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Abstract. We study the persistence for long times of the solutions of some infinite–
dimensional discrete hamiltonian systems with formal hamiltonian

P
∞

i=1 h(Ai) + V (ϕ),

(A, ϕ) ∈ RN × TN. V (ϕ) is not needed small and the problem is perturbative being the
kinetic energy unbounded. All the initial data (Ai(0), ϕi(0)), i ∈ N in the phase–space
RN × TN, give rise to solutions with |Ai(t) − Ai(0)| close to zero for exponentially–long

times provided that Ai(0) is large enough for |i| large. We need ∂h

∂Ai
(Ai(0)) unbounded for

i → +∞ making ϕi a fast variable; the greater is i, the faster is the angle ϕi (avoiding the
resonances). The estimates are obtained in the spirit of the averaging theory reminding the
analytic part of Nekhoroshev–theorem.

1. Introduction. In the study of hamiltonian ordinary differential equations,
two of the main problems are: 1) to prove the existence of the solutions for a time
as long as possible 2) to understand the qualitative properties of the solutions
found. As a model problem let’s consider the hamiltonian H(A, ϕ) = h(A)+εV (ϕ),

ϕ ∈ TN , A ∈ U =
o

U ⊂ RN , (N ≥ 2 integer), h, V analytic functions, ε real. The

canonical equations are of course Ȧ = −εVϕ, ϕ̇ = hA whose solution for ε = 0 is

A(t) ≡ Ao, ϕ(t) = ϕo + tω(Ao) ω(Ao)
.
=

∂h

∂A
(Ao) ∈ R

N (1.1)

As well known by the theory of quasi–periodic motions, {ϕ(t)}t∈R
= TN if and only

if the components of ω(Ao) are non–resonant over Z
N i.e.

∑N
i=1 ωi(A

o)νi 6= 0 for

any ν ∈ ZN and
∑N

i=1 |νi| 6= 0. Otherwise we have {ϕ(t)}t∈R
= TN−k, 1 ≤ k ≤ N−1

(for k = N − 1 the solution is periodic). By the celebrated KAM theorem, under

some conditions which are essentially: i) the determinant of the matrix ∂2h
∂A2 different

from zero, ii) ω(Ao) non–resonant over ZN :
∣∣∣
∑N

i=1 ωi(A
o)νi

∣∣∣
−1

≤ C |ν|N for all
∑N

i=1 |νi| 6= 0, νi ∈ Z, C suitable (ω(Ao) is said Diophantine), iii) |ε| ≤ ε0

small enough ,(1.1) can be continued into

A(t) = Ao + αε(tω(Ao)), ϕ(t) = ϕo + tω(Ao) + βε(tω(Ao)), t ∈ R,
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(αε and βε are analytic functions of tω(Ao) and ε such that |αε|+ |βε|−−−→ε→0 0; hence

(A(t), ϕ(t)) are defined for all times in spite of ε 6= 0 (see [6] for a proof).1

The set of vectors ω satisfying ii) has full Lebesgue measure but is nowhere dense
and the theorem cannot avoid its presence even weakening the non–resonance con-
dition, see [14], [7], [13].

For including all the vectors ω and then all initial data by the diffeomorphism
ω(A) = ∂h

∂A , one is forced to give up the solutions globally defined in time. This is
essentially the content of the Nekhoroshev Theorem (see the pioneering work [11],
the papers (plenty) of the “Milan group” of Bambusi, Benettin, Galgani, Giorgilli
etc. and see also [3], [1] with the references therein). Let’s consider again the
hamiltonian h(A) + εV (ϕ) with the conditions i) and iii). Roughly speaking, all
the solutions are shown to exist for |t| ≤ T exp( 1

εa ) and |A(t) − A(0)| ≤ Aoε
b. No

subset of the phase–space is excluded; a, b are positive constants depending on N
such that a−−−−−→

N→+∞
0. This is the finite–dimensional situation.

As far as we know, there are few papers on the extensions of the stability re-
sults for infinite–dimensional discrete systems (not originating from PDE’s). The
first one is [2] where an array of coupled harmonic oscillators over Zd is consid-
ered. The hamiltonian is H1(p, q) = K + V, K = 1

2

∑
j∈Zd ωj(p

2
j + q2

j ), V =
∑

i,j∈Zd

∑3
k=0 V(i,j)kqk

i q3−k
j ; (pj , qj) ∈ R2. The coefficients V(i,j)k satisfy

∑3
k=0|V(i,j)k|

≤ Ue−α(1+dist(i,j))δ

; (U, α, constants, δ ≤ 1). According to our definitions V is
of long–range type; see (2.2). Roughly speaking they prove that if the energy
of the initial datum is of order ε (small) and concentrated in one point (say the
origin), the variables (pi(t), qi(t))i∈Zd remain close to their initial value as long

as |t| ≤ exp a(ln ε−1)2

ln ln ε−1 (faster than any power of ε but slower than an exponen-
tial). Each ωj is a gaussian random variable with the same variance σ and the
measure of the set of ω = {ωj}j∈Zd excluded is O(α

σ ). In [3] the authors con-

sider an infinite–dimensional hamiltonian system like (1.2) with h(A) = 1
2A2,

V1(ϕ) = ε
∑

i,j∈Z,i6=j
1

|i−j|α (1 − cos(ϕi − ϕj)) α > 1, ε a small parameter. When

ε 6= 0 and small, the exponential stability for those quasi–periodic solutions whose
vector–frequency ω has an arbitrary, finite number of components is proved. In [1]
the author shows the exponential stability for the so called breathers, i.e. time–
periodic, spatially localized solutions of perturbed systems whose hamiltonian is
H2 =

∑
k∈Z

(1
2p2

k + V (qk)) + ε
4

∑
i,j∈Z,i6=j

1
|i−j|α (qi − qj)

2, V ′(0) = 0, V ′′(0) > 0,

α > 1, ε small as usual. In all these models the kinetic and the potential energy are
finite and the thermodynamic limit does not follow. Loosely speaking, a common
feature of the previous results is the fact that “most of the energy is contributed” by
few variables (hence the variables placed far away carry a small amount of energy).

Here we generalize the conclusions of the Nekhoroshev theorem too but in our
model most of the energy is contributed by the variables far from the origin. We
consider a class of infinitely many ODE’s

Ȧi = fi(ϕ) ϕ̇i = hAi
(Ai), i ∈ N, Ai ∈ R, ϕi ∈ T, T = R/2πZ (1.2)

For instance if h(x) = 1
2x2 and fi(ϕ) = − ∂V

∂ϕi
for a suitable function V, (1.2)

would be the canonical equations of the formal hamiltonian
∑∞

i=1
1
2A2

i + V (ϕ),

1
ε0 goes to zero when C and/or N goes to infinity. Up to some technicalities, it can be stated an

analogue theorem for systems such that det( ∂2h

∂A2 ) is equal to zero (for example harmonic oscillators

where h(A)
.
=
P

N
i=1

ωiA1 or celestial mechanics systems where some of the Ai’s are not present in h(A)).
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ϕ = (ϕ1, ϕ2, ϕ3, . . . ) ∈ TN2. A Nekhoroshev–like theorem is proved. More specif-
ically if we suppose in (1.2) that 0 < a′ ≤ |hAiAi

| ≤ a < +∞, and ∂h
∂Ai

(Ai(0))
sufficiently large for i ≥ l − 1 ≥ 1, we prove the existence of an increasing se-
quence of time–scales {tl+k}k≥0 (tl+k+1 ≥ tl+k) such that the action–variable
Al+k(t) remains very close to its initial value Al+k(0) as long as |t| ≤ tl+k. The
larger Al+k(0) is, the closer Al+k(t) remains to it. It follows that for |t| ≤ tl
the variables Al, Al+1, Al+2, . . . and ϕl, ϕl+1, ϕl+2, . . . “do not affect” the motion

of the system whose effective hamiltonian is:
∑l−1

i=1 h(Ai) + V (l−1)(ϕ1, . . . , ϕl−1);
∂

∂ϕi
V (l−1)(ϕ1, . . . , ϕl−1) = −

∫
dµJfi(ϕ) and J = N\{1, 2, . . . , l−1} (the possibility

of doing the average respect to the infinite set of variables ϕi i ∈ J, is due to the weak
topology introduced in the configuration space T

N; see section 2). If ∂h
∂Al+k

.
= ωo

l+k,

we have |Al+k(t) − Al+k(0)| = O(|ωo
l+k|−1) for |t| ≤ tl+k ∼ exp{O((ωo

l+k)1/2)}
and ϕl+k(t) ∼ ϕo

l+k + ωo
l+kt. The frequency ωo

l+k+1 is bigger than ωo
l+k in such a

way to determine a strong non–resonance condition. Actually we find ωo
l+k+1 ∼

exp{O((ωo
l+k)1/2)}.

Without doing any hypotheses on the size of (ω1, . . . , ωl−1), all we can say about
the variables Ai(t) i = 1, 2, . . . , l− 1, is |Ai(t)−Ai(0)| ≤ Cρ, where C is a constant
and ρ is the size of the analyticity of the domain of the function h(A). If Ai(0) is
not great for |i| → +∞ we cannot say that |Ai(t) − Ai(0)| is small for large t.

This result is in agreement with [13] (see also [5], [12], [4]) where the same system
of equations is considered and proved that if: 1) |µ| is different from 0 and small
enough, 2) ωo

k large enough and the vector (ωo
1 , ω

o
2 , . . . , ωo

j ), j ≥ 1 suitably non–

resonant, then the solution of (1.2) for any t is
(
ωot = (

ωo
1t
µ ,

ωo
2t
µ , . . . ,

ωo
l−1t

µ , ωo
l t,

, ωo
l+1t, . . . , )

)

ϕi(t) = ϕo
i + ωo

i t + αi(ω
ot), Ai(t) = Ao

i + βi(ω
ot),

i.e. almost–periodic. Hence our theorem can be viewed also as a result about the
persistence for long times of almost–periodic motions.

(1.2) can be viewed as a model of crystal lattice although we cannot perform a
thermodynamic limit yet due to the very high energy per degree of freedom of the
kinetic part (needed for applying the perturbative and averaging methods).

The paper is organized as follows. In section 2 we give the setup and some
definitions. Section 3 contains the main results while the intermediate results and
all the proofs, sometime sketched, are in Section 4.

2. Setup–Definitions.

Metrics ([9], [8]) The distance on TN is ρw(ϕ, ϕ′) ≡ ∑
i∈N

ρ(ϕi, ϕ
′
i) wi wi >

0,
∑

i∈N
wi < +∞, (TN, ρw)

.
= Tw is a compact space. ρ is the standard (flat)

metric on T ≡ Ti: ρ([a], [b]) ≡ infn∈Z |a−b+2πn| a, b ∈ R and [·] denotes equivalence
(mod. 2π) class.

