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Abstract — We deal with the problem of the numerical evaluation by Monte Carlo methods of
the expectation of a function of the position at a fixed time of a Brownian motion killed when it
reaches time-dependent barriers, a problem of interest in Finance, e.g. for the pricing of barrier
options. Two stochastic Euler schemes are compared in this paper: the "discrete" scheme and
the "continuous" one. The latter has been already introduced in literature and makes use of
some sharp large deviation estimates of the exit probability for a Brownian bridge in a small
time interval. We show that, in the weak sense, the "continuous'1 scheme is much faster than
the "discrete" one, by proving an inequality which provides a comparison between the rates of
convergence.

l Introduction
Let Wt denote a one-dimensional Brownian Motion starting at z, with constant drift μ
and constant diffusion coefficient σ > 0, that is

\νί = χ + μί + σΒί (1)

where B Stands for a Standard one-dimensional Brownian Motion. Consider two real
functions

L, U : [0, +00) -* IR
such that L(i) < f/(£), for any t > 0. The maps L and U play the role of the lower and
upper barrier, respectively. In this paper we study approximations of expectations of the
type

E[/(Wr)n{r>r}], (2)
or also E[/(Wr)lI{r<T}], where / is a nonnegative Borel measurable function and r is the
first hitting time on the barners, that is

r = mf{t > 0 : Wt < L(t) or Wt > U (t)}. (3)



222 Luc/a Caramellino and Barbara Pacchiarotti

The problem of the (numerical) evaluation of expectations s in (2) is quite inter-
esting and arises naturally in a financial framework to the pricing of barrier options.
Barrier options differ from the well-known European conventional options by means of
the introduction of one or two boundaries, deterministic and time-dependent, which are
contractually specified and which may nullify the value of the Option if breached by the
underlying asset price. Such options are increasingly popul r in the financial markets be-
cause they are less expensive than conventional options. For instance a knock-out barrier
call is quivalent to the corresponding Standard call provided that the underlying asset
price does not hit either barrier, otherwise its payoff is set equal to zero. Under the Black
and Scholes model for the underlying asset price, the pricing formula of a knock-out call

e-^Etmaxie"* - K, 0)flr>T], (4)
where K denotes the exercise price, T is the maturity and in (1), s usual, σ Stands for
the volatility and μ = r — <72/2, r being the (constant) spot rate. In order to compute
the price of barrier options, one needs to know the law of WT killed at time r. This is
possible only in the case of constant or linear barriers, see e.g. Revuz and Vor [10] for
the formula of the exit probability and Kunitomo and Ikeda [9] for the pricing formula
for such kind of barriers. Otherwise, this law is not explicitly known and some other
numerical methods have to be used. For example, Geman and Yor [7] developed a Laplace
transform approach and Boyle and Tian [4] introduced a numerical method involving
trinomial models. Moreover, in the case of a single barrier, it is immediate to show
that the function (s,x) »-> v(s,x) = EijZ[/(Wr) lIT>r] solves the parabolic differential
problem

Q

— v(s} x) + LBv(s, x) = 0 for (s, z) G [Ο, Τ) χ [Ο, +οο)
OS

v(a, x) = 0 for (5, x) € [0, T) x (-00, 0) (5)
v(Tix) = f(x + g(T)) for x G (0, +00)

where

and the function g Stands for the barrier. Thus, one could numerically solve problem (5)
in order to numerically compute v(s,x), that is the price of a single knock-out barrier
Option.

Furthermore, the numerical valuation of the price can be done via Monte Carlo algo-
rithms, s in Baldi, Caramellino and lovino [2], [3] and, in a multidimensional setting, in
Gobet [8]. In this context, the process W is simulated at fixed times tj = jT/n, with n
large enough, and typically the exit time r is approximated by means of the first instant
tj such that Wtj is outside the barriers, if it does exist (if W is a more general diffusion
process and it is not possible to simulate exactly W, also W is approximated by means
of som-.e discretization scheme, e.g. the Euler scheme). Let τ* denote the approximating
hitting time. One then collects a large number τ*'^ and W^ of independent approxi-
mating exit times and positions of the process at the maturity and finally approximates
the exjpectation by means of the empirical mean of the observed payoffs:

