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Abstract. Classical dynamical entropy is an important tool to analyze communication processes.
For instance, it may represent a transmission capacity for one letter. In this paper, we formulate
the notion of dynamical entropy through a quantum Markov chain and calculate it for some
simple models.

1. Introduction

Classical dynamical (or Kolmogorov-Sinai) entropy was introduced in [10, 11, 16],
and relates to classical coding theorems of Shannon [5, 9, 13]. Quantum dynamical
(QD) entropy has been studied by Emch [8], Connes, St�rmer [7], Connes, Narn-
hofer, Thirring [6] and many others. Recently, the quantum dynamical entropy and
the quantum dynamical mutual entropy were de�ned by Ohya in terms of com-
plexity [12, 14, 15]. Classical Markov chain is a fundamental concept in stochastic
processes. The notion of quantum Markov chain (QMC) was formulated by means
of the transition expectation introduced by Accardi [1, 2].

In Section 1, we review the notion of dynamical entropy through a classical
Markov chain. In Section 2, we de�ne dynamical entropy through a quantum
Markov chain, and, in Section 3, we calculate it for some simple models.

2. Formulation of Dynamical Entropy in Classical Markov Chain

Let (
;F ; �) be a probability measure space, T be a measure preserving (i.e.,
��T = �) automorphism on 
 and C � fCkg be a �nite partition of 
. Let L

1(
)
be the set of all functions f on 
 satisfying kfk1 � inff�; jf j � �; ��a.e.g < +1.
We denote the set of all n � n diagonal matrices by Dn. Then there exists a one
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to one correspondence between L1(f1; : : : ; ng) and Dn, that is, a characteristic
function �fkg 2 L1(f1; : : : ; ng) relates to a diagonal matrix ekk 2 Dn, where eij
is the matrix unit (i.e., (i; i)-element = 1 and other elements = 0). The transition
expectation EC from L1(f1; : : : ; ng)
 L1(
) to L1(
) is de�ned by

EC(�fkg 
 f) � �Ck
� f (2.1)

for any �fkg 
 f 2 L1(f1; : : : ; ng) 
 L1(
) and k 2 f1; 2; : : : ; ng. Let � be a
�-automorphism on L1(
) de�ned by

(�f)(x) � f(Tx) (2.2)

for any f 2 L1(
) and any x 2 
. A classical transition expectation with respect
to � from L1(f1; : : : ; ng)
 L1(
) to L1(
) is

EC;� � � � EC : (2.3)

The classical Markov chain on 
NL
1(f1; : : : ; ng) is given by a pair  � f�; ECg.

The Markov chain  = f�; ECg is stationary and its joint correlation is character-
ized by the following property:

 (Ck1 \ TCk2 \ : : : \ T
n�1Ckn)

= �(EC;�(�fk1g 
 EC;�(�fk2g 
 EC;�(: : : EC;�(�fkng 
 I) : : :)))) (2.4)

for any n 2 N and k1; : : : ; kn 2 f1; 2; : : : ; ng.
The entropy for the stationary Markov chain  = f�; ECg is given by

~S(C; �) � lim
n!1

�1

n

X

k1;k2;:::;kn2f1;2;:::;ng

 (Ck1 \ TCk2 \ : : : \ T
n�1Ckn)

� log (Ck1 \ TCk2 \ : : : \ T
n�1Ckn) : (2.5)

DEFINITION 2.1. The dynamical entropy of the system (
;F ; �; �) is de�ned by

~S(�) � sup
C

~S(C; �) ; (2.6)

where the supremum is taken over all �nite partitions C of 
.

3. Construction of Dynamical Entropy Through

Quantum Markov Chain

Let (A;�(A)) be a von Neumann algebraic system, that is, A is a von Neumann
algebra with an identity operator I acting on a Hilbert space H and �(A) is the
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set of all normal states on A. We denote a �nite partition of I 2 A by  � fjg;P
j j = I ij = j�ij . LetMd be the set of all d�d matrices. For a �nite partition

, a transition expectation E fromMd
A to A introduced in [1, 2] is given by

E( ~A) � Ee(p
�
;e

~Ap;e) ; ~A 2Md 
A ; (3.1)

where p;e �
P

j ejj 
 j with the matrix unit ejj 2 Md, and Ee is a transition
expectation from Md 
A to A de�ned by

Ee

�X
i;j

eij 
Aij

�
=
X
i

Aii :

