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Abstract

Capturing word meaning is one of the challenges of natural language processing (NLP).

Formal models of meaning, such as networks of words or concepts, are knowledge repositories

used in a variety of applications. To be effectively used, these networks have to be large or, at

least, adapted to specific domains. Learning word meaning from texts is then an active area

of research. Lexico-syntactic pattern methods are one of the possible solutions. Yet, these

models do not use structural properties of target semantic relations, e.g. transitivity, during

learning. In this paper, we propose a novel lexico-syntactic pattern probabilistic method

for learning taxonomies that explicitly models transitivity and naturally exploits vector space

model techniques for reducing space dimensions. We define two probabilistic models: the

direct probabilistic model and the induced probabilistic model. The first is directly estimated

on observations over text collections. The second uses transitivity on the direct probabilistic

model to induce probabilities of derived events. Within our probabilistic model, we also

propose a novel way of using singular value decomposition as unsupervised method for

feature selection in estimating direct probabilities. We empirically show that the induced

probabilistic taxonomy learning model outperforms state-of-the-art probabilistic models and

our unsupervised feature selection method improves performance.

1 Introduction

Capturing word meaning is one of the challenges of natural language processing

(NLP). Taxonomies and, in general, semantic networks of words (Miller 1995) are

often used as formal models of meaning in intermediate NLP tasks, such as word

sense disambiguation (Agirre and Rigau 1996), selectional preference induction

(Resnik 1993), and textual entailment recognition (Corley and Mihalcea 2005;

Zanzotto et al. 2009), as well as in final applications, such as question-answering

(Clark, Fellbaum and Hobbs 2008). In these networks, words are connected with

other words by means of taxonomic and, in general, semantic relations. This is

a way to capture part of the knowledge described in traditional dictionaries. For
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example, this informal definition of ‘wheel ’:

a wheel is a circular frame turning about an axis . . . used for supporting vehicles. . .

contains a taxonomic relation, i.e. the wheel is a circular frame, and a sort of part-of

relation, i.e. the wheel is used for supporting vehicles.

Yet, to be effectively used in applications, semantic networks have to be large

or, at least, adapted to specific domains. Even large lexical knowledge repositories

(e.g. WordNet, Miller 1995) are extremely poor when used in specific domains, such

as medicine (Toumouth et al. 2006). Automatically creating, adapting, or extending

existing knowledge repositories using domain texts is, then, a very important and

active area. Building on the distributional hypothesis (Harris 1964) or on the notion

of the lexico-syntactic patterns (originally used in Robison 1970), a large variety of

methods have been proposed: ontology learning methods (Medche 2002; Navigli and

Velardi 2004; Cimiano, Hotho and Staab 2005) in knowledge representation as well

as knowledge harvesting methods in NLP (Hearst 1992; Pantel and Pennacchiotti

2006). This learning task is generally seen as a classification (Pekar and Staab 2002;

Snow, Jurafsky and Ng 2006) or a clustering (Cimiano et al. 2005) problem.

Many models for learning generic semantic relations between words are binary

classifiers (Pantel and Pennacchiotti 2006; Snow et al. 2006). In this case the

task is deciding whether the two words are in a specific semantic relationship.

Lexico-syntactic patterns are used as features to build vector spaces for word pairs

where binary classifiers are applied. Feature values describe the correlation between

contexts of word pairs and specific patterns. These approaches are extremely

relevant, as the task is seen as a simple binary classification problem and not as a

more complex multi-classification task (Pekar and Staab 2002).

The above learning models have two major limitations. The first limitation is

that these models do not explicitly exploit transitivity when learning taxonomies or

networks of words. Transitivity, when relevant, is not used to better induce confidence

values for extracted semantic relations. Even where transitivity is explicitly used

(Snow et al. 2006), it is not directly exploited to model confidence values but is used

in an iterative process to maximize the likelihood of the entire semantic network.

The second limitation is instead more general. Given the nature of the knowledge

learning problem, machine learning algorithms are exposed to vector spaces that

can be huge. As relevant patterns are not known in advance, all possible patterns

are taken as features to detect a particular relation among words. Large feature

spaces can have negative effects on machine learning models, such as increasing the

computational load and introducing redundant or noisy features. These problems

can be solved using feature selection (Guyon and Elisseeff 2003). Yet, supervised

models cannot be easily applied. When expanding existing taxonomies, we generally

have only positive examples as training. Negative cases are only artificial. We then

need to apply unsupervised feature selection models.

In this paper, we address the above two issues transforming the limitations into

opportunities. We propose a novel probabilistic method for learning taxonomies that

(1) explicitly models transitivity for deriving confidence weights; and (2) naturally

exploits vector space-reduction techniques for selecting features within the estimation
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of the probabilistic model. To exploit transitivity of semantic relations, we define

two probabilistic models: the direct probabilistic model and the induced probabilistic

model. The first is directly estimated on observations over text collections. The

second exploits transitivity and the direct probabilistic model to induce probabilities

of derived events. As unsupervised model for selecting features, we propose to

use singular value decomposition (SVD) in an innovative way to estimate direct

probabilities. In a nutshell, leveraging on the particular direct probability estimation

model, we use SVD as a computationally simpler and more accurate way to compute

the pseudo-inverse matrix needed in logistic regression.

The rest of the paper is organized as follows. After the related work (Section 2),

we firstly give a general idea of our induced probabilistic model and define the

probabilistic definition of a concept (Section 3). Then, we formally present our model

(Section 4) and describe a way to use SVD as unsupervised feature selection model

for estimating direct probabilities (Section 5). To describe this latter idea, we

need to fully describe our direct probabilistic taxonomy learning model and the

way of computing the logistic regression. In Section 6, we introduce the iterative

probabilistic model, i.e. an existing probabilistic taxonomy model (Snow et al.

2006). We empirically show that our induced probabilistic taxonomy learning model

outperforms the existing iterative probabilistic model and that our unsupervised

feature selection method has positive effect on the performance (Section 7). Finally,

we draw some conclusions and plan the future work (Section 8).

2 Related work

Effective methods for learning knowledge bases from texts can give an important

boost to knowledge-based systems, i.e. systems using declarative knowledge to

perform some tasks. The need of such learning methods has generated a large

variety of models. In this section we first analyze some of these models in order

to motivate our choice of working within a probabilistic framework for leveraging

transitivity in learning taxonomies or semantic networks. Then we quickly describe

supervised and unsupervised models for feature selection and how they have been

applied to taxonomy learning models.

2.1 Taxonomy learning models

Models for automatically learning semantic networks of words, such as taxonomies,

from texts use variants of the distributional hypothesis (DH) (Harris 1964) or exploit

some induced lexico-syntactic patterns (LSP) (Robison 1970).