171=1
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This kind of procedure gives rise to two errors: the first depending on the choice of the
number n giving the discretization step T/n and the second coming from the number
M of independent simulations. Concerning the former, that is the one we are interested
in, the above procedure could be considered exact in the case of discrete monitoring
(see e.g. Broady, Galssermann and Kou [5]) but since the barriers are supposed to be
monitored continuously in time, the procedure works very poorly and the error goes to
0 äs n -» oo very slowly, äs it has been pointed out by many authors (see for instance
[2j and references quoted t herein). In order to improve the speed of convergence to 0
for such an error, in [2] a sharp large deviation estimate of the conditional probability
that the barriers are reached during fe,£j+i] by the process W, given its observations at
times tj and fy+i, is computed and used in order to kill the process. This gives another
approximation r* of the exit time r and empirical studies show that the approximation r*
works much more better than r*: setting £<(/) = E[/(WT)H{r>r}] -E[/(1VT)1I{T^>T}]

E[/(Wr)H{T>r}] -V[f(WT)K{TJi>T}}[ thenand

In this brief paper, we quantify how much the second procedure improves the first one
by showing that

where c„ is a bounded positive sequence and % = o(l/nß) for any > 0. Moreover, in
the double constant or linear barner case it holds Cn = 0 (if a single constant or linear
barrier is taken into account then £„(/) = 0 because the exit probability used in the
discretization turns out to be exact, äs remarked in [2]).

Although the process W here considered is merely a Brownian motion with constant
drift, there are not so many results in literature giving the speed of convergence of the
errors £„(/) and £*(/) for general functions /. For example, the special case f(x) =
1I{X€/}, that is E[/(Wr)lI{r>T}] = P(WT € /, r > T), has been studied by Siegmund
and Yuh [11]. They proved that

but only under the constraints that = 0, the barners L and U are constant and that
/ is an interval strictly included in (L,U}. Notice that in particular this implies that /
vanishes in a neighborhood of the barriers. Such a condition is practically required also
by Gobet in [8]. In that paper, the errors ££(/) and £*(/) are both analyzed, also for
general diffusion taking values in a multidimensional setting and the following results are
proved:

£<(/) = + o(l/n) and £*(/) =

In the simple case of a Brownian motion with constant barriers or with a single time-
dependent barrier, these results can be refined in such a way that (6) holds. Nevertheless,
in the general case (6) does not follow from the results in [8] since it is not possible to see
the double time-dependent barrier case äs a particular case of that study. Moreover, it



224 Lucia Caramellino and Barbara Pacchlarotti

worth stressing that (6) will hold for positive functions (with mild integrability conditions)
not necessarily zero on the barriers, a constraint which seems to be crucial to use PDE
techniques, turning out from (5), allowing to achieve the rate of convergence to 0 of the
errors, äs done in [8]. Let us finally point out that in a financial framework the vanishing
conditions on / are actually restrictive. Indeed, in the cited barrier call Option example
whose price is given by (4), this implies that the barriers L and U have to be below In K>
that is the logarithm of the exercise price, and this is not the case in many situations.
It turns out of interest what happens when the Option payoff is strictly positive on the
barriers.

The paper is organized äs follows. Section 2 is devoted to set up the discretization
schemes and to state the result, whose proofs can be found in Section 3.

2 The result
Let us first recall how the numerical approximation introduced in [2] works.

Let i0 = 0 < ti < - · · < tn = T be a partition of the time interval [0, T] such that
tj+i — tj = T/n, j — 0, l,... ,n — 1. At each Step, the value Wtj is simulated and the
"discrete" procedure sets the hitting time r* equal to the first instant tj in which Wt.
crosses a boundary. * provides an overestimate of the (continuously monitored) hitting
time r since Wtj and Wtj+l might not have breached the barriers while Wt had for some
t G fa,tj+i). To account for this, one could think to use the probability p>n that Wt. hits
on the barriers during the time interval (t^fy+i), given the observations Wtj and Wij+l.
Thus one can with probability p*n stop the Simulation and set the approximating exit time
r£ of this "continuous" monitoring equal to tj.