Let � be a �-automorphism on A and ' be a state on A. The transition expectation
E;� with respect to � is given by

E;� � � � E : (3.2)

A quantum Markov chain on 
NMd is de�ned by  � f'; E;�g 2 �(
NMd), where
' is called the initial distribution of  . The quantum Markov chain  = f'; E;�g

is characterized by the following joint correlation

 (j1(a1)j2(a2) : : : jn(an))

= '(E;�(a1 
 E;�(a2 
 : : :
 E;�(an 
 I) : : :))) (3.3)

for each n 2 N and each a1; : : : ; an 2Md, where jk is an embedding map from Md

into the k-th factor of the tensor product 
NMd such that

jk(a) � I 
 : : :
 I 
 a
 I 
 : : :

Let P;� be a forward Markovian operator from A to A given by

P;�(A) � E;�(I 
A) = � �
X
j

jAj (3.4)

for any A 2 A. When ' is a stationary state on A, ' � � = ', we have '(P;�A) =P
j '(jAj). Only when j is an element of the centralizer A' of ', '(P;�A) =

'(A) holds. Suppose that for ' with stationarity there exists unique density oper-
ator � such that '(A) = tr �A for any A 2 A, For any a1 
 I 2 Md 
 A, we
have

 (j1(a1)) = '(E;�(a1 
 I))

= trA �E;�(a1 
 I)

= trA �E(a1 
 I)

= trA �Ee(p
�
;e(a1 
 I)p;e)
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= trA �Ee

�
(
X
i

eii 
 i)(a1 
 I)(
X
k

ekk 
 k)
�

= trMd
A(
X

i;k

ekkeii 
 i�k)(a1 
 I)

= trMd
A(
X
k

ekk 
 k�k)(a1 
 I)

=  [0;1](a1 
 I)

= trMd
(
X
k

(trA �k)ekk)a1

=  1(a1) ;

where trMd
A is the trace onMd 
A. The state  [0;1] onMd
A is constructed by
a lifting E�;� from �(A) to �(Md
A) in the sense of [3], and the density operator
�[0;1] of  [0;1] is obtained by

�[0;1] =
X
i

eii 
 i�
�(�)i =

X
i

eii 
 �(i)��(i) :

Hence the density operator �1 of  [0;1]jMd is given by

�1 = trA �[0;1] =
X
k

(trA ��(k))ekk : (3.5)

Similarly we have

 (j1(a1)j2(a2) : : : jn(an))

= '(E;�(a1 
 E;�(a2 
 : : : E;�(an 
 I) : : :)))

= trMd
A E
�
 (�)(a1 
 E;�(a2 
 : : : E;�(an 
 I) : : :))

= trMd
A(
X
i1

ei1i1 
 i1�i1)(a1 
 E;�(a2 
 : : : � � E;�(an 
 I) : : :))

= trMd
A

X
i1

ei1i1a1 
 i1�i1E;�(a2 
 : : : � � E;�(an 
 I) : : :)

= trMd
Md
A

X
i1

X
i2

ei1i1a1


 (ei2i2 
 i2�
�(i1�i1)i2) (a2 
 E;�(a3 : : : � � E;�(an 
 I) : : :))

= trMd
Md
A

X
i1

X
i2

ei1i1a1 
 ei2i2a2



Dynamical Entropy Through Quantum Markov Chains 75


 (i2�
�(i1�i1)i2) E;� (a3 : : : � � E;�(an 
 I) : : :)

= tr
(
n



1

Md)
A

X
i1

: : :
X
in�1

X
in

ei1i1a1 
 : : :
 ein�1in�1
an�1 
 eininan


 in�
�(in�1

: : : ��(i1�i1) : : : in�1
)in

= tr
(
n



1

Md)
A

X
i1

: : :
X
in�1

X
in

ei1i1 
 : : : 
 ein�1in�1

 einin


 in�
�(in�1

: : : ��(i1�i1) : : : in�1
)in(a1 
 : : : an�1 
 an 
 I)

= tr
(
n



1

Md)
A
�[0;n](a1 
 : : : an�1 
 an 
 I)

= tr
(
n



1

Md)

X
i1

: : :
X
in�1

X
in

(trA in�
�(in�1

: : : ��(i1�i1) : : : in�1
)in)

� ei1i1 
 : : :
 ein�1in�1

 einin(a1 
 : : : an�1 
 an)

= tr
(
n



1

Md)
�n(a1 
 : : : an�1 
 an) :