The distributional hypothesis is widely used in many approaches for taxonomy

induction from texts. For example, it is used in Cimiano et al. (2005) for populating

lattices, i.e. graphs of a particular class, of formal concepts. Namely, the distributional

hypothesis is exploited to extract attributes for objects. Nodes of the lattice are

obtained and clustering objects with similar attributes and hierarchical links are

drawn between two nodes, A and B, if the set of attributes of A is an included

subset of attributes of B. These lattices are then used to build taxonomic hierarchies.

The idea of drawing taxonomy links using the inclusion of features derived by

exploiting the distributional hypothesis has been also used by Geffet and Dagan
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(2005), where the distributional inclusion hypothesis is defined. The distributional

inclusion hypothesis basically states that a word ‘a’ is a generalization of a word ‘b’

if the properties representing the context of ‘a’ are included in those representing the

context of ‘b’ . The DH methods implicitly use transitivity. Yet, these methods cannot

be easily extended to semantic relations other than generalization and similarity. The

LSP models are more general, as these models can be potentially used for deciding

whether any type of semantic relation holds between two words. This approach

has been widely used for detecting hypernymy relations (Hearst 1992; Morin 1999),

other ontological relations (Pantel and Pennacchiotti 2006), more generic relations

(Ravichandran and Hovy 2002; Szpektor et al. 2004), and relations among verbs

(Chklovski and Pantel 2004; Zanzotto, Pennacchiotti and Pazienza 2006). The LSP

learning models generally use the hypothesis that two words have a particular

relation if they frequently appear in specific text fragments. LSP are prototypical text

fragments related to a particular relation. For example, given the isa relation, X is a Y

if X and Y are frequently found in contexts, such as ‘X is a Y ’, ‘X as well as Y ’, or ‘X,

Y,’. Given the relation R, a pair of words (X,Y ), and the patterns related to the rela-

tion R, the above-mentioned learning methods tend to determine a confidence weight

that expresses to which degree the relation R holds for the pair (X,Y ) according to

a collection of documents. The LSP models are interesting as they can learn any se-

mantic relation. Yet, structural properties of target relations, such as transitivity, are

generally not exploited. Even where transitivity is explicitly used (Snow et al. 2006), it

is not directly exploited in determining confidence values. On the contrary, it is used

in the iterative maximization process of the likelihood of the entire semantic network.

A last but important aspect when learning taxonomies and semantic networks

from text collections is how existing resources are used. The DH models generally

start learning from scratch. In Cimiano et al. (2005), for example, lattices and related

semantic networks are built from scratch. Yet, even when such prior knowledge is

used in the DH models (Pekar and Staab 2002), the status of prior knowledge

and produced knowledge is extremely different. Inserting new words in taxonomic

networks is seen as a classification problem. Target classes are nodes of existing

hierarchies. A distributional description of words is used to make the decision with

respect to target classes. A new word and a word (or concept) existing in the

network are then treated differently as the first is represented with its distributional

vector while the second is one of the final classes. On the contrary, the LSP models

(e.g. Snow et al. 2006) offer a more uniform way to represent prior and extracted

knowledge. The insertion of a new word in the hierarchy is seen as a binary

classification problem. The classification decision is taken over a pair of words, i.e.

a word and its possible generalization. The classifier should decide whether the pairs

belong to the taxonomy. Both existing and produced taxonomic relations have the

same nature, i.e. pairs of words.

The taxonomy learning models based on LSP have then three advantages with

respect to the DH models. First, these models can be used to learn any semantic

relation (Hearst 1992; Morin 1999; Ravichandran and Hovy 2002; Chklovski and

Pantel 2004; Szpektor et al. 2004; Pantel and Pennacchiotti 2006; Zanzotto et al.

2006). Second, these models coherently exploit existing taxonomies in the expansion
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phase (Snow et al. 2006). Third, the classification is binary, i.e. a word pair belongs

or does not belong to the taxonomy (Pantel and Pennacchiotti 2006; Snow et al.

2006). In this way, a single classifier is associated to each treated relation. Among

the LSP taxonomy learning models, we select a probabilistic approach because in

this way we can model both existing and new knowledge with probabilities. This is

needed to positively exploit transitivity during learning.

2.2 Feature selection models

In applications involving texts as the LSP taxonomy learners, machine learning

or probabilistic models are exposed to huge feature spaces. This has not always

positive effects. The first important problem is that huge feature spaces require large

computational and storage resources. The second problem is that more features do

not always result in better accuracies of learned classification models. Many features

can be noisy. Feature selection, i.e. the reduction of the feature space offered to

machine learners, is seen as a solution (Guyon and Elisseeff 2003).

There is a wide range of feature selection models that can be classified in two

main families: supervised and unsupervised models. The supervised models directly

exploit the class of training instances for determining whether a feature is relevant or

not. The idea is to select features that are highly correlated with final target classes.

Information theoretic ranking criteria, such as mutual information and information

gain, are often used (Dhillon et al. 2003). Unsupervised models are instead used

when the classification of training instances is not available at the training time

or it is inapplicable, such as in information retrieval. Straightforward and simple

models for unsupervised feature selection can be derived from information retrieval

weighting schemes, e.g. term frequency times inverse document frequency (tf ∗ idf).

In this case, relevant features are respectively those appearing more often or those

being more selective, i.e. appearing in fewer instances.

Feature selection models are also widely used in taxonomy learning. For example,

attribute selection for building lattices of concepts in Cimiano et al. (2005) is

done by applying specific thresholds on specific information measures on attributes

extracted from corpora. This model uses conditional probabilities, point-wise mutual

information, and a selectional-preference-like measure, as the one introduced in

Resnik (1993).

In taxonomy and semantic network learning, negative cases are few or artificially

produced. In natural conditions for taxonomy learning, we have only positive cases

as training, whereas in artificial conditions we can have both positive and negative

cases as training examples. These latter conditions are less frequent. Then we can

only apply unsupervised methods for feature selection because these methods can

be applied in both natural and artificial conditions.

3 Probabilistic definitions of concepts in corpus-based taxonomy learning

In this section, we want to informally introduce our inductive probabilistic model

for taxonomy learning. We will first motivate why we should store probabilities
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or confidence weights in learnt taxonomies (Section 3.1). Then we will introduce

our idea for giving probabilistic definitions of concepts that allows to build our

probabilistic model for taxonomy learning (Section 3.2).

3.1 Confidence weights, probabilities, and corpus-based knowledge learning

Any corpus-based knowledge learning method augments existing knowledge repos-

itories with new information extracted from texts. In this process, we have two big

issues. First, we are mixing reliable with unreliable information. Second, we are

dealing with the ambiguity of natural language that affects every bit of discovered

knowledge. For these two issues, we believe that storing and exploiting the probability

within semantic networks is needed.