If p£ was known, this procedure would provide a quite precise result, whose bias
would be the smallest one and being actually exact whenever one is interested in the
approximation of the hitting time through its distribution function. Unfortunately, the
probability p*n can be exactly computed only in some very special cases, for instance, for
constant or linear barriers (in the double barrier case, the formula of the exit probability
from two linear barriers is known in infinite series form, see [10], pp. 105-106). As
introduced in [ij for fixed domains and in [2] for time-dependent barriers, one could use a
sharp estimate p*n for p*n allowing to set up the Simulation procedure äs described above.
Indeed, by suitably developing some sharp large deviation results firstly proved by Fleming
and James in [6], the following result holds:
Theorem 2.1 Suppose that L and U are continuous with Lipschitz continuous derivatives
and let us set Lj = Lfa) and Uj = Ufa). Then for every (x,y) € (Lj, Uj) (J^+i, /j+i),

pi(x, y) = f£(x, y) (l + ,·, n(x, y)) (7)
where

p* (z, y) = · exp ( - ±£ min ((L, - z)(L,-+1 - y), (i/,· - *)(tfi+1 - y)) ), (8)

being
_( l if (Uj -:

K=\2 if (Uj-.
and 1<Lj^(x}y) goes to 0 äs n -» oo äs or faster than ^.

-x)(Uj+1-y)^(Lj-x)(Lj+l-y)
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Remark 2.2 The above result is actually a little modification of what proved in [2],
Theorem 2.1 and Corollary 2.2. Indeed, suppose for instance that (i/,· — x)(Uj+i - y) <
(Lj - x) (Lj+i - y) , so that for n large enough we can suppose that also (U, - x) (Uj — y)<
(Lj - x)(Lj - y) holds and thus x + y > Uj + Lj. Then Theorem 2.1 in [2] gives

,£(*, y) = exp ( - (i/,· - x)(Uj - ») - (tf, - *)l

where t/j = U'(tj). Now, since (7 has a Lipschitz continuous derivative, we can write
Uj + U'j/n = Uj+l + O(l/n2), so that

_^(i/. _ x](Uj -y)- ( . _ x]U> = _^({/. _ I](U. + 10* _ y)

= -^(C/;. - x)(Uj+1 - y + 0(l/n2)) = -^(ty - *)(tfi+1 - y)

and

p*n(x,y] being defined in (8). Similar arguments apply if (Uj - x)(Uj+i - y) >

In conclusion, we can set the approximating exit times äs follows:

% — inf{tj : Hj0|p,j(Z") = 1} äs for the "continuous" case
r* = inffo : Wt. < L(tj) or Wtj > Ufa)} äs for the "discrete" case

where {^"}{j=i,...,n;n>i} is a sequence of i.i.d. uniformly distributed on [0,1] r.v.'s inde-
pendent of W.

Take now / : IR — > IR a Borel measurable function. Let us define

E[/(VFr)H{r>T}] - E[/(iyr)n{rc>r}] | äs the "continuous11 error

E[f(WT)Ü{T>T}] - E[/(^r)lIw>T}]| äs the "discrete11 error
«(/) =

whenever the above expectations exist. In papers [2] and [3] (see also references quoted
therein), numerical results empirically show that ££(/) goes to 0 faster than ££(/). Here,
we compare these two errors by showing how fast un upper bound for their ratio has to
converge to 0 äs n — > oo:

Theorem 2.3 Suppose that the barriers L and U are Cl functions with Lipschitz contin-
uous derivatives. Let f denote a positive function such that E[/1+e(WV)] exists for some
e > 0. Then, for any a > 0, it holds

where
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a n d dn = e , 6ein0 M =
max( £,, ^), K'L and Κ'ν denoting the Lipschitz constant ofL1 and U1, respectively;

• {7n}n t» a positive sequence going to 0 s n —> oo faster than any power of ^ (i.e.
limn_>oo n*7n = 0, for any k).

Theorem 2.3 then ensures that the continuous scheine is faster than the discrete one,
whose speed of convergence £„(/) is known only for some particular cases for /, s already
mentioned in the Introduction. Some conjectures assert that £*(/) = O(l/^/n) for any
/. Theorem 2.3 claims that the corrected error £„(/) has to go to 0, s n -» oo, faster
than 8*(f) and also ££(/) = o(l/n). Moreover, in the constant or linear barrier case,
one has Cn = 0 because K' = 0, so that the convergence is actually very fast, almost of
exponential-type, since it is the same s ~ for any a > 0.

Theorem 2.3 will be proved in the next section. It is based on a result (Proposition
3.3) through which we can state also similar results when the function / is not positive
and for more general expectations allowing to handle barrier options with rebate. For
details, see Remark 3.4 and Remark 3.5.

3 Proofs
The proof of Theorem 2.3 needs several preliminary results so that it is postponed to the
end of this section.

Let us firstly introduce the notations we are going to use.