Thus, we obtain the density operator �[0;n] of  [0;n] on
� nN

1

Md

�
as

�[0;n] =
X
i1

: : :
X
in�1

X
in

ei1i1 
 : : : 
 ein�1in�1

 einin


 in�
�(in�1

: : : ��(i1�i1) : : : in�1
)in

=
X
i1

: : :
X
in�1

X
in

ei1i1 
 : : : 
 ein�1in�1

 einin


 �n�1(in)�
n�2(in�1

) : : : i1�i1 : : : �
n�2(in�1

)�n�1(in) :

Put �in:::i1 = �n�1(in) : : : �(i2)i1 . Then

�[0;n] =
X
i1

: : :
X
in�1

X
in

ei1i1 
 : : : 
 ein�1in�1

 einin 
 �inin�1:::i1��

�
inin�1:::i1

;

�n = trA �[0;n] =
X
i1

: : :
X
in

trA �in:::i1��
�
in:::i1

ei1i1 
 : : :
 einin

=
X
i1

: : :
X
in

Pin:::i1ei1i1 
 : : :
 einin ; (3.6)

where Pin:::i1 = trAj�in:::i1 j
2�.

Under the above settings, we de�ne the entropy with respect to ; � and n as

Sn(; �) � �tr �n log �n = �
X

i1;:::;in

Pin:::i1 logPin:::i1 ; (3.7)
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and, subsequantly, the dynamical entropy through a quantum Markov chain with
respect to  and � is given by

~S(; �) � lim sup
n!1

1

n
Sn(; �)

= lim sup
n!1

1

n
(�
X

i1;:::;in

Pin:::i1 logPin:::i1) : (3.8)

If the joint probability Pin::: i1 satis�es the Markov property, then the above equal-
ity is written as

~S(; �) = �
X
i1;i2

Pi1P (i2ji1) log P (i2ji1) ; (3.9)

where P (i2ji1) is the conditional probability from i1 to i2. ~S(; �) has the additivity
property in the following sense.

PROPOSITION 3.1. For two pairs ((1); �1) and ((2); �2), we have

~S((1) 
 (2); �1 
 �2) = ~S((1); �1) + ~S((2); �2) :

Proof. Since

�n�11 
 �n�12

�

(1)

in

 

(2)

kn

�
= �n�11

�

(1)

in

�

 �n�12

�

(2)

kn

�
;

�(in;kn):::(i1;k1) � �n�11 
 �n�12 (
(1)

in

 

(2)

kn
) : : : �1 
 �2(

(1)

i2

 

(2)

k2
)

(1)

i1

 

(2)

k1

= �
(1)

in:::i1

 �

(2)

kn:::k1
;

we have

P(in;kn):::(i1;k1) � trA1
A2
�(in;kn):::(i1;k1)�1 
 �2�

�
(in;kn):::(i1;k1)

= trA1
j�

(1)

in:::i1
j
2�1 � trA2

j�
(2)

jn:::j1
j
2�2 :

The additivity of ~S(; �) follows. 2

DEFINITION 3.1. The dynamical entropy through a quantum Markov chain with
respect to � and a subalgebra B of A is

~SB(�) � sup f~S(; �);  � Bg ;

where the supremum is taken over all �nite partitions of identity I 2 B. When
B = A, we simply write ~SA(�) = ~S(�), which is called the dynamical entropy
through a quantum Markov chain with respect to �.
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When we take the transition expectation from Md 
A to A such that

Ee(
X
i;j

eij 
Aij) =
1

d

X
i;j

Aij ;

�n is given by

�n � trA �[0;n] =
X
i1;k1

: : :
X
in;kn

�
trA �in:::i1��

�
kn:::k1

�
ei1k1 
 : : : 
 einkn :

In this case, although the joint distribution Pin:::i1 is not directly induced, the
dynamical entropy through a quantum Markov chain with respect to � and a
subalgebra A1 of A can be de�ned in the same way as above. We will discuss this
general case elsewhere.

Our setting for the dynamical entropy through a quantum Markov chain can
be further generalized as follows.