Mixing reliable concepts, relations among concepts, and instances with semi-

reliable extracted information is a big problem, as final knowledge repositories

cannot be considered reliable. Generally, extracted knowledge items are included in

final resources if the related estimated confidence weights are above a threshold.

Accuracy of added information is generally evaluated over a small randomly selected

portion (e.g. Lin and Pantel 2001; Pantel and Pennacchiotti 2006; Snow et al. 2006).

Final knowledge repositories then contain two different kinds of information. The

first is reliable and controlled information, and the second, i.e. the above-a-threshold

extracted information, is semi-reliable information. Its accuracy is below 100 percent

and generally varies in different ranges of confidence weights. High confidence values

guarantee higher accuracy (e.g. Snow et al. 2006). Therefore it is extremely important

that corpus extracted knowledge items report confidence weights justifying the

inclusion in the knowledge base. In this way, consumers of knowledge repositories

can decide if information is ‘reliable enough’ to be applied in their task.

Ambiguity of natural language is the second reason why knowledge repositories

should store confidence weights (or probabilities) of extracted knowledge items.

For example, the word ‘dog’ can be generalized to the word ‘animal’ or to the

word ‘device’, according to which sense is taken into account. A decision system

working with words would have a beneficial effect on its accuracy knowing the

probabilities of two different generalizations. The simple ordering of word senses in

WordNet (Miller 1995) (first sense heuristic) according to their frequencies is useful

for open domain word sense disambiguation models. This effect is preserved in

specific domains, as prior sense probabilities computed within specific domains has

again a positive effect for word sense disambiguation processors (McCarthy et al.

2004). Experiences in different NLP tasks, such as part-of-speech (POS) tagging,

suggest that it is important to model and store these probabilities. In Yoshida

et al. (2007) comparison between three POS taggers is shown: first emitting one

interpretation per word, second emitting multiple interpretations, and, finally, third

emitting multiple interpretations with associated probabilities. These POS taggers

are then evaluated with respect to the performances obtained by a parser. Even if

the probabilistic model of the parser is different with respect to the one of the POS

tagger, the parser has better performances with respect to the third POS tagger that

emits tags and the associated probabilities.
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Fig. 1. Examples of relations derived by exploiting the transitivity.

Yet, even if it is important, including confidence weights in knowledge repositories

is not a trivial problem when considering semantic relations with structural properties

as transitivity. In methods such as given by Pantel and Pennacchiotti (2006), it seems

possible to easily include some initial values in the final resource, as these have

been used for deciding whether the knowledge base should include a relation.

Yet, when we need to combine these values in transitive relations, we need to be

extremely careful on how these values have been estimated and computed. For

example, if we discover from corpus analysis that ‘dog’ is a ‘canine’ and we already

know that ‘canine’ is an ‘animal’ (see Figure 1(a)), using transitivity we can derive

the induced relation, i.e. dog is an animal (the dashed arrow in Figure 1(a)). Yet,

we cannot easily combine confidence weights if the nature of these weights is

obscure.

The solution generally proposed for combining confidence weights is neglecting

their nature. The final relation between two words has the same confidence weight

as that of a reliable and controlled information. Even in probabilistic models (Snow

et al. 2006), these reliable and unreliable information is mixed during the knowledge

acquisition process. In these models, if ‘canine’ is an ‘animal ’ (see Figure 1(a)) is in the

original manually controlled network and ‘dog’ is a ‘canine’ has a high probability

from the corpus observations, this latter is included in the knowledge base with

the same degree of plausibility as that of ‘canine’ is an ‘animal ’. Then, the induced

relation ‘dog ’ is an ‘animal ’ has again the same degree of plausibility as that of

manually controlled information. This is a loss of information, as the uncertainty of

the relation ‘dog ’ is an ‘animal ’ is neglected.

3.2 Probabilistic definitions for concepts

As keeping and propagating uncertainty in transitive semantic networks is important,

we propose an inductive taxonomy learning model, i.e. a probabilistic taxonomy

learning model based on LSP that exploits transitivity during learning for de-

termining confidence weights. Our model stems from the intuition that the LSP

learning models contribute to probabilistic definitions of target concepts and that it

is possible to combine these definitions to determine confidence weights derived

in transitive networks. We hereafter observe how the LSP models contribute

to the formal definitions of concepts; then we define what is a probabilistic
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definition, and, finally, describe how these probabilistic definitions can be used

to determine two LSP inductive learning models: the intensional and the extensional

model.

The LSP methods derive formal definitions for concepts (or, better, for words or

word sequences) from texts. Extracting evidence from corpora suggesting that ‘dog ’

is an ‘animal ’ contributes to the definitions of ‘dog ’ and ‘animal’. In the case of ‘dog ’,

the relation between ‘dog ’ and ‘animal ’ contributes to the intensional definition of

‘dog ’ as it is stating that a ‘dog ’ is an ‘animal ’ with specific features. In the case of

‘animal ’, this relation contributes, in a wide sense, to the extensional definition1 of

‘animal ’. It is like we are giving one of the possible instances2 of the concept ‘animal ’.

These formal intensional and extensional definitions are often used to derive the

similarity among words or concepts. Cotopy (Maedche and Staab 2002), a measure

for determining similarity between concepts in two different semantic networks, uses

exactly this information.

A probabilistic definition of a concept is an intensional definition associated with its

induced probabilities. These probabilities are derived from the topology of transitive

semantic networks mixing of existing knowledge and corpus estimated probabilities.

In Figure 1, we report two kinds of arrows: the solid and the dashed ones. The solid

arrow indicates relations derived from the existing structured knowledge repositories

and from corpus analysis. The dashed arrow indicates the probabilities induced from

the structure of the network. We want to describe the probability of the dashed

relations using the probabilities of the solid ones. We call direct probabilities the first

type and induced probabilities the second one.

Within the idea described above, we propose two models that derive induced prob-

abilitic definitions from direct probabilities: the first exploits intensional definitions

of concepts and the second exploits extensional definitions. We then name these two

ways: the intensional inductive probabilistic model and the extensional probabilistic

inductive model. To give an intuitive idea of our model, we use the example given in

Figure 1.

The intensional inductive model exploits direct intensional definitions to derive

an induced intensional definition. In Figure 1(a), we have, as direct information, the

probabilities of the relations ‘dog ’ is a ‘canine’ and ‘canine’ is an ‘animal ’. From these

two relations, we can derive the induced probability of the intensional definition of

‘dog ’ is an ‘animal ’. In this case we are exploiting and modeling the transitivity of a

relation.