• LJ = Lfa) and Uj = Ufa), where tj = jT/n, for j = 0 ... n.

• μη Stands for the joint law of Wtl , . . . , Wtn:

μη(άχ) = P(Wtl G dxl9 ...Wtn£ dxn).

• p£(x, y) is the conditional exit probability of W during the time interval [iy, ty^i],
given the positions χ and y of the process W at times tj and t^+i, respectively.

p£(z,y) Stands for the asymptotics of p^(x,y) given by Theorem 2.3 (see (8)).

qn(x) denotes the exit probability conditional to the positions χ = (χι, . . . ,xn) of
W at times (*!,...,*„):

Since the conditional laws of (Wt)t€[tj.|tj>1] given the position Xj and x7>i at times
tj and t;+i, respectively turn out to be independent of each other, the above repre-
sentation for qn actually holds. Notice that p^(x, y) is the probability of hitting on
the barriers for a Brownian bridge, starting at χ at time tj and pinned by y at time
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• qn(x) denotes the approximation of qn(x) turning out by considering the approxi-
mationsp^ of p£:

In order to study the distance between qn and qn in terms of the distance among the p£'s
and the p£'s, which will be done in the sequel, we need the following simple lemma:

Lemma 3.1 For α fixed integer m, let us define

where p = {pk}k C [0, 1]. Let 7 = {7*}* and η = {τ?*}* be sequences in [0, 1] such that,
for some constant β > 0,

|7fc - *lk\ < Ίk for any k > l .
Then, for any integer n,

|Ρη(7)-Ρη(τ;)|</3ρη(7).
Proof. We prove the Statement by induction on n. If n = l, the Statement easily follows.
Suppose now it holds for n. One can write pn+i(p) = Pn+i + (l — Ρη+ι)Ρη(ρ)» so that

Pn+l(7) - Pn+l(n) = (7n+l ~ Vn+l] + (l ~ 7η+ΐ)Ρη(7) ~

= (7n+l - 7?n-hl)(l - Pn+lfa)) + (l ~ 7η+ΐ)(Ρη(7) -

Since J7n+1 - ηη+ι\ < in+l and, by induction, |p„(7) - ρη(η)\ < pn(~f), one obtains

|Ai+i(7) - Αι+ifa)! ^ ^7n-Hi + (l - 7η+ι)Ρη(7) = /J/V»+i(7)·
Thus, the Statement holds for any n.

•
In the following lemma, we study the distance between p£(z, y) and j5£(x, y) that is,

we study the asymptotic behavior of the quantity 7£j>(£,y) given by Theorem 2.1.

Lemma 3.2 For (x,y) € (Lj^Uj) χ (Ζ^·+ι, ί/,>ι), let us define
, y) = (C/,· - x)(^-+1 - y) - (L,· - x)(L,-+1 - y). .

Then, there exists a positive integer UQ such that for any a > l, n > no ond /or onj/
(i,y) 6 (Lrf, Uj) χ (!,,·+!, i/>+1) such iAot

.. ασ21ηη . .y ) l > — — . (9)
one /ms

, i/) - #(*, y)l < + Ρί(χ,
2 M A'' ^ and dn = e

m0 M = maxie[o,r](i/(^) - L(t)) and K' = max.(K'Li Ky), where K'L and Κ'ν stand for
the Lipschitz constants of L' and U1, respectively. Notice that ifboth U and L are constant
or linear, then c„ = 0 and dn = l, for any n.
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It is worth remarking that condition (9) follows from the fact that the approximation
of the exit probability s given by Theorem 2.1 is not uniform s (x,y) G (Lj.Uj) χ
(Lj+i, f/j+i), in the sense that it is mainly dependent on the lower barrier if w3

n > 0 and
on the upper one whenever w{ < 0.
Proof. First of all, notice that the asymptotics p£ of p£ turn out to be equal to the
asymptotics of the probability of hitting on the two lines joining (tj,Lj) to (tj+i,Lj+i)
and (t,·, Uj) to (£j+i, ί/j+i), respectively. Let us denote these two linear barrier s

4(f) = n(Lj+l - Lj) - (t - t,) + L, and #,(*) = n(U^ - Uj) - (t - tj) + U,.

The idea of the proof is to construct, for each barrier L and t/, two further straight lines,
i.e. linear barriers, such that for any t G fe,fy+i] then the barrier of interest can be lower
and upper bounded by these new linear barriers. This will turn out to be crucial because
for linear barriers the formula for the exit probability is known exactly.