Let A be a �-algebra, ' be a state on A and � be an endomorphism of A. The
triple (A; �; ') is called a �-dynamical system with a stationary state ' if '�� = '

holds.
Two such systems (A1; �1; '1) and (A2; �2; '2) are called isomorphic if there

exists an isomorphism v:A1 ! A2 such that

'2 � v = '1 ;

v � �1 = �2 � v :

Let (A; �; ') be a discrete C�-dynamical system. For each d 2 N and (n1; : : : ; nd) 2
N
d, we de�ne the map

w(n1;:::;nd) : A
d
�A

d
! C

by

w(n1;:::;nd)(A1; : : : ; Ad;B1; : : : ; Bd) =

'1(�
n1
1 (A1)

� : : : �
nd
1 (Ad)

��
nd
1 (Bd) � �

n1
1 (B1)) (3.10)

for any (A1; : : : ; Ad), (B1; : : : ; Bd) 2 Ad. It is clear that the family of the maps
(3.10) is a projective family of correlation kernels in the sense of [2], hence, by the
reconstruction theorem, there exists a stochastic process f
NA; (jn)n2Ng over A
indexed by N whose family of correlation kernels is given by (3.10). This process is
unique up to stochastic equivalence. When ' is stationary, the process is stationary,
that is, there exists an endomorphism u 2 End (A) such that

u � jn = jn+1 :

In the commutative case, this construction gives the usual stationary process
associated to a dynamical system [2].
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DEFINITION 3.2. Let A1;A2 be two C�-algebras and let w(i) be a projective
family of correlation kernels over Ai (i = 1; 2) indexed by N . The two families of
correlation kernels w(1); w(2) are called equivalent if there exists an isomorphism

v : A1 ! A2

which intertwines them, that is, for each d 2 N , (n1; : : : ; nd) 2 N
d and A1; : : : Ad,

B1; : : : ; Bd 2 A1 one has

w
(1)

(n1;:::;nd)
(A1; : : : ; Ad;B1; : : : ; Bd) = w

(2)

(n1;:::;nd)
(v(A1); : : : ; v(Ad); v(B1); : : : ; v(Bd)) :

We shall use the notion of equivalence also for families w(n1;:::;nd)
indexed by a

proper subset of N d. Now we introduce the time ordered correlation kernels. They
are the kernels whni with hni of the form

hni = (1; 2; : : : ; n)

for some n 2 N and we shall use the notation

w(1;2;:::;n) = whni :

Thus, by de�nition

whni(A1; : : : ; An;B1; : : : ; Bn) = '1(A
�
1�1(A

�
2 : : : �1(A

�
n�1�1(A

�
nBn)Bn�1) : : : B2)B1) :

If the state '1 is regular enough (e.g., faithful) then the time ordered correlation
kernels, even if it is not enough to specify uniquely up to stochastic equivalence the
stochastic process associated to the dynamical system, are su�cient to determine
the isomorphism class of the dynamical system.

PROPOSITION 3.2. Two dynamical systems (Ai; �i; 'i) with faithful state 'i (i =
1; 2) are isomorphic if and only if the associated time-ordered correlation kernels

are equivalent.

Proof. The necessity is obvious. Assume that the two given processes are iso-
morphic and let v:A1 ! A2 be an isomorphism such that

'2 � v = '1 ; v�1 � �2 � v = �1 :

Then, one has v � �1 = �2 � v

'1(A
�
1�1(A

�
2 : : : �1(A

�
n�1�1(A

�
nBn)Bn�1) : : : B2)B1)

= '2(v(A1)
��2(v(A2)

� : : : �1(A
�
n�1�1(A

�
nBn)Bn�1) : : :))v(B1))

...

= '2(v(A1)
��2(v(A2)

� : : : �2(v(An�1)
��2(v(An)

�v(Bn))v(Bn�1) : : : v(B2))v(B1)) ;
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hence the correlation kernels are equivalent. Conversely, if there exists an isomor-
phism v:A1 ! A2 which intertwines the time-ordered correlation kernels, then, in
particular, for every A1; B1 2 A1 one has

w
(1)

h2i
(A1; A1;B1; B1) = '1(A

�
1�1(A

�
1B1)B1)

= w
(2)

h2i(v(A1); v(A1); v(B1); v(B1))

= '2(v(A1)
��2(v(A1)

�v(B1))v(B1))) : (3.11)

Letting A1 = B1 = B in (3.11) we deduce

'1(B) = '2(v(B)) ; B 2 A1 ;

so that '1 = '2 � v. Using this identity, we can write (3.11) as

'1(A
�
1�1(A

�
1B1)B1) = '1(A

�
1 � v

�1
� �2 � v(A

�
1B1)B1)

and since A1; B1 are arbitrary in A1, this implies �1 = v�1 � �2 �v which shows the
isomorphism of the two dynamical systems because of the faithfulness of '1; '2.
2

The relevance of the above proposition is that, as long as we are interested
only in the isomorphism class of the dynamical system (A; �; '), we need only to
consider its time ordered correlation kernels.