The extensional inductive model uses solid arrows, i.e. direct probabilities, to

form extensional definitions of the concepts and compare the different extensional

definitions for determining the final induced probability. In Figure 1(b), the relations

‘dog ’ is an ‘animal ’ and ‘dog ’ is a ‘canine’ are used to form a very small part of

the extensional definitions of ‘animal ’ and ‘canine’, respectively. The idea is that

1 The extensional definition of a concept is the enumeration of all its instances.
2 Considering ‘dog ’ as an instance of ‘animal ’ is not completely correct as dog can be a

concept in the structured knowledge repository. Yet, it is useful to describe the difference
between intensional and extensional definitions.
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Fig. 2. Example of relations derived by exploiting transitivity.

these extensional definitions can be used to determine the similarity of ‘animal ’ and

‘canine’. Then, we can derive the induced probability of the relation ‘dog ’ is an

‘animal ’. Using the same intuition, the relations ‘dog’ is an ‘animal ’ and ‘canine’ is an

‘animal ’ contribute to the extensional definition of ‘animal’ (see Figure 1(c)). Using all

the other relations, we want to derive the induced probability of the relation ‘dog ’ is a

‘canine’.

4 Inductive probabilistic model

In this section, we formalize the probabilistic definitions of concepts in an induced

probabilistic model. In Section 4.1, we define the two probabilistic models based on

direct Ri,j and induced R̂i,j probabilistic events. In Section 4.2, we introduce three

models for exploiting the probabilistic definitions of concepts within the induced

probabilistic model. Without loss of generality, we focus the examples and the prose

on taxonomy learning. Yet, these models can be adopted for any transitive semantic

relation.

4.1 Direct and inductive probabilistic models

As in Pantel and Pennacchiotti (2006) and Snow et al. (2006)(Pantel and Pennacchi-

otti 2006; Snow et al. 2006), we model the taxonomy learning problem as a binary

classification task. Given a pair of words (i, j) and a vector of observed features �e i,j ,

we want to build a binary classifier that determines if i is a j using �e i,j and gives

the related confidence weight. As in Snow et al. (2006), we see this problem in a

probabilistic setting, as it gives us the possibility to determine the direct probability

model as well as the induced probabilistic model.

We here propose a model to exploit transitivity within probabilistic taxonomy

learners that use LSP. Using LSP on a corpus, we can extract pairs of words in a

given relation along with their reliability. These pairs of words and their reliabilities

are directly observed. For example (see Figure 2), given the hyperonymy relation,

we directly derive the reliabilities of the pairs ‘dog’ is a ‘canine’ (0.8), ‘canine’ is an

‘animal ’ (0.7), and ‘dog ’ is an ‘animal ’ (0.2) (see the values on the solid arrows). If we

now look at all these pairs together, we can observe that these words form a semantic

network where transitive property holds. Even if the directly observed reliability of

the pair ‘dog ’ is an ‘animal ’ is low (0.2), transitivity of the network suggests that

this reliability should be higher (0.648). We exactly want to exploit thetransitive
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network to induce the reliability of the relation between ‘dog ’ and ‘animal ’ (see the

dashed arrow) using all the reliabilities of the involved pairs directly observed from

the corpus. We then use a probabilistic setting where this composition of confidence

weights can be better controlled.

In the direct probabilistic model, we define the direct events Ri,j ∈ T , where T is

the taxonomy. If Ri,j is in T , i is a concept and j is one of its generalizations. For

example, Rdog,animal ∈ T describes that dog is an animal according to the taxonomy

T . The learning problem in the direct setting is to determine the probabilities:

P (Ri,j ∈ T |E)(1)

where E is a set of evidences extracted from corpus analysis, i.e. a set of �e i,j . We

will hereafter refer to this probability as P (Ri,j |E).

With some independence assumptions, we can rewrite (1) as P (Ri,j |�e i,j), where �e i,j

is the set of evidences for (i, j) derived from the corpus. These evidences are derived

from the contexts where the pair (i, j) is found in the corpus. The vector �e i,j is a

feature vector associated with a pair (i, j). For example, a feature may describe how

many times i and j are seen in patterns like ‘i as j’ or ‘i is a j’. These among many

other features are indicators of an is-a relation between i and j (as discovered in

Hearst 1992).

These direct probabilities P (Ri,j |�e i,j) only depend on what has been observed

in the corpus for a particular pair of words (i, j). As transitivity has not been

considered, P (Ri,j |�e i,j) are initial probabilities of our probabilistic model for taxonomy

learning. In the example of Figure 2 we have the following direct probabilities (where

d = dog, a = animal, and c = canine): P (Rd,a|�e d,a) = 0.2, P (Rd,c|�e d,c) = 0.8, and

P (Rc,a|�e c,a) = 0.7.

The inductive probabilistic model is the main innovation of our approach to

taxonomy learning. Here we want to define an event space that models transitivity.

We then introduce the events R̂i,j and the related probability function:

P (R̂i,j ∈ T |E)(2)

This probability function should capture the fact that a decision on the pair (i, j)

also depends on the transitive relations activated by (i, j). It is not always the case

that these relations are activated by the existing taxonomy links. Yet, this inductive

probability takes into account transitively related taxonomic links. We examine

different models to exploit the transitive property of the R relation, and for each

of these models we show that P (R̂i,j |E) can be rewritten in terms of the involved

P (Rh,k|E).

For example, we can compute the inductive intensional probability for the pair

(dog, animal) in Figure 2. The inductive intensional probability P (R̂d,a|E) can be

computed as the probability of the event R̂d,a = Rd,a ∪ (Rd,c ∩ Rc,a). This captures

that the inductive event R̂d,a is active when Rd,a happens or the joint event Rd,c ∩Rc,a

happens. Then, using the inclusion–exclusion property, the previous independence

assumptions on the evidences E, and an independence assumption between Ri,j , we

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324910000197
Downloaded from https:/www.cambridge.org/core. Open University Library, on 03 Feb 2017 at 20:53:35, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324910000197
https:/www.cambridge.org/core


Inductive probabilistic taxonomy learning using SVD 81

lettuce (i)

animal (k2)vegetable (k1)

P(
R ki

j |
→e ki

j)

P 1
(R

ij
 |→ e ij

)

P
(R� ij

 |→ e ij
)

P
(R

k2j | →e
k2j )

P(R
jk

2 
|→e jk

2
)

P(R
jk

1 |→ei
k1)

food (i)

Fig. 3. Example of internal inductive model.

can compute P (Rd,a ∪ (Rd,c ∩ Rc,a)|E) as

P (Rd,a ∪ (Rd,c ∩ Rc,a)|E) = P (Rd,a|E) + P (Rd,c ∩ Rc,a|E)

−P (Rd,a ∩ Rd,c ∩ Rc,a|E)

= P (Rd,a|�e d,a) + P (Rd,c|�e d,c)P (Rc,a|�e c,a)

−P (Rd,a|�e d,a)P (Rd,c|�e d,c)P (Rc,a|�e c,a)

= 0.2 + 0.8 ∗ 0.7 − 0.2 ∗ 0.8 ∗ 0.7 = 0.648.