The distance on RN is λw(A, A′) ≡ ∑
i∈N

wi arctan |Ai − A′
i|. (RN, λw)

.
= Rw is

a complete Banach space.
With the metrics given, the convergence is equivalent to the weak convergence

(“component by component”): ϕ(n)−−−−−→n→+∞ ϕ means that ∀ i ϕ
(n)
i −−−−−→n→+∞ ϕi (no

uniformity in the components) and the same occurs for the space Rw.

2We could have considered a system defined over Z
d and work on N after applying a bijection of Z

d

onto N.
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Forces–Perturbations. We consider two examples of maps {fi} (the force). The
first one is so called short range; fix L ≥ 1

fi ≡
∑

‖j−i‖≤L

∂ϕi
gj (2.1)

gj ≡ gj(ϕ
(L)) , ϕ(L) ≡ {ϕk}k∈Bj(L) , Bj(L) ≡ {k : ‖k − j‖ ≤ L}, ‖i − j‖ is the

Euclidean distance on N. gj are real–analytic functions from T|Bj(L)| → R and for

some positive M we have sup
j,ϕ(L)∈T

|Bj(L)| |gj(ϕ
(L))| ≤ M.

The system (1.2) with such fi is called a finite range system of infinitely many
coupled variables. A particular case, often considered, is given in d = 1 by L = 1,
gj = cos(ϕj −ϕj−1)− cos(ϕj+1 −ϕj). Note that each variable is coupled only with
a finite number of different variables

The second example is so called long range as each variable is coupled with any
other variable. In d = 1 it is given by

fi ≡ cosϕi

∑

j∈N

aj

∏

k 6=0

(1 + aj+k sin ϕi+k) ,
∑

j∈N

|aj | < ∞ (2.2)

We point out that we don’t need the existence of a function V : TN → R such
that − ∂V

∂ϕi
= fi(ϕ). For instance we could take V (ϕ) = −∑∞

i=1 mg(1 − cosϕi) +
∑∞

i=1 κ(1− cos(ϕi+1 −ϕi)) for the short range case and V (ϕ) =
∑∞

i,j=1 e−|i−j|(1−
cos(ϕi − ϕj)) for the long range. In this sense (2.2) would be the derivative of the
“function”

∑∞
n=1

∏∞
m=1(1 + am cosϕn+m). What we need well defined are certain

averages described here
Averages ([Ha] section 38, [8]). For a measurable function g: Tw → R, let’s define
the functions g[I] by means of

g[I]: T|I| → R, g[I] .
=

∫
g(ϕ)dµJ , I ⊂ N, J = N\I, dµJ =

⊗

i∈J

dµi

In Tw there exists a unique probability measure defined over the σ–algebra, R,
generated by the cylinders

RI =
⊗

i∈I⊂N

Ui

⊗

j 6∈I

Ti, Ui =
o

Ui ⊂ Ti, |I| < ∞, µ(RI) =
∏

i∈I

µi(Ui)

where µi is the normalized “Lebesgue measure” on Ti. If |I| < ∞, g[I] is a measur-
able function on T|I| and g[I] → g a.e. on T as |I| → N. For the examples in (2.1)
and (2.2) the convergence is uniform

For the infinite–dimensional vector {fi} we shall suppose that for any finite I ⊂ N

there exists a C1(T|I|; R) function, V (I)(ϕ), such that

f
[I]
i (ϕ) = −∂ϕi

V (I)(ϕ), ∀ i ∈ I , ∀ ϕ ∈ T
|I|.

We shall speak of g–gradients.

Definition. A g-gradient f is said uniformly weakly real-analytic if there exists a
real number σ > 0 such that for any finite set I ⊂ Z, V (I)(ϕ) is real-analytic on T|I|
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and can be continued: analytically to the set {z ∈ C|I| : Re zi ∈ T, |Im zi| < σ},
continuously on the closure

Function–spaces. We shall work in the analytic class. Let f : V × Tl → R, V =
o

V ⊂ Rl be an analytic function. f = f(A, ϕ) can be extended to an holomorphic

function on the complex domain D × ∆ξ ⊂ C l × C l where D =
o

D = ∪x∈V {z ∈
Cl : |z − x| < ρ} ⊃ V, ∆ξ = {z ∈ C l: Re zi ∈ T, |Im zi| < ξ}, 0 < ξ < 1. The

extension (which is called f too) is continuous on the closure D × ∆ξ. This class

of functions is denoted by Cω(D × ∆ξ; C) ∩ C(D × ∆ξ; C) and its elements can be
decomposed as

f(A, ϕ) =
∑

ν∈Nl

eiν·ϕfν,k(A) =
∑

ν∈Nl

eiν·ϕ 1

(2π)l

∫

Tl

dϕe−iν·ϕf(A, ϕ)

ν · ϕ =
∑l

i=1 νiϕi, ‖f‖ρ,ξ
.
=

∑
ν∈Nl e|ν|ξ supA∈D(Ao;ρ) |fν(A)| .

=
∑

ν∈Nl e|ν|ξ‖fν‖ρ,

|ν| =
∑l

i=1 |νi|

‖fϕ‖ρ,ξ−δ ≤ 1

eδ
‖f‖ρ,ξ, ‖fAj

‖ρ−r,ξ ≤ 1

r
‖f‖ρ,ξ, ‖fA‖ρ−r,ξ ≤ l

r
‖f‖ρ,ξ

‖fA,ϕ‖ρ−r,ξ−δ ≤ 1

δ

l

r
‖f‖ρ,ξ ‖f g‖ρ,ξ ≤ ‖f‖ρ,ξ‖g‖ρ,ξ

For a vector valued function whose components are functions in Cω(D × ∆ξ; C) ∩
C(D × ∆ξ; C), the norm is the sum of the norm of their components. For a ma-
trix valued function {M(x, y)}k

i,j=1, : D × ∆ξ → C2k we set (only for the tensorial

components)

‖M‖ .
= sup

v∈Rk;|v|=1

|M(x, y)v| = sup
v∈Rk;|v|=1

k∑

i=1

|
k∑

j=1

Mij(x, y)vj |

For a generic square matrix M =

(
M1 M2

M3 M4

)
(each block is a p × p matrix),

thinking of it as a linear operator over Rp × Rp and acting over the vectors v =

(v1, v2), v1,2 ∈ Rp with metric |v| = |v1| + ρ|v2|, we have ‖M‖ = supv 6=0
‖Mv‖
|v| =

|M1v1+M2v2+ρM3v1+ρM4v2|
|v1|+ρ|v2|

≤ ‖M1‖ + 1
ρ‖M2‖ + ρ‖M3‖ + ‖M4‖.

We shall make use also of the following notations: v = (v̂, vd) where v̂ ∈ Rd−1 or
v = (v̌, vd−1, vd) with v̌ ∈ R

d−2.
The idea of the proof in Theorem 3.1 is of “breaking” (1.2) in a sequence of finite–

dimensional systems and then work in a finite–dimensional setting. Nevertheless,
for obtaining the solution of (1.2), we have to make certain limits in suitable infinite–
dimensional function–spaces which we are going to describe.

Let be : 1) D̃N
ρ (Ao) = ⊗i∈NB(ρ; Ao

i ) ⊂ Rw, B(ρ; Ao
i ) ⊂ R is an interval centered

in Ao
i of length 2ρ 2) D̃

(k)
ρ (Ao

(k)) = ⊗k
i=1B(ρ; Ao

i ) ⊂ Rk 3)f : D̃N
ρ (Ao)×Tw → R,

f = f(A, ϕ) a function integrable respect to measure over Tw and continuous on

D̃N
ρ (Ao),
Let’s call A the vector–space of functions defined in 3). f ∈ A can be given

the Fourier series f ∼ ∑∗
ν∈ZN fν(A)eiν·ϕ where the

∑∗
means that fν(A) are zero

unless ν · ϕ =
∑k

j=1 νiϕi for some k ∈ N.
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The Fourier coefficients fν determine f almost–everywhere and viceversa when
f is integrable (everywhere when f is continuous)

f (k)(A, ϕ(k))
.
=

∫
f(A, ϕ)dµJ J = N\{1, 2, . . . , k} is well defined on D̃N

ρ (Ao) ×
Tk. By what said before, f (k)(A, ϕ(k)) can be extended to an holomorphic function of

the variables (ϕ1, ϕ2, . . . , ϕk) on the domain D̃N
ρ (Ao) × ∆ξ (∆ξ ⊂ Ck). If f (k) ∈ A

depends only on a finite number of A′
is, (A1, . . . , Ak) for instance, f (k) can be

extended to an holomorphic function also respect to these variables.
The space A can be endowed with the norm ‖f‖ξ =

∑∗
ν∈ZN supA∈D̃N

ρ(Ao) |fν(A)|e|ν|ξ
which makes it a Banach space

For a g–gradient {fi} we define ‖V (I)‖σ ≤ V(|I|) and let’s suppose that V(|I|) ≤
V(|I|+1) (otherwise V(|I|+1) = max{V(|I|), ‖V (I+1)‖σ}).
Great denominators. {hAi

}i=1,... ,l
.
= (hÂ, hAl

): Rl 7→ Rl, hÂ

.
= {hAi

}i=1,... ,l−1

For Ao ∈ Rl we will write hAo
.
= hA(Ao)

.
= {hAi

(Ao
i )}

.
= ωo.

The initial data of the system (1.2) are (Ao, ϕo) ∈ R
N×T

N and Ao is such that for
any k ≥ l−1 ≥ 1, the d–dimensional vector (hAo

1
, hAo

2
, . . . , hAo

k
)

.
= (ωo

1, ω
o
2 , . . . , ωo

k)
verifies the relation

|ω̂o · ν̂ + ωo
kνk|−1 ≤ γ

|ωo
k|

|ν| ≤ K(ωo), νk 6= 0, γ > 1 K = O(|ωo
k|1/2) (2.3)

3. Results. Let be l ≥ 2, lk = l + k, ‖V (lk)‖ξ ≤ V(lk) for V (lk)(ϕ1, . . . , ϕlk)

Theorem 3.1. Let’s consider the system (1.2) and let Ao ∈ RN be such that the
vector ωo

i = hAo
i

i = (l, l + 1, l + 2, . . . ) satisfies (k ≥ 0 integer, C and C′ universal
constants)

C

ξ

V(lk)

ρ|ωo
lk
| (k+1)3 ln6(k+2)+

C

ξ

aρ

|ωo
lk
| < 1, C

‖ωo
lk−1

‖ρ
V(lk)

( V(lk)

|ωo
lk
|ρ

)1/2
ξ−1/2 ≤ 1 (3.1)

k ≥ 1, |ωo
lk | ≥ C

(V(lk))2

(V(lk−1))2
|ωo

lk−1
| exp

{ C

k ln2(k + 1)

√
ρξ

V(l0)
|ωo

lk−1
|
}

(3.2)

There exists a transformation R∞: DN
ρ
2
(Ao)×∆N

ξ
2

→ DN
ρ (Ao)×∆N

ξ such that in the

new variables (v, u) defined by (A, ϕ) = R∞(v, u), (1.2) becomes

d

dt
ui = hvi

+
∂

∂vi

∞∑

j=0

G(lj)
nlj

(3.3)

d

dt
vi = − ∂

∂ui
(V (l−1) +

∞∑

j=0

G(lj)
nlj

) i ≤ l − 1 (3.4)

d

dt
vlm = − ∂

∂ulm

∞∑

j=m+1

G(lj)
nlj

i = l − 1 + m, m > 0 (3.5)

j ≥ 1 ‖G(lj)
nlj

‖DN
ρ
2

×∆N

ξ
2

≤ Cj2(ln4 j)
(V(lj−1))2

ξρ|ωo
lj−1

| exp
{ −C′

j ln2(j + 1)

√
ξρ|ωo

lj−1
|

V(lj−1)

}

j = 0 ‖G(l0)
nl0

‖DN
ρ
2

×∆N

ξ
2

≤ C
(V(l0))2

ξρ|ωo
l0
|

(3.6)
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The functions G
(lj)
nlj

depend on the variables (v1, v2, . . . , vlj , u1, u2, . . . , ulj−1) and
∑∞

j=0 ‖G
(lj)
nlj

‖DN
ρ
2

×∆N

ξ
2

converges. R∞ = limN→+∞ C̃(nl0
) ◦ . . . ◦ C̃(nlN−1

) ◦ C̃(nlN
).