Thus, among the straight lines crossing the point (t^Lj), we consider two straight
lines </JLil and <^2 which contain the barriers L(t] and ftL(t) s t G fo,t;+i):

4,iW = W · (* - *i) + L>> 4,2(0 = L'(t*2) · (t - i,·)
where £J,£J G fo,fy+i] are defined s

I/ft) = max V (t), L'(f2) = min L' (t}.

Then obviously both L(t) and 4*L(t) belong to (0i|2(t), 0i,i(<)], s t G [tj-,^+ι]. We
similarly define 0 ?̂1 and 0^2

:

<ι(ί) = £^(<ϊ) · (* - «i) + 1 ,̂ 4,2(ί) = ^'(«2) · (t - tj) + Uj
where t\, t\ € [ij,tj+i] are such that

i / ' ( ?= min f / ' i , t / ' < ) = max ί / ' ί .

Therefore, U(t),fv(t) e [4α(ί), 4,2(ί)], s t €
Notice that if L and {/ are both constant or linear, the barriers defined above do

coincide with the original ones. Otherwise, it is easy to see that for any n > n0 =
max (l, ^)), where D = mint€[0,T](i/(i) - L(t)) and H = max.t,,€[o,T)(L'(t) - U'(s)), one
has φ^^ (t) < ΦυΛ(ί) s i € [tj, ί,·+ι) for any j < n, so that

] C [4W, 4(0] C «,(0, <2(0]

From now on, we suppose n > no, so that (10) holds.
For any (x,y) G (L^Uj) χ (^,ί/^ι), let us now define pifI>(aM/) and ^><jn(x,i/)

s the hitting probability on <JJL^ and on <^, respectively s i G {l, 2}. By recalling that
p*n turns out to be the exit probability from the double barriers <$L and 0^, from (10) it
easily follows that

< 2/)
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and then

|p* (x, y) - ffn(x, y}\ Plti,n(

Let us set

so that

If w·7 = (Uj — zXt/y+i — y) — (Lj — x)(Lj+1 - y), straightforward computations allow to
deduce that

Γ> < exp ( - ^J «^ + J [(* - L,)(^+i - Li - l-L'(tl}} + (U, - x)(Uj+l - i/, - Vft

< exp ( «^ + [(* - LiKL, + L'(t\) - Lj+l) + (U, -

Now, since L and U have Lipschitz continuous derivatives, with Lipschitz constant K'L
and K'U} respectively one has

o < Li+1-^-lL'(t;) < §, o < Vw-Uj-l-u'W < §, o < L'(ij)-L'(t;) < ̂ ,
7l 7l 7l 7l 71

0 < Lj + lL'(ii)-Li+1 < §, 0 < i/^ + it/'^-t/^ < ̂ , 0 < tf'(iS)-L'(i;) < ̂ .

Thus, setting K' = max(K'U} K'L], one obtains
; ; 2MJFC'

-l,

where M = maxte[o,T] ({/(£) — L(t)). Recalling that et — l < tet for any positive £, it holds

n ~~ ησ2 7 n"" ησ2

so that

Therefore, if |u^| > 0[^n
lnn

) it follows that
ησ«

min Λ <
v ; ~ ησ2



230 Lucia Caramellino and Barbara Pacchiarotti

and the Statement finally holds.

We are now ready to prove next result, which turns out to be the principal part of the
proof of Theorem 2.3.

Proposition 3.3 Lei α > l and f be a positive function such that E[/(WT)1+C] < -f oo
for some e > 0. Then there exists a positive integer NQ such that for any n > NQ,

/(*n)l qn(x) ~ *n(x} ' άμη(χ] ~ +

where {jn}n is a sequence going to 0 faster than any power of £, s n ->> -f oo.

Proof. Let us first set A := Π£Γο(Αρ uj) = u?=dA/ where ^o = {x € A : |w'(zt-, xi+1)| >
Vi} and, for j > l, Aj = U/€l.^,/> being

and

< Vz €

Let us fix now δ > 0, which we shall suitably choose later, and set

Cj = (L,, Lj + ί) χ (£/,+1 - im,·, f/,.+χ) U (C7y - ί, ί/,) χ (LJ>lf Lj+l 4- im,·)

being m, = ^Ι^+1. Since we need that C| C (Lj.Uj) χ (Ι^+χ,Ε/^+χ), and Cj is the
union of two non intersecting set, for the moment it is sufficient to require δ < y , where

We can then set

Λ',/,ο = AJJ Π {a; € A : V< € / (xit XM) i Cj }

and
Λ',Λΐ = ^λ/ Π {χ € A : 3i € / (z<, xi+i) €

so that

/„-i /(*-)! «·(*) - «"i1) l «W«) + /„ ,
•/U>ei U/€I,· Λ>,/,0 •/Uj=1 U/gij. Aj,/,!