Given this initial idea, we formalize our inductive probabilistic models in next

sections.

4.2 Three inductive probabilistic models

We propose three different methods for modeling induced probabilities. We call these

intensional (Section 4.2.1), extensional (Section 4.2.2), and mixed models

(Section 4.2.3). These three models exploit different definitions of the event R̂i,j ∈ T .

In the intensional model (Section 4.2.1), the event R̂i,j ∈ T is represented as the

event Ri,j ∈ T and for any k all the alternative events Ri,k ∈ T and Rk,j ∈ T . In the

extensional model (Section 4.2.2), the event R̂i,j ∈ T is represented as the event Ri,j ∈
T and for any k all alternative events Ri,k ∈ T and Rj,k ∈ T and all the events Rk,j ∈
T and Rk,i ∈ T . The last model, mixed model (Section 4.2.3), is a combination of the

previous two models.

4.2.1 The intensional inductive model

In the intensional inductive model, we exploit direct probabilities to derive the

induced probabilistic intensional definition PI (R̂i,j |E). We evaluate this probability

using the direct probability of Ri,j ∈ T and the direct probabilities of having a

transitive connection between i and j of two direct relations. For each possible node

k, we then consider all alternative events Ri,k ∈ T and Rk,j ∈ T . We use a running

example to illustrate the idea.

We suppose to have four elements in a network (see Figure 3): ‘lettuce’ (i), ‘food ’

(j), ‘vegetable’ (k1), and ‘animal ’ (k2). We empirically estimated the direct probabilities

represented with bold arrows and want to determine the induced probability of the
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dashed arrow. Both the i− k1 − j and i− k2 − j paths offer some information to the

final induced probability even if we expect that P (Ri,k1
|E), i.e. the direct probability

of ‘lettuce’ is a ‘vegetable’, is near to 1 and that P (Ri,k2
|E), i.e. the direct probability

of ‘lettuce’ is an ‘animal ’, is near to 0. We compute the induced probability as the

probability of alternative events that represents the sub-part of the network of direct

events. In this case the induced probability is as follows:

PI (R̂i,j |E) = P (Ri,j ∪ (Ri,k1
∩ Rk1 ,j) ∪ (Ri,k2

∩ Rk2 ,j)|E)

We can compute this probability using the inclusion–exclusion principle and some

assumptions on the independence among events. The inclusion–exclusion principle

gives the possibility of computing the probabilities of alternative events. Given n

probabilistic events A1, A2, . . . , An in a probability space, the probability of the union

of these events is as follows:

P (A1 ∪ A2 ∪ . . . ∪ An) =
∑

∅�=J⊆{1,...,n}

(−1)|J|−1P (AJ)

where AJ =
⋂

i∈J Ai. The probability PI (R̂i,j |E) can then be rewritten as

PI (R̂i,j |E) = P (Ri,j |E) + P (Ri,k1
∩ Rk1 ,j |E) + P (Ri,k2

∩ Rk2 ,j |E)+

−P (Ri,j ∩ Ri,k1
∩ Rk1 ,j |E) − P (Ri,k1

∩ Rk1 ,j ∩ Ri,k2
∩ Rk2 ,j |E)+

−P (Ri,j ∩ Ri,k2
∩ Rk2 ,j |E) + P (Ri,j ∩ Ri,k1

∩ Rk1 ,j ∩ Ri,k2
∩ Rk2 ,j |E)

Finally, assuming that the probabilities of the direct events, Rn,m, are independent,

we can determine the probabilities of any of the joint events as products of the

probabilities of the events, e.g.: P (Ri,k1
∩ Rk1 ,j |E) = P (Ri,k1

|�e i,k1
)P (Rk1 ,j |�e k1 ,j).

The general equation for the induced intensional probability is as follows:

PI (R̂i,j |E) = P
(
Ri,j ∪

⋃
k∈K

(Ri,k ∩ Rk,j)|E
)

where K = {k1, . . . , kn} is the set of the intermediate nodes considered between i and

j. As in the case of (3), we can compute this equation using the inclusion–exclusion

principle as follows:

PI (R̂i,j |E) =
∑

∅�=J⊆{ε,k1 ,...,kn}

(−1)|J|−1P (RJ |E)

where RJ =
⋂

k∈J Rk . Each Rk is defined as Rε = Ri,j and Rk = (Ri,k ∩ Rk,j) if k �= ε.

Using the assumption that direct probabilities of Rm,n are independent, we can also

rewrite P (RJ |E) as

P (RJ |E) =
∏
k∈J

P (Rk|E)

where P (Rε|E) = P (Ri,j |�e i,j) and P (Rk|E) = P (Ri,k|�e i,k)P (Rk,j |�e k,j), if k �= ε.
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Fig. 4. Example of external inductive model.

4.2.2 The extensional inductive model

The extensional inductive model exploits the extensional definitions of the concepts

to derive the induced probabilities. Figure 4 reports an example where two different

models are adopted. The first model (see Figure 4(a)) uses the extensional definition

of the two involved concepts, i.e. ‘turkey ’ and ‘boat ’, to determine the probability

of the induced relation ‘bird ’ is a ‘beast ’, i.e. P (R̂i,j |E). The similarity between the

extensional definition of ‘bird ’ (i) and ‘beast ’ (j) should help in determining the

probability of the relation between the two concepts. In the second model (see

Figure 4(b)), ‘animal ’ and ‘penguin ’ contribute to the extensional definition of both

organism and ‘artifact ’. This should help in determining the probability P (R̂i,j |E) of

the induced event R̂i,j . In the case of the reported running examples, the probability

of the induced event is

P (R̂i,j |E) = P (Ri,j ∪ (Rs1 ,i ∩Rs1 ,j)∪ (Rs2 ,i ∩Rs2 ,j)∪ (Ri,h1
∩Rj,h1

)∪ (Ri,h2
∩Rj,h2

)|E)(3)

These probability equations can be reduced using the inclusion–exclusion principle

and the independence assumption between the direct events. We can then rewrite

this equation as

PE(R̂i,j |E) = P (Ri,j |E)+P (Rs1 ,i ∩Rs1 ,j |E)+P (Rs2 ,i ∩Rs2 ,j |E)

