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Determining what machines “think” can be considered a well-set problem. Computational systems
have recently become so complex to motivate a parallelism with the human brain. Such a parallelism
may represent a test-bed for brain-imaging as brain interpretative models can be tested on a much
simpler case. We performed a virtual observation of a computational machine: the machine activity
has been observed using a software program that snapshots the machine memory. Images of the
memory activation states have been produced with bit resolutions. Building on these results, we
are interested in what can be physically reading the machines’ “thoughts” and what can be its
technological implications. This is a peculiar challenging task of nanotechnology, the elementary
information unit 1/0 (the bit) nowadays corresponding on chip to a physical elementary unit of
nanometric dimensions. To capture activation states in physical memories we need devices that do
not interfere with the chip both from a mechanical and an electro-magnetic point of view and have
imaging resolutions comparable with the minimum line separation typical of the modern processors.
The present work explores a new scientific field that can foster advances in neurosciences and,
secondarily, in computer diagnostics.
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1. INTRODUCTION

When Jack Kilby realized the first integrated circuit in
1958, none imaged that these devices could become as
complex as human brains. Yet, the involvement of ther-
modynamics in the theory of computation was an alert of
a growing in complexity. Information processing became
a non-negligible thermodynamic problem because of the
rising amount of irreversible operations such as AND or
ERASE dissipating an energy of at least kBT ln2 for each
single bit of information lost,1 where kB is the Boltzmann
constant and T the temperature. The same Von Neumann
became aware of the relevance of thermodynamics in com-
putational processes but his speculation about the increase
of entropy during computation proved to be false.2 From
the starting point, the rate of information processing that
computers were capable to perform doubled every 18
months (Moore’s law). The complexity of the Central Pro-
cessing Units (CPUs) rose enormously.
Initial machines were still far from what we have

now and what we can have in the future. Today
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machines are a product of nanotechnology, where the term
“nanotechnology” refers to the ability of working materi-
als with atomic or molecular precision.3 While the most
advanced microelectronics industry is nowadays trying to
extend the standard lithographic capabilities beyond the
45 nm node (this value standing for the minimum line sep-
aration so far obtained), the realization of first prototype
quantum computers has satisfied the ambition of nanotech-
nology of functionalizing single atoms or molecules.4 New
strategies like the top-down approach and the bottom-up
approach exploiting the self-assembling properties of some
bio-molecular materials are going sufficiently mature to
promise a short-term extension of the quantum bit concept
to macroscopic devices containing much more than the
few elements constituting existing quantum computers.5

Computational machines with macroscopic dimensions
and atomic minimum feature size can be referred to as
Avogadro-scale computers, i.e., computers acting on a
number of bits comparable to the Avogadro’s number
(∼1023). Such computational machines are complex ther-
modynamic systems characterized by a logical and archi-
tectural complexity very similar to that distinguishing the
human brain.
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The analogy between computational machines and
human brain has been always fascinating but nowadays it
is becoming more evident. At the beginning, this corre-
lation concerned exclusively theoretical models. It is not
hard to imagine that the Von Neumann architecture6 and
the neural-based computing architecture originally intro-
duced by Turing7 had been inspired by concepts coming
from studies on mind and brain. The same was in the
opposite direction, from mind and brain to the computer
architectures, Cognitive Psychology8 and the more radical
Cognitive Science9 having used computing machines as a
metaphor for defining models of the human mind. Nowa-
days, at the door of the Avogadro-scale computers era, peo-
ple wonder if brain and computers will be in some future
discriminated only by the kind of elementary physical units
they are made of: transistors or neurons. As from now it is
sometimes hard to tell where devices end and people begin,
as it is in many recent progresses in neuronal medicine.10

