ(n)(s1, . . . , sn) (9.8)

holds uniformly ins1, . . . , sn.
Proof. Summing the identity (9.4) over all the intervals of the partition, we

obtain∑
t

(1Bt1B
+
t ψ)

(n)(s1, . . . , sn)

=
n∑
i=1

∑
t

χ(t,t+1t ](si)
∫ t+1t

t

ψ(n)(s1, . . . , ŝi , . . . , sn, t1)dt1+

+ (T − S) · ψ(n)(s1, . . . , sn).

But ∣∣∣∣∣
n∑
i=1

∑
t

χ(t,t+1t ](si)
∫ t+1t

t

ψ(n)(s1, . . . , ŝi , . . . , sn, t1)dt1

∣∣∣∣∣
6 1t · ‖ψ(n)‖∞

n∑
i=1

∑
t

χ(t,t+1t ](si) = 1t · ‖ψ(n)‖∞,

which tends to zero, as1t → 0, uniformly in s1, . . . , sn. 2
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10. Normally Ordered White Noise Equations inRd

Given a notion of stochastic integral, one can study the problem of the meaning,
existence, uniqueness, and unitarity of the corresponding integral equations. We
will study integral equations of the form

Yt = Y0+
∫

Rd
L01(s, t)Ysas ds +

∫
Rd
L10(s, t)a

+
s Ys ds +

+
∫

Rd
L11(s, t)a

+
s Ysas ds +

∫
Rd
L00(s, t)Ys ds, (10.1)

where the coefficientsLε,ε′(s, t) (ε, ε′ = 0,1) are linear operators acting onHS

such that,

(i) for any (ε, ε′ = 0,1) ands, t ∈ Rd , the operatorLε,ε′(s, t) is bounded;
(ii) defining

max
ε,ε′=0,1

‖Lε,ε′(s, t)‖ =: l(s, t), (10.2)

then for any bounded setB ⊆ Rd , the functions

s ∈ Rd 7→ l(s, t) (10.3)

are integrable for eacht ∈ B and the set of integrals, as a function oft ∈ B,
is bounded;

(iii) for any bounded setB ⊆ Rd , there exists a constantL > 0 such that, for any
natural integerk one has∫

Rd
. . .

∫
Rd

ds1 . . . dskl(s1, t)l(s2, s1) . . . l(sk, sk−1) 6
Lk

k! (10.4)

uniformly in t ∈ B. (In Section 12, we shall give examples of coefficients
Lε,ε′(s, t) which satisfy this condition.)

We shall write Equation (10.1) in the notation

Yt = Y0+
∫

Rd
Lε,ε′(s, t)d3ε′

ε (s)Ys, (10.5)

where summation is understood in the indicesε, ε′ ∈ {0,1}.
In this notation we define thekth iterated approximation solution of Equation

(10.5) by

Y
(0)
t = Y0, (10.6)

Y
(k+1)
t =

∫
Rd
Lεε′(s, t)d3ε′

ε (s)Y
(k)
s . (10.7)
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The iterated series, associated to Equation (10.1) is

∞∑
k=0

Y
(k)
t . (10.8)

In this section we shall fix the set

S0 = {f ∈ L2(Rd) : max{‖f ‖∞, ‖f ‖2} 6 1} (10.9)

and we denoteE(S0) as the corresponding set of exponential vectors. It is known
thatS0 is a total set inF .

THEOREM 1. Suppose that the coefficients of Equation(10.1)satisfy conditions
(i), (ii) , (iii) and, moreover,

‖L‖ < 1

16e
. (10.10)

Then the iterated series(10.8)converges, strongly in norm onE(S0) to a solution
of this equation uniformly in bounded subsets ofRd .

For the proof of Theorem 1 we shall use several lemmata.

LEMMA 2. LetLε,ε′(s, t) (ε, ε′ = 0,1) be linear operators onHS satisfying the
conditions(i), (ii) and (iii) , then for anyt ∈ B ⊆ Rd , a bounded set,n ∈ N and
f ∈ S0 one has∥∥∥∥Pn ∫ Lεε′(s, t)Ys d3ε′

ε (s)ψf

∥∥∥∥2

6 8n
∫
l(s, t)ds(‖Pn−1Ysψf ‖2 + ‖PnYsψf ‖2). (10.11)

In particular, Y (k)t defined by(10.7)verifies that

‖PnY (k+1)
t ψf ‖2

6 8n
∫

ds l(s, t)(‖Pn−1Y
(k)
s ψf ‖2 + ‖PnY (k)s ψf ‖2). (10.12)

Proof.First of all,∥∥∥∥Pn ∫ Lε,ε′(s, t)Ys d3ε′
ε (s)ψf

∥∥∥∥2

6
( ∑
ε,ε′=0,1

∥∥∥∥Pn ∫
Rd
Lε,ε′(s, t)d3ε′

ε (s)Ysψf

∥∥∥∥)2

.
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The Schwarz inequality(
M∑
j=1

aj

)2

6 M
M∑
j=1

a2
j

(M is an integer andM andaj are real numbers), implies that, for anyn ∈ N,∥∥∥∥Pn ∫ Lε,ε′(s, t)Ys d3ε′
ε (s)ψf

∥∥∥∥2

6 4
∑

ε,ε′=0,1

∥∥∥∥Pn ∫
Rd
Lε,ε′Ys d3ε′

ε (s)ψf

∥∥∥∥2

. (10.13)

Now we investigate the quantity in the right-hand side of (10.13) term by term
according to the values ofε, ε′.