To every family of time ordered correlation kernels, one can naturally associate
an entropy.

Let  � fjgj 2 I(), where I() is a �nite or countable set of discrete partitions
of the identity with projections in A. We shall denote

Pin;:::;i1 = whni(i1 ; : : : ; in ; i1 ; : : : ; in) :

The entropy of the probability measure Pin;:::;i1 on the space I()n is de�ned in
the usual way

Sn(;whni) = �
X

i1;:::;in

Pin;:::;i1 logPin;:::;i1 :

Because of the projective property of the correlation kernels whni, it follows that
the family of probability measures is projective in the sense that

Pin;:::;i1 = P (injin�1)Pin�1;:::;i1 ;

hence it de�nes a unique probability measure P on the space of sequences I().
Since the family of correlation kernels is stationary, it follows that the probability
measure P will also be stationary. Therefore the limit

~S(;w) = lim
n!1

1

n
Sn(;whni)

exists. Let P(B) be a family of partitions of the identity in a subalgebra B of A.
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DEFINITION 3.3. The dynamical scattering entropy of the correlation kernel w =
fwhni : n 2 Ng is

~SB(w) = supf~S(;w);  2 P(B)g ;

where the supremum is taken over all �nite or countable partitions of the identity
in P(B) with projections in B. When B = A, we simply write ~SA(w) = ~S(w), which
is called the dynamical scattering entropy of the correlation kernel w = fwhni :
n 2 Ng.

When A is a von Neumann algebra acting on a Hilbert space H and ' is
a faithful normal state on A with an automorphism � such that ' � � = ', the
dynamical scattering entropy is exactly the same as the dynamical entropy through
a quantum Markov chain discussed before. That is, in this case, the correlation
kernel becomes

whni(i1 ; : : : ; in ; i1 ; : : : ; in) � '(�i1�(i2)
�: : : �n�1(in)

��n�1(in): : : i1)=Pin:::i1 :

The example 2 suggests the term dynamical scattering entropy.

4. Calculation of Dynamical Entropy Through QMC

For Some Simple Models

In this section, we compute the dynamical entropy through a QMC for several
simple models.

4.1. Model 1

Let Md be a matrix algebra induced by the set of all d � d matrices acting on
d-dimensional Hilbert space H0, and A (resp. H) be the in�nite tensor product
space of Md (resp. H0) expressed by

A � 

ZMd ;

H � 

Z
H0 :

We denote a �nite partition of identity I 2Md by 0 � f
(0)

j = jz
(0)

i ihz
(0)

i jg, where

fz
(0)

i g is a CONS (complete orthonormal system) of H0. Let �k be an embedding
map from Md into the k-th factor of the tensor product 
ZMd = A. For any �nite

partitions of 
ZI given by  � fi = �0(
(0)

i )g, let � be a Berunoulli shift on A
de�ned by

�(i) � �1(i) :

By iteration, �k is a map given by

�k(i) = �k(i) :
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Let �0 be an arbitrary state on H0 and � be 
Z�0 2 �(H), the set of all density
operators on H. Then �in:::i1 is obtained by

�in:::i1 = �n�1(in) : : : �(i2)i1 :

For any � = 
Z�0 2 �(H), we have

�[0;n] =
X

i1;:::;in

ei1i1 
 : : :
 einin 
 �in:::i1��
�
in:::i1 ;

�n = trA �[0;n] :

The entropy with respect to ; � and n is

Sn(; �) = �tr �n log �n :

Therefore the dynamical entropy through a quantum Markov chain with respect
to  and � becomes

~S(; �) � lim
n!1

1

n
Sn(; �)

= �
X
i

hzi; �0zii loghzi; �0zii

= S(�0) ;

which is exactly the von Neumann entropy of �0.