+P (Ri,h1
∩Rj,h1

|E)+P (Ri,h2
∩Rj,h2

|E) +

−P (Ri,j ∩ Rs1 ,i ∩ Rs1 ,j |E) − · · ·
+P (Ri,j ∩ Rs1 ,i ∩ Rs1 ,j ∩ Rs2 ,i ∩ Rs2 ,j |E) + · · · +
−P (Ri,j ∩ Rs1 ,i ∩ Rs1 ,j ∩ Rs2 ,i ∩ Rs2 ,j ∩ Ri,h1

∩ Rj,h1
|E) − · · · +

+P (Ri,j ∩ Rs1 ,i ∩ Rs1 ,j ∩ Rs2 ,i ∩ Rs2 ,j ∩ Ri,h1
∩ Rj,h1

∩ Ri,h2
∩ Rj,h2

|E)

We can finally write the general equation using the extensional probabilistic

definitions of the concepts. In this model we mix the two previous models in one

single equation. The probability P (R̂i,j |E) of the induced event R̂i,j is then rewritten

in term of the probabilities of the direct events as follows:

PE(R̂i,j |E) = P
(
Ri,j ∪

⋃
s

(Ri,s ∩ Rj,s) ∪
⋃
h

(Rh,i ∩ Rh,j)|E
)
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4.2.3 The mixed induced model

The mixed inductive model unifies the above-mentioned methods, considering both

the intensional and the extensional probabilistic models. Formally,

PM(R̂i,k|E) = P
(
Ri,j ∪

⋃
k

(Ri,k ∩ Rk,j) ∪

∪
⋃
s

(Ri,s ∩ Rj,s) ∪
⋃
h

(Rh,i ∩ Rh,j)
)

Similarly, the inclusion–exclusion principle can be used to evaluate the alternative

probability for the mixed method.

The complete computation of the inductive probabilistic models presented in

this section is unfeasible, as the computation of inclusion–exclusion principle is

combinatorial with respect to the set of alternative events J . We then use an

approximated computation derived from the method described in Kahn, Linial and

Samorodnitsky (1993).

5 Estimating direct probabilities using SVD within logistic regression

The last problem we need to solve is how to estimate the direct probabilities,

P (Ri,j |�e i,j), using an initial knowledge base and a corpus to extract evidences for

pairs (i, j). Once we have the direct probabilities, we can determine the induced

probabilities with the models described in the previous sections. The second issue

we want to address in this section is the problem of reducing the feature space in

an unsupervised manner. We estimate the probabilities using the logistic regression

model (Cox 1958) and, as we will see, this gives a natural setting for using SVD as

an unsupervised feature selection model.

In the rest of this section we will first introduce the logistic regression model

(Section 5.1), then we will show how regression coefficients are estimated (Section

5.2), and finally describe how SVD is used as a feature selector in the logistic

regression that estimates the probabilities of the model (Section 5.3). To describe

this part we need to thoroughly examine the definition of the logistic regression.

5.1 Logistic regression

Logistic regression (Cox 1958) is a particular type of statistical model for relating

responses Y to linear combinations of predictor variables X. It is a specific kind of

generalized linear model (see Nelder and Wedderburn 1972), where its function is

the logit function and the dependent variable Y is a binary or dicothomic variable,

which has a Bernoulli distribution. The dependent variable Y takes value 0 or 1.

The probability that Y has value 1 is a function of the regressors x = (1, x1, . . . , xk).

The direct probability P (Ri,j |�e i,j) falls in the category of probabilistic models,

where the logistic regression, which can be applied as Ri,j ∈ T , is the binary-

dependent variable and �e i,j is the vector of its regressors.

We start from formally describing the logistic regression model. Given a binary

stochastic variable Y and a generic stochastic variable X for the regressors, we can
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define p as the probability of Y to be 1 given X =�x, i.e.

p = P (Y = 1|X =�x)

The distribution of the variable Y is a Bernoulli distribution. Given the definition

of the logit(p) as

logit(p) = ln

(
p

1 − p

)
(4)

and given the fact that Y is a Bernoulli distribution, the logistic regression predicts

that the logit is a linear combination of the values of the regressors, i.e.

logit(p) = β0 + β1x1 + · · · + βkxk(5)

where β0, β1, . . . , βk are called regression coefficients of the variables x1, . . . , xk ,

respectively.

5.2 Estimating regression coefficients

The second issue is how to estimate the regression coefficients. This estimation

can be done using the maximal likelihood estimation. The above logit definition

generate a set of linear equations. The linear problem is then solved by introducing

a pseudo-inverse matrix, the original matrix being usually rectangular and singular.

Once we have calculated the regression coefficients, we have the possibility of

estimating a probability P (Ri,j |�e i,j) given any configuration of the values of the

regressors �e i,j , i.e. the observed values of the features.

The estimation of the β coefficients can be obtained as follows. Let us assume to

have a multiset O of observations extracted from a corpus. Elements of the multiset

are (y,�e i,j), where y = 1 if (i, j) is a positive case and y = 0 if (i, j) is a negative

case. We can now derive the set E of all the different vectors �e i,j . For the sake

of simplicity, we call these vectors �q. For each �q ∈ E, we can use the maximum

likelihood to estimate the initial probability P (Y = 1|�q) as the frequency of the pair

(1,�q) in O divided by the frequency of �q. For each �q ∈ E, we have a set of equations

of this kind:

logit(P (Y = 1|�q)) = β0 + β1q1 + . . . + βmqm(6)

where m is the size of the feature space. This set of equations can be written as a

linear equation system:
−−−−→
logit(p) = Qβ(7)

where Q is a matrix that includes a constant column of 1, necessary for the β0 of

the linear combination of the values of the regression. The matrix is

Q =

⎛
⎜⎜⎜⎝

1 q11 q12 · · · q1m

1 q21 q22 · · · q2m

...
...

...
. . .

...

1 qn1 qn2 · · · qnm

⎞
⎟⎟⎟⎠

The set of equations in (7) is a particular case of multiple linear regression (Caron,

Hospital and Corey 1998).
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As Q is a rectangular and singular matrix, Q is not invertible and the system
−−−−→
logit(p) = Qβ has no solutions. Yet, it is possible to use the principle of least square

estimation. With this principle we can determine the solution β that minimize the

residual norm, i.e.

β̂ = arg min ‖Qβ − −−−−→
logit(p)‖2(8)

This problem can be solved by the Moore–Penrose pseudoinverse Q+ (Penrose 1955)

that gives the following final equation:

β̂ = Q+−−−−→
logit(p)(9)

It is important to remark that if the inverse matrix exists, then Q+ = Q−1 and Q+Q ,

QQ+ are symmetric.