By letting as act on the exponential vector, we deduce∥∥∥∥Pn ∫ L01(s, t)Ysasψf ds

∥∥∥∥2

6 ‖f ‖22
∫
‖PnL01(s, t)Ysψf ‖2 ds

6 ‖f ‖22
∫

dsl(s, t)‖PnYsψf ‖2 ds. (10.14)

From formula (6.4), one has∥∥∥∥Pn ∫ ds L10(s, t)a
+
s Ysψf

∥∥∥∥2

6 n
∫

ds l(s, t)‖Pn−1Ysψf ‖2 (10.15)

and from formula (7.3),∥∥∥∥Pn ∫ ds L11(s, t)a
+
s Ysasψf

∥∥∥∥2

6 ‖f ‖2∞n
∫

ds l(s, t)‖Pn−1Ysψf ‖2. (10.16)

Finally, the usual properties of Bochner’s integral imply that∥∥∥∥Pn ∫ dsL00(s, t)Ysψf

∥∥∥∥2

6
∫

ds l(s, t)‖PnYsψf ‖2. (10.17)

Because of our assumption (10.9) onf , the sum of the left-hand sides of (10.14),
(10.15), (10.16), (10.17) is less than or equal to

2
∫

ds l(s, t)‖PnYsψf ‖2+ 2n
∫

ds l(s, t)‖Pn−1Ysψf ‖2

6 2n
∫

ds l(s, t)(‖Pn−1Ysψf ‖2+ ‖PnYsψf ‖2)
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and this is (10.11). To deduce (10.12), one simply applies (10.11) to the definition
of Y (k+1)

t . 2
LEMMA 3. If the series

∞∑
k=0

‖Y (k)t ψf ‖ (10.18)

converges uniformly on a bounded setB in Rd , then for eacht ∈ B there exists a
unique operatorYt onHS ⊗ E(S0) such that

∞∑
k=0

Y
(k)
t = Yt (10.19)

and the series on the left-hand side of(10.19)converges strongly in norm onE(S0),
uniformly for t ∈ B. Moreover, the function7→ Yt is a solution of Equation(10.1).

Proof.From Lemma 2 we know that there exists an operatorYt onHS ⊗ E(S0)

such that (10.19) hol ds. And the convergence estimates also imply that the sto-
chastic integrals ofYt for the basic integrators exist. To prove thatYt satisfies
Equation (10.1) it will be sufficient to prove that, for eachn ∈ N, PnYt satisfies
Equation (10.1). To show this, we use the estimate of Lemma 2 to deduce that∥∥∥∥Pn ∫

Rd
Lεε′(s, t)Ys d3ε′

ε (s)ψf − Pn
∫

Rd

N∑
k=1

Lε,ε′(s, t)Y
(k)
s d3ε′

ε (s)ψf

∥∥∥∥
6 8n

∫
Rd

∞∑
k=N+1

‖PnY (k)s ψf ‖l(s, t)ds. (10.20)

By assumption, for eacht ∈ B, the functions 7→ l(s, t) is integrable. Therefore,
the right-hand side of (10.20) tends to zero by dominated convergence asN →∞.

Letting N → ∞ in (10.20), we see thatY satisfies Equation (10.1) and this
completes the proof. 2
LEMMA 4. Let In,k (n, k ∈ N) be positive numbers satisfying the inequality

In,k+1 6 cn(In,k + In−1,k), (10.21)

wherec > 0 is a constant, then

In,k+1 6 (2cn)k
n∑

m=n−k
Im,0. (10.22)
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Proof.By iterating the inequality (10.21) we see that the right-hand side is equal
to

cn(cnIn,k−1+ cnIn−1,k−1+ c(n− 1)In−1,k−1+ c(n− 1)In−2,k−1)

6 (cn)2(In,k−1+ 2In−1,k−1+ In−2,k−1)

6 (cn)3(In,k−2+ 3In−1,k−2+ 3In−2,k−2 + In−3,k−2) . . .

6 (cn)k(In,0+ h1In−1,0+ h2In−2,0+ · · · + hkIn−k,0),
where the coefficientshα satisfyhα 6 2k and (10.22) immediately follows from
this. 2

Proof of Theorem 1.Introducing the notation

In,k+1(s) := ‖PnY (k+1)
t ψf ‖2,

we have from Lemma 2

In,k+1(t) 6
∫

ds l(s, t)8n(In,k(s)+ In−1,k(s)),

therefore, arguing as in Lemma 4

In,k+1(t) 6 16knk
n∑

m=n−k
Im,0(sk)

∫
. . .