4.2. Model 2

Let A be a matrix algebra Md acting on a Hibert space H0. For unitary operator
U , � is given by �(A) � UAU� for any A 2 A. Let fzjg be a CONS in H0 and j
be jzjihzj j. Since the following equations

�k�1jk = jUk�1zjkihU
k�1zjk j

�jn:::j1 = �n�1jk : : : �j2j1

=
n�1Y

k=1

hUzjk+1
; zjkijU

n�1zjnihzj1 j

hold for any � 2 �(H0), the set of all density operators on H0, we have

�[0;n] =
X

i1;:::;in

einin 
 : : :
 ei1i1




n�1Y

k=1

jhUzik+1
; zikij

2
hzi1 ; �zi1ijU

n�1zinihU
n�1zin j

�n � trA �[0;n]
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=
X

i1;:::;in

X
j1;:::;jn

n�1Y
k=1

jhUzjk+1
; zjkij

2
hzj1 ; �zj1i � einjn 
 : : :
 ei1j1 ;

Pin:::i1 , P (ik+1jik) and Pi1 are
Qn�1

k=1 jhUzik+1
; zikij

2hzi1 ; �zi1i, jhUzik+1
; zikij

2 (k =
1; : : : ; n) and hzi1 ; �zi1i. Since the joint probability Pin:::i1 satis�es the Markov
property, the dynamical entropy ~S�(; �) through a QMC with respect to  and �
is given by

~S�(; �) = �
X
i1;i2

Pi1P (i2ji1) logP (i2ji1)

= �
X
i1;i2

hzi1 ; �zi1ijhUzi2 ; zi1ij
2 log jhUzi2 ; zi1ij

2 :

We have the following result.

PROPOSITION 4.1.

(1) For any � 2 �(H0) and any  = fjg,

0 � ~S�(; �) � log d :

(2) There exists �(u) 2 �(H0) and 
(u) = f

(u)
j g such that

~S�(u)(
(u); �) = log d :

(3) There exists �(l) 2 �(H0) and 
(l) = f

(l)
j g such that

~S�(l)(
(l); �) = 0 :

Moreover, all intermediate values between 0 and log d are assumed for some choice

of U .

Proof.

(1) Since � logP (i2ji1) � 0 and P (i2ji1)Pi1 � 0 hold for any i1; i2 = 1; : : : ; d,

~S�(u)(; �) � 0 :

Moreover the following inequality

�Pi1

X
i2

P (i2ji1) logP (i2ji1) � �Pi1

X
i2

1

d
log

1

d

holds for any Pii 2 [0; 1], hence we have

�
X
i1

X
i2

Pi1P (i2ji1) logP (i2ji1) � log d :
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(2) When �(u) = I
d ,

~S�(u)(; �) = log d.

(3) When �(u) = jzjihzj j, ~S�(u)(; �) = 0. 2

By taking the eigenvectors of U as zj , one �nds the deterministic chain with
minimum entropy. This rules out the use of the dynamical scattering entropy as
a dynamical invariant for �nite dimensional deterministic systems (they have all
the same dynamical scattering entropy).

4.3. Model 3

Let A be 
NMd = B(
NH0) and � be a cyclic shift; that is, (1) � � ~|k � ~|k+1
for k 2 f1; 2; : : : ; N � 1g and (2) � � ~|N � ~|1. Let j1 be jzj1ihzj1 j, where zj1 =P

~{1
�
(j1)
~{1

jxi1(1) 
 : : : 
 xi1(N)i, ~{k � (ik(1); : : : ; ik(N)), and fxi1(k)g be a CONS of
H0. Since the following equations

�k�1jk = jz
(k�1)
jk

ihz
(k�1)
jk

j ;

z
(k�1)
jk

=
X
~{k

�
(jk)
~{k

jxik(k mod N) 
 : : : 
 xik(N�k+1 mod N)i ;

�jn:::j1 = �n�1jk : : : �j2j1

=
n�1Y
k=1

hz
(k)
jk+1

; z
(k�1)
jk

ijz
(n�1)
jn

ihzj1 j ;

hold for any � = 
N�0 2 

N�(H0), we have

�[0;n] =
X

j1;:::;jn

ejnjn 
 : : :
 ej1j1




n�1Y
k=1

jhz
(k)
jk+1

; z
(k�1)
jk

ij
2
hzj1 ; �zj1ijz

n�1
jn

ihzn�1jn
j

�n � trA �[0;n]

=
X

j1;:::;jn

ejnjn 
 : : :
 ej1j1

�

n�1Y

k=1

jhz
(k)
jk+1

; z
(k�1)
jk

ij
2
hzj1 ; �zj1i ;

Pjn:::j1 , P (jk+1jjk) and Pj1 are
n�1Q
k=1

jhz
(k)
jk+1

; z
(k�1)
jk

ij2hzj1 , �zj1i, jhz
(k)
jk+1

; z
(k�1)
jk

ij2 (k =

1; : : : ; n�1) and hzj1 , �zj1i, respectively. Since the joint probability Pjn:::j1 satis�es

the Markov property, the dynamical entropy ~S�(; �) through a QMC with respect
to  and � is given by