We first study the term ΓΙ. Suppose that χ € AQi that is |i *(xi,xi+i)| > S£5^Lri f°r

z, by Lemma 3.2, there exists n0 such that for any n > n0 one has

| p\Xi, x<+1) ~ ^(x,·, xi+1) | < — + ~ '
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s i = 0, l, . . . , n - 1. So, by applying Lemma 3.1, one obtains | qn(x) - qn(x) | < (^ +
&qn(x) and

(*„)| qn(x) - qn(x) \ άμη(χ) < (£ + £

Consider now Γ2 = Σ"̂ 1 Σ/gz,· /Αλ/,0 /(x»)l 0η(*)-?η(*) I αμη(χ). Let us fixj G {l, . . . , n-
1} and / G Ij and take χ Ε Α,·,/,ο· Then,

-n(1-Pnte>^)))-n(1- te^m))
t$</ t€/ t$?/ »€/

If z ^ /, Lemma 3.2 states that condition (*) holds, so that Lemma 3.1 can be applied,
giving

Since l - Π^/(1 - (*i,*w)) < l - Π£Γι1(1 - (*«.*<+i)) = 9n(x), we can write

L-pi(*4,*4+i))) + (l-II(l- («i.^-n)))·
" »€/ »€/

(**)
In order to estimate the latter two quantities on the right hand side of (**), we need to
use the probabilities ρ^1>η and pi,>ltn which have been used in Lemma 3.2. More precisely,
we consider the constraints in (11), holding for any n > n0:

= exp ( - -(L, - xtKLi 4- iL'(t;) - ft+1)) + exp ( - J( i - x,)

< exp - , - x i - *

+ exp ( - §(% - XiXUi+i - *m)) exp Q(UM - Di + ̂ «»(Di - x,))
MA^. / 2n \ »^^L· / 2n \
^^ exp ( - -(Li - x,-)(Li+1 - x<+1)J -f e"^^" exp ( - ̂  (i/,· - x^i^+i ~ xi+i))

[exp ( - -^(Li - Xi)(Lw - xi+l)) + exp ( - ̂  (t/,· - Xj)(Ui+i - x<

Similarly, we can state, for any n > η$,

rite.*i+i)<e^[exp(-^(Li-xO(^«-*i+i))+«p(-^W

Now, if i G / then (zj,£j+i) ^ Q, so

ασ21ηη\/ ασ21ηη\
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U i - δη U i

Figure l For n large enough, the shadowed region shows the set of points (ZJ,:FJ+I) £ C3
S =

C*1 U Cf such that wJ(xjjXj+l) < 2^n.

and
ασ21ηη\/ ασ21ηη\J (im,· \2η ' V ' 2η /

hold, s it is easily seen from Figure l, and are obviously of interest whenever δ is chosen
in order to make the right hand sides positive.

Thus, let δ < f and HI such that f > 77 ασ2^ηι (where the quantity ^ comes from
an upper bound for m^·), so that for any n > max(no, πι) one has

δ2 δ2

(Li - Xi)(LM - xi+l) > — and (i/,· - xf-)( i+i - x*+i) > —.

For such values of n, if i G /, we can then give the following estimates

and i?„(xi,Xi+i} < '

For n large enough, 2e~^ < l (indeed, it is sufficient to take n > n2, where n2 is
such that πΡ,ί2 - η2σ2 - 4Λ//Γ > 0), so that

l - Π(1 -fi(*,*«)) < l - (l - '̂ < l - (l -
»€/

and similarly

Therefore, for χ G -A>,/,o and n > max(n0,ni,n2), from (**) it follows that

where
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and finally

f(xn)\qn(x)-qn(x)\dμn(x}

< (~ + Ϊ) L 1^ n na' Ajy-i

For Γ3, notice that

C U I x

so that

r> -

^Io1 {

>*.Μ*Μχ>< Σ/(„„„.,

·])* · ( Σ L
k=Q JCs

· ( Σ Λ PiWi.
JkrrO*70*

N«,* <*,»>* <***{£ <!;£+/.
that

k+i Λ , so4- dmk

y-x> I/jk+i - Lk -
x-y>Uk- Lk+i - i(l + m*).