C̃(lj) is canonical of infinitely many canonical variables but it is the identity when
acts on the variables (Alk , ϕlk) k > j.

Corollary 3.2. There exists a sequence of time–scales {tlk}, k ≥ 0,

tlk =
Cρ

V(l0)

1

(k + 2) ln2(k + 3)
exp

{ C

(k + 1) ln2(k + 2)

√
|ωo

lk
|ρξ

V(lk)

}

such that |Ai(t) − Ai(0)| ≤ Cρ, 1 ≤ i ≤ l − 1, |Alk(t) − Alk(0)| ≤ C(2k +

4)2(ln4(2k + 4)) V(lk)

|ωo
lk

|ξ k ≥ 0 for |t| ≤ tlk

Remarks i) If l = 1 all the variables ϕi are fast (not only those one with
index i ≥ l) ii) Theorem 3.1 needs the condition ωo

lk
large and then Alk(0) large

enough with k → +∞. Otherwise it would lack the perturbative character of the
problem.

To prove Theorem 3.1 we make some steps. In Theorem 4.1 we start with the

hamiltonian H0(A, ϕ) =
∑l

i=1 h(Ai)+V (l)(ϕ), and end with the hamiltonian given

by H1(A
′, ϕ′) =

∑l
i=1 h(A′

i) + V (l−1)(ϕ̂′) + R(l)(A′, ϕ′), where the important point

is that the fast variable ϕl has been confined in R(l)(A′, ϕ′) which is of order |ωo
l |

−1

With the hamiltonian H
(l)
n of Theorem 4.2, the separation of ϕl has been pushed

to O(|ωo
l |

−1
e−

√
C|ωo

l
|). This is achieved with n (integer) canonical transformations

and n increases with |ωo
l | (see (4.4)). In Corollary 4.3 we give an estimate of the

size of the canonical transformation constructed between Theorems 4.1 and 4.2.
We emphasize that ‖C̃(n) − Id‖−−−−−→n→+∞ 0 and this fact, crucial in Theorem 4.8, is

achieved because the analyticity loss in the first transformation of C̃(n) (Theorem
4.1) is large if compared with the analyticity looses in the other transformations of

C̃(n) (a trick already used by A. Neishtadt in [10]).

In the next step C̃(n) is brought inside the hamiltonian with one more d.o.f. H
(l1)
0

((4.7)) and the separation of the fast variable ϕl+1 is repeated (Theorem 4.6 and
Corollary 4.7) (exactly as for ϕl).

Now we can continue adding more and more d.o.f. and obtain each time a
canonical transformation C̃(nlk

). Finally in Theorem 4.8 we show essentially that
under some hypotheses on the frequencies (see Corollary 3.2) the composition of

all the (C̃(nlk
))′s admits the limit defining the solution of our infinite–dimensional

system

4. Intermediate Theorems, Corollaries and Proofs.

Theorem 4.1. Let’s consider the hamiltonian H0(A, ϕ) =
∑l

i=1 h(Ai) + V (l)(ϕ),

(A, ϕ) ∈ C l × ∆ξ and let Ao ∈ Rl be a point such that the vector hAo = ωo =

(ω̂o, ωo
l ) ∈ R

l satisfies (2.3) with k = l and K ≥ 1
2δ ln

δer|ωo
l |

2γV(l) , 0 < ρ ≤
√

6V(l)

a ,

r < ρ
3 . If

|ωo
l | ≥

4γ

eδ
(ar +

V(l)

r
) (4.1)

then via a suitable, canonical transformation (A, ϕ) = C(0)(A′, ϕ′), (H0◦C)(A′, ϕ′)
.
=

H1(A
′, ϕ′) =

∑l
i=1 h(A′

i) + V (l−1)(ϕ̂′) + R(l)(A′, ϕ′), (A′, ϕ′) ∈ Dρ1(A
o) × ∆ξ1 ,

‖R(l)‖ρ1,ξ1 ≤ 3γ
eδr|ωo

l
| (V(l))2, (ρ1 = ρ − 3r > 0, ξ1 = ξ − 3δ > 0)



132 PERFETTI PAOLO

Remarks i) The size of ωo
l makes ϕl a fast variable and (ω̂o, ωo

l ) non–resonant up

to order K ii) we write Dρ1(A
o) instead of D

(l)
ρ1 (Ao

(l)) (see section 2 Function–

spaces) because there is no ambiguity on the number of dimensions. iii) writing

the equations of H1(A
′, ϕ′), one can note that d

dtA
′
i(t) = − ∂

∂ϕi
V (l−1)(ϕ̂′)+O(|ωo

l |
−1)

i = 1, . . . , l − 1 which means that Ai(t) − Ai(0) = O(1) because (ϕ1, . . . , ϕl−1) are
slow variables

Proof V (l)(ϕ) = (V (l)(ϕ) − V (l−1)(ϕ̂)) + V (l−1)(ϕ̂) where

(V (l)(ϕ) − V (l−1)(ϕ̂)) =
∑

|ν|≤K
νl 6=0

eiν·ϕV
(l)
ν +

∑
|ν|>K
νl 6=0

eiν·ϕV
(l)
ν ,

Let’s define the generating function S̃(A′, ϕ) = A′ · ϕ + S(A′, ϕ), S(A′, ϕ) =
∑

ν∈N
l

|ν|≤K,νl 6=0

eiν·ϕSν(A′), Sν(A′) =
V (l)

ν

ihA′ ·ν
, that allows us to eliminate the harmonics

V
(l)
ν of order |ν| ≤ K. |A′ −Ao| ≤ |ωo

l |
2aγK implies |ω(A′) · ν| ≥ |ω(Ao) · ν| − |(ω(A′)−

ω(Ao)) · ν| ≥ |ωo
l |

γ − |(ω(A′) − ω(Ao)) · ν| ≥ 1
2
|ωo

l |
γ for all |ν| ≤ K and νl 6= 0. The

condition ρ ≤
√

6V(l)

a implies
|ωo

l |
2aργ ≥ 1

2δ ln
δer|ωo

l |

2γV(l) provided that r < ρ
3 (see the end

of the proof). r < ρ
3 guarantees

√
6V(l)

a ≤ |ωo
l |

2aγK as well. By standard calculations

(use maxt≥0 e−tδt = 1
eδ and the exponential decay with |ν| of the coefficient fν of

an analytic function on a complex strip; see [6] for instance) we have ‖Sϕ‖ρ,ξ−δ ≤
2γV(l)

eδ|ωo
l
| , ‖SA′‖ρ−r,ξ−δ ≤ 2γV(l)

r|ωo
l
| , ‖SA′ϕ‖ρ−r,ξ−δ ≤ 2γV(l)

eδr|ωo
l
| . The condition

4γV(l)

eδr|ωo
l |

≤ 1 (4.2)

is guaranteed by (4.1) and allows us to define the canonical transformation (use the
analytic–implicit function theorem (see [6])) (A, ϕ)

.
= C(A′, ϕ′) = (A′ +Ξ(A′, ϕ′), ϕ′

+∆(A′, ϕ′)) and (Ξ, ∆): Dρ−r(A
o) × ∆ξ−2δ 7→ Dρ(A

o) × ∆ξ−δ. The inverse trans-

formation is (A′, ϕ′)
.
= C(A, ϕ) = (A + Ξ(A, ϕ), ϕ + ∆(A, ϕ)), (Ξ, ∆): Dρ−2r(A

o) ×
∆ξ−δ 7→ Dρ−r(A

o) × ∆ξ

‖Ξ‖ρ−r,ξ−2δ ≤ ‖Sϕ‖ρ,ξ−δ, ‖∆‖ρ−r,ξ−2δ ≤ ‖SA′‖ρ−r,ξ−δ. (4.3)

C ◦ C = C ◦ C = Identity on the domain Dρ−3r(A
o) × ∆ξ−3δ

Putting (A, ϕ) = C(A′, ϕ′) into H0(A, ϕ) we obtain H1(A
′, ϕ′) with R(l) = f1 +f2 +

f3 and

f1 = (

l∑

i=1

(h(A′
i + Ξi) − h(A′

i) − hA′
i
· Ξi),

f2 = V (l−1)(ϕ̂′ + ∆̂) − V (l−1)(ϕ̂′),

f3 =
∑

|ν|>K
νl 6=0

eiν·(ϕ′+∆)V (l)
ν ‖f1‖ρ−3r,ξ−3δ ≤ a

l∑

i=1

‖Ξi‖2
ρ−3r,ξ−3δ

≤ a

l∑

i=1

‖Sϕj
‖2

ρ−3r,ξ−δ ≤ a(
2γ

eδ|ωo
l |
V(l))2

‖f2‖ρ−3r,ξ−3δ ≤ ‖∂V (l−1)

∂ϕ̂
‖ξ−2δ‖∆̂‖ρ−r,ξ−2δ ≤ 2γ

r|ωo
l |
V(l) 1

2δ
V(l−1)



A STABILITY RESULT FOR INFINITE SYSTEMS 133

‖f3‖ρ−3r,ξ−3δ ≤

(4.3) has been used. If 4aγr
eδ|ωo

l
| ≤ 1 (guaranteed by (4.1)) and K ≥ 1

2δ ln
δer|ωo

l |

2γV(l) we

have ‖R(l)‖ρ−3r,ξ−3δ ≤ 3γ
eδr|ωo

l
| (V(l))2 The relation

|ωo
l |

2aργ ≥ 1
2δ ln

eδr|ωo
l |

2γV(l) is equivalent

to f(x) = xV(l)

r
1

2aγρ − 1
2 lnx e

2γ ≥ 0 where x =
δr|ωo

l |

V(l) . The function f(x) has a

minimum at x = aγρr
V(l) and the value of f(x) is 1 − ln e

2
aρr
V(l) which is positive for

ρ ≤
√

6V(l)

a provided that 0 < r < ρ
3

In Corollary 4.3 we will need the following estimates on the quantities ∆ϕ′ = −(Id+
SA′ϕ)−1SA′ϕ, ∆A′ = −(Id + SA′ϕ)−1SA′A′ , ΞA′ = SA′ϕ + Sϕϕ∆A′ , Ξϕ′ =
Sϕϕ(Id + ∆ϕ′), (4.2) implies ‖(Id + SA′ϕ)−1‖ρ−r,ξ−δ ≤ 2, ‖SA′A′‖ρ−r,ξ−δ ≤
4γV(l)

r2|ωo
l
| , ‖Sϕ′ϕ′‖ρ,ξ−δ ≤ 8γV(l)

e2δ2|ωo
l
| , (use maxt≥0 t2e−tδ = 4

e2δ2 and r = ∆ρ
3 , δ = ∆ξ

3 ).