~S�(; �)
(N) = �

1

N

X
j1;j2

Pj1P (j2jj1) log P (j2jj1)
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= �
1

N

X
j1;j2

���
X

~{00
1

hzj1 ; �zj1i
��
(i2)

i00
1
(2):::i00

1
(N)i00

1
(1)
�
(i1)

~{00
1

���2

� log
���
X

~{00
1

��
(i2)

i00
1
(2):::i00

1
(N)i00

1
(1)
�
(i1)

~{00
1
j
2 :

The above coe�cients �~{ satisfy the following conditions:

X
j1

j1 = I )
X
j1

�
(j1)
~{1

��
(j1)

~{0
1

=
NY
k=1

�i1(k)i01(k) ;

j1j2 = �j1j2j1 )
X
~{1

�
(j1)
~{1

��
(j2)
~{1

= �j1j2 ;

�j1 = j1 ) �
(j1)
~{1

��
(j1)

~{01
= ��

(j1)
~{1

�
(j1)

~{01
;

from the properties of the partition  = fjg. We have the same result of the
model 2. Its proof is essentially the same, so that we omit it here.

PROPOSITION 4.2. (1) For any � 2 
N�(H0) and any  = fjg,

0 � ~S�(; �) � log d

holds.

(2) There exists �(u) 2 
N�(H0) and 
(u) = f

(u)
j g such that

~S�(u)(
(u); �) = log d :

(3) There exists �(l) 2 
N�(H0) and 
(l) = f

(l)
j g such that

~S�(l)(
(l); �) = 0 :

4.4. Model 4

Let A be 
Z(Md
Md) and � be a shift de�ned by �(A1
A2) � I
A1
A2 for any

Ai 2Md (i = 1; 2) and I 2Md. Let j1 be jzj1ihzj1 j, where zj1 =
P

i1;k1
�
(j1)
i1k1

xi1 


xk1 and fxi1g be a CONS in H0. Since the following equations

�k�1jk = I 
 : : :
 I 
 jk

�jn:::j1 = �n�1jk : : : �j2j1

=
X

�
(j1)
i1k1

��
(j1)

i01k
0

1

� n�1Y

`=2

�
(j`)
i`k`

��
(j`)

k`�1k
0

`

�
�
(jn)
inkn

��
(jn)
i0nk

0

n
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� jxi1ihxi01
j


� n�2O
r=1

jxir+1
ihxk0r j

�

jxknihxk0n j

hold for any � =
N1

�1 �0 2
N1

�1�(H0 
H0), we have

�[0;n] =
X

j1;:::;jn

ejnjn 
 : : :
 ej1j1 

���
X

(
n�1Y

`=2

�
(j`)
i`k`

��
(j`)

k`�1k
0

`

)
���2

�

n�2Y
r=1

hxk0r ; �0xx0rihzj1 ; �zj�1i
� n�2O

t=1

jxit+1
ihxkt+1

j

�
;

�n � trA �[0;n]

=
X

j1;:::;jn

ejnjn 
 : : :
 ej1j1 

���
X

(
n�1Y
`=2

�
(j`)
i`k`

��
(j`)

k`�1k
0

`

)
���2

�

n�2Y
r=1

hxk0r ; �0xk00r ihzj1 ; �zj�1i ;

Pjn:::j1 , P (j2jj1) and Pj1 are
���P(

n�1Q
`=2

�
(j`)
i`k`

��
(j`)

k`�1k
0

`

)
���2, P�

(j1)
i1k1

��
(j1)

i1k
000

1

��
(j2)

k1k
0

2

�
(j2)

k0001 k002
hxk02

,

�0xk00
2
i and hzj1 ; �zj1i. Since the joint probability Pjn:::j1 satis�es the Markov prop-

erty, the dynamical entropy ~S�(; �) through a QMC with respect to  and �

becomes

~S�(; �)
(2) = �

1

2

X
j1;j2

Pj1P (j2jj1) logP (j2jj1)

= �
1

2

X
j1;j2

X
�
(j1)
i1k1

hzj1 ; �zj1i
��
(j1)

i1k
000

1

��
(j2)

k1k
0

2

�
(j2)

k0001 k002
hxk0

2
; �oxk00

2
i

� log
X

�
(j1)
i1k1

��
(j1)

i1k
000

1

��
(j2)

k1k
0

2

�
(j2)

k000
1
k00
2

hxk02 ; �0xk
00

2
i :