The common sense, even affirming that a complete iden-
tification of computers with the human brain will be never
possible, is not impeding to the incoming era of evolved
computer architectures to stimulate new ways to look at the
fascinating and unexplored parallelism between computers
and brains/mind. Recently, in Ref. [11] we have explored a
new parallelism between brain and computational machines
on the field of neuroimaging. Neuroimaging techniques
are used to discover areas related to particular cogni-
tive processes and, also, to induce activation patterns for
high-level cognitive processes related to specific semantic
categories.12 These activation patterns can be used to deter-
mine what cognitive process a brain is performing. This is
an extremely fascinating area of research. If successful, the
produced analyzers of brain activation images will be able
to read what humans are thinking.
In Ref. [11] we observed that computing machines

nowadays perform complex tasks that seem to be “cog-
nitive processes,” e.g., manipulating symbols. In a sense,
computers can be considered as more “controlled” brains,
where these emerging theories on the possibility of reading
what brains think can be tested and verified. In this new
parallelism between brain and computational machines, we
can then address two questions:
(1) how far can we go with neuroimaging in understand-
ing human mind? (foundational perspective);
(2) can we understand what computers “think?” (applica-
tive perspective).

The foundational perspective of the parallelism is
extremely important as we can test the foundational
hypotheses of neuroimaging studies such as Refs. [12]
and [13] in a simpler and more controlled setting. With
the parallelism between brains and machines, we can
study if finding the correlation between high-level cogni-
tive processes and neuroimages is a feasible task. On the
brain side (Fig. 1), we have two known variables, i.e.,
the required cognitive activity and the observed activation

pattern, and one unknown variable, i.e., the way the brain
is performing the cognitive process. In brain imaging, the
aim is to understand and to model the unknown variable.
On the electronic computer side, there are no unknown
variables: the three elements are completely known. This
gives a very relevant, simpler, and more controlled test-
bed. We know exactly how “knowledge” is processed in
computers and we know exactly the “cognitive process”
we ask machines to do. If we succeed in studying the cor-
relation between the cognitive process and the activation
image in the electronic computer side, we can be confident
that the same method can be used on the brain side.
The applicative perspective is also an extremely inter-

esting and unexplored area of research. Using the ideas
developed on the brain side of the parallelism (Fig. 1), we
can try to apply them to the electronic computer side. Can
we develop technologies that “read the computers’ mind?”
This predictive model can have a wide variety of appli-
cations, e.g., detecting malicious software, detecting the
intentions of hostile computers by looking at their activa-
tion patterns, or on-line testing of critical chips. We need
specific devices that can capture activation images of com-
puters. We can then study the application of machine learn-
ing to induce models that can predict what a computer is
doing by analyzing its activation patterns.
This approach is innovative in the panorama of paral-

lelisms between brain and computing machines. It involves

Fig. 1. Reading Brain and Machines with fMRI or fMRI-like tech-
niques. On the brain side, mind state decoders want to guess what brains
are thinking observing their activation images. In the proposed paral-
lelism with computing machines, the aim is to build computer state
decoders where cognitive activities are class of algorithms and the acti-
vation is captured looking at the memory.
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at the same time structural aspects related to the nature
and topography of the activation areas (in brains or CPUs)
and theoretical aspects related to the way of processing
the activities (process modeling). The work here presented
is at the very early stage. The present communication is
to highlight what concepts have been already fixed, what
is still obscure, and how this approach is challenging the
scientific community.

2. TERMS OF THE CHALLENGE

In the computational machine side of the parallelism, we
want to investigate whether it is possible to produce a pre-
dictor that can determine what the computer is doing, i.e.,
its cognitive process, observing its activation image. We
want to see if we can read what machines think. As in
neuroimaging, this predictor can be learnt from training
data using machine learning techniques. Training data are
activation images as well as the performed cognitive pro-
cesses. Once the predictor has been derived from training
data, it can be used to associate “cognitive processes” to
new activation images. In the perspective of building pre-
dictors for computational machines, we need to determine
how we can produce the activation images.
In computational machines, we can assume that “cogni-