‖∆ϕ′‖ρ−r,ξ−2δ ≤ 4γV(l)

eδr|ωo
l |

=
36γV(l)

e∆ρ∆ξ|ωo
l |

≤ 36

81

1

2(n − 1)2
=

2

9

1

(n − 1)2

‖∆A′‖ρ−r,ξ−2δ ≤ 8γV(l)

r2|ωo
l |

=
8γV(l)

erδ|ωo
l |

δ

r
e ≤ 4e

9

∆ξ

∆ρ

1

(n − 1)2

‖Ξϕ′‖ρ−r,ξ−2δ ≤ 16γV(l)

e2δ2|ωo
l |

≤ 8γV(l)

erδ|ωo
l |

r

δe
≤ 8

9e

∆ρ

∆ξ

1

(n − 1)2

‖ΞA′‖ρ−r,ξ−2δ ≤ 2γV(l)

eδr|ωo
l |

+
8γV(l)

e2δ2|ωo
l |

4γV(l)

r2|ωo
l |

≤ 1

9

1

(n − 1)2
+(

2

9
)2

1

(n−1)4
=

1

3

1

(n−1)2

Let’s define ∂C =

(
Id + ΞA′ Ξϕ′

∆A′ Id + ∆ϕ′

)
. The metric in the phase–space Rl ×

T
l, is |A′ − A

′| + ρ|ϕ′ − ϕ′|. Then we have

‖∂C‖ρ1,ξ1 ≤ ‖ΞA′‖ρ1,ξ1 +
1

ρ
‖Ξϕ′‖ρ1,ξ1 + ρ‖∆A′‖ρ1,ξ1 + ‖∆ϕ′‖ρ1,ξ1

‖∂(Id−C)‖ρ1,ξ1 ≤ 1

(n−1)2
(1 + 3ρ

∆ξ

∆ρ
+

∆ρ

∆ξ

1

ρ
)

H1(A
′, ϕ′)=

l∑

i=1

h(A′
i)+V (l−1)(ϕ̂′)+<R(l)(A′, ϕ′)>l +(R(l)(A′, ϕ′)−<R(l)(A′, ϕ′)>l)

Starting with H1(A
′, ϕ′), we perform a finite number n of canonical transforma-

tion and further reduce the perturbation to order O(|ωo
l |−n). As usual n depends

on |ωo
l | in such a way that the perturbation is exponentially small respect to some

power of |ωo
l |, (1

2 in our case)
Let be:
ρj+1 = ρj − 3rj , rj = rj+1 j = 0, . . . n, ρ0

.
= ρ, ρ − ρ1 = ρ1 − ρn

.
= ∆ρ,

ξj+1 = ξj − 3δj , δj = δj+1 j = 0, . . . n, ξ0
.
= ξ, ξ − ξ1 = ξ1 − ξn

.
= ∆ξ,

The canonical transformations C and C are recalled C(0) and C̃(0).

Theorem 4.2. Let’s consider the hamiltonian H1(A
′, ϕ′), (A′, ϕ′) ∈ Dρ1(A

o) ×
∆ξ1 . If

aγ
∆ρ

∆ξ
|ωo

l |
−1 ≤ 1,

1

4
≤ 81γ

e∆ξ∆ρ
V(l) (n − 1)2

|ωo
l |

<
1

2
(4.4)
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there exist n − 1 canonical transformation (A′, ϕ′) = C(1) ◦ . . . ◦ C(n−1)(A(n), ϕ(n)),
(A(n), ϕ(n)) ∈ Dρn

(Ao) × ∆ξn
such that

(H1◦ C(1)◦. . .◦C(n−1))(A(n), ϕ(n))
.
= H

(l)
n (A(n), ϕ(n)) =

∑l
i=1 h(A

(n)
i )+V (l−1)(ϕ̂(n))

+G
(l)
n (A(n), ϕ̂(n)) + (R

(l)
n (A(n), ϕ(n))− < R

(l)
n (A(n), ϕ̂(n)) >l),

‖G(l)
n ‖ρn,ξn

≤ 6γ

δer

V(l)

|ωo
l |

, ‖R(l)
n ‖ρn,ξn

≤ 3γ

eδr

(V(l))2

|ωo
l |

exp
{
− ln 2

√
|ωo

l |
e∆ξ∆ρ

(162)γV(l)

}

Remarks i) In the spirit of Nekhoroshev theorem R
(l)
n , which depends on the fast

variable ϕ
(n)
l , is exponentially small in |ωo

l |
1/2 ii) Another feature of the Ne-

khoroshev theorem is the fact that n depends on
√
|ωo

l | and the bigger is |ωo
l |, the

bigger is n.

Proof The calculations are analogous to those employed for H0(A, ϕ). We apply
n times the same procedure, each time reducing the size of one order respect to
|ωo

l |−1. The variables (A′′, ϕ′′) play the role of the variables (A′, ϕ′). The generating

function is S̃(A′′, ϕ′) = A′′ · ϕ′ + S(A′′, ϕ′) where

S(A′′, ϕ′) =
∑

ν∈N
l,νl 6=0

|ν|≤K1

eiν·ϕ′ R
(l)
ν (A′′)

iω(A′′) · ν (4.5)

|ω(A′′) · ν|−1 ≤ γ
|ωo

l
| if |A′′ − Ao| ≤ |ωo

l |
2γaK1

, K1 ≥ 1
2δ1

ln
δ1er1|ω

o
l |

2γV(l) , (see at the end of

the proof that
|ωo

l |
2aγK1

≥
√

6V(l)

a so that |A′′ − Ao| ≤ ρ1).

ρ → ρ1, ρ1 → ρ2, ξ → ξ1, ξ1 → ξ2, K → K1 C(0) → C(1)

C(0) → C(1)
, Ξ → Ξ′, ∆ → ∆′ Ξ → Ξ

′
, ∆ → ∆

′

‖∆′‖ρ2,ξ2 ≤ ‖SA′′‖ρ1−r1,ξ1 ≤ 2γ

r1|ωo
l |
‖R(l)‖ρ1,ξ1 ≤ δ1

‖Ξ′‖ρ2,ξ2 ≤ ‖Sϕ′‖ρ1,ξ1−δ1 ≤ 2γ

eδ1|ωo
l |
‖R(l)‖ρ1,ξ1 ≤ r1

‖SA′′ϕ′‖ρ1−r1,ξ1−δ1 ≤ 2γ

er1δ1|ωo
l |
‖R(l)‖ρ1,ξ1 ≤ 1

2

‖∆′
ϕ′′‖ρ1−r1,ξ1−2δ1 ≤ 4γ

eδ1r1|ωo
l |
‖R(l)‖ρ1,ξ1 ≤ 4V(l)γ

eδ1r1|ωo
l |

3γV(l)

eδr|ωo
l |

≤ 4

19

3

4
≤ 1

6

‖∆′
A′′‖ρ1−r1,ξ1−2δ1 ≤ 4γ

r2
1 |ωo

l |
‖R(l)‖ρ1,ξ1 ≤ 4γV(l)

r2
1 |ωo

l |
3γV(l)

eδr|ωo
l |

≤ 4

19

eδ1

r1

3

4
≤ 1

2

δ1

r1

‖Ξ′
ϕ′′‖ρ1−r1,ξ1−2δ1 ≤ 4γ

e2δ2
1 |ωo

l |
‖R(l)‖ρ1,ξ1 ≤ 4γV(l)

e2δ2
1 |ωo

l |
3γV(l)

eδr|ωo
l |

(1+
1

6
)≤ 4r1

19eδ1

3

4

7

6
≤ 1

10

r1

δ1

‖Ξ′
A′′‖ρ1−r1,ξ1−2δ1 ≤ 2γ

eδ1r1|ωo
l |
‖R(l)‖ρ1,ξ1 +

4γ

e2δ2
1 |ωo

l |
‖R(l)‖ρ1,ξ1

4γ

r2
1 |ωo

l |
‖R(l)‖ρ1,ξ1

≤ 1

2

3

4
+

1

10

r1

δ1

1

2

δ1

r1
≤ 1

2

‖∂(Id − C)‖ρ1,ξ1 ≤ 17

40
+

1

ρ2

r1

10δ1
+ ρ2

9

19

δ1

r1
+

3

19
≤ 2

3
+

1

ρ2

r1

10δ1
+ ρ2

9

19

δ1

r1
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The new hamiltonian is

H
(l)
2 (A′′, ϕ′′)

.
= H

(l)
1 ◦ C(1)(A′′, ϕ′′) =

l∑

i=1

h(A′′) + V (l−1)(ϕ̂′′)+ < R(l)(A′′, ϕ̂′′) >l

+ < R
(l)
1 (A′′, ϕ̂′′) >l +(R

(l)
1 (A′′, ϕ′′)− < R

(l)
1 (A′′, ϕ̂′′) >l)

R
(l)
1 (A′′, ϕ′′) =

5∑

i=1

fi(A
′′, ϕ′′)

f1 = (V (l−1)(ϕ̂′′ + ∆̂′) − V (l−1)(ϕ̂′′)),

‖f1‖ρ2,ξ2 ≤ ‖∂V (l−1)

∂ϕ̂′′
‖ξ1−2δ1‖∆̂′‖ρ2,ξ2 ≤ V(l−1)