∫
ds1 . . . dskl(s1, t)×

× l(s2, s1) . . . l(sk, sk−1). (10.23)

But for anysk ∈ Rd

Im,0(sk) = ‖PmY0ψf ‖2 = ‖Y0‖2‖f ‖
2m

m!
and, without loss of generality, we can assume that

‖Y0‖ = 1. (10.24)

Moreover, according to assumption (iii), the multiple integral in (10.23) is domi-
nated byLk/k!. In conclusion

‖PnY (k+1)
t ψf ‖2 6 (16L)k

k! nk
n∑

m=n−k

‖f ‖2m
m! . (10.25)

Since for largem the sequence‖f ‖2m/m! is decreasing the sum in (24) is majorized
by

k
‖f ‖2(n−k)
(n− k)! .
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Therefore

‖PnY (k+1)
t ψf ‖2 6 (16L)k

(k − 1)!
nk‖f ‖2(n−k)
(n− k)! .

So in order to estimate

‖Y (k+1)
t ψf ‖2,

we are lead to estimate the series∑
n>k

nk‖f ‖2(n−k)
(n− k)! = dk

dtk

∣∣∣∣
t=0

∑
n>k

etn
‖f ‖2(n−k)
(n− k)!

= dk

dtk

∣∣∣∣
t=0

etke‖f ‖
2et . (10.26)

Moreover, because of our assumption (10.9) on the test functionsf , we can restrict
our attention to the case in which‖f ‖ = 1 in (10.26). (We could have put‖f ‖ =
1 directly in (10.25), but it is convenient to leave it to show the opportunity of
introducingBell numbers depending on a parameter.) In this case by Leibnitz rule
the expression (10.26) is

k∑
h=0

(
k

h

)
khB2(k − h), (10.27)

whereB2(k − h) are the Bell numbers of order 2 as defined in [9].
Under this assumption denoting

c := 16L, (10.28)

we have

‖PnY (k+1)
t ψf ‖2 6 ck

(k − 1)!
k∑
h=0

(
k

h

)
khB2(k − h)

= (kck)

k∑
h=0

kh

h!
B2(k − h)
(k − h)! . (10.29)

Now, since all the terms involved are positive, clearly

k∑
h=0

kh

h!
B2(k − h)
(k − h)! 6

(
k∑
h=0

kh

h!

)(
k∑

h′=0

B2(k − h)
(k − h)!

)
and, from [9] we know that this is

6 ekG2(1)/2,
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whereG2 is an analytic function. Therefore

‖Y (k+1)
t ψf ‖2 6 G2(1)k(ce)

k/2. (10.30)

But if ce < 1 or, equivalently due to (10.28), if

L <
1

16e

the series on the right-hand side of (10.30) is convergent. 2

11. An Example

In this section we produce an example of coefficients which satisfy condition (iii)
of Equation (10.11). Let, fors, t ∈ Rd

Lε,ε′(s, t) = Lε,ε′ψ(|s|)χ[0,|t |)(|s|)ϕ(ŝ, t̂ ), (11.1)

whereLε,ε′ ∈ B(HS) (ε, ε
′ = 0,1),

χI (x) =
{

0, if x /∈ I ⊆ R,
1, if x ∈ I .

(11.2)

ψ : R+ → C andϕ: S(d) × S(d) → C are continuous functions (S(d) is the unit
sphere inRd) and

t = |t|t̂ ∈ Rd; |t| ∈ R+; t̂ ∈ S(d) (unit sphere inRd) (11.3)

is the polar decomposition oft ∈ Rd . Then∫
Rd
. . .

∫
Rd

ds1 . . . dskl(s1, t)l(s1, s2) . . . l(sk, sk−1)

=
∫
. . .

∫
ρd−1

1 dρ1 dŝ1 . . . ρ
d−1
k dρk dŝkχ[0,t ](ρ1)χ[0,ρ1)(ρ2) . . . χ[0,ρn−1)(ρn)×

×ϕ(ŝ1, t̂)ϕ(ŝ2, ŝ1) . . . ϕ(sk, sk−1)ψ(ρ1) . . . ψ(ρk)

6 (|t|d−1)k‖ϕ‖k∞σ kd · ·
∫ |t |

0
dρ1

∫ ρ1

0
dρ2 . . .

∫ ρk−1

0
dρkψ(ρ1) . . . ψ(ρk)

= (|t|d−1)k‖ϕ‖k∞σ kd
(
∫ |t |

0 ψ(s)dρ)k

k! .

Therefore, ifB ⊆ Rd is a bounded set andt ∈ B, condition (iii) is satisfied.
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