tive processes” are represented by software processes. In
a Von Neumann architecture, these processes are totally
stored in the memory. If we want to pursue the brain-
computer parallelism in the neuroimaging perspective, we
then need to be able to observe the memory of compu-
tational machines and to understand the structure of the
processes inside the memory.
Observing the memory to be detected and determining

the running processes is extremely complex as we need a
specific device able to snapshot the physical status of the
memory and we need to understand the organization of the
different processes in the memory. Yet, electronic comput-
ers have a very nice property. We can virtually observe
the activity of these machines and the state of the memory
using software programs and we can know exactly how
processes in memory are organized.
The task we are prefiguring can then be organized in

different steps that start from two extremes (Fig. 2). On the
right side, we have the virtual observation of the memory.
Here, we can exploit the possibility that computer mem-
ories can be observed using software programs. On the
left side, we have the physical observation of the physical
memory chip. In this case, we need a physical device for
capturing activation images.
From the virtual observation starting point (see Fig. 2),

we can easily simulate the electronic computer side of our
vision without actually having a physical device to observe
the activation state of machines. A software program snap-
shots the memory of the machine. These snapshots can
then be used to produce activation images as if they were

taken from an external device. The concept of “activa-
tion image” slightly differs according to what we want to
observe. We have three possibilities of decreasing com-
plexity (Fig. 2). First, we can dump the physical memory,
i.e., exactly what is in the memory chip. Second, we can
dump the virtual memory, i.e., the memory storing all the
processes in a well organized and separated way. Finally,
we can dump the memory of a single process. These three
possibilities offer three different sets of images where to
analyze the computational machine side of our parallelism.
With an increasing difficulty, we can find the predictor
that:
(1) given the process activation images, determines what
cognitive activity the process is doing;
(2) given the virtual memory activation images, deter-
mines the cognitive activities performed by the machine;
(3) given the virtual physical memory activation images,
determines all the active cognitive activities in given time
points.

The last problem is the most complex and the closest to
the challenges we have when physically observing the vir-
tual chip, where we have also to treat the localization of
processes in the real memory. The first problem is the most
affordable and, for this reason, it has represented our start-
ing point.
Unfortunately, the virtual approach has some limits. For

example, it is practicable till the CPU is accessible. As
the access to the CPU is forbidden (e.g., the operating
system is protected or system errors are preventing the
access to memory), although the machine is still executing
activities, the only way to observe the activation states
of memory is using an external physical device. Another
problem affects the virtual approach, that is more serious
because intrinsic to this procedure: the use of a software
program snapshotting the machine memory can perturbs
the state of memory, because it generates processes that
are stored in the memory itself, and the final activation
image may be altered.
The physical observation starting point (see Fig. 2) is

then more rigorous and of more general applicability, but
it preludes a much more complex task. A tool allowing
the physical observation of a memory state still not exists.
It should be a separate module external to the computa-
tional machine, it should operate directly on the chip with-
out intermediaries and it should distinguish all the details
of the given activation state. Even if based on different
concepts and needing different instruments, at the end it
should give the same information provided by the virtual
observation.
At the moment, we are able to test the overall process

of the electronic computer side (Fig. 1) only by virtual
observation of the activation states (see Fig. 2). Using the
information provided by this approach, we can study if it is
possible to derive a correlation between the images of the
activation states and the performed “cognitive processes.”
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Fig. 2. The overall challenge from Virtual to Physical Observation of Computer Memory. The acquisition of activation images of computer memory
can be done in different ways. From right to left in increasing order of complexity: virtual scanning of the memory of a single process, virtual images
of the virtual memory (that contains all the ready processes), virtual images of the real memory (that contains only the active processes), and, finally,
real scanning of the real memory chip.