2δ1e

2γ

r1|ωo
l |
‖R(l)‖ρ2,ξ2

f2 =< R(l)(A′′ + Ξ′, ϕ̂′′ + ∆̂′) >l − < R(l)(A′′, ϕ̂′′) >l

‖f2‖ρ2,ξ2 ≤ ‖∂ < R(l) >l

∂A′′
‖ρ1−2r1,ξ2‖Ξ′‖ρ2,ξ2 + ‖∂ < R(l) >l

∂ϕ̂′′
‖ρ1−2r1,ξ2‖∆′‖ρ2,ξ2

≤ 2γ

eδ1r1|ωo
l |
‖R(l)‖2

ρ1,ξ1

f3 =
∑

ν:νl 6=0
|ν|≤K1

eiν(ϕ′′+∆′)(R(l)
ν (A′′ + Ξ′) − R(l)

ν (A′′)),

‖f3‖ρ2,ξ2 ≤ γ

eδ1r1|ωo
l |
‖R(l)‖2

ρ1,ξ1

f4 =
∑

ν:νl 6=0
|ν|>K1

eiν(ϕ′′+∆′)R(l)
ν (A′′ + Ξ′), ‖f4‖ρ2,ξ2 ≤ e−2δ1K1‖R(l)‖2

ρ1,ξ1

f5 = (
l∑

i=1

(h(A′′
i + Ξ′) − h(A′′

i ) − hA′′
i
Ξ′

i), ‖f5‖ρ2,ξ2 ≤ a(
2γ

eδ1|ωo
l |

)2‖R(l)‖2
ρ1,ξ1

The conditions aγr1

eδ1|ωo
l
| ≤ 1 (see the analogous one in the previous theorem) and

K1 ≥ 1
2δ1

ln
eδ1r1|ω

o
l |

8γV(l) give ‖R(l)
1 ‖ρ2,ξ2 ≤ 9γ

e
V(l)

δ1r1|ωo
l
|‖R(l)‖ρ1,ξ1 while 18γ

e
V(l)

δ1r1|ωo
l
| ≤ 1

implies ‖ < R(l) + R
(l)
1 >l ‖ρ2,ξ2 ≤ 3γ

eδr|ωo
l
|(V(l))2.

All the conditions on |ωo
l | and (4.1) are implied by 4γ

eδ1r1

1
|ωo

l
|‖R(l)‖ρ1,ξ1 + aγr1

eδ1|ωo
l
| +

18γ
e

V(l)

δ1r1e|ωo
l
| ≤ 1 which in turn is implied by 2

3
γ

eδ1r1|ωo
l
|V(l)+ aγr1

eδ1|ωo
l
| +

18γ
e

V(l)

δ1r1e|ωo
l
| ≤ 1

(18γ
e

V(l)

δ1r1|ωo
l
| ≤ 1 and δ1r1 ≤ δr have been taken into account). Thus all the lower

bounds on |ωo
l | are implied by

19
γ

e

V(l)

δ1r1|ωo
l |

+
arγ

eδ

1

|ωo
l |

≤ 1. (4.6)

Suppose to have a finite family of hamiltonians H
(l)
j (A(j), ϕ(j)) =

∑l
i=1 h(A

(j)
i ) +

V (l−1)(ϕ̂(j))+G
(l)
j (A(j), ϕ̂(j))+(R

(l)
j (A(j), ϕ(j))− < R

(l)
j (A(j), ϕ̂(j)) >l) and a set of

canonical transformations C(j) such that (A(j), ϕ(j)) = C(j)(A(j+1), ϕ(j+1)), 1 ≤
j ≤ n, C(j−1)(A(j), ϕ(j)) = (A(j) + Ξ(j−1), ϕ(j) + ∆(j−1)). H1 ◦ C(1) ◦ . . . ◦
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C(n−1))(A(j), ϕ(j)) = H
(l)
j (A(j), ϕ(j)), G

(l)
0 ≡ 0, G

(l)
j = G

(l)
j−1+ < R

(l)
j >l, R

(l)
0 ≡

0 1 ≤ j ≤ n.
If S(k−1)(A(k), ϕ(k)) is the function involved in the construction of the canonical

transformation (see (4.5)), we have the estimates

‖S(j−1)

A(j)ϕ(j−1)‖ρj−1−rj−1,ξj−1−δj−1 ≤ 2γ

eδj−1rj−1|ωo
l |
‖R(l)

j−1‖

‖∆(j−1)‖ρj ,ξj
≤ 2γ

rj−1|ωo
l |
‖R(l)

j−1‖ρj−1,ξj−1 ,

‖Ξ(j−1)‖ρj,ξj
≤ 2γ

eδj−1|ωo
l |
‖R(l)

j−1‖ρj−1,ξj−1

Taking δj = ∆ξ
3(n−1) , rj = ∆ρ

3(n−1) , for any j > 0, it follows

‖R(l)
n ‖ρn,ξn

≤ 3γ

δre

(V(l))2

|ωo
l |

( 81γV(l)(n − 1)2

e(ξ1 − ξn)(ρ1 − ρn)|ωo
l |

)n−1

By the second of (4.4)
|ωo

l |e∆ξ∆ρ

324γV(l) ≤ (n − 1)2 <
|ωo

l |e∆ξ∆ρ

162γV(l) we have

‖R(l)
n ‖ρn,ξn

≤ 3γ

eδr

(V(l))2

|ωo
l |

exp
{
− ln 2

(
|ωo

l |
e∆ξ∆ρ

(162)γV(l)

)1/2}

aγ ∆ρ
∆ξ |ωo

l |
−1 ≤ 1 implies (4.6) when the second of (4.4) is used to replace the product

δ1r1 in terms of |ωo
l |. Moreover the second of (4.4) implies

‖R(l)
n ‖ρn,ξn

≤ 3

18
V(l).‖R(l)

j−1‖ρj−1,ξj−1 ≤ 3γ

δer
(V(l))2

1

|ωo
l |

(V(l) 9γ

e|ωo
l |

)j−2Πj−2
i=1 (δiri)

−1

≤ 6γ(V(l))2

eδr|ωo
l |

2−j+1 ≤ 2

3

V(l)

(n − 1)2
2−j

‖∆(j−1)

ϕ(j) ‖ρj ,ξj
≤ 2γ

eδj−1rj−1|ωo
l |
‖R(l)

j−1‖ρj−1,ξj−1 ≤ 4(
9(n− 1)2V(l)γ

e∆ρ∆ξ|ωo
l |

)
2

3

2−j

(n − 1)2

≤ 4

18

2

3

2−j

(n − 1)2
=

4

27

2−j

(n − 1)2

‖∆(j−1)

A(j) ‖ρj ,ξj
≤ 8γ

r2
j−1|ωo

l |
‖R(l)

j−1‖ρj−1,ξj−1 ≤ 72e

2 · 81

δj−1

rj−1

2

3

2−j

(n − 1)2
≤ 2−j

(n − 1)2

‖Ξ(j−1)

ϕ(j) ‖ρj ,ξj
≤ 16γ

e2δ2
j−1|ωo

l |
‖R(l)

j−1‖ρj−1,ξj−1 ≤ rj−1

eδj−1

16 · 9
2 · 81e

2

3

2−j

(n−1)2
=

16

27

rj−1

eδj−1

2−j

(n−1)2

‖Ξ(j−1)

A(j) ‖ρj ,ξj
≤ 2

27

2−j

(n − 1)2
+

16

27

rj−1

eδj−1

2−j

(n − 1)2
2−j

(n − 1)2
δj−1

rj−1
≤ 2

3

2−j

(n − 1)2

‖∂(Id − C(j−1))‖ρj ,ξj
≤ 1

(n − 1)22j
(1 +

1

ρ

rj−1

δj−1
+ ρ

δj−1

rj−1
)

The presence of (n− 1)2 at denominator will be essential (see Theorem 4.8) and is
due to the fact that δ0, r0, is much greater than respectively δj and rj for j > 0 (in
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fact they are n independent)

‖G(l)
j+1‖ρj ,ξj

≤ 3γ

δer
(V(l))2

1

|ωo
l |

j∑

k=0

(9γ

e

V(l)

δ1r1|ωo
l |

)k

‖G(l)
j+1‖ρj ,ξj

≤ 3γ

δer
(V(l))2

1

|ωo
l |

j∑

k=0

(
1

2
)k ≤ 6γ

δer
(V(l))2

1

|ωo
l |

≤ 6

18
V(l)

(using the second of (4.4))

‖R(l)
j+1‖ρj,ξj

≤ 3γ

δer
(V(l))2

1

|ωo
l |

(V(l) 9γ

e|ωo
l |

)jΠj
k=1(δkrk)−1.

Now we prove that
|ωo

l |
2aγK1

≤ |ωo
l |

2aγK . It is equivalent to K1 ≥ K and then (n −
1) ln( e∆ξ∆ρ

9γV(l)(n−1)2
|ωo

l |) ≥ ln(
e∆ξ∆ρ|ωo

l |

9γV(l) ). Let’s call B =
e∆ξ∆ρ|ωo

l |

9γV(l)(n−1)2
, 18 < B ≤ 36

and the inequality becomes (n − 2) lnB ≥ 2 ln(n − 1) which is true if n ≥ 2.

The last proof is
|ωo

l |
2aγK1

≥
√

6V(l)

a which is equivalent to r1 ≤
√

2
3
V(l)

a . The

following chain r1 < r < ρ
3 < 1

3

√
6V(l)

a

Corollary 4.3. Let’s consider the canonical transformation C̃(n): Dρn
(Ao)×∆ξn

→
Dρ(A

o)×∆ξ of the Theorem 4.2. We have ‖∂C̃(n)‖ρn,ξn
≤ e

2Tl0
(n−1)2 (Tl0 is a con-

stant depending only on l0, ρ, ξ).

Proof We make use of: 1) ‖Ξ(0)‖ρ1,ξ1 ≤ 2γV(l)

eδ|ωo
l
| and 2)

n−1∑

k=1

2γ

eδk|ωo
l |
‖R(l)

k ‖ρk,ξk
≤

n−1∑

k=1

2γ

eδk|ωo
l |

3γ

δer

(V(l))2

|ωo
l |

(9γV(l)

e|ωo
l |

)k
Πk

h=1(δhrh)−1

=
n−1∑

k=1

6γ2(V(l))2

e2δr|ωo
l |2

[9γV(l)

e|ωo
l |

9n2

∆ξ∆ρ

]k+1 ∆ρ

3n

e|ωo
l |

9γV(l)
≤ (∆ρ)γV(l)

9neδr|ωo
l |

n−1∑

k=1

2−k =
(∆ρ)γV(l)

9neδr|ωo
l |

≤ (∆ρ)γV(l)

9eδr|ωo
l |

=
γV(l)

3eδ|ωo
l |

‖∂C(0)‖ρ1,ξ1 ≤ 1 +
1

(n − 1)2
(1 + 3ρ

e∆ξ

∆ρ
+

∆ρ

e∆ξ

1

ρ
)(seeafterTheorem4.1)

‖∂C(j)‖ρj+1,ξj+1 ≤ 1+
1

(n − 1)22j
(1+

1

ρ

rj

δj
+ρ

δj

rj
) = 1+

1

(n − 1)22j
(1+

1

ρ

∆ρ

∆ξ
+ρ

∆ξ

∆ρ
)

‖∂C̃(n)‖ρn,ξn
≤ Πn−1

j=0 ‖∂C(j)‖ρj+1,ξj+1 ≤ e
2Tl0

(n−1)2 , Tl0 = (1 + 3e
1

ρ

∆ρ

∆ξ
+ ρ

∆ξ

e∆ρ
).