Since i/*+i - Lfc > D - ^, ί/Λ+ι - Uk > D - ̂ , AT^ and ̂  being the Lipschitz constant
of L and U, respectively and mk < ̂ , setting K = max( i,, "^) we can write

whenever (x,y) € C*, for any A; (recall that D — £ > 0 i f n > ^). Thus, choosing

then for any (x, y) € C* and for any k one obtains \y — x\ > | (D — £\ and

Therefore

Γ 3 <
n-l .

'•(£L
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Finally, the Statement holds with 7» = E[/(Wr)bi + (E[/(Wr)1+e]) l^, which goes to
0 s n -> oo exponentially fast.

•
Proof of Theorem 2.3. Lei us set An = Π ο ί ^ ' » ^ ) · First of all> notice that

and
E[/(Wr)H{TS>t}] = / /(«„) · (l - &(

•Άη

By using Proposition 3.3, we have

It is now sufEcient to show that 8* = JAn f(xn) · <1η(χ)άμη(χ}. Indeed, since r* > r, one
can write

d„ = |E[/(Wr)(H{T>r> - nw>r})]| = E[/(WV)fl{rST,,ji>r}] = / /(*„) · gn(x)d n(x).
J An

Let us show some further consequences of the estimates given by Proposition 3.3.

Remark 3.4 If / is not positive we cannot directly compare ££(/) and £^(/), but if /
is such that E[|/(Wr)|1"l"c] < H-oo for some e > 0 then by simple calculations we have

where εη = ^ H- ^-, with c„ and dn are given in Proposition 3.3, and % is a sequence
going to 0 s n -> oo faster than any power of l/n.

Remark 3.5 In a financial framework, it is of interest also to compute quantities like

where is a positive constant called rebate. Indeed, if one thinks to knock-out barner
options, with payoff given through /, then R Stands for a quantity, typically quite small,
that the Option seller gives to the buyer in the event that the underlying asset price hits on
the barners (see e.g. [3]). Now, a simple application of Proposition 3.3 allows to control
the error arising from the application of the continuous scheme for the pricing of barrier
options with rebate. Let us stress the dependence of the error on both / and , that is

, ) = E[/(^r)H{r>T} + e-"-fl{T<r}] - E[/(Wr)nW>r> + Re^JL[rS<T}] \.

Then, it easily follows that

*»(/, ) < (^»(/, 0) + «ί(0, ))e„ + % (13)

where en — ̂ -l·^·, with Cn and rf„ are given in Proposition 3.3, and % is a sequence going
to 0 s n — >co faster than any power of l/n. Thus, in particular, limn^oc ££(/, R) /n — 0.
This is the content of the next
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Proposition 3.6 Under the hypothesis of Theorem 2.3 and for any positive constant R,
then (13) holds.

Proof. First of all, for any positive random variable X we can write

> s)ds = £ P(X < T.)ds

with T, = T if 0 < s < e~rT and T, = -Mn* if e~rT < s < 1. Thus,

£<(/, ) < £<(/, 0) + j[l |P(r < T.) - Ρ(τ< < T.) |ds

Denoting by q'n and §£ the previously defined conditional exit probability and its approx-
imation with T replaced by T,, one has

jf \P(r < T.) - P« < Γ.) \ds = £ ̂ ^ q>„(x) - «

and by Proposition 3.3 (with / = 1),

Γ \p(r * v - Ρ^ * τ·) \ds * Γ Kf + 1) ji,-^, *(
where c* , d'n and 7* are given in Proposition 3.3 with T replaces by T8. Now, since T5 < T
for any 5 € (0, 1), it easily follows that c* < c„ and d* < dn, so that

\P(r < T.} - P« < T.) |d. < (| + |) f /^.^^^ (x)^(x) d5 + / 7'ds

+ 1) Γ (ρ(τ ̂  τ·) - p(^d * T'))ds + Γ ̂ »d5 = (? + ̂ )f-(°- « + Γ ̂ ds-
We can finally state that

«(/, ) < (^ + ̂ ) (f ί(/, 0) + fiftO, 1)) + 7n + jil 7-^

and (13) holds.

•
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