5.3 Computing pseudoinverse matrix with SVD analysis

We can finally illustrate why it is natural to use SVD as feature selection in

a probabilistic taxonomy learner. In the previous sections we described how the

probabilities of the taxonomy learner can be estimated using logistic regressions and

concluded that a way to determine the regression coefficients β is by computing the

Moore–Penrose pseudoinverse Q+. Here we compute Moore–Penrose pseudoinverse

Q+ by using SVD in the following way (Penrose 1955). Given an SVD decomposition

of the matrix Q = UΣVT , the pseudo-inverse matrix that minimizes the (8) is

Q+ = VΣ+UT(10)

The diagonal matrix Σ+ is the r × r transposed matrix of Σ having as diagonal

elements the reciprocals of the Σ singular values 1
δ1
, 1
δ2
, . . . , 1

δr
.

As we are using SVD in the computation of the pseudo-inverse matrix, we have

the possibility of exploiting it as an unsupervised feature selection model. We can

compute different approximations of the pseudo-inverse matrix. The algorithm for

computing the singular value decomposition is iterative (Golub and Kahan 1965).

The firstly derived dimensions are those with higher singular values. We can consider

different k in order to obtain different SVD as approximations of the original matrix

(10). We can define different approximations of the inverse matrix Q+ as Q+
k , i.e.

Q+
k = Vn×kΣ

+
k×kU

T
k×m

where Q+
k is a matrix n by m obtained considering the first k singular values.

The property of the singular values computed by the Golub and Kahan (1965)

algorithm, i.e. δ1 ≥ δ2 ≥ · · · ≥ δr > 0, guarantees that the first k are bigger than the

discarded ones. There is a direct relation between the informativeness of the i-th new

dimension and the singular value δi. High singular values correspond to dimensions

of the new space where examples have more variability, whereas low singular values

determine dimensions where examples have a smaller variability (Liu 2007). These

latter dimensions can then be hardly used as efficient features in learning. The

possibility of computing approximated versions of matrices gives a powerful method

for feature selection and filtering as we can decide in advance the number of features

or, better, linear combinations of original features we want to use.
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6 An alternative approach: the iterative model

We illustrate here an existing state-of-the-art probabilistic model for taxonomy

learning presented in Snow et al. (2006). This probabilistic model is the only one

based on LSP that intrinsically use the transitivity to expand the existing taxonomy.

We will hereafter call this model iterative. We are interested in this model because

it represents a valid alternative to ours. The iterative model, instead of determining

induced probabilities, iteratively adds facts in the knowledge base changing the

initial taxonomy.

In Snow et al. (2006), the probabilistic taxonomy learning task is defined as the

problem of finding a taxonomy T̂ that maximizes the probability of observing the

evidences E, i.e.

T̂ = arg max
T

P (E|T )

This maximization problem is solved with a local and iterative search. Each step

maximizes the ratio between the likelihood P (E|T ′) and the likelihood P (E|T ),

where T ′ = T ∪ I(Ri,j) and I(Ri,j) are the added relations. This ratio is called

multiplicative change Δ(N) and is defined as follows:

Δ(I(Ri,j)) = P (E|T ′)/P (E|T )(11)

The main innovation of this model is the possibility of adding at each step the

best relation {Ri,j}, as well as all the relations induced from Ri,j and the existing

taxonomy T . Given the taxonomy T and the relation Ri,j , the set I(Ri,j) contains Ri,k

if Rj,k is in T and contains Rk,j if Rk,i is in T . For example, given T and Rdog,animal ,

if Ranimal,organism ∈ T , then I(Rdog,animal) contains Rdog,organism.

Moreover, given T and Rbird,beast, if Rturkey,beast ∈ T , then I(Rbird,beast) contains

Rturkey,beast.

The last important fact is that it is possible to demonstrate that the following

equation holds:

Δ(Ri,j) = k · P (Ri,j ∈ T |�e i,j)

1 − P (Ri,j ∈ T |�e i,j)
=

= k · odds(Ri,j)

where k is a constant that will be neglected in the maximization process. This last

equation gives the possibility of using the logistic regression in original form. The

odds(Ri,j) is strictly related to (4) of the logit(p), as presented in Section 5.1.

Our SVD-based logistic approach demostrates here all its efficiency. The

iterative model requires the computation of the regression at each step. The more

expensive part of the computation of the regression model that we have proposed

is the computation of the pseudo-inverse matrix. This is computed only once for

all the iterative process. In (9), the estimated β̂ changes at each step because the

estimated
−−−−→
logit(p) changes. The use of other regression methods, such as Support

Vector Machines (Cortes and Vapnik 1995), is computationally unfeasible because

they require to recompute the regression at each step.
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7 Experimental evaluation

With this set of experiments, we want to determine the validity of our assumptions

and our inductive probabilistic model for taxonomy learning. We first want to

determine if keeping probabilities within the final knowledge base is better than

taking strict decisions. To assess this claim we compare our direct probabilistic

model with the state-of-the-art probabilistic model (i.e. the iterative model ) presented

in Section 6. We then analyze whether the way we are exploiting transitivity in the

semantic relation is effective. We compare the direct model with the inductive

model. Finally, we want to study if the SVD model for feature selection can be fully

exploited within our probabilistic model.

The rest of the section is organized as follows. In Section 7.1, we describe the

experimental setting: the corpus, the feature space, and the training and the testing

set. In Section 7.2, we report and comment the results of the experiments. In

Section 7.3, we qualitatively analyze the process of feature selection based on SVD.

7.1 Experimental set-up

To completely define the experiments we need to describe some issues: How do we

define the taxonomy to replicate; which corpus have we used to extract evidences

for pairs of words; and which feature space have we used.

As target taxonomy we selected a portion of WordNet3 (Miller 1995). Namely,

we started from 44 concrete nouns divided into three classes: animal, artifact, and

vegetable. For each word w, we selected the synset sw that generalizes with the

class it belongs to. We then obtained a set S of synsets, and expanded the set

to S ′ by adding the siblings (i.e. the coordinate terms) for each synset in S . The

set S ′ contains 265 coordinate terms plus the forty-four original concrete nouns.

For each element in S we collected its hypernyms, obtaining the set H . We then

removed from the set H the top four classes: entity, unit, object, and whole. The set H

contains seventy-seven hypernyms. For the purpose of the experiments we derived a

taxonomy T from the previous sets and produced a set of negative examples T . The

two sets have been obtained as follows. The taxonomy T is the portion of WordNet

implied by O = H ∪ S ′, i.e. T contains all the (s, h) ∈ O × O that are in WordNet.

On the contrary, T contains all the (s, h) ∈ O ×O that are not in WordNet. We then

have 4,596 positive pairs in T and 48,354 negative pairs in T .

To obtain the training and the testing sets, we randomly divided the set T ∪ T in

two parts Ttr ∪ T tr and Tts ∪ T ts, respectively, the 70per cent and 30per cent of the

original T ∪ T .

As a corpus we used the English Web as Corpus (ukWaC) (Baroni et al. 2009).