4.5. Model 5

Let A1;A2 be two von Neumann algebras acting on Hilbert spaces H1;H2, respec-
tively. Let Uk be a partial isometry operator from H1 to H2 (k = 1; : : : ; d). We
de�ne a transition expectation E from A2 
A1 to A1 by

E(B 
A) =
dX

k=1

U�kBUk'0(�
1=2
k A�

1=2
k ) ;

where '0 is a stationary state on A1, and �k 2 A1 satis�es: (1) �k � 0; (2)P
k �k = I. Put pk = '0(�k). Then

E(B 
 1) =
X
k

U�kBUkpkE(jn�1

 E(jn 
 I)) =

X
kn

E(jn�1

 U�knjnUkn)pkn ;
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Pjn:::j1 = '0(E(j1 
 E(j2 
 : : :
 E(jn 
 I) : : :)))

=
X

kn

'0(E(j1 
 E(j2 
 : : : E(jn�1

 U�xnjnUkn) : : :)))pkn

=
X

kn�1;kn

'0(E(j1 
 E(j2 
 : : : E(jn�2

 U�kn�1

jn�1
Ukn�1

) : : :)))

� '0(�kn�1
U�knjnUkn)pkn

=
X

k1;:::;kn

'0(U
�
k1
j1Uk1)'0(�k1U

�
k2
j2Uk2) : : : '0(�kn�2

U�kn�1
jn�1

Ukn�1
)

� '0(�kn�1
U�knjnUkn)pkn : (4.1)

Hence we have

~S�(;U) = � lim
n!1

� 1
n

X
j1;:::;jn

Pjn;:::;j1 logPjn;:::;j1

�

= � lim
n!1

h 1
n

X
j1;:::;jn

� X
k1;:::;kn

'0(U
�
k1j1Uk1)

� '0(�k1U
�
k2
j2Uk2) : : : '0(�kn�2

U�kn�1
jn�1

Ukn�1
)'0(�kn�1

U�knjnUkn)pkn

�

� log
� X

k1;:::;kn

'0(U
�
k1j1Uk1) (4.2)

� '0(�k1U
�
k2
j2Uk2) : : : '0(�kn�2

U�kn�1
jn�1

Ukn�1
)'0(�kn�1

U�knjnUkn)pkn

�i
:

The relation between the dynamical entropies by complexity and by QMC is dis-
cussed in [4].

Bibliography

1. L. Accardi, Noncommutative Markov chains, in: International School of Mathematical
Physics, Camerino, 268, 1974.

2. L. Accardi, A. Frigerio and J. Lewis, Quantum stochastic processes, Publ. RIMS Kyoto
Univ. 18, 97 (1982).

3. L. Accardi and M. Ohya, Compound channels, transition expectations and liftings, to appear
in J. Multivariate Analysis.

4. L. Accardi, M. Ohya and N. Watanabe, Note on quantum dynamical entropies, to appear
in Rep. Math. Phys.

5. L. Bilingsley, Ergodic Theory and Information, Wiley, New York, 1965.
6. A. Connes, H. Narnho�er and W. Thirring, Commun. Math. Phys. 112, 691 (1987).
7. A. Connes and E. St�rmer, Acta Math. 134, 289 (1975).
8. G.G. Emch, Z. Wahrscheinlichkeitstheory verw. Gebiete 29, 241 (1974).
9. L. Feinstein, Foundations of Information Theory, McGraw-Hill, 1965.
10. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 119, 861 (1958).
11. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 124, 754 (1959).
12. N. Muraki and M. Ohya, Entropy functionals of Kolmogorov Sinai type and their limit

theorems, to appear in Lett. Math. Phys.



Dynamical Entropy Through Quantum Markov Chains 87

13. M. Ohya and D. Petz, Quantum Entropy and Its Use, Springer-Verlag, 1993.
14. M. Ohya, State change, complexity and fractal in quantum systems, Quantum Communica-

tions and Measurement, Plenum Press, 1995, p. 309.
15. M. Ohya and N. Watanabe, Note on Irreversible Dynamics and Quantum Information, to

appear in Alberto Frigerio conference proceedings.
16. J. G. Sinai, Dokl. Akad. Nauk SSSR 124, 768 (1959).