Now we must pass from the hamiltonian with l d.o.f. to the hamiltonian with
l + 1 d.o.f.; then to l + 2 d.o.f. and so on. Let be lk = l + k. Change variables

(Â, ϕ̂, Al1 , ϕl1) → (A(n), ϕ(n), Al1 , ϕl1);

(Â, ϕ̂) = C(0) ◦ C̃(n)(A(n), ϕ(n)), (A(n), ϕ(n)) ∈ Dρn
(Ao) × ∆ξn

are those of the hamiltonian H
(l)
n in Theorem 4.2. Al1 ∈ R, ϕl1 ∈ ∆ξn

;
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The hamiltonian H̃
(l1)
0 (A, ϕ)

.
=

∑l1
i=1 h(Ai) + V (l0)(ϕ̂) + (V (l1)(ϕ) − V (l0)(ϕ̂)),

becomes

l0∑

i=1

h(A
(n)
i ) + h(Al1) + V (l−1)(ϕ̂(n)) + G(l0)

n (A(n), ϕ̂(n)) + (R(l0)
n (A(n), ϕ(n))−

− < R(l0)
n (A(n), ϕ̂(n)) >l0) + (V (l1)(ϕ̂(A(n), ϕ(n)), ϕl1) − V (l0)(ϕ̂(A(n), ϕ(n)))

(4.7)

Let’s recall (A(n), Al1)
.
= (A1, . . . , Al1), (ϕ(n), ϕl1)

.
= (ϕ1, . . . , ϕl1); we rewrite (4.7)

as

H
(l1)
0 (A, ϕ) =

l1∑

i=1

h(Ai) + V (l0−1)(ϕ̌) + G(l0)
n (Â, ϕ̌) + (R(l0)

n (Â, ϕ̂)−

− < R(l0)
n (Â, ϕ̌) >l0) + (Ṽ (l1)(Â, ϕ) − Ṽ (l0)(Â, ϕ̂))

(4.8)

The following theorem is analogous to Theorem 4.1 but with one more degree of
freedom.

Theorem 4.4. Let’s consider the hamiltonian (4.8) with (A, ϕ) ∈ Dρn
(Ao) × ∆ξn

.
Let Ao ∈ Rl1 be a point such that the vector hAo = (ω̂o, ωo

l1
) satisfies |ωo ·ν|−1 ≤ γ

|ωo
l1
|

for |ν| ≤ K ′, νl1 6= 0, K ′ ≥ 1
2δ

ln
rδre|ωo

l1
|

2γV(l1) . If

|ωo
l1 | ≥

4γ

eδ
(ar +

V(l1)

r
) (4.9)

then via a suitable canonical transformation (A, ϕ) = C(0)(A′, ϕ′),

(A′, ϕ′) ∈ Dρ1
(Ao) × ∆ξ1

, ρ = ρn, ξ = ξn, ρ1 = ρ − 3r, ξ1 = ξ − 3δ

H
(l0)
1 ◦ C(0)(A′, ϕ′) = H

(l1)
1 (A′, ϕ′) =

l1∑

i=1

h(A′
i) + V (l−1)(ϕ̌′) + G

(l1)
1 (A′, ϕ̂′)+

+ R
(l1)
1 (A′, ϕ′)− < R

(l1)
1 (A′, ϕ̂′) >l

(4.10)

G
(l1)
1 (A′, ϕ̂′) = G(l0)

n (Â′, ϕ̌′) + R(l0)
n (Â′, ϕ̂′)− < R(l0)

n (Â′, ϕ̌′) >l0 + < R
(l1)
1 (A′, ϕ̂′) >l1

R
(l1)
1 =

10∑

i=1

fiandf1 = (V (l0−1)(ϕ̌′ + ∆̌) − V (l0−1)(ϕ̌′),

f2 = (G(l0)
n (Â′ + Ξ̂, ϕ̌′ + ∆̌) − G(l0)

n (Â′ + Ξ̂, ϕ̌′))

f3 = (G(l0)
n (Â′ + Ξ̂, ϕ̌′) − G(l0)

n (Â′, ϕ̌′))

f4 = (R(l0)
n (Â′ + Ξ̂, ϕ̂′ + ∆̂) − R(l0)

n (Â′ + Ξ̂, ϕ̂′))

f5 = (< R(l0)
n (Â′ + Ξ̂, ϕ̌′ + ∆̌) >l0 − < R(l0)

n (Â′ + Ξ̂, ϕ̌′) >l0)

f6 = (R(l0)
n (Â′ + Ξ̂, ϕ̂′) − R(l0)

n (Â′, ϕ̂′))

f7 = (< R(l0)
n (Â′ + Ξ̂, ϕ̌′) >l0 − < R(l0)

n (Â′, ϕ̌′) >l0)

f8 =
∑

ν∈N
l1

νl1
6=0 |ν|>K′

eiν·(ϕ′+∆)Ṽ (l1)
ν (Â′ + Ξ̂)
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f9 =
∑

ν∈N
l1

νl1
6=0 |ν|≤K′

eiν·(ϕ′+∆)(Ṽ (l1)
ν (Â′ + Ξ̂) − Ṽ (l1)

ν (Â′))

f10 =

l1∑

i=1

(h(A′
i + Ξi) − h(A′

i) − hA′
i
Ξi)

‖R(l1)
1 ‖ρ1,ξ1

=
6γ

eδr|ωo
l1
|
(V(l1))2

Remarks The variable ϕ′
l is present in R

(l0)
n (Â′, ϕ̌′) and < R

(l1)
1 (A′, ϕ̂′) >l1 . But

the first is exponentially small in
√
|ωo

l | while the second is O(|ωo
l1
|−1). This forces

us to take |ωo
l1
| exponentially small respect to |ωo

l | in order to get ϕl(t) ∼ ϕo
l + ωo

l t
for a time exponentially–long.

Proof The proof is similar to that of Theorem 4.1 so we omit it.

We rewrite the hamiltonian (4.10) as

H
(l1)
1 (A′, ϕ′) =

l+1∑

i=1

h(A′
i) + V (l−1)(ϕ̌′) +

(
G(l0)

n (Â′, ϕ̌′) + R(l0)
n (Â′, ϕ̂′)

− < R(l0)
n (Â′, ϕ̌′) >l + < R

(l1)
1 (A′, ϕ̂′) >l1

)
+ R

(l1)
1 (A′, ϕ′)− < R

(l1)
1 (A′, ϕ̂′) >l1

H
(l1)
1 (A′, ϕ′) =

l+1∑

i=1

h(A′
i) + V (l−1)(ϕ̌′) + G(l0)

n (Â′, ϕ̌′) + G
(l1)
1 (A′, ϕ̂′) + R̂

(l1)
1 (A′, ϕ′)

(4.11)

For a generic function G(A, ϕ) we set Ĝ(A, ϕ)
.
= G(A, ϕ)− < G(A, ϕ) >lm ϕ

.
=

(ϕ1, . . . , ϕm) m integer.‖R(l1)
1 ‖ρ1,ξ1

≤ 6γ

eδr

(V(l1))2

|ωo
l1
| ≤ 3

2V(l1) using (4.9)

‖G(l0)
n ‖ρn,ξn

≤ 6γ

δer
(V(l))2

1

|ωo
l |

‖G(l1)
1 ‖ρ1,ξ1

≤ 2‖R(l0)
n ‖ρn,ξn

+ ‖R(l1)
1 ‖ρ1,ξ1

≤ 2γ

eδr

(V(l))2

|ωo
l |

exp
{
− ln 2

√
|ωo

l |
e∆ξ∆ρ

(162)γV(l)

}
+

6γ

eδr

(V(l1))2

|ωo
l1
|

.
= P (l1) +

6γ

eδr

(V(l1))2

|ωo
l1
| P (l0) ≡ 0.

Theorem 4.5. Let’s consider the hamiltonian (4.11). If 6γar1c

e|ωo
l
|δ1

≤ 1 and 9V(l1)γ

eδ1r1|ωo
l1
|
≤

1, there exists a canonical transformation

(A′, ϕ′) = (A′′ + Ξ′, ϕ′′ + ∆′)
.
= C(1)(A′′, ϕ′′)(A′′, ϕ′′) ∈ Dρ2

(Ao) × ∆ξ2

such that

H
(l1)
1 ◦ C(1)(A′′, ϕ′′)

.
= H

(l1)
2 (A′′, ϕ′′) =

l+1∑

i=1

h(A′′
i ) + V (l−1)(ϕ̌′′) + G(l0)

n (Â′′, ϕ̌′′)

+ G
(l1)
2 (A′′, ϕ̂′′) + R̂

(l1)
2 (A′′, ϕ′′)
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where G
(l1)
2 = G

(l1)
1 + < R̂

(l1)
2 >l1 , R

(l1)
2 (A′′, ϕ′′) =

∑12
i=1 fi and

f1 = V (l−1)(ϕ̌′′ + ∆̌′) − V (l−1)(ϕ̌′′),

f2 = G(l0)
n (Â′′ + Ξ̂′, ϕ̌′′ + ∆̌′) − G(l0)

n (Â′′ + Ξ̂′, ϕ̌′′)

f3 = G(l0)
n (Â′′ + Ξ̂′, ϕ̌′′) − G(l0)

n (Â′′, ϕ̌′′)

f4 = R(l0)
n (Â′′ + Ξ̂′, ϕ̂′′ + ∆̂′) − R(l0)

n (Â′′ + Ξ̂′, ϕ̂′′)

f5 = R(l0)
n (Â′′ + Ξ̂′, ϕ̂′′) − R(l0)

n (Â′′, ϕ̂′′)

f6 =< R(l0)
n (Â′′ + Ξ̂′, ϕ̌′′ + ∆̌′) − R(l0)

n (Â′′ + Ξ̂′, ϕ̌′′) >l

f7 =< R(l0)
n (Â′′ + Ξ̂′, ϕ̌′′) − R(l0)

n (Â′′, ϕ̌′′) >l

f8 =< R
(l1)
1 (A′′ + Ξ′, ϕ̂′′ + ∆̂′) >l1 − < R

(l1)
1 (A′′ + Ξ′, ϕ̂′′) >l1

f9 =< R
(l1)
1 (A′′ + Ξ′, ϕ̂′′) >l1 − < R

(l1)
1 (A′′, ϕ̂′′) >l1

f10 =
∑

ν∈N
l1

νl1
6=0 ,|ν|>K′

1

eiν·(ϕ′′+∆′)R
(l1)
1 (A′′ + Ξ′)

f11 =
∑

ν∈N
l1

νl1
6=0 ,|ν|≤K′

1

eiν·(ϕ′′+∆′)(R
(l1)
1,ν (A′′ + Ξ′) − R

(l1)
1,ν (A′′))

f12 =

l1∑

i=1

(h(A′′
i + Ξ′

i) − h(A′′
i ) − hA′′

i
Ξ′

i)