This is a web-extracted corpus of about 2,700,000 web pages containing more than

two billion words. The corpus contains documents of different topics, such as web,

computers, education, public sphere, etc. It has been largely demonstrated that the

web documents are good models for natural language (Lapata and Keller 2004).

3 We used the version 3.0 of WordNet.
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Fig. 5. Accuracy of the top-k ranked pairs for the iterative, direct, and inductive

probabilistic taxonomy learners.

We used a bag-of-n-gram feature space for implicitly modeling LSP. Features are

words, bigrams, and trigrams. These n-grams represent specific LPS. Given a pair

(i, j) ∈ T ∪T , we build the related feature vector �e i,j using the contexts where the the

words i and j appear in a window of at most five words. For each context of (i, j),

the word sequence between i and j is used to increment the frequency of the related

n-grams. For example, given the pair (car, vehicle), we can retrieve the context:

. . . to control the car as a motor vehicle and . . .

Considering only word sequences between the two target words, this context

contributes to the features: as, a, motor, as a, a motor, and as a motor. These

feaures are approximations of LSP.

7.2 Results

In the first set of experiments, we want to analyze the following two issues: (1) the

relevance of the probability in the final knowledge base; and (2) the effectiveness

of our inductive model. We evaluate the iterative, the direct, and the inductive

probabilistic models on their ability of sorting the pairs. We have two classes of

methods. The iterative model adds some pairs at each step. The direct and the

inductive probabilistic models, instead, produce a sorting of pairs according to

probabilities. We then compared the two methods in the following way. For the

iterative methods, we plot the curve that relates the accuracy to the number of

added pairs. The accuracy is computed as the number of correctly added pairs with

respect to the added pairs. On the contrary, for the probabilistic models we plot

the accuracies with respect to the ranked pairs. For this set of experiments, we used

k = 100 for the pseudo-inverse matrix computation with SVD.

Results are reported in Figure 5. Firstly, we can observe that, after some initial

steps, models that keep the probabilities are better than the models that make
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Table 1. Accuracy of the different models at top 100 and 1,000 ranked pairs

Top k -pairs

Probabilistic model 100 1,000

iterative 0.350 0.225

direct 0.290 0.269

intentional 0.510 0.282

estentional 0.420 0.292

mixed 0.510 0.322

a decision at each step. The direct model already outperforms the iterative model.

Then, the final knowledge base should keep the probabilities. The second observation

is that the inductive (estensional, intensional, and mixed) models outperform the

direct model. This shows that our way of encoding the transitivity is effective. Finally,

among the inductive models, the mixed model is the best one. The mixed method

exploits both intensional and estensional probabilistic definitions of concepts.

In order to take a closer look at the results of the first set of experiments, we

reported the accuracies in Table 1. The table reports the accuracies for different

probabilistic models for two different cuts of the sorted pair list. The second and

the third columns report, respectively, the accuracies for 100 and 1,000 considered

pairs. We used these two cuts to compute the statistical significance of the difference

between the direct and the mixed models. To determine the statistical significance,

we used the model described in Yeh (2000)(Yeh 2000) as implemented in Pado

(2006). We extended this latter for considering accuracies computed on sorted lists.

According to these tests, the statistical significance is below 0.05 for both top k

choices.

In the second set of experiments, we want to investigate the role of the feature

selection performed using SVD on our probabilistic model. We analyze the accuracy

on 100 considered pairs for different values of k, i.e. the number of considered

dimensions for SVD used in the computation of the pseudo-inverse matrix. The

plots of the direct and the mixed inductive probabilistic models are presented in

Figure 6. For both models, the performances are stable or decrease after k = 100.

An aggressive dimensionality reduction of the feature space does not negatively

affect performances. Models with k = 100 features are computed much faster than

the models with k = 1, 000 features and performances are not significantly affected.

The stability of the two curves suggests that, even by using the whole feature space,

the performance cannot increase.

7.3 Qualitative analysis of dimensionality reduction

The experiments show that we can positively use dimensionality reduction of SVD

within the computation of the pseudo-inverse matrix. We now want to analyze the

first dimensions to understand which linear combination of the original features

is relevant for the specific task of learning taxonomies using lexical patterns. As
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Table 2. Two selected eigenvectors on the bag-of-n-grams

Eigenvector 1 Eigenvector 400

Rank Feature Weight Feature Weight

1 , 2.9363 10−4 clear 86.1446 10−4

2 be 0.5762 10−4 of ” 54.8997 10−4

3 play 0.2077 10−4 clear of 47.1909 10−4

4 & 0.1984 10−4 expedition 40.7345 10−4

5 , as 0.1965 10−4 burnt 36.1784 10−4

6 - 0.1671 10−4 ), 34.8534 10−4

7 is 0.1356 10−4 tank 32.9300 10−4

8 : 0.0858 10−4 fishing 31.8269 10−4

9 ( 0.0839 10−4 preparation 31.4684 10−4

10 find 0.0689 10−4 group 31.2342 10−4
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Fig. 6. Accuracy of the direct and inductive probabilistic taxonomy learners with respect to

SVD feature selection.

the decomposition algorithm that we are using sorts the eigenvectors according to

decreasing eigenvalues, we will examine the first eigenvector that should be more

significant and the eigenvector number 400. In Table 2, we present only some of

these eigenvectors. We present the dimensions with the ten largest values. The first

ten dimensions of the first eigenvector are presented in column 2 and 3. The first

ten dimension of the 400th eigenvector are presented in column 4 and 5.

The first eigenvector is very interesting as it mixes many classical indicators

of hypernymy, e.g. ‘,’, ‘be’, ‘&’, etc. These indicators appear with different relative

weights in many of the first eigenvectors. It is worth noticing that the forms of the

verb to be are present in the considered eigenvector. On the contrary, the eigenvector

number 400 does not contain any relevant information related to the hypernymy

phenomenon in the first positions. This qualitatively explains what has been shown

by the experiments in the previous section. Many dimensions in the reduced space

are totally irrelevant.
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8 Conclusions and the future work

We presented a probabilistic taxonomy learning model that positively exploits

transitivity. We demonstrated that keeping of the probability within the final

knowledge base is extremely important for the performances of the learning method.

We have also shown that our model positively exploits transitiveness, as the inductive

model outperforms the direct model. Finally, we have demonstrated that SVD can

be used as a natural feature selection model within the probabilistic taxonomy

learning models.

In the future, we want to extend the model to consider feature spaces more

complex and richer than bag-of-words. We believe this will boost the performances

of our model. We plan to test our model for different transitive semantic relations,

such as part-of, cause–effect, entailment, etc. Moreover, we want to extend the model

to consider other structural properties of semantic networks
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