For this purpose, we will extract features from activation
images to feed machine learning algorithms. Given a set of
training examples, i.e., training activation states, associated
with different types of “cognitive activities,” the machine
learning algorithm can extract a prototypical model of acti-
vation for each type of cognitive activity. These models
can be used to classify novel activation states, i.e., to rec-
ognize the type of cognitive process that the activation
state suggests. If classifiers have good performances with
respect to a set of testing activation states, we can conclude
that the task of reading “machines’ thoughts” is reachable
using the proposed features.

3. VIRTUAL AND PHYSICAL APPROACH

The virtual approach has been successfully tested in
Ref. [11], where we have produced images representing
the activation state of a machine performing a particular
“cognitive task,” e.g., sorting a vector or comparing two
strings. We exploit the fact that processes perform “cog-
nitive activities,” where a “cognitive activity” is defined
as the execution of a program over input data. Processes
are completely represented in memory, i.e., both programs
and data are stored in memory. Snapshots of the memory
associated with target processes can be directly obtained.

These snapshots can be used to build images. The proce-
dure for extracting images is reported in Ref. [11] in detail.
In that paper we have proved that it is possible both to
correlate activation images with “cognitive processes” and,
reversely, to determine the class of the “cognitive process”
from a given activation image, with an accuracy larger
than 80% (in this context, the accuracy is defined as the
number of correctly predicted algorithms with respect to
all the decisions of the learnt classifier).
From the physical point of view we must consider that

the core of the most advanced transistor-based computa-
tional machines is a complex processor made of billions
of nanometer-scale elementary features. As a product of
nanotechnology, these machines require the use of nano-
technological tools to be investigated at the scale of their
minimum feature size. In the perspective of realizing a
tool that captures images of the activation states of mem-
ory measuring physical observables, we must be sure it
can replicate on-chip the physical equivalent of the byte-
by-byte reading of the memory dump performed by vir-
tual observation. The on-chip byte equivalent is a train
of current pulses whose information is stored in the form
of accumulated electric charge. The physical size of such
information is the size of the tracks where the current
flows or the size of the capacitors where the charge
is accumulated. Typically, the size of these information
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R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Prezioso et al. Reading What Machines “Think”: A Challenge for Nanotechnology

driving/storing features (depending if tracks or capacitors)
corresponds to the minimum feature size that characterizes
the processor. Given the above mentioned nanometer-scale
features in modern processors, the first requirement for
a tool devoted to the physical measure of the activation
states of memory is its suitability of measuring details with
nanometric resolution. The second but not less important
requirement for such a tool is that it must operate without
exerting both a mechanical and an electro-magnetic influ-
ence on the chip: this condition is indispensable to avoid
perturbations of the activation state during the measure.
In fact, physical memory is extremely sensitive to any kind
of external stimulus.
The challenge is then for the nanotechnology world,

given the nano-scaled resolution of a technique that may
be rightly considered the equivalent of the Functional
Magnetic Resonance Imaging (fMRI) for Neuroscience.
In principle, Physics has all the instruments to win this
challenge and many persuasive examples may be reported
on this matter. The technique of Atomic Force Microscopy
(AFM) is one of the most exemplary cases of detection of
signals coming from nanometric features with a negligi-
ble incidence on the morphological and electro-magnetic
properties of the measured samples. But AFM is not yet
a suitable solution to the hard problem of acquiring infor-
mation simultaneously from the overall chip surface with
nanometric resolutions (the number of 10−9−10−8 m sized
objects over a 10−4 m2 surface is a value between 10−14

and 10−12), AFM being a local investigation technique.
Completely new investigation techniques will be maybe
required to meet this challenge.
Beyond the problems of scanning the physical chip with

opportune resolution and without affecting the running
process, another big problem concerns the interpretation
of the collected images. Images of dumped memory at
the initial state (Fig. 3(a)) and when executing the pro-
cess accomplishing the required task (Fig. 3(b)) have
been reported in Ref. [12]. Due to the complexity of
the chip architecture, physical measure of the memory
chip is expected to be significantly different then virtual
observation by memory dumping. In fact, data in a vir-
tual memory can be easily and exactly localized by using
software methods (as in Fig. 3), while data in a physi-
cal chip are scattered in many chunks located in different
places of the chip and there are no deterministic ways
to assign physical location of bits to the running logical
process.
Images of Figures 3(a) and (b) have been reported in