Proof It is the same as that one of Theorem 4.2

Theorem 4.6. Let’s consider the hamiltonian H̃
(l1)
0 , together with (4.9).If

1

4
≤ 81γV(l1)

e∆ξ∆ρ

(nl1 − 1)2

|ωo
l1
| <

1

2
aγ

∆ρ

∆ξ
|ωo

l1 |
−1 ≤ 1

there exists the canonical transformation

(A, ϕ) = C̃(nl1
)(A(nl1

), ϕ(nl1
)), (A(nl1

), ϕ(nl1
)) ∈ Dρnl1

(Ao) × ∆ξnl1

such that

(H̃
(l1)
0 ◦ C̃(nl1

))(A(nl1
), ϕ(nl1

))
.
= H(l1)

nl1
(A(nl1

), ϕ(nl1
)) =

l+1∑

j=1

h(A
(nl1

)

j )

+ V (l−1)(ϕ̌(nl1
)) + G(l0)

nl0
(Â(nl1

), ϕ̌(nl1
)) + G(l1)

nl1
(A(nl1

), ϕ̂(nl1
)) + R(l1)

nl1
(A(nl1

), ϕ(nl1
))

‖G(l1)
nl1

‖ρnl1
,ξnl1

≤ P (l1) +
18γ

eδr

(V(l1))2

|ωo
l1
|

‖R(l1)
nl1

‖ρnl1
,ξnl1

≤ 6V(l1)γ

eδr|ωo
l1
|
(
9V(l1)γ

e|ωo
l1
| )nl1 Π

nl1
−1

h=1 (δhrh)−1

‖R(l1)
nl1

‖ρnl1
,ξnl1

≤ 6γ

eδr

(V(l1))2

|ωo
l1
| exp

{
− ln 2

√

|ωo
l1
| e∆ξ∆ρ

(216)γV(l1)

}
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Proof Apply enough times the Theorem 4.5

Corollary 4.7. Let’s consider the transformation C̃(nl1
): Dρnl1

(Ao) × ∆ξnl1

→

Dρ(A
o)×∆ξ of Theorem 4.6. Then we have ‖∂C̃(nl1

)‖ρnl1
,ξnl1

≤ e

2Tl1
(nl1

−1)2 (Tl1 =

(1 + 6e 1
ρ

∆ρ

∆ξ
+ ρ ∆ξ

e∆ρ
).

Remarks We impose ρnl1
≥ ρ

2 and this explains the 6 in place of 3 (see Corollary

4.3).

Proof Same as in Corollary 4.3. It changes slightly only Tl1 respect to Tl0

Let’s define some quantities we are going to use.

1) lk
.
= l+k, l0 = l, 2) ρ

(lk)
i 0 ≤ i ≤ nlk , 3) ξ

(lk)
i 0 ≤ i ≤ nlk , 4) H̃

(lk)
0 (A, ϕ)

.
=∑lk

i=1 h(Ai) + V (lk)(ϕ), ϕ ∈ Tlk , 5) nlk ∈ N nl0
.
= n (the n of Theorem 4.2), 6)

K
(lk)
i 0 ≤ i ≤ nlk (K

(l0)
0

.
= K of Theorem 4.1, K

(l0)
1

.
= K1 of Theorem 4.2), 7)

C̃(nlk
) .

= C(0)
lk

◦ C(1)
lk

◦ C(2)
lk

. . . ◦ C(nlk
−1)

lk
(C(0)

l0
is the transformation of Theorem 4.1,

C(1)
l0

is one of the transformations of Theorem 4.2). Tlk ≤ Tl1 of Corollary 4.7.

Let’s define for k ≥ 0,

S =
∞∑

k=0

1

(k + 1) ln2(k + 2)
,

ξ(lk)
nlk

− ξ(lk+1)
nlk+1

=
1

(k + 1) ln2(k + 2)

1

2

ξ(l0)

S
= 2∆ξ(lk),

ξ(lk) − ξ
(lk)
1 =

1

4

ξ(l0)

S

1

(k + 1) ln2(k + 2)
= ∆ξ(lk),

δ
(lk)
j =

∆ξ(lk)

3(nlk − 1)
, 1 ≤ j ≤ nlk−1,

ξ
(lk)
j ≥ 1

2
ξ(l0), δ

(lk)
0 =

1

3
∆ξ(lk),

ρ(lk)
nlk

− ρ(lk+1)
nlk+1

=
1

(k + 1) ln2(k + 2)

1

2

ρ(l0)

S
= 2∆ρ(lk),

ρ(lk) − ρ
(lk)
1 =

1

4

ρ(l0)

S

1

(k + 1) ln2(k + 2)
= ∆ρ(lk),

r
(lk)
j =

∆ρ(lk)

3(nlk − 1)
, 1 ≤ j ≤ nlk−1,

ρ
(lk)
j ≥ 1

2
ρ(l0), ρ

(lk)
0 =

1

3
∆ρ(lk),

For example ρ = ρ0 = ρ
(l0)
0 , ρ = ρ

(l1)
0 , ξ = ξ0 = ξ

(l0)
0 , ξ = ξ

(l1)
0 , ∆ξ = ξ(l1) −

ξ
(l1)
1 , ∆ρ = ρ(l1) − ρ

(l1)
1 ., K

(lk)
j = 1

δ
(lk)

j

ln
eδ

(lk)

j r
(lk)

j V(lk)

2γ|ωo
lk

|

For each k ≥ 0 we have the relations 1
4 ≤ 81γV(lk)(nll

−1)2

e∆ξ(lk)∆ρ(lk)|ωo
lk

|
< 1

2 , aγ ∆ρ(lk)

∆ξ(lk) |ωo
lk
|−1 ≤
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1, |ωo
lk
| ≥ 4γ

eδ
(lk)

0

(ar
(lk)
0 + V(lk)

r
(lk)

0

), ‖∂C̃(nlk
)‖ρnlk

,ξnlk

≤ e

2Tlk
(nlk

−1)2 , Tlk = Tl1 for any

k ≥ 1.
It follows that there exists a universal constant B0 such that (being nlk ≥ 2)

B0
V(lk)

ξ
(l0)
0 ρ

(l0)
0

(k + 1)3 ln6(k + 2)

|ωo
lk
| + B0a

ρ
(l0)
0

ξ
(l0)
0

1

|ωo
lk
| < 1

and

nlk ≥ 1 +

[
(B1|ωo

lk
|ξ(l0)

0 ρ
(l0)
0 )1/2

(k + 1) ln2(k + 2)

]
≥ [B2(k + 1)1/2 ln(k + 2)] (4.12)

(2.3) sets a strong restriction on how small the frequencies ωo
lk

could be.

H(lk)
nlk

(A(nlk
), ϕ(nlk

)) =

l+k∑

j=1

h(A
(nlk

)

j ) + V (l−1)(ϕ
(nlk

)

1 , . . . , ϕ
(nlk

)

l−1 )+

+

k∑

j=0

G(lj)
nlj

(A
(nlk

)

1 , . . . , A
(nlk

)

lj
, ϕ

(nlk
)

1 , . . . , ϕ
(nlk

)

lj−1 ) + R(lk)
nlk

(A(nlk
), ϕ(nlk

))

(4.13)

‖G(lj)
nlj

‖
ρ
(lj)
nlj

,ξ
(lj)
nlj

≤ P (lj) +
18γ

eδ
(lj)
0 r

(lj)
0

(V(lj))2

|ωo
lj
|

P (lj+1) =
2γ(V(lj))2

eδ
(lj)
0 r

(lj)
0 |ωo

lj
|
exp

{
− ln 2

√

|ωo
lj
|e∆ξ(lj)∆ρ(lj)

(162)γV(lj)

}

‖R(lk)
nlk

‖ρnlk
,ξnlk

≤ 6γ

eδ
(lk)
0 r

(lk)
0

(V(lk))2

|ωo
lk
| exp

{
− ln 2

√

|ωo
lk
|e∆ξ(lk)∆ρ(lk)

(216)γV(lk)

}

In the variables (A(lk), ϕ(lk)) the system is

d

dt
ϕ

(lk)
i = h

A
(lk)

i

+
∂

∂A
(lk)
i

k∑

j=0

G(lj)
nlj

+
∂

∂A
(lk)
i

R(lk)
nlk

(4.14)

If i ≤ l − 1 we have

d

dt
Ai

(lk) = − ∂

∂ϕ
(lk)
i

(V (l−1) +

k∑

j=0

G(lj)
nlj

+ R(lk)
nlk

) (4.15)

if i > l − 1, i = l − 1 + m, m ≤ k we have

d

dt
Ai

(lk) = − ∂

∂ϕ
(lk)
i

(
k∑

j=m+1

G(lj)
nlj

+ R(lk)
nlk

) (4.16)

Let’s consider the sequence of transformations {C̃(nlk
)}, k = 0, 1, . . . whose domain

is DN
ρ
2
(Ao) × ∆N

ξ
2

⊂ CN × CN. Define RN : DN
ρ
2
(Ao) × ∆N

ξ
2

→ ClN × ClN , RN
.
=
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C̃(nl0
) ◦ . . . ◦ C̃(nlN−1

) ◦ C̃(nlN
), RN = (R(A)

N ,R(ϕ)
N ), R(A)

N = {R(A)
N }i, R(ϕ)

N = {R(ϕ)
N }i

i = 1, . . . , lN . Note that the functions (R(ϕ)
N )i and (R(A)

N )i are analytic on the

larger domain DρlN
(Ao

(lN ))×∆ξlN
and continuous on DρlN

(Ao
(lN ))×∆ξlN

, Ao
(lN ) =

(Ao
1, A

o
2, . . . , Ao

lN
).

Theorem 4.8 For each i ∈ N the following four limits are defined uniformly

in DN
ρ
2
(Ao) × ∆N

ξ
2

for N → +∞: 1) (R(A)
N )i 2) (R(ϕ)

N )i 3) d
dt (R

(A)
N )i 4)

d
dt (R

(ϕ)
N )i.

Remarks i) Observe that R∞
.
= limN→+∞{(R(A)

N )i, (R(ϕ)
N )i}i∈N

.
= (A, ϕ) ∈

(CN, CN) defines the action–angle variables of the equations (1.2); (A, ϕ) = R∞
.
=

(P(v, u),Q(v, u)). There is no uniformity respect to i ii) ui
.
= limN→∞ ϕ

(lN )
i

and vi
.
= limN→∞ A

(lN )
i iii) In (4.17) becomes apparent that without the factor

(nlk − 1)−2 the limits do not exist and the presence of the factor is due to the

different choice of the first analyticity loss: δ
(lk)
i and r

(lk)
i i ≥ 1, much smaller

respectively than δ
(lk)
0 and r

(lk)
0 (see after Corollary 4.7)

Proof We show that (R(A)
N )i and (R(ϕ)

N )i are Cauchy sequences defined in DN
ρ
2
(Ao)×

∆N
ξ
2

and then define (Pi,Qi) being in the space A which is complete

‖(R(A)
N+1)i − (R(A)

N )i‖ ρ
2 , ξ

2
≤ ‖(R(A)

N+1)i − (R(A)
N )i‖ρlN+1

,ξlN+1

≤ ΠN
k=0‖∂C̃(nlk

)‖ρlk
,ξlk

|(C̃(nlN+1
))

(A)
i − A

(nlN
)

i |

≤ (Π∞
k=0 exp{ 2Tlk

(nlk − 1)2
})(exp{ 2TlN+1

(nlN+1 − 1)2
} − 1)

≤ B3(exp{ 2TlN+1

(nlN+1 − 1)2
} − 1)

(4.17)

and the same occurs for ‖(R(ϕ)
N+1)i − (R(ϕ)

N )i‖ ρ
2 , ξ

2
. The second ≤ is due to Theorem

4.2. (4.12) implies that {R(A)
N }i and {R(ϕ)

N }i are Cauchy sequences in the space A
which is complete (see section 2)

Moreover we have d
dt(R

(ϕ)
N )i = hAi

((R(A)
N )i) and by Lagrange theorem, using

that |hAiAi
| ≤ a, we can do the limit N → +∞ at left. The uniform convergence

respect to time allows us to interchange the limits N → +∞ with the derivative so
that

lim
N→+∞

d

dt
(R(ϕ)

N )i =
d

dt
lim

N→+∞
(R(ϕ)

N )i =
d

dt
Qi = hAi

(Pi).

d

dt
(R(A)

N )i = −V
(lN )

ϕ
(lN )

i

(R(ϕ)
N ) = f

(lN )
i (R(ϕ)

N ) = (f
(lN )
i (R(ϕ)

N ) − fi(Q)) + fi(Q)

= [f
(lN )
i (R(ϕ)

N ) − f
(lN )
i (Q(lN ))] + [f

(lN )
i (Q(lN )) − fi(Q)] + fi(Q)

Q(lN ) = (Q1,Q2,Q3, . . . ,QlN ).

The first difference goes to zero because of the regularity properties of the func-

tion f
(lN )
i and R

(ϕ)
N − Q(lN )−−−−−→

N→+∞
0. The second difference goes to zero by the

fact that the functions f
|I|
i : Tw → R converge uniformly to fi for |I| → N (see

Section 2, Averages). Actually f
|I|
i would be defined over T|I| but it does not
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matter because f
|I|
i does not depend on the variables ϕi for i 6∈ I. It follows

that limN→+∞
d
dt (R

(A)
N )i = fi(Q) and the same interchange as before of the limit

N → +∞ with the derivative can be performed here. Then we get what expected
namely d

dtPi = fi(Q)

Proof of Theorem 3.1 Let’s consider the hamiltonian (4.13).

‖G(lj)
nlj

‖
ρ
(lj )
nlj

,ξ
(lj )
nlj

≤ P (lj) +
18γ

eδ
(lj)
0 r

(lj)
0

(V(lj))2

|ωo
lj
|

P (lj) =
2γ(V(lj−1))2

eδ
(lj−1)
0 r

(lj−1)
0 |ωo

lj−1
|
exp

{
− ln 2

√

|ωo
lj−1

|e∆ξ(lj−1)∆ρ(lj−1)

(162)γV(lj−1)

}

Remember that P (lj) is the estimate of a term containing the angle–variables

(ϕ
(nlk

)

1 , . . . , ϕ
(nlk

)

lj−1
) (see after Corollary 4.7)

B3 = sup
k≥0

δ
(lk)
0 r

(lk)
0

δ
(lk+1)
0 r

(lk+1)
0

> 1, B4 =

√
e

2γ

ln 2

36S
, S =

∞∑

k=0

1

(k + 1) ln2(k + 2)
,

If |ωo
lj
| ≥ B3

(V(lj))2

(V(lj−1))2
|ωo

lj−1
| exp

{
B4

j ln2(j+1)

√
ρ(l0)ξ(l0)

V(l0) |ωo
lj−1

|
}

then 18γ

eδ
(lj )

0 r
(lj)

0

(V(lj))2

|ωo
lj
| ≤

P (lj) and by virtue of (3.1) (in particular the power 6 of the logarithm) the series∑∞
j=0 P (lj) is convergent. It follows that the series

∑∞
j=0 ‖G

(lj)
nlj

‖
ρ
(lj)
nlj

,ξ
(lj)
nlj

is conver-

gent too while R
(lk)
nlk

(A(nlk
), ϕ(nlk

)) goes to zero when k goes to infinity. Then the

equations (4.14)–(4.16) admit the limit for k → +∞ and (3.3)–(3.6) follow

Proof of Corollary 3.2 Iterating the procedure of Corollary 3.1, (3.2) is implied by

|ωo
lk
| ≥ (B3)

k (V(lk))2

(V(l0))2
|ωo

l | exp
{

kB4

ln2(2)

√
ρ(l0)ξ(l0)|ωo

l
|

V(l0)

}
;

∑∞
j=2 ‖G

(lj)
nlj

‖ ρ
2 , ξ

2
≤ ‖G(l1)

nl1
‖ ρ

2 , ξ
2

provided that B4

ln2(2)

√
ρ(l0)ξ(l0)|ωo

l
|

V(l0) ≥ ln(1 + B5) where B5 = supj≥2
(j ln2(j+1))
ln2 2(B3)j . By

the same condition on |ωo
l | we get

∑∞
j=j0+1 ‖G

(lj)
nlj

‖ ρ
2 , ξ

2
≤ ‖G(lj0 )

nlj0
‖ ρ

2 , ξ
2

being

supj≥j0+1
(j ln2(j+1))

(j0 ln2(j0+1))(B3)j ≤ B5. In particular

‖
∞∑

j=p+2

G(lj)
nlj

‖ ρ
2 , ξ

2
≤ 2‖G(lp+1)

nlp+1
‖ ρ

2 , ξ
2
≤ 2‖G(lp+1)

nlp+1
‖

ρ
(lp+1)
nlp+1

,ξ
(lp+1)
nlp+1

≤ 2γ(V(lp))2

eδ
(lp)
0 r

(lp)
0 |ωo

lp
|
exp

{
− ln 2

√

|ωo
p|

e∆ξ(lp)∆ρ(lp)

(162)γV(lp)

}

and then

|vlp(t) − vlp(0)| ≤ |t|e(ξ(lp+1)
nlp+1

− ξ

2
)−1‖G(lp+1)

nlp+1
‖

ρ
(lp+1)
nlp+1

,ξ
(lp+1)
nlp+1

≤ |t|e(ξ(lp+1)
nlp+1

− ξ(lp+2)
nlp+2

)−12P (lp+1) ≤ |t| (V(lp))2

ρ(l0)(ξ(l0))2|ωo
lp
|1152S2(p + 2)3 ln6(p + 3)

· exp
{
− B4

(p + 1) ln2(p + 2)

√
|ωo

lp
|ρ(l0)ξ(l0)

V(lp)

}
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being

vlp(t) − vlp(0) = −
∫ t

0

∂

∂ulp

∞∑

j=p+1

G(lj)
nlj

ϕlp − ulp = Qlp(v, u) − ulp =
(
(C̃(lp) ◦ C̃(lp+1) ◦ C̃(lp+2) ◦ . . . )(v, u)

)(ϕ)

lp
− ulp

Alp − vlp = Plp(v, u) − vlp =
(
(C̃(lp) ◦ C̃(lp+1) ◦ C̃(lp+2) ◦ . . . )(v, u)

)(A)

lp
− vlp

For what written after Corollary 4.7, we have

‖
(
(C̃(lp) ◦ C̃(lp+1) ◦ C̃(lp+2) ◦ . . . )(v, u)

)(ϕ)

lp
− ulp‖ ρ

2 , ξ
2

≤ Π∞
k=p exp{ 2Tlk

(nlk − 1)2
} − 1 = exp{

∞∑

k=p

2Tlk

(nlk − 1)2
} − 1.

By

|ωlk | ≥ Bk−p
3

(V(lk)

V(lp)
)2 exp{(k − p)B4

√
Q|ωo

lp
|

(p + 1) ln2(p + 2)
}|ωo

lp |,

Q =
ρ(l0)ξ(l0)

V(lp)
, Tlk ≤ T, B3 exp{B4

√
Q|ωo

lp
|

(p + 1) ln2(p + 2)
} .

= B6 ≥ 2,

the following holds

exp
{ ∞∑

k=p

2Tlk

(nlk − 1)2

}
≤ exp

{
2T

324

e

(V(p))2

|ωo
lp
|

(4S)2

ξ(l0)ρ(l0)

(p+2∑

t=0

(2p + 4)2 ln4(2p + 4)

V(lp)
B−t

6

+

∞∑

t=p+2

(2t)2 ln4(2t)

V(lp)
B−t

6

)}

The sums are bounded by

2

V(lp)
(2p + 4)2 ln4(2p + 4) +

B7

V(lp)
,

B7 =

∞∑

t=1

(2t)2 ln4(2t)(B6)
−t

exp{
∞∑

k=p

2Tlk

(nlk − 1)2
} − 1 ≤ exp{T 648

e

(4S)2

|ωo
lp
|

V(lp)

ξ(l0)ρ(l0)
(B7 + 2(2p + 4)2 ln4(2p + 4))} − 1

≤ TB8(2p + 4)2 ln4(2p + 4))
V(lp)

|ωo
lp
|ξ(l0)ρ(l0)

Then ϕlp − ulp goes to zero when |ωo
lp
| goes to +∞ and the behavior depends on

the choice of {|ωo
lk
|} with k ≥ p. The same happens for Alp − vlp .
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As a consequence, being Alp(t) − Alp(0) = (Alp(t) − vlp(t)) + (vlp(t) − vlp(0)) +
(Alp(0) − vlp(0)), if

|t| ≤ B9
ρ(l0)

V(l0)

1

(p + 2) ln2(p + 3)
exp

{ B4

(p + 1) ln2(p + 2)

√
|ωo

lp
|ρ(l0)ξ(l0)

V(lp)

}

we have |Alp(t)−Alp(0)| ≤ 3TB8(2p+4)2 ln4(2p+4)) V(lp)

|ωo
lp
|ξ(l0) . For the variables

Ai(t), i = 1, . . . , l−1 it is valid what written in the remarks of Theorem 4.1 namely
|Ai(t) − Ai(0)| ≤ Cρ. The constant C is the greatest of the B′

is i = 0, . . . , 8.
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