Ref. [11] also after blurring (respectively, Figs. 3(c) and
(d)). The blurring effect is obtained merging contiguous
pixels, each pixel in the smoothed image being a weighted
sum of the square K ×K of pixels around the target
pixel in the original image (in our case K = 10). The
intent of blurring images from virtual observation is to

show what can be observed in principle using a physi-
cal scanning device. According to the choice of K differ-
ent blurring degrees can be obtained, large values of K
corresponding to a high blurring degree, small values of
K corresponding to a low blurring degree. The lower is
the blurring degree the smaller are the details of mem-
ory that the scanning device is able to resolve. In terms
of K, we are associating the area K ×K of contiguous
pixels where the information is merged to the size of the
minimum physical detail that the scanning device is able
to resolve. In other words, K can be considered a mea-
sure of the detection resolution when expressed in pixel,
where the single pixel is assumed to correspond to the
minimum feature of the physical memory. In terms of spa-
tial resolution, one pixel has the size of the minimum line
separation characterizing the integrated circuit of the phys-
ical memory. As an example, considering that the typical
minimum line separation in modern processors is about
10−8 m, the case K = 10 reported in Figure 3 may be
correlated to a spatial resolution of 0.1 �m (poor to our
purposes!).
But the interpretation of blurring is also critical. As it

has been presented above, it cannot be considered a good
approximation of the errors that a real physical scanner
makes. In fact, the blurring method guarantees that pixels
used to calculate blur are logically connected while in the
physical chip the reading of a bit can be distorted by bits of
memory not connected with the measured pixel. Because
of this non linear memory storage, the distortion can come
from memory bits that belongs to another process and it
assumes a different meaning with respect to the graphical
rendering of a virtual blurred image.
Actually, the difficulty of interpreting the virtual obser-

vation and the discrepancies with the physical observation
reveal with particular evidence the affinity between the
world of chips and Neurosciences. In the virtual observa-
tion bits are assigned to a well defined location and pixels
representing bits are logically connected. To the aim of a
parallelism with Neurosciences this ideal situation cannot
give useful information. On the contrary, what is obtained
from physical observation is much more similar to what
is obtained by fMRI. As observed before, there are no
deterministic ways to assign physical location of bits to
a specific process, but a non deterministic study of the
correlation between the real images of the running mem-
ory and the activated processes is the same approach of
Neurosciences when correlating a stimulated area of the
human brain to a specific required task. Furthermore, in
our case we take also advantage from studying a sim-
plified case, going from a tridimensional down to a less
complex bidimensional system. This consideration is what
rightly motivates the approach here presented for a better
understanding of human mind, a purpose that involves also
the possibility of extending the acquired know-how to the
fascinating perspective of understanding what computers
“think.”
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(a) (b)

(c) (d)

Fig. 3. Images of dumped memory at the initial state (a) and when executing the process accomplishing the required task (b); the same images after
blurring (respectively (c) and (d)).

4. CONCLUSIONS

This work shows the opportunity to progress in the com-
prehension of the brain activity exploring the parallelism
with the activity of computational machines. Despite the
simplicity of this idea and the excessively large gap in
complexity between the two terms of comparison, the pos-
sibility to get useful information on the behavior of the
human mind from the study of inanimate machines is
a fascinating problem. Using firstly a virtual approach,
we have provided concrete elements to believe that this
parallelism is a practicable investigation method, with
fascinating perspectives if it will switch to a physical
approach. The next steps are really ambitious but we are
fully confident in the scientific and technological back-
ground of nanotechnology community, that can easily
accept the challenge of realizing a tool that will read what
machines “think